COURS D ANALYSE DES GENOMES

Dimension: px
Commencer à balayer dès la page:

Download "COURS D ANALYSE DES GENOMES"

Transcription

1

2 COURS D ANALYSE DES GENOMES ANNEE UNIVERSITAIRE * * * * * * Codirecteurs du Cours : Bernard DUJON et Stéphane LE CROM Chef de Travaux : Lionel FRANGEUL * * * * * * LE COURS SE DEROULE DU 4 NOVEMBRE AU 20 DECEMBRE 2013 AU CENTRE D ENSEIGNEMENT DE L INSTITUT PASTEUR (PAVILLON LOUIS MARTIN, BATIMENT 09) 28, RUE DU DOCTEUR ROUX, PARIS CEDEX 15 CONFERENCES ET COURS : - DU 4 AU 8 NOVEMBRE 2013 : SALLE DE COURS 2 (CENTRE D ENSEIGNEMENT, PLM, BATIMENT 09) - DU 12 NOV. AU 13 DEC.2013 : SALLE DE COURS 4 (BATIMENT SOCIAL 06) - DU 16 AU 20 DECEMBRE 2013 : SALLE DE COURS 2 (CENTRE D ENSEIGNEMENT, PLM, BATIMENT 09) TRAVAUX PRATIQUES : SALLE DE TP 2EME ETAGE DU CENTRE D ENSEIGNEMENT (PLM, BATIMENT 09)

3 PRESENTATION DU COURS

4 Préambule au cours d Analyse des Génomes La Génétique est la Science qui étudie l hérédité. Or, quiconque s interroge sur les différences entre un objet physique, par exemple un nuage, et un organisme vivant, par exemple une souris, arrivera tôt ou tard à la conclusion inévitable qu il n y en a qu une: l hérédité. Car, comme les nuages, les organismes vivants suivent les lois de la physicochimie (voir Schrödinger, 1944). Ils sont constitués des mêmes atomes. Mais, alors qu un nuage se forme à une date et en un lieu donnés comme la conséquence d un ensemble de valeurs précises d humidité, de pression et de température sans souvenir de la présence éventuelle d un autre nuage, similaire ou non, à une date antérieure, une souris naît à partir de deux autres souris préexistantes qui, elles-mêmes, avaient des parents, etc Pour sa formation à partir des atomes et des molécules qui la constitueront, une souris hérite, dès l oeuf, du fruit de l évolution de tous ses ancêtres, proches et lointains, tandis que le nuage part de zéro. Les êtres vivants ont donc, en plus de la physique, une histoire portée de génération en génération par le matériel héréditaire. Connaître ce matériel héréditaire et son fonctionnement c est donc lire l histoire des êtres vivants, comprendre leur complexité et, finalement, appréhender ce qui les distingue du monde inanimé. C'était toujours l objet même de la Génétique depuis son origine même si les méthodes d analyse n ont longtemps permis de lever que quelques pans du voile. Avec l analyse des génomes, notre connaissance du matériel héréditaire devient exhaustive et, s éloignant progressivement des systèmes modèles qui furent si précieux à la Génétique, la Génomique explore maintenant le monde vivant dans son intégralité et, progrès techniques aidant, à travers tout le spectre d'échelles qui relie les molécules élémentaires aux populations naturelles. Des horizons insoupçonnés se découvrent. Les notions classiques font place à des visions nouvelles qui nous permettent même d imaginer des mondes que la Biologie synthétique essai de construire. Pour bien appréhender ces idées, un bref retour en arrière s impose. La Génétique, science des génomes Les bases de la génétique moléculaire Au cours du siècle dernier, nos connaissances sur le matériel héréditaire ont progressé d une manière considérable. Depuis les chromosomes eucaryotes, corpuscules observables au microscope au cours des divisions cellulaires dont le comportement trahissait leur rôle dans l hérédité pour ceux qui connaissaient les lois de Mendel, on est passé à l ADN grâce aux bactéries (Avery et al., 1944, Watson et Crick, 1953). Puis, on a décrit la structure fine du gène grâce aux bactériophages (Benzer, 1961) et déchiffré le code génétique grâce essentiellement à la Biochimie (Crick et al., 1961, Nirenberg et al., 1961, Nishimura et al.,1965). Avec les opérons bactériens, on découvrait des principes de régulation de l'expression des gènes qui semblaient universels (Jacob et Monod, 1961). On savait, grâce aux champignons, qu à chaque gène correspondait une protéine (Beadle et Tatum, 1941). Et le dogme central de la Biologie moléculaire (datant de 1953, voir figure) nous indiquait comment les ARNs, jouant le rôle d'intermédiaires, étaient impliqués dans l'expression des gènes pour former ces protéines. Nul ne doutait alors que ces principes étaient universels et certains, pensant que l'on avait compris l'essentiel, se détournèrent à ce moment de la biologie moléculaire des gènes pour s'intéresser au développement des organismes, au fonctionnement du système nerveux ou à d'autres problématiques jugées plus complexes.

5 Les ARNs Pourtant, la Génétique moléculaire devait révéler encore bien d'autres surprises sans lesquelles l analyse des génomes aujourd hui serait incompréhensible. D'abord, on découvrit que les ARNs peuvent être retrotranscrits sous forme d'adn pouvant être intégré au matériel génétique et donc transmis à la descendance (Temin et Mizutani, 1970, Baltimore, 1970). Dès lors, les ARNs n'étaient plus seulement des intermédiaires de l'expression des gènes, ils pouvaient donner naissance au matériel héréditaire. Ensuite, dès que l'on a pu étudier directement la structure moléculaire des gènes, grâce aux techniques de l ADN recombinant et du Génie génétique (développées à partir de 1973), celle-ci est immédiatement apparue beaucoup plus complexe qu'on ne l'imaginait. Et même surprenante. On découvrit les introns, séquences internes des ARNs transcrites de l'adn mais éliminées des molécules d'arn finales par épissage des séquences qui les entourent, les exons (Berget et al. 1977, Chow et al., 1977, Glover et Hogness, 1977, Jeffreys et Flavell, 1977, Gilbert, 1978). On parlait de gènes mosaïques que l on commençait à séquencer en essayant d interpréter les résultats selon les principes du dogme central de la biologie moléculaire. Figure 1 : Evolution du dogme central de la biologie moléculaire. De simples intermédiaires de l'expression des gènes en 1953, les ARN sont progressivement devenus "le cœur du génome fonctionnel", l'adn n'étant que la forme chimiquement stable de l'information génétique qui passe les générations et est donc le véhicule de l'hérédité des organismes modernes. L'histoire de la biologie moléculaire et les technologies disponibles font que ce sont les séquences d'adn qui sont déterminées et stockées dans les bases de données, avec celles des protéines déduites. Ce n est que depuis l application des nouvelles techniques de séquençage aux ARN (par intermédiaire de copies ADN) que l on peut enfin étudier en profondeur la variété des molécules d ARN dans les cellules, y compris celles de courte durée de vie, et que l'on a compris que la quasi-totalité du génome est transcrit en un très grand nombre de molécules d'arns partiellement chevauchantes et dont l'immense majorité sont non-codantes.

6 En réalité, on était en train de mettre en lumière le rôle central des ARNs, les gènes n en étant que le reflet. On sait maintenant qu'il existe plusieurs catégories d'introns et les différents mécanismes de l'épissage des ARNs ont été identifiés. On découvrit que, dans la plupart des cas, ce sont les ARNs eux-mêmes qui catalysent ces réactions d épissage (voir plus loin) même si, pour ce faire, ils sont parfois associés à des protéines. Sans entrer dans les détails pourtant très significatifs, l'idée importante ici est qu'entre le gène et son produit s'intercalent une série de réactions qui modifient, souvent considérablement, les séquences des populations de molécules d'arns présentes dans la cellule. Or, c est le séquençage de l ADN qui s est développé en donnant naissance à la génomique, les molécules d ARNs, elles, sont chimiquement très réactives, et leur séquençage direct (sans faire une copie ADN) reste, pour l instant, inaccessible à une échelle globale (voir plus loin). Les débuts du séquençage de l ADN Les premières méthodes qui permirent de déterminer rapidement l'ordre de succession des nucléotides le long des molécules d'adn (séquencer l'adn) datent de 1977 (Sanger et al., 1977, Maxam et Gilbert, 1977). C est une date critique. Avant, on savait conceptuellement ce que devait être un gène et ses mutations, mais sans espoir d en connaître réellement le contenu informatif précis. Après, on allait pouvoir déchiffrer ce contenu, vieux rêve de tous les généticiens. Ces méthodes sont aujourd'hui reléguées aux musées (voir plus loin), mais il s'agissait alors d'un progrès considérable qui faisait suite à des années de recherches au cours desquelles avaient été explorées différentes pistes permettant de déterminer des séquences courtes d ADN comme, par exemple, les opérateurs bactériens. Ce n est donc qu à partir de 1977 que l on a commencé à connaître l'information génétique contenue dans les gènes. Une accélération considérable des découvertes de la génétique moléculaire s'ensuivit. Les mutations n'étaient plus uniquement des signatures conceptuelles associées à des phénotypes particuliers dans des conditions définies du laboratoire. On en découvrait maintenant la nature chimique et, en conséquence, on allait pouvoir les créer chimiquement de façon déterminée. Toute l'histoire de la mutagénèse dirigée débutait, suivie plus tard de celle de la synthèse chimique des gènes et maintenant de celle des génomes entiers (voir plus loin). Comme le dogme central de la biologie moléculaire associé au code génétique permettent de prédire les séquences des protéines à partir de celles des gènes (aux modifications près introduites au niveau des ARNs), au début des années 1980s on séquençait les gènes pour avoir la séquence des protéines. Mais le séquençage d ADN restait laborieux et le souci était d éviter la duplication des efforts. Naissaient alors les premières bases de données permettant de mettre à la disposition de la communauté scientifique les séquences d'adn et celles, déduites, de protéines. Peu à peu, comme ces répertoires s'enrichissaient, les comparaisons de séquences devenaient possibles. Graduellement, elles allaient prendre le pas sur les expériences. En même temps, on s'intéressait aux séquences régulatrices de l'expression des gènes que l'on pouvait maintenant manipuler dans des systèmes artificiels d'expression génétique. On s'intéressait évidemment aussi aux premiers gènes morbides identifiés chez l'homme. On espérait en tirer rapidement des traitements (et des retombées financières!). On s'intéressait aux génomes des organelles, des plasmides et des virus dont les tailles limitées permettaient d'obtenir les séquences complètes en seulement. quelques années de travail! C était l époque du Génie génétique triomphant. Certains, pensant alors que l on avait tout compris, ne rêvaient que d applications. Elles furent décevantes pour la plupart car très prématurées.

7 Figure 2 : Une brève histoire de la biologie moléculaire jusqu'à la génomique actuelle. L ingénierie génomique C'est pourtant à cette époque que furent découverts les premiers outils d'ingénierie des génomes. Des endonucléases dont la spécificité de séquence permettait d'envisager cibler un site unique dans un génome entier. La première catégorie d'enzymes de cette nature, appelée maintenant homing endonucleases, avait été découverte à partir d' un intron mobile d'un gène mitochondrial de levure présentant des anomalies de transmission héréditaire lors des croisements (Jacquier et Dujon., 1985, Colleaux et al., 1986, Colleaux et al. 1988, Dujon, 2005a). Tout sauf le chemin direct souhaité par les tenants actuels de la recherche sur projets prédéfinis! De très nombreuses homing endonucleases sont connues actuellement issues d'une variété d'organismes ou synthétisées artificiellement pour des applications précises. Une deuxième catégorie d'endonucléases site-spécifiques est représentée par les protéines à doigt de zinc et, plus récemment, une troisième catégorie a été fabriquée artificiellement par ingénierie de molécules naturelles et synthétiques, les TALLE nucleases ou TALLEN. Avec ces outils, et tout ce que l'on a appris sur les génomes (voir plus loin), on peut raisonnablement espérer maintenant qu'une véritable ère de Génie génomique s'ouvre à nous. Les multiples fonctions des ARNs Pendant ce temps, les ARNs continuèrent de nous surprendre. D'abord, on découvrit qu'ils subissent des éditions, c'est-à-dire que leur séquence est modifiée de façon précise et déterminée, changeant ainsi l'information génétique qu'ils étaient censés véhiculer. On

8 connaît maintenant beaucoup de mécanismes différents d'édition. Dans certains cas, l'édition peut être tellement massive qu'elle crée des messagers traduits en protéines là où il n'y a pas de gène reconnaissable correspondant. C est le cas des mitochondries dans le grand groupe eucaryote des Excavates (voir figure). Mais surtout on découvrit que les ARNs sont capables de catalyser des réactions chimiques (Cech et al., 1981, Altman, 1981). D abord celles concernant leur propre structure (transesterifications permettant l'épissage des introns, hydrolyse des liaisons phosphodiester permettant la maturation des ARNs précurseurs). Mais aussi toute une variété d'autres réactions biochimiques. Aujourd'hui on sait que les ARNs sont impliqués, comme catalyseurs ou comme co-facteurs, dans une variété de réactions essentielles à la vie cellulaire telles que la synthèse protéique au niveau du ribosome, l'élongation des télomères (Greider and Blackburn, 1989), le transport des protéines, les processus de maturation ou de modifications chimiques d'autres ARNs et, bien sûr, le contrôle de l expression d autres gènes ainsi que des éléments mobiles, des séquencs virales ou des séquences répétées dans les génomes. On découvrit des machineries complexes chez les eucaryotes, impliquant des petits ARNs, pour ces dernièrs types d activités (Fire et al., 1998). Le nombre des petits ARNs et la variété de leurs propriétés ont augmenté très vite grâce, en particulier, aux nouvelles méthodes de séquençage. Le séquençage des génomes et le développement de la Génomique Les motifs Au milieu des années 1980s, les applications potentielles du génie génétique et d autres considérations plus stratégiques, voire politiques, allaient motiver le séquençage des génomes entiers, à commencer par celui de l'homme. Plusieurs années s'ensuivirent au cours desquelles hésitations, conflits et rebondissements ne furent pas rares. Contrairement aux idées simples, les progrès les plus décisifs ne vinrent pas toujours de là où on les attendait. Comme dans toute recherche véritable d'ailleurs. Des bactéries (comme Haemophilus influenzae), la levure de boulangerie Saccharomyces cerevisiae et le nématode Caenorhabditis elegans devaient jouer, chacun à leur manière, des rôles essentiels dans le programme "génome humain" alors qu'ils étaient des initiatives indépendantes (lire, par exemple, Vassarotti et al.,1995, Goujon, 2001, Brown, 2003). Ironiquement, alors que certains ne voyaient dans ces génomes que des tremplins technologiques pour le génome humain, c est sur le plan conceptuel que les choses commençaient à bouger. Les surprises Les premiers génomes séquencés (Fleischmann et al. 1995, Goffeau et al. 1996) nous rappelèrent rapidement à quel point des connaissances fondamentales nous manquaient. Avec le génome de la levure, trois surprises majeures attendaient les généticiens. D abord, il y avait dans le génome beaucoup plus de gènes pour chaque fonction que ce que la génétique laissait prévoir. En d autres termes, les cribles génétiques classiques mêmes les plus systématiquement appliqués n arrivaient jamais à l exhaustivité. Ensuite, beaucoup de gènes avaient des séquences entièrement nouvelles, sans similarité dans les bases de données existantes. Une explication triviale était que ces bases de données étaient très incomplètes, ce qui n était pas faux. Mais même aujourd hui chaque nouveau génome séquencé fait apparaître une fraction non nulle de tels gènes qu on désigne donc comme «orphelins». Une autre explication commune à l époque était que ces gènes orphelins n étaient pas des vrais gènes. Ce qui n est pas nécessairement faux non plus pour certain d entre eux. Mais leur nombre élevé exclu la généralisation de cette hypothèse. Une réalité plus intéressante, comprise seulement maintenant, est que certains des gènes orphelins sont en réalité des gènes créés de novo dans les différentes lignées évolutives. Enfin, la troisième surprise était que nombre de gènes étaient dupliqués. Ceci était incompréhensible dans la vision classique de mutations aléatoires soumises à la sélection naturelle. On sait maintenant que cette redondance est vraie pour tous les génomes, même si le cas de la levure était particulier. En d'autres termes, la nature ne connaît pas les génomes minimums dont rêvent les ingénieurs. La raison est à rechercher dans la dynamique évolutive perpétuelle des génomes (voir plus loin).

9 Les chiffres Actuellement, de nombreux génomes bactériens ont été séquencés entièrement ou partiellement (plus de projets sont mentionnés sur le site GOLD (http://www.genomesonline.org/). Il en va de même d'environ six cents génomes d'archaea (un déficit important comparé aux bactéries) et d'un nombre rapidement croissant d eucaryotes (environ sont terminés ou en cours). Historiquement, ce fut la levure Saccharomyces cerevisiae avec son génome d'environ 13 millions de nucléotides (Mb) le premier eucaryote séquencé (Goffeau et al. 1996, 1997). Puis, alors que le nombre de génomes bactériens augmentait, on a vu apparaître successivement les séquences de génomes eucaryotes plus grands tels que ceux de Caenorhabditis elegans, (97 Mb, Sulston, Waterston et Consortium, 1978), un nématode servant de modèle expérimental, et d'arabidopsis thaliana (115 Mb, Arabidopsis Genome Initiative, 2000), une crucifère modèle. Ces débuts étaient très laborieux. Ils nécessitaient plusieurs années de travail de consortiums de laboratoires qui établissaient d'abord une cartographie détaillée des génomes avant un séquençage ordonné des segments par la méthode de Sanger. Chacun de ces projets marquait une étape importante de la génomique naissante. Le génome humain Au tournant de l'an 2000, un premier assemblage du génome de Drosophila melanogaster (160 Mb) était publié, démontrant la faisabilité d'un séquençage aléatoire total, dit shotgun (Adams et al., 2000). Il s'agissait d'une étape importante dans la course au génome humain. Celui-ci (environ 3100 Mb) a été déclaré terminé dans une première version en 2001 (Collins et al., 2001, Venter et al., 2001). C'était un travail considérable qui avait impliqué pour l'international Human genome Consortium, le séquençage chromosome par chromosome, par l'intermédiaire de clones BAC ancrés sur une cartographie génétique, et qui s'est terminé par une compétition contre un groupe privé travaillant par séquençage total aléatoire (shotgun). Compétition biaisée car, alors que les séquences chromosome par chromosome du Consortium international étaient rendues immédiatement publiques, celles du groupe privé restaient confidentielles. Une version plus complète et révisée du génome humain fut publiée par l'international Human genome Sequencing Consortium (2004). Il s'agissait toujours d'un "génome théorique", c'est-à-dire d'un équivalent haploïde de plusieurs individus. Aujourd'hui, les génomes de plusieurs personnes vivantes sont séquencés et certains scientifiques connus ont souhaité voir leurs génomes publiés les premiers. Après plusieurs autres génomes de représentants de différentes populations ayant permis les premières comparaisons, un vaste projet d'étude du polymorphisme a été lancé impliquant le séquençage de plus d'un millier d'individus appartenant à 14 populations (1000 genomes international initiative). Avec les génomes individuels, on découvre qu'au-delà des SNPs et indels, le polymorphisme génétique entre les individus implique de grandes variations structurales dont l'importance était sousestimée, telles que de larges délétions, duplications ou inversions (Korbel et al., 2007) et des réarrangements balancés (Chen et al., 2008). Les variations du nombre de copies de segments de chromosomes (CNVs) sont maintenant reconnues comme une source majeure de polymorphisme des génomes. L'analyse des données de polymorphisme est en train de nous apporter de nombreuses informations sur les variations entre individus (Abecassis et al., 2012), l'origine des indels (Montgomery et al., 2013), les évènements de rétroduplications (Abyzov et al., 2013) ou encore les variations fonctionnelle d'expression des gènes (Lappalainen et al., 2013) pour ne citer que quelques exemples. Des espoirs considérables apparaissent dans le domaine des cancers (Khurana et al., 2013) en particulier grâce à la possibilité d'identifier des allèles à faible pénétrance Whiffin et al., 2013).

10 Les grands génomes Après la première version du génome humain apparurent les génomes d'autres vertébrés qui devaient jouer un rôle fondamental dans l'interprétation du génome humain. Il s'agit du Fugu (365 Mb, Aparicio et al., 2002), un poisson téléostéen, et de son cousin Tetraodon negroviridis (Jaillon et al., 2004). C'est avec ce dernier que, par comparaison détaillée, l'on réussit à déduire que le génome humain devait compter seulement gènes environ. Vinrent aussi les génomes du riz ( Mb, Goff et al. 2002, Yu et al., 2002, Yu et al., 2005), d Anopheles gambiae (278 Mb, Holt et al., 2002), un moustique vecteur de la malaria, d'autres nématodes (Stein et al., 2003, Mitreva et al., 2005), de la souris (Waterston et al., 2002, Mouse genome consortium, 2002), du rat (Gibbs et al., 2004), du poulet (Hillier et al., 2004, du chimpanzé (Mikkelsen et al., 2005) et d'autres grands primates. Ensuite, apparurent les génomes du peuplier, du chien, de la vigne, du cheval, du bananier, de l'ornithorhynque, du concombre, de la papaye, du ver à soie pour ne citer que quelques exemples. Il est devenu impossible de suivre cette accélération. Malgré cette abondance, chaque nouveau génome continue de nous révéler des surprises. Tous ces génomes ne sont pas nécessairement séquencés de manière complète. À cause de leur taille même, ou des difficultés inhérentes à leur complexité, on réalise le séquençage à un certain niveau de couverture moyenne 1, variable selon les besoins. Il reste des trous ou des zones de basse qualité dans les séquences déposées dans les bases de données. Il faut s'en souvenir même si les progrès de la Génomique comparative permettent de s'en accommoder. Et surtout les méthodes de séquençage ayant considérablement évolué (voir plus loin), les problèmes se posent aujourd hui de manière totalement différente pour les nouveaux génomes étudiés. La génomique évolutive En parallèle des grands génomes cités, le séquençage total ou partiel de beaucoup d'autres génomes eucaryotes de taille plus modeste était devenue chose courante au début des années 2000 en utilisant la méthode Sanger. Ceci a ouvert la voie à un nouveau champ de recherches dans lequel la dimension évolutive prenait de plus en plus de place par rapport à la dimension fonctionnelle. Plusieurs dizaines d'espèces de levures ont été séquencées, (Souciet et al., 2000, Wood et al., 2002, Cliften et al., 2003, Kellis et al., 2003, Jones et al., 2004, Dujon et al., 2004, Dietrich et al, 2004, Kellis et al., 2004, Loftus et al., 2005, Dujon, 2005b, 2006, Novo et al, 2009, Dujon, 2010), et autant de champignons divers (Galagan et al., 2003, 2005, Machida et al., 2005, Nierman et al., 2005, Dean et al., 2005, Kaiper et al., 2006, Martin et al., 2008, 2010, Ma et al., 2009,). On a séquencé des microsporidies (la première était Encephalitozoon cuniculi, Katinka et al., 2001), des parasites comme le Plasmodium falciparum (Gardner et al, 2002), agent de la malaria et son cousin P. yoelii yoelii (Carlton et al., 2002) et d'autres Apicomplexes comme Cryptosporidium hominis (Xu et al., 2004), les trypanosomes Trypanosma brucei (Berriman et al., 2005) et T. cruzi (El-Sayed et al., 2005), la leishmanie Leshmania major (Ivens et al., 2005), des amibes comme Entamoeba histolytica (Loftus et al., 2005) ou Dictyostelium discoideum (Eichinger et al., 2005) etc... A mesure que l efficacité de séquençage augmentait, la génomique évolutive a pu également s adresser aux organismes pluricellulaires. Douze espèces de Drosophiles ont été séquencées et comparées pour comprendre l'évolution de ce groupe d'insectes (Drosophila 12 genomes consortium, 2007). Le point critique était l existence de centres de séquençage capables de générer et de traiter des grands volumes de données. 1 Dans un séquençage aléatoire, la couverture est donnée par le nombre de nucléotides totaux séquencés rapporté à la taille du génome. Si L est la longeur moyenne (en nucléotides) de chaque lecture, N le nombre total de lectures effectuées et G la taille du génome (en nucléotides), la couverture C s'exprime par C= NL/G). On a l'habitude d'exprimer ce rapport par un nombre de X (ex. 3X: couverture typique d'un séquençage exploratoire, 6X: couverture typique d'un brouillon assemblé de séquence (draft), X: couverture standard d'une séquence qui sera soumise à finition). Tous ces chiffres correspondent aux séquençages génomiques réalisés selon la méthode de Sanger jusqu en 2007 environ. Avec l'arrivée des nouvelles technologies, des couvertures beaucoup plus élevées sont obtenues et le problème des finitions est abandonné faute de pouvoir le traiter (voir chapitre).

11 Le Génoscope En France, le Génoscope d'evry, qui n'est pourtant que d'une taille modeste vis-à-vis de ses concurrents étrangers, a réalisé le séquençage complet du chromosome 14 humain (Heilig et al., 2003), du poisson Tetraodon (Jaillon et al., 2004), de la Paramécie (Aury et al., 2006), de la vigne (Jaillon et al., 2007), d'une algue brune Ectocarpus silicosus (Cock et al., 2010), de l'urochordé Oikopleura, pour ne citer que les plus grands projets. Depuis une dizaine d années, il a réalisé plusieurs centaines de projets génomes au service de la communauté scientifique française et européenne, en plus du séquençage de régions génomiques d'intérêt particulier, de la recherche de mutations, de banques d'adn complémentaires etc... Les curiosités biologiques Avec les génomes, la Biologie traditionnelle redevient d'actualité. Par exemple, on a séquencé les nucléomorphes de symbiontes récents tels que Guillardia thêta, une Cryptophyte considérée à tort comme une algue rouge (Douglas et al., 2001) et Bigelowiella natans, un Chlorarachniophyte considéré à tort comme une algue verte (Gilson et al., 2006). Ces nucléomorphes représentent en réalité les restes des noyaux d une algue rouge ou verte, respectivement, après leur absorption par d autres eucaryotes unicellulaires ayant ainsi acquis la photosynthèse de manière endosymbiotique (Curtis et al., 2012). De la même façon, on a séquencé le génome d'une ascidie, Ciona intestinalis pour explorer la base évolutive des Chordés (Dehal et al., 2002). On s'intéresse aussi aux annélides et aux mollusques car ce sont des Lophotrochozoaires, une branche animale longtemps inexplorée au niveau génomique et qui présente de nombreuses caractéristiques intéressantes dans le plan de formation du corps. Loin d'être une activité réductionniste à l'extrême comme certains l'imaginent, l'étude des génomes ouvre des voies nouvelles, d'une efficacité inconnue auparavant, pour tous ceux qui connaissent l'histoire naturelle et ses remarquables observations. On s'intéresse aux symbioses, au parasitisme, et à toutes les interactions des organismes dans la nature. Génomique populationnelle et métagénomique De plus, pour un nombre croissant d organismes on séquence, pour les comparer, de nombreux individus d une même espèce. On parle de reséquençage. C est évidemment le cas pour l homme, mais aussi pour de nombreux microorganismes (voir par exemple Liti et al., 2009). Avec cette stratégie, la génomique rejoint la génétique des populations, en l'enrichissant d'une quantité de données que cette dernière ne pouvait pas obtenir par les méthodes traditionnelles. C'est là, l'un des défis majeurs de l'enseignement de la Biologie moderne, tant ces disciplines sont restées trop longtemps séparées (voir Lynch, 2007). De même, l'analyse des génomes nous affranchit de la nécessité d'isoler les organismes étudiés, ce qui n'est pas toujours possible. Au contraire, on peut s'intéresser directement à des populations naturelles, ou même des écosystèmes. On parle de métagénomique. Actuellement, on découvre plus d'espèces nouvelles par le séquençage métagénomique que par les méthodes traditionnelles. L'étendue de la biodiversité des espèces devient accessible aux nouvelles méthodes de séquençage (Sogin et al., 2006). Les océans deviennent des champs d'exploration systématique. Un projet piloté par des équipes françaises et le Génoscope (Tara Océans) a été lancé pour cataloguer des virus, des bactéries et des eucaryotes unicellulaires des océans du monde entier (Karsenti et al., 2011). Plusieurs centaines de prélèvements ont été effectués et les échantillons sont caractérisés par le séquençage et l analyse des morphologies cellulaires (Karsenti, 2012). Les échantillons océaniques montre de nombreux virus dont l importance écologique est probablement grande (Hingamp et al., 2013 ). Les sols aussi sont évidemment étudiés pour leur importance agronomique ou forestière mais également pour suivre les effets de diverses pollutions (Monier, et al., 2011). Au fur et à mesure que les résultats arrivent, on mesure l'ampleur de ce qui nous reste à découvrir, même dans des systèmes limités comme les flores intestinales de l'homme ou des animaux pour lesquels des programmes internationaux ont déjà livrés leurs

12 premiers résultats (Qin et al., 2010). On parle maintenant couramment de microbiome pour désigner les flores microbiennes dont les compositions peuvent maintenant être intégralement décrites par la métagénomique sans nous limiter aux micro-organismes cultivables. La phylogénomique Enfin, c'est tout l'arbre du vivant qui est revu (et souvent corrigé) avec les données des génomes. Il suffit pour s'en convaincre de regarder l'arbre actuel des eucaryotes (Baldauf et al., 2003, Keeling et al., 2005, voir figure) et de le comparer avec les versions antérieures, même relativement récentes. A la phylogénétique succède une phylogénomique dont les principes sont encore objet d'actives recherches, vu la complexité du problème. La congruence des topologies des arbres devient un problème très compliqué si l'on souhaite y intégrer toutes les données des génomes. Les arbres obtenus dépendent du lot de gènes utilisé pour établir la phylogénie. Les raisons de ce phénomène sont complexes et encore mal comprises. Les hybrides naturels et les transferts génétiques horizontaux sont probablement beaucoup plus fréquents qu'on ne l'imagine. Figure 3 : L'arbre phylogénétique des eucaryotes compte neuf lignées principales regroupées ici en cinq branches majeures (Keeling et al, 2005). Le nombre de génomes séquencés complètement ou partiellement (rouge gras) montre un fort déséquilibre entre les cinq principales branches (GOLD octobre 2011). La génomique a encore à faire un long travail d exploration avant qu une description équilibrée du monde vivant devienne disponible.

COURS D ANALYSE DES GENOMES

COURS D ANALYSE DES GENOMES COURS D ANALYSE DES GENOMES ANNEE UNIVERSITAIRE 2014-2015 * * * * * * Codirecteurs du Cours : Bernard DUJON et Stéphane LE CROM Chef de Travaux : Lionel FRANGEUL * * * * * * LE COURS SE DEROULE DU 3 NOVEMBRE

Plus en détail

Chapitre 2. La synthèse protéique : la relation entre le génotype et le phénotype.

Chapitre 2. La synthèse protéique : la relation entre le génotype et le phénotype. Chapitre 2. La synthèse protéique : la relation entre le génotype et le phénotype. Les maladies génétiques comme la drépanocytose ou l'albinisme sont liées à des modifications du génotype des individus

Plus en détail

L'ADN mitochondrial a été découvert en 1962 par Margit MK Nass et Sylvan Nass par microscopie électronique.

L'ADN mitochondrial a été découvert en 1962 par Margit MK Nass et Sylvan Nass par microscopie électronique. L L'ADN mitochondrial a été découvert en 1962 par Margit MK Nass et Sylvan Nass par microscopie électronique. Figure 1 Mitochondries observées au microscope électronique à transmission Plus tard, cet ADN

Plus en détail

Chapitre 10 L isolement et la manipulation de gènes. Injection d ADN étranger dans une cellule animale

Chapitre 10 L isolement et la manipulation de gènes. Injection d ADN étranger dans une cellule animale Chapitre 10 L isolement et la manipulation de gènes Injection d ADN étranger dans une cellule animale Comment amplifier un gène d intérêt? Amplification in vivo à l aide du clonage d ADN L ensemble formé

Plus en détail

LA SYNTHÈSE DES PROTÉINES

LA SYNTHÈSE DES PROTÉINES LA SYNTHÈSE DES PROTÉINES La transcription Information : dans le noyau (sous forme d'adn) Synthèse des protéines : dans le cytoplasme (au niveau des ribosomes du reticulum endoplasmique) L'ADN ne sort

Plus en détail

Sommaire. Première partie Les concepts de base

Sommaire. Première partie Les concepts de base Sommaire Préface à la troisième édition... Préface à la deuxième édition... Avant-propos à la troisième édition... Avant-propos à la deuxième édition... Avant-propos à la première édition... XV XVII XIX

Plus en détail

Quelques termes-clef de biologie moléculaire et leur définition

Quelques termes-clef de biologie moléculaire et leur définition Acide aminé (AA) Quelques termes-clef de biologie moléculaire et leur définition Isabelle Quinkal INRIA Rhône-Alpes Septembre 2003 Petite molécule dont l enchaînement compose les protéines - on dit qu

Plus en détail

Licence d Informatique Année 2001-2002 Option: Introduction à la biologie moléculaire. LA P.C.R. Polymerase Chain Reaction

Licence d Informatique Année 2001-2002 Option: Introduction à la biologie moléculaire. LA P.C.R. Polymerase Chain Reaction Licence d Informatique Année 2001-2002 Option: Introduction à la biologie moléculaire LA P.C.R. Polymerase Chain Reaction "chercher une aiguille dans une meule de foin"? Chercher à repérer un gène particulier

Plus en détail

Explications théoriques

Explications théoriques Explications théoriques L'ADN: Définitions L'ADN (Acide Désoxyribo Nucléique) est la molécule qui est utilisée dans la nature comme support matériel de l'information génétique des êtres vivants, un peu

Plus en détail

Marc DELPECH. CORATA La Rochelle le 21 mai 2008

Marc DELPECH. CORATA La Rochelle le 21 mai 2008 Marc DELPECH CORATA La Rochelle le 21 mai 2008 En 24 ans les progrès ont été considérables Premières utilisation des techniques de génétique moléculaire en diagnostic : 1984 Une palette de techniques très

Plus en détail

Principe des études moléculaires en génétique médicale Méthodes d analyse des microlésions du génome

Principe des études moléculaires en génétique médicale Méthodes d analyse des microlésions du génome Mercredi 23 Octobre LECLERCQ Barbara L2 GM Pr Krahn 10 pages Principe des études moléculaires en génétique médicale Méthodes d analyse des microlésions du génome Plan A. Introduction B. Techniques courantes

Plus en détail

I. TOUITOU (Mise ligne 15/10/08 LIPCOM-RM) Faculté de Médecine Montpellier-Nîmes

I. TOUITOU (Mise ligne 15/10/08 LIPCOM-RM) Faculté de Médecine Montpellier-Nîmes er cycle PCEM MI5 Génétique moléculaire et clinique Année Universitaire 008-009 Comment apprécier la composante héréditaire des maladies?. Excès de cas familiaux - Les études familiales - - La plupart

Plus en détail

Lettres: A, T, G, C. Mots: à 3 lettres (codons) Phrase: gène (information pour synthétiser une protéine). Ponctuation

Lettres: A, T, G, C. Mots: à 3 lettres (codons) Phrase: gène (information pour synthétiser une protéine). Ponctuation 2- Les molécules d ADN constituent le génome 2-1 La séquence d ADN représente l information génétique Lettres: A, T, G, C Mots: à 3 lettres (codons) Phrase: gène (information pour synthétiser une protéine).

Plus en détail

Technologie de l ADN recombinant. Complément de cours sur: «Les Méthodes d Etude de la Cellule»

Technologie de l ADN recombinant. Complément de cours sur: «Les Méthodes d Etude de la Cellule» Technologie de l ADN recombinant Complément de cours sur: «Les Méthodes d Etude de la Cellule» 1 Les techniques de l ADN Recombinant But: isoler des fragments d ADN de génomes complexes et les recombiner

Plus en détail

Atelier N 7 «Génomique et évolution» Bernard DUJON Professeur à l Institut Pasteur et à Paris VI Philippe LOPEZ Maître de conférences à Paris VI

Atelier N 7 «Génomique et évolution» Bernard DUJON Professeur à l Institut Pasteur et à Paris VI Philippe LOPEZ Maître de conférences à Paris VI Atelier N 7 «Génomique et évolution» Bernard DUJON Professeur à l Institut Pasteur et à Paris VI Philippe LOPEZ Maître de conférences à Paris VI Les deux diaporamas seront en ligne sur le site de l INRP,

Plus en détail

Tutoriel pour les enseignants de lycée. Rappel du contenu des programmes au lycée en classe de seconde

Tutoriel pour les enseignants de lycée. Rappel du contenu des programmes au lycée en classe de seconde Tutoriel pour les enseignants de lycée Ce document sert à l enseignant pour préparer différentes séquences pédagogiques afin d aborder : les questions de la génétique, des maladies génétiques, et les métiers

Plus en détail

Cours de Biologie Cellulaire L1 2006/2007

Cours de Biologie Cellulaire L1 2006/2007 Cours de Biologie Cellulaire L1 2006/2007 Qu est ce que la biologie cellulaire? La biologie cellulaire étudie les cellules et leurs organites, les processus vitaux qui s'y déroulent ainsi que les mécanismes

Plus en détail

génomes Présentation La biologie à l'heure du séquençage des génomes Séquençage de génomes: Pourquoi? Comment? Annotation des génomes

génomes Présentation La biologie à l'heure du séquençage des génomes Séquençage de génomes: Pourquoi? Comment? Annotation des génomes Présentation Bioinformatique: analyse des génomes Céline Brochier-Armanet (Laurent Duret) Université Claude Bernard, Lyon 1 Laboratoire de Biométrie et Biologie évolutive (UMR 5558) Celine.brochier-armanet@univ-lyon1.fr

Plus en détail

Aujourd hui, il y a plus de consortium, ce qui permet des avancées plus rapides.

Aujourd hui, il y a plus de consortium, ce qui permet des avancées plus rapides. GFMOM 20/01/2012 Cours 2 partie 2 T. Bourgeron II. LA CYTOGENETIQUE Nous allons étudier les anomalies chromosomiques des plus grossières aux plus fines. Ces anomalies peuvent être retrouvées dans la population

Plus en détail

1ere S THEME 1A CHAPITRE N 2: VARIABILITE GENETIQUE ET MUTATION DE L ADN

1ere S THEME 1A CHAPITRE N 2: VARIABILITE GENETIQUE ET MUTATION DE L ADN 1ere S THEME 1A CHAPITRE N 2: VARIABILITE GENETIQUE ET MUTATION DE L ADN Introduction Toutes ces coccinelles appartiennent au même genre cependant elles présentent toutes des différences. Ces différences

Plus en détail

A : Vrai : La biotechnologie est l'ensemble des techniques qui utilisent des microorganismes,

A : Vrai : La biotechnologie est l'ensemble des techniques qui utilisent des microorganismes, Ecurie du 1/02/12 1: AE A : Vrai : La biotechnologie est l'ensemble des techniques qui utilisent des microorganismes, des cellules animales, végétales ou leurs constituants à des fins industrielles (agro

Plus en détail

Information Génétique et hérédité 1- Réplication, mitose, méiose

Information Génétique et hérédité 1- Réplication, mitose, méiose Information Génétique et hérédité 1- Réplication, mitose, méiose REPLICATION DE L ADN et CYCLE CELLULAIRE quantité d'adn 4C 2C G 1 S G 2 M G 1 5 12 15 16 duplication de l'adn mitose temps heures CYCLE

Plus en détail

TP de Biochimie Groupe 4 Forestier Michèle 25.05.2010 Fournier Coralie Freyre Christophe Manipulation d ADN

TP de Biochimie Groupe 4 Forestier Michèle 25.05.2010 Fournier Coralie Freyre Christophe Manipulation d ADN MANIPULATION D ADN Clonage du gène «venus» dans des plasmides et expression de celui-ci chez les bactéries E.Coli. Assistants: U. Loizides M. Umebayashi C. Gehin - 1 - 1. Résumé Lors de notre expérience,

Plus en détail

Obtention de données génétiques à grande échelle

Obtention de données génétiques à grande échelle Obtention de données génétiques à grande échelle Stéphanie FERREIRA Ph.D. Campus de l Institut Pasteur de Lille 1, rue du Professeur Calmette 59000 LILLE Tel : 03 20 87 71 53 Fax : 03 20 87 72 64 contact@genoscreen.fr

Plus en détail

CHAPITRE 3 LA SYNTHESE DES PROTEINES

CHAPITRE 3 LA SYNTHESE DES PROTEINES CHAITRE 3 LA SYNTHESE DES ROTEINES On sait qu un gène détient dans sa séquence nucléotidique, l information permettant la synthèse d un polypeptide. Ce dernier caractérisé par sa séquence d acides aminés

Plus en détail

Chapitre 1 La révolution des sciences de la vie par la génétique

Chapitre 1 La révolution des sciences de la vie par la génétique Chapitre 1 La révolution des sciences de la vie par la génétique Variation génétique de la couleur des grains de maïs. Chaque grain représente un individu de constitution génétique distincte. La sélection

Plus en détail

Série : STL Spécialité biotechnologies SESSION 2014 BACCALAURÉAT TECHNOLOGIQUE

Série : STL Spécialité biotechnologies SESSION 2014 BACCALAURÉAT TECHNOLOGIQUE BACCALAURÉAT TECHNLGIQUE Série : STL Spécialité biotechnologies SESSIN 2014 CBSV : sous épreuve coefficient 4 Biotechnologies : sous épreuve coefficient 4 Durée totale de l épreuve: 4 heures Les sujets

Plus en détail

Principales techniques utilisées en génie génétique Ces différentes techniques peuvent également se combiner entre elles. Séquençage de l ADN

Principales techniques utilisées en génie génétique Ces différentes techniques peuvent également se combiner entre elles. Séquençage de l ADN Principales techniques utilisées en génie génétique Ces différentes techniques peuvent également se combiner entre elles Séquençage de l ADN 1- Un brin complémentaire de l ADN à séquencer est fabriqué

Plus en détail

GENETIQUE. la division cellule. durant la division cellule. Ai Aristote Mendel. Platon. Information génétique. Chromosome

GENETIQUE. la division cellule. durant la division cellule. Ai Aristote Mendel. Platon. Information génétique. Chromosome Molécules ADN Division cellulaire Synthèse des protéines. En Lien: Campbell, Reece,2déd./Biologie./chap.13 1 En Lien: Campbell, Reece,2déd./Biologie./chap.13 2 1 Chromosome Phénotype: l'apparence : structures

Plus en détail

Dr E. CHEVRET UE2.1 2013-2014. Aperçu général sur l architecture et les fonctions cellulaires

Dr E. CHEVRET UE2.1 2013-2014. Aperçu général sur l architecture et les fonctions cellulaires Aperçu général sur l architecture et les fonctions cellulaires I. Introduction II. Les microscopes 1. Le microscope optique 2. Le microscope à fluorescence 3. Le microscope confocal 4. Le microscope électronique

Plus en détail

Expérience de Griffith, Avery, Mac Leod,...

Expérience de Griffith, Avery, Mac Leod,... Expérience de Griffith, Avery, Mac Leod,... En 1928, un microbiologiste anglais, Fred Griffith, qui recherchait un vaccin contre la pneumonie, démontra que des pneumocoques tués par la chaleur pouvaient

Plus en détail

Différences entre Homme et singes?

Différences entre Homme et singes? Différences entre Homme et singes? Différences entre Homme et singes? Apparition de l œil? Apparition du vol? Apparition des hémoglobines? Molécule d hémoglobine HEME Chaîne polypeptidique de type 2 Chaîne

Plus en détail

Chapitre 2 La diversification du vivant

Chapitre 2 La diversification du vivant Chapitre 2 La diversification du vivant 1 Introduction Méiose et fécondation : sources de diversité Mutations germinales : processus fondamental de diversification génétique, générateur de biodiversité

Plus en détail

Chapitre 2 - VARIABILITÉ GÉNÉTIQUE ET MUTATION DE L ADN

Chapitre 2 - VARIABILITÉ GÉNÉTIQUE ET MUTATION DE L ADN Chapitre 2 - VARIABILITÉ GÉNÉTIQUE ET MUTATION DE L ADN Les organismes ne peuvent survivre que si leur ADN est soigneusement répliqué et protégé des altérations chimiques et physiques qui pourraient changer

Plus en détail

Cumulo Numbio 2015. La révolution next-generation sequencing et les enjeux de l'expansion de la bioinformatique pour les biologistes.

Cumulo Numbio 2015. La révolution next-generation sequencing et les enjeux de l'expansion de la bioinformatique pour les biologistes. Cumulo Numbio 2015 La révolution next-generation sequencing et les enjeux de l'expansion de la bioinformatique pour les biologistes. Human genome sequence June 26th 2000: official announcement of the completion

Plus en détail

ECUE 2 (L 1 -S 2 ) : Microbiologie générale Microbiologie générale

ECUE 2 (L 1 -S 2 ) : Microbiologie générale Microbiologie générale Unité d enseignement UE 8 : Biologie Moléculaire - Microbiologie ECUE 2 (L 1 -S 2 ) : Microbiologie générale Microbiologie générale 1h30 de cours et 1h15 de Travaux pratiques Un examen écrit ; un examen

Plus en détail

Dans chaque cellule: -génome nucléaire -génome mitochondrial (-génome chloroplastique)

Dans chaque cellule: -génome nucléaire -génome mitochondrial (-génome chloroplastique) 6- Structure et organisation des génomes 6-1 Génomes eucaryotes Dans chaque cellule: -génome nucléaire -génome mitochondrial (-génome chloroplastique) 6-1-1 Génomes nucléaires 6-1-1-1 Nombre d exemplaires

Plus en détail

Chapitre 14: La génétique

Chapitre 14: La génétique Chapitre 14: La génétique A) Les gènes et les protéines, ça te gêne? 1) a) Quel est l élément de base des vivants? Les cellules b) Qu a-t-elle en son centre? Un noyau c) Qu y retrouve-t-on sous forme de

Plus en détail

Génie génétique. Définition : Outils nécessaires : Techniques utilisées : Application du génie génétique : - Production de protéines

Génie génétique. Définition : Outils nécessaires : Techniques utilisées : Application du génie génétique : - Production de protéines Génie génétique Définition : Ensemble de méthodes d investigation et d expérimentation sur les gènes. Outils nécessaires : ADN recombinant, enzyme de restriction, vecteur, banque ADNc, sonde nucléique...

Plus en détail

Les outils du génie génétique.

Les outils du génie génétique. Les outils du génie génétique. I\ Les enzymes. On va se servir des enzymes pour couper, coller et synthétiser des acides nucléiques. A\ Les polymérases. Toutes les polymérases agissent de 5 vers 3. En

Plus en détail

Biotechnologies. 114-1 - - 1 -Les Biotechnologies

Biotechnologies. 114-1 - - 1 -Les Biotechnologies 114-1 - - 1 -Les Utilisation des processus biologiques pour produire des biens et des services. Les biotechologies tirent leur efficacité des techniques clés engendrées par les progrès conjoints de la

Plus en détail

Licence-Master Bioinformatique Contrôle continu 06/03/06. Correction

Licence-Master Bioinformatique Contrôle continu 06/03/06. Correction Licence-Master Bioinformatique Contrôle continu 06/03/06 Correction -«Vraies» questions de cours -«fausses» questions de cours: questions pour voir si pouviez imaginer une réponse crédible qui n était

Plus en détail

Microbiologie BIOL 3253. L évolution, la taxinomie et la diversité microbienne

Microbiologie BIOL 3253. L évolution, la taxinomie et la diversité microbienne Microbiologie BIOL 3253 L évolution, la taxinomie et la diversité microbienne Introduction générale et vue d ensemble Taxinomie Science de la classification biologique. Constituée de 3 parties séparées

Plus en détail

Génétique et génomique Pierre Martin

Génétique et génomique Pierre Martin Génétique et génomique Pierre Martin Principe de la sélections Repérage des animaux intéressants X Accouplements Programmés Sélection des meilleurs mâles pour la diffusion Index diffusés Indexation simultanée

Plus en détail

Génie de la biocatalyse et génie des procédés. «Production d enzymes industrielles»

Génie de la biocatalyse et génie des procédés. «Production d enzymes industrielles» Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université Virtuelle de Tunis Génie de la biocatalyse et génie des procédés «Production d enzymes industrielles» Concepteur du cours:

Plus en détail

Stratégie de reproduction humaine: In vitro

Stratégie de reproduction humaine: In vitro Stratégie de reproduction humaine: In vitro La fécondation in vitro (FIV), est une forme de procréation assisté. C'est à dire, une technologie reproductive offert aux couples incapable de concevoir un

Plus en détail

Recherche de parenté entre les vertébrés

Recherche de parenté entre les vertébrés 1 CHAPITRE A Recherche de parenté entre les vertébrés 2 Chapitre A : Recherche de parentés entre les êtres vivants Tous les êtres vivants présentent des structures cellulaires et un fonctionnement commun

Plus en détail

Université Bordeaux Segalen - PACES 2012-2013 ED UE9s Avril 2013

Université Bordeaux Segalen - PACES 2012-2013 ED UE9s Avril 2013 Sélectionner les propositions exactes Université Bordeaux Segalen - PACES 2012-2013 ED UE9s Avril 2013 QCM 1 La plupart des techniques de biologie moléculaire repose sur le principe de complémentarité

Plus en détail

Thème 1 : La Terre dans l'univers, la vie et l'évolution du vivant. Chapitre 3 : La vie des cellules, leur milieu de vie et l'information génétique.

Thème 1 : La Terre dans l'univers, la vie et l'évolution du vivant. Chapitre 3 : La vie des cellules, leur milieu de vie et l'information génétique. Thème 1 : La Terre dans l'univers, la vie et l'évolution du vivant. Chapitre 3 : La vie des cellules, leur milieu de vie et l'information génétique. SOMMAIRE 1- Les caractéristiques fonctionnelles des

Plus en détail

POPULATION D ADN COMPLEXE - ADN génomique ou - copie d ARNm = CDNA

POPULATION D ADN COMPLEXE - ADN génomique ou - copie d ARNm = CDNA POPULATION D ADN COMPLEXE - ADN génomique ou - copie d ARNm = CDNA Amplification spécifique Détection spécifique Clonage dans des vecteurs Amplification in vitro PCR Hybridation moléculaire - hôte cellulaire

Plus en détail

AP SVT. Exercice 1. Exercice 2. Exercice 3.

AP SVT. Exercice 1. Exercice 2. Exercice 3. Exercice 1. AP SVT On cherche à comprendre le mode de transmission de deux caractères chez la Drosophile, organisme diploïde. Effectuez une analyse génétique pour expliquer les résultats des croisements

Plus en détail

Quelques notions de génomique fonctionnelle: l exemple des puces à ADN

Quelques notions de génomique fonctionnelle: l exemple des puces à ADN Quelques notions de génomique fonctionnelle: l exemple des puces à ADN Frédéric Devaux Laboratoire de génétique moléculaire Ecole Normale Supérieure Le «dogme central» de la biologie moléculaire Transcription

Plus en détail

OGM : pour le meilleur? Ou pour le pire?(ou les deux ) Laroche Fabrice, biologiste fablaroche@gmail.com- 0624290703

OGM : pour le meilleur? Ou pour le pire?(ou les deux ) Laroche Fabrice, biologiste fablaroche@gmail.com- 0624290703 OGM : pour le meilleur? Ou pour le pire?(ou les deux ) Laroche Fabrice, biologiste fablaroche@gmail.com- 0624290703 (Nouvelles techniques de manipulation du vivant Inf OGM 0ctobre 2011) I. Petite mise

Plus en détail

Méthodes et techniques de la biologie du développement

Méthodes et techniques de la biologie du développement Méthodes et techniques de la biologie du développement 1. Etude de l expression des gènes : Détecter les transcrits et les protéines au cours de l ontogenèse l outil anticorps 1.1. La RT-PCR La réaction

Plus en détail

Résumé de thèse de David Kieffer. Titre : Études Bio-informatiques et statistiques des mécanismes de l infidélité de la transcription.

Résumé de thèse de David Kieffer. Titre : Études Bio-informatiques et statistiques des mécanismes de l infidélité de la transcription. Résumé de thèse de David Kieffer Titre : Études Bio-informatiques et statistiques des mécanismes de l infidélité de la transcription. Dans le cadre de la lutte contre le cancer, l'entreprise Genclis (Genomic

Plus en détail

La génétique : Science qui étudie les caractères héréditaires des individus, leur transmission au fil des générations et leurs variations.

La génétique : Science qui étudie les caractères héréditaires des individus, leur transmission au fil des générations et leurs variations. Reprendre l essentiel pour bien réussir son année en S.V.T. La génétique : Science qui étudie les caractères héréditaires des individus, leur transmission au fil des générations et leurs variations. En

Plus en détail

BCPST-Véto 1 Mercredi 2 mai 2007 - Devoir n 8 Durée 3h30 Épreuve de type B (partielle) : Étude de documents - (durée conseillée 2h15) sur 50

BCPST-Véto 1 Mercredi 2 mai 2007 - Devoir n 8 Durée 3h30 Épreuve de type B (partielle) : Étude de documents - (durée conseillée 2h15) sur 50 BCPST-Véto 1 Mercredi 2 mai 2007 - Devoir n 8 Durée 3h30 Épreuve de type B (partielle) : Étude de documents - (durée conseillée 2h15) sur 50 Génomes eucaryotes : organisation et conservation Exploitez

Plus en détail

Nom : Groupe : Date : 1 LES RESPONSABLES DES CARACTÈRES CHEZ LES ÊTRES VIVANTS (p. 350-358)

Nom : Groupe : Date : 1 LES RESPONSABLES DES CARACTÈRES CHEZ LES ÊTRES VIVANTS (p. 350-358) CHAPITRE 811 STE Questions 1 à 17, A, B. Verdict 1 LES RESPONSABLES DES CARACTÈRES CHEZ LES ÊTRES VIVANTS (p. 350-358) 1. Observez les deux cellules ci-contre. a) Sous quelle forme apparaît l ADN dans

Plus en détail

CHAPITRE III: Le Clonage

CHAPITRE III: Le Clonage BIOLOGIE MOLECULAIRE CHAPITRE III: Le Clonage I) Définition: Cloner un fragment d'adn consiste à: isoler physiquement ce fragment. en augmenter le nombre de copie (cf: amplification) II) Principe: Le clonage

Plus en détail

Biologie cellulaire. Perfectionnement à la culture cellulaire. Programme. ParTIe PraTIQUe. ParTIe THÉorIQUe. durée : 4 jours

Biologie cellulaire. Perfectionnement à la culture cellulaire. Programme. ParTIe PraTIQUe. ParTIe THÉorIQUe. durée : 4 jours Biologie cellulaire Perfectionnement à la culture cellulaire durée : 4 jours ingénieurs, chercheurs et chefs de projet connaissances de base en culture cellulaire ou validation du module «initiation à

Plus en détail

MASTER (LMD) PARCOURS MICROORGANISMES, HÔTES, ENVIRONNEMENTS (MHE)

MASTER (LMD) PARCOURS MICROORGANISMES, HÔTES, ENVIRONNEMENTS (MHE) MASTER (LMD) PARCOURS MICROORGANISMES, HÔTES, ENVIRONNEMENTS (MHE) RÉSUMÉ DE LA FORMATION Type de diplôme : Master (LMD) Domaine ministériel : Sciences, Technologies, Santé Mention : BIOLOGIE DES PLANTES

Plus en détail

Cahier de texte de la classe 1 ère 4 - SVT

Cahier de texte de la classe 1 ère 4 - SVT Cahier de texte de la classe 1 ère 4 - SVT DATE SEQUENCE lundi 12 : revoir la fiche méthodologique «utiliser le microscope optique» (disponible sur le site du lycée) Lundi 12 1 er contact avec les élèves.

Plus en détail

Les principes du sequençage haut-débit

Les principes du sequençage haut-débit Les principes du sequençage haut-débit Mardi 23 avril 2013 Dr H. EL HOUSNI Organisation Génomique Podhala'et'al.'Trends'in'genetics'2012' Costa V et al. J BioMed BioTech 2010 32 ans Costa V et al. J BioMed

Plus en détail

LE SEQUENCAGE DU GENOME HUMAIN. Historique Séquençage Résultats

LE SEQUENCAGE DU GENOME HUMAIN. Historique Séquençage Résultats LE SEQUENCAGE DU GENOME HUMAIN Historique Séquençage Résultats Séquençage de Macromolécules Enchaînement d unités répétitives Petite molécule Couper de façon précise en sous-ensemble 50 25 25 reconstruire

Plus en détail

P.C.R. POLYMERASE CHAIN REACTION ou AMPLIFICATION PAR POLYMERISATION EN CHAÎNE

P.C.R. POLYMERASE CHAIN REACTION ou AMPLIFICATION PAR POLYMERISATION EN CHAÎNE P.C.R. POLYMERASE CHAIN REACTION ou AMPLIFICATION PAR POLYMERISATION EN CHAÎNE P.C.R.: Méthode rapide d'amplification d'une séquence déterminée d'a.d.n. à partir d'une matrice. Elle permet d'obtenir plusieurs

Plus en détail

TD Révision BIO57. Connaissance et Technique du gène

TD Révision BIO57. Connaissance et Technique du gène TD Révision BIO57 Connaissance et Technique du gène Novembre 2007 Cécile BAUDOT cecile.baudot@medecine.univ-mrs.fr INSERM 910 «Génétique Médicale et Génomique Fonctionnelle» Maladies Neuromusculaires Le

Plus en détail

Chapitre 1. La cellule : unité morphologique et fonctionnelle

Chapitre 1. La cellule : unité morphologique et fonctionnelle Chapitre 1. La cellule : unité morphologique et fonctionnelle 1. Historique de la biologie : Les premières cellules eucaryotes sont apparues il y a 3 milliards d années. Les premiers Homo Sapiens apparaissent

Plus en détail

GENETIQUE MEDICALE - Principe des études moléculaires en Génétique Médicale, Méthodes d analyse des microlésions du Génome

GENETIQUE MEDICALE - Principe des études moléculaires en Génétique Médicale, Méthodes d analyse des microlésions du Génome 29/10/2014 Crévits Léna L2 Génétique médicale Dr Martin Krahn 14 pages Principe des études moléculaires en Génétique Médicale - Méthodes d analyse des microlésions du Génome Plan A. Rappels et généralités

Plus en détail

De GenoSol à GenoBiome, mise en place d une structure analytique pour évaluer l état biologique du sol

De GenoSol à GenoBiome, mise en place d une structure analytique pour évaluer l état biologique du sol De GenoSol à GenoBiome, mise en place d une structure analytique pour évaluer l état biologique du sol Lionel RANJARD, Samuel Dequiedt, Pierre-Alain Maron, Anne-Laure Blieux. UMR Agroécologie-plateforme

Plus en détail

Expression des gènes Comparatif entre procaryotes et eucaryotes

Expression des gènes Comparatif entre procaryotes et eucaryotes Comparaison procaryotes/ 2TSbc Expression des gènes Comparatif entre procaryotes et eucaryotes La majeure partie des connaissances de biologie moléculaire a d'abord débuté par l'étude des phénomènes chez

Plus en détail

TABLE DES MATIÈRES. Avant-propos 11. Remerciements 13. Chapitre 1 - Les molécules organiques 15

TABLE DES MATIÈRES. Avant-propos 11. Remerciements 13. Chapitre 1 - Les molécules organiques 15 TABLE DES MATIÈRES Avant-propos 11 Remerciements 13 Chapitre 1 - Les molécules organiques 15 I. Les glucides 15 1. Les oses ou monosaccarides 15 2. Les diholosides ou disaccharides 15 3. Les polyholosides

Plus en détail

Chapitre 7 : diversification des êtres vivants et évolution de la biodiversité

Chapitre 7 : diversification des êtres vivants et évolution de la biodiversité Chapitre 7 : diversification des êtres vivants et évolution de la biodiversité Au sein d une espèce, la diversité entre les individus a pour origine les mutations, sources de création de nouveaux allèles,

Plus en détail

Présentation ADN Fishbase. Jolien Bamps

Présentation ADN Fishbase. Jolien Bamps Présentation ADN Fishbase Jolien Bamps Les lois de Mendel et la transmission de l hérédité Gregor Mendel Moine et botaniste hongrois (1822-1884), en charge de maintenir le potager de son monastère Considéré

Plus en détail

Chapitre 2. Les mutations, source de variabilité génétique

Chapitre 2. Les mutations, source de variabilité génétique Chapitre 2 Les mutations, source de variabilité génétique Les allèles sont dus à des modifications delaséquencedesgènes:lesmutations. Quelle est l origine de ces mutations? I. Les mutations sont des modifications

Plus en détail

PRINCIPES DE BASES DE L ANALYSE DES CHROMOSOMES HUMAINS

PRINCIPES DE BASES DE L ANALYSE DES CHROMOSOMES HUMAINS PRINCIPES DE BASES DE L ANALYSE DES CHROMOSOMES HUMAINS II. Outils CONTEXTE CLINIQUE Jonction entre chromosomique et moléculaire Dr G. Lefort II. TECHNIQUE 1) Le caryotype conventionnel en bandes Nécessite

Plus en détail

Influence du nombre de réplicats dans une analyse différentielle de données RNAseq

Influence du nombre de réplicats dans une analyse différentielle de données RNAseq Influence du nombre de réplicats dans une analyse différentielle de données RNAseq Statisticiens: Sophie Lamarre Steve Van Ginkel Sébastien Déjean - Magali San Cristobal Matthieu Vignes Biologistes: Stéphane

Plus en détail

Cours d introduction à la génétique de la souris Notion de Souche

Cours d introduction à la génétique de la souris Notion de Souche Cours d introduction à la génétique de la souris Notion de Souche Introduction: - Réponse d un animal à l expérimentation (diapo 1) Facteurs environnementaux et propres à l animal - Notion d animal standardisé

Plus en détail

PHENOTYPE - GENOTYPE Le phénotype d un individu : - peut être observé uniquement à l échelle moléculaire et à l échelle cellulaire PROTEINES ENZYMES

PHENOTYPE - GENOTYPE Le phénotype d un individu : - peut être observé uniquement à l échelle moléculaire et à l échelle cellulaire PROTEINES ENZYMES REVISIONS DE 1 S. Vous devez indiquer pour chaque proposition si celle-ci est vraie (V) ou fausse (F) en cochant la case correspondante ; une abstention ou une réponse trop peu lisible seront considérées

Plus en détail

Le maintien de l'intégrité des génomes, la création de la diversité génétique, l'organisation et l'évolution des génomes

Le maintien de l'intégrité des génomes, la création de la diversité génétique, l'organisation et l'évolution des génomes Le maintien de l'intégrité des génomes, la création de la diversité génétique, l'organisation et l'évolution des génomes Les problèmes de l'organisation, l'expression et l'évolution des génomes font l'objet

Plus en détail

La biologie synthétique: enjeux et défis

La biologie synthétique: enjeux et défis Buts de la biologie synthétique La biologie synthétique: enjeux et défis - Créer des microorganismes de synthèse: châssis vivant, de comportement connu (modélisable), modifiable à façon pour des tâches

Plus en détail

Les microarrays: technologie pour interroger le génome

Les microarrays: technologie pour interroger le génome Les microarrays: technologie pour interroger le génome Patrick DESCOMBES patrick.descombes@frontiers-in-genetics.org Plate forme génomique NCCR Frontiers in Genetics Université de Genève http://genomics.frontiers-in-genetics.org

Plus en détail

3. Biotechnologie de l ADN

3. Biotechnologie de l ADN 3. Biotechnologie de l ADN 3.1. Technologie de l ADN recombinant 3.1.1. Isolation d ADN et d ARN 3.1.2. Fragmentation de l ADN (les Endonucléases) 3.1.3. Analyse d ADN sur d agarose et d acrylamide 3.1.4.

Plus en détail

LE GENIE GENETIQUE ET LE CLONAGE D'ADN

LE GENIE GENETIQUE ET LE CLONAGE D'ADN LE GENIE GENETIQUE ET LE CLONAGE D'ADN Le génie génétique est un ensemble de techniques de biologie moléculaire permettant d'isoler des gènes spécifiques, de les reconstruire puis de les réinsérer dans

Plus en détail

Les différentes stratégies de quantification :

Les différentes stratégies de quantification : Les différentes stratégies de quantification : Ce chapitre présente les 2 principales stratégies de quantification relative utilisée classiquement : la méthode des droites standards et celle des Ct. Les

Plus en détail

Comparaison et alignement de séquences 2

Comparaison et alignement de séquences 2 Comparaison et alignement de séquences 2 LV348 -BI Sophie Pasek sophie.pasek@upmc.fr Comment comparer une séquence contre une banque? Comparaison séquence/banque Pourquoi? : Réunir un échantillon taxonomique

Plus en détail

Le séquençage à haut débit Mars 2011

Le séquençage à haut débit Mars 2011 Atelier Epigénétique Université Pierre et Marie Curie Le séquençage à haut débit Mars 2011 Stéphane Le Crom (lecrom@biologie.ens.fr) Institut de Biologie de l École normale supérieure (IBENS) de la Montagne

Plus en détail

Clonage de Vénus et transformation de E.Coli.

Clonage de Vénus et transformation de E.Coli. Clonage de Vénus et transformation de E.Coli. Samueal Joseph, Romain Laverrière, Elias Laudato, Noé Mage Assisstants : Gisele Dewhurst, Charlotte Gehin, Miwa Umebayashi Résumé [1] L expérience consiste

Plus en détail

L'hybridation fluorescente (FISH)

L'hybridation fluorescente (FISH) L'hybridation fluorescente (FISH) fluorescent in situ hybridization DR Thierry PALUKU THEY-THEY LABO GENETIQUE ET PATHO MOLECULAIRE JUIN 2007 Définition repérer la présence d'anomalies chromosomiques par

Plus en détail

Ecole Centrale Paris Année 2009-2010 1 ère année. Cours «Biologie». Vendredi 28 mai 2010

Ecole Centrale Paris Année 2009-2010 1 ère année. Cours «Biologie». Vendredi 28 mai 2010 Ecole Centrale Paris Année 2009-2010 1 ère année. Cours «Biologie». Vendredi 28 mai 2010 Contrôle des Connaissances. 2 ème session) (Durée : 1h30, tous documents autorisés, ordinateur interdit) Important

Plus en détail

Fiche de présentation

Fiche de présentation Fiche de présentation Classe : 1 ère STL Enseignement : Chimie-biochimie-sciences du vivant THEME du programme : 4 Sous-thème : 4.1 Les propriétés informatives de l ADN sont liées à sa structure Présentation

Plus en détail

LICENCE (LMD) MENTION : SCIENCES DE LA VIE

LICENCE (LMD) MENTION : SCIENCES DE LA VIE LICENCE (LMD) MENTION : SCIENCES DE LA VIE RÉSUMÉ DE LA FORMATION Type de diplôme : Licence (LMD) Domaine ministériel : Sciences, Technologies, Santé Organisation de la formation L2 Sciences de la Terre

Plus en détail

Université du Québec à Montréal

Université du Québec à Montréal RECUEIL D EXERCICES DE BICHIMIE 6. Les acides nucléiques 6.2. Réplication, transcription et traduction P P P CH 2 H N H N N NH NH 2 Université du Québec à Montréal 6.2. Réplication, transcription et traduction

Plus en détail

MUSEUM NAT. D'HISTOIRE NATURELLE PARIS Référence GALAXIE : 4113

MUSEUM NAT. D'HISTOIRE NATURELLE PARIS Référence GALAXIE : 4113 MUSEUM NAT. D'HISTOIRE NATURELLE PARIS Référence GALAXIE : 4113 Numéro dans le SI local : Référence GESUP : 4113 Corps : Maître de conférences du Muséum national d'histoire naturelle Article : 32ou40 Chaire

Plus en détail

La CGH-array : une nouvelle technique de diagnostic en cytogénétique

La CGH-array : une nouvelle technique de diagnostic en cytogénétique La CGH-array : une nouvelle technique de diagnostic en cytogénétique Olivier Pichon (Ingénieur) Laboratoire de cytogénétique de Nantes, Service de Génétique Médicale Les techniques classiques de cytogénétique

Plus en détail

RÉGULATION DE L EXPRESSION DES GÈNES

RÉGULATION DE L EXPRESSION DES GÈNES RÉGULATION DE L EXPRESSION DES GÈNES Comme nous l avons vu, le programme de transcription n est pas fixe. La cellule sait adapter ce programme aux conditions extérieures, au mieux de son économie. Chez

Plus en détail

Analyse Chromosomique sur Puce à ADN Applications en Prénatal

Analyse Chromosomique sur Puce à ADN Applications en Prénatal Analyse Chromosomique sur Puce à ADN Applications en Prénatal Véronique Satre, Charles Coutton, Gaëlle Vieville, Françoise Devillard et Florence Amblard Maladies génétiques Anomalies chromosomiques Cytogénétique

Plus en détail

Plateforme de Recherche de Mutations

Plateforme de Recherche de Mutations Plateforme de Recherche de Mutations Jean-Marc Aury contact: pfm@genoscope.cns.fr 29 janvier 2009 Introduction Présentation des données produites par le GSFLX : type, qualité, Méthodes de détection de

Plus en détail

Bac S - Sujet de SVT - Session 2012 - Emirats Arabes Unis STABILITÉ ET VARIABILITÉ DES GÉNOMES ET ÉVOLUTION

Bac S - Sujet de SVT - Session 2012 - Emirats Arabes Unis STABILITÉ ET VARIABILITÉ DES GÉNOMES ET ÉVOLUTION Bac S - Sujet de SVT - Session 2012 - Emirats Arabes Unis 1ère PARTIE : Restitution des connaissances (8 points). STABILITÉ ET VARIABILITÉ DES GÉNOMES ET ÉVOLUTION Après avoir défini en introduction la

Plus en détail

La synthèse des protéines transcription code génétique traduction

La synthèse des protéines transcription code génétique traduction CEC André-Chavanne BIO 3 OS La synthèse des protéines transcription code génétique traduction I. La «Transcription» : de l ADN à l ARNm. L'adresse suivante permet d accéder à une ANIMATION sur la TRANSCRIPTION.

Plus en détail

DEVOIR DE SCIENCES DE LA VIE et de LA TERRE. Septembre 2014.

DEVOIR DE SCIENCES DE LA VIE et de LA TERRE. Septembre 2014. DEVOIR DE SCIENCES DE LA VIE et de LA TERRE. Septembre 2014. Vous devez choisir pour chaque question proposée, zéro, une ou plusieurs réponses exactes parmi celles proposées ou bien répondez à la question.

Plus en détail