MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale"

Transcription

1 MT8 A 0 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale. Fonction de répartition.. Variable aléatoire à valeurs réelles Définition : Soit un ensemble fondamental Ω composé d évènements élémentaires ω, on appelle variable aléatoire à valeurs réelles X, l application de Ω dans R qui à tout évènement X : Ω R élémentaire fait correspondre un évènement de X(Ω). ω X ( ω) A partir de probabilités P définies sur Ω, nous allons chercher à définir des probabilités sur X(Ω). Pour tout nombre k de X(Ω), on note P(X=k) = P ( { ω Ω ; X(ω) = k } ) Exemple : On tire au hasard une boule dans une urne contenant une boule rouge R,une boule verte V et une boule bleue B. On remet la boule tirée et on effectue un second tirage d une boule, chacune des 3 boules ayant dans ce cas la même probabilité d être choisie. Déterminer l ensemble Ω ( ensemble d évènements élémentaires = doublets)? Combien y a-t-il d évènements élémentaires? Quelle est la probabilité de chaque évènement élémentaire? Calculer la probabilité de tirer au moins une boule verte? On associe la variable aléatoire à valeurs réelles (fonction) suivante : A tout tirage de boules, on associe un gain (ou une perte = gain négatif) Pour chaque boule rouge tirée on gagne 6. Pour chaque boule verte tirée on gagne. Pour chaque boule bleue tirée on perd 4 (gain 4 ). Quel est l ensemble X(Ω) des gains possibles (ce sont les valeurs prises par X, ou l image de Ω par X)? Quelle est la probabilité associée à chaque gain? Soit D l évènement «on gagne» ; Quelle est la probabilité associée à ce gain? Soit G l évènement «on obtient un gain positif» ; Quelle est la probabilité associée à cet évènement?.. Loi de probabilité ou distribution d une variable aléatoire Définition : La loi de probabilité ou distribution d une variable aléatoire X est la fonction [ ] X ( Ω) 0, k P( X = k) On obtient un diagramme en bâtons Exemple : (suite de l exemple précédent) Tracer le diagramme en bâtons Cours lois binomiale, Poisson, normale / 8 A Chevalley

2 .3. Fonction de répartition MT8 Définition : La fonction de répartition de la variable aléatoire X est la fonction F : [ ] F : R 0, x F( x) = P( X x) D une manière générale, pour tout nombre réel x, on note P(Xx) = P ( { ω Ω ; X(ω) x } ) On obtient une fonction en escalier. Exemple : (suite de l exemple précédent) Tracer la fonction de répartition (en escalier). Espérance, variance et écart type.. Espérance mathématique L espérance mathématique d une variable aléatoire discrète prenant n valeurs x i avec les probabilités P ( X = x i ) = p i où i n, est E (X) = n i= p. x i i L espérance mathématique représente la moyenne des valeurs prises par une variable aléatoire. Exemple : (suite de l exemple précédent) Reprendre la loi de distribution pour X Calculer E(X) Remarque : Soient a et b des constantes réelles et soit X une variable aléatoire d espérance mathématique E(X) on a E (a.x + b) = a E(X) + b.. Variance La variance d une variable aléatoire X est, si elle existe, l espérance mathématique de la variable aléatoire (X E(X)). On note V (X) = E(X ) ( E(X) ) Démonstration : Si X prend pour valeur x i (x i E(x i )) = x i E(x i ).x i + ( E(x i ) ) on sait que E(x i ) et( E(x i ) ) sont des constantes donc V(X) = E [x i E(x i ). x i + ( E(x i ) ) ] = E(x i ) E(x i ). E(x i ) + ( E(x i ) ) = = E(x i ) ( E(x i ) ) = E(X ) ( E(X) ) Conséquence : V (a.x + b ) = a. V(X).3. Ecart type Cours lois binomiale, Poisson, normale / 8 A Chevalley

3 MT8 L écart type d une variable aléatoire X est, la racine carrée de la variance de la variable aléatoire X. On note σ σ(x) = V ( X ) Exemple : (suite de l exemple précédent) Calculer E(X ) puis V(X) et σ (X) 3. Lois usuelles 3.. Loi binomiale 3... Champ d intervention de la loi binomiale On utilise la loi binomiale chaque fois qu une épreuve aléatoire élémentaire peut déboucher sur résultats, et seulement, appelés par exemple «succès» et «échec», de probabilités respectives p et q = p. On réalise n fois cette épreuve aléatoire et on note X la variable aléatoire mesurant le nombre de «succès» obtenus au cours de ces n épreuves aléatoires élémentaires. Si les n épreuves aléatoires élémentaires sont indépendantes, alors X suit la la loi binomiale B(n,p). Les épreuves sont indépendantes dans le cas d un tirage avec remise (ou si on considère un petit échantillon n petit- parmi une population très grande) Définition Une variable aléatoire X suit une loi binomiale B(n,p) de paramètres n et p, où n est un nombre entier naturel et p un réel tel que 0 p, lorsque sa loi de probabilité est définie de la manière suivante : Pour tout entier naturel k tel que 0 k n n k P( X = k) =. p.( p) k Cette formule provient du binôme de Newton avec a = p et b = p Propriétés Soit X est une variable aléatoire suivant la loi binomiale B(n,p), on a : E (X) = n.p V(X) = n.p.( p) σ(x) = n. p.( p). Exemple : Dans une école d ingénieurs, il y a des étudiants venant de toute la France. Un tiers des étudiants vient du Nord Est de la France (Alsace, Bourgogne, Franche Comté). Quand on choisit un étudiant, la probabilité d être choisi est la même pour tous (équiprobabilité). E : l étudiant choisi habite dans le Nord Est de la France E : l étudiant choisi n habite pas dans le Nord Est de la France Cours lois binomiale, Poisson, normale 3 / 8 A Chevalley n k

4 Soit Ω = { E, E } éléments n = On note p = /3 la probabilité de E et q = p = /3 la probabilité de E MT8 On choisit 5 dossiers d étudiants avec remise. Les dossiers sont indépendants. Calculer X(Ω 5 ) puis P(X=) ainsi que l espérance, la variance et l écart type 3.. Loi de Poisson 3... Définition Une variable aléatoire X suit une loi de Poisson P(λ) de paramètres λ positif lorsque sa loi de probabilité est : Pour tout entier naturel k P( X = k) = e 3... Propriétés k λ λ Soit X est une variable aléatoire suivant la loi de Poisson P(λ), on a : k! Exemple : E (X) = λ V(X) = λ σ(x) = λ Approximation d une loi binomiale par une loi de Poisson On admet que si n est «grand», p «voisin» de 0 et n.p pas «trop grand», alors la loi B(n,p) est très proche de la loi P(λ) où λ = n.p On convient en général d utiliser cette approximation lorsque n 30, p 0. et n.p <5 ou lorsque n 50, p 0. et n.p Champ d intervention de la loi de Poisson La loi de Poisson intervient dans la modélisation de phénomènes aléatoires où le futur est indépendant du passé. La loi de Poisson peut intervenir dans les problèmes suivants : - pannes de machines, sinistres, appels téléphoniques dans un standard, files d attente, mortalité, temps de guérison, stocks 3.3. Loi normale Définition Une variable aléatoire X suit la loi normale N(m,σ) de paramètres m et σ lorsque sa densité de probabilité est la fonction f définie sur R par f ( t) =. e σ π t m σ Cours lois binomiale, Poisson, normale 4 / 8 A Chevalley

5 Exemple : Soient les fonctions f et f définies par : f( t) =. e π La fonction f est la densité de probabilité de la loi normale N(,). La fonction f est la densité de probabilité de la loi normale N(0,). t f( t) =. e π t MT8 On trace les courbes C et C, représentations graphiques de ces fonctions ; l aire de la partie de plan comprise entre la courbe et l axe des abscisses correspond à la fonction de répartition notée Π ou Φ. Π (t) = P (T t ) Propriétés Soit X est une variable aléatoire suivant la loi normale N(m,σ), on a : E (X) = m V(X) = σ σ(x) = σ. Une variable aléatoire X qui suit la loi normale N(0,) a pour espérance mathématique 0 et pour écart type. Cette loi normale N(0,) est appelée loi normale centrée réduite Loi normale centrée réduite Si une variable aléatoire X suit la loi normale N(m,σ) alors la variable aléatoire suit la loi normale centrée réduite N(0,). La loi normale centrée réduite est caractérisée par la densité de probabilité : Cette courbe est appelée courbe de Gauss ou courbe «en cloche». t Π (t) = P (T t ) = f ( x) dx T = X m σ f ( x) =. e π x Pour étudier toute loi normale N(m,σ), on se ramène à l étude de la loi normale centrée réduite X m N(0,) en effectuant le changement de variable T = σ Pour calculer les probabilités, on doit calculer la primitive d une fonction ; les calculs étant complexes, on utilise les résultats d une table en fonction de t. Cours lois binomiale, Poisson, normale 5 / 8 A Chevalley

6 MT8 La table donne directement le résultat. Il suffit de trouver les premiers chiffres de t dans la c olonne et le troisième chiffre est indiqué dans la première ligne. La réponse est donnée à l intersection de la ligne et de la colonne. Exemple : Calculer Π (,67) = P (T,67 ) Propriétés La courbe est symétrique par rapport à l axe des ordonnées. L aire totale comprise entre la courbe et l axe des abscisses est égale à Calcul de P (T t ) On sait que P( A ) = P( A ) de même P (T t ) = P (T < t ) or P (T = t ) = 0 donc comme P (T < t ) = P (T t ) = Π (t) qui correspond au résultat de la table P (T t ) = P (T t ) Calcul de P (t T t ) P (t T t ) = P (T t ) P (T t ) = si t > 0 on lit directement dans la table P (t T t ) = Π (t ) Π (t ) si t < 0 on a t = - t on obtient P (T t ) = P (T t ) par symétrie donc P (t T t ) = P (T t ) ( P (T t ) ) = P (T t ) + P (T t ) = Π (t ) + Π (t ) Cas particulier : t = t Calcul de P ( t T t ) =. P (T t ) =.Π (t) P ( t T t ) =. P (T t ) =.Π (t) Six sigma (6 sigma) Soit X une variable aléatoire suivant une loi normale N(m,σ), on sait que Pour t > 0 on a T X m σ = suit la loi normale N(0,). P ( t T t ) = P ( σ t σ T σ t ) = P ( m σ t m + σ T m + σ t ) = P ( m σ t X m + σ t ) Cours lois binomiale, Poisson, normale 6 / 8 A Chevalley

7 MT8 Amélioration de la qualité 6 σ Motorola Méthode Management Amélioration de l'efficacité des processus de production administratifs commerciaux d'économie d'énergie Le principe de la méthode consiste à faire en sorte que tous les éléments issus du processus étudié, soient compris dans un intervalle s'éloignant au maximum de 6 sigma par rapport à la moyenne générale des éléments issus de ce processus. Produire juste dès la première fois en éliminant les coûts liés aux retouches, recyclage, mise au rebut et risque de vente d'un produit non conforme. Prenons le cas d'une pièce mécanique dont la longueur nominale est L. La pièce est utilisable si la longueur est comprise entre L- L et L+ L ( L est l'intervalle de tolérance). Le processus de production, lui, produit des pièces dont la longueur varie, la longueur moyenne est L, et avec un écart type σ (on suppose que cette longueur suit une loi normale). Longueur nominale L Longueur nominale L + L Longueur nominale L - L Cours lois binomiale, Poisson, normale 7 / 8 A Chevalley

8 MT8 En général, le processus est réglé afin que l'on ait σ = L/3 ; on écrit en général plutôt L = 3 σ, mais c'est bien L qui est une contrainte (la pièce est utilisable ou non) et σ qui est ajusté (les machines sont plus ou moins bien réglées). Ceci conduit à un taux de rebut de 0,7 %, soit 700 pièces au rebut pour une production de million de pièces. Si l'on améliore le processus et que l'on diminue σ jusqu'à avoir L = 6 σ, on aura un taux de rebut de 0-9 (0, %), soit deux pièces au rebut par milliard de pièces produites. En pratique la limite de 6σ est difficilement atteignable et les entreprises peuvent rechercher le 3σ ou 4σ. Toutefois certaines applications exigeantes, comme dans l aéronautique, peuvent demander un objectif de 0σ Approximation d une loi binomiale par une loi normale Soit X une variable aléatoire qui suit une loi binomiale B(n,p): l épreuve aléatoire débouche sur résultats seulement et on réalise des épreuves aléatoires indépendantes On admet que si n est «grand», et p ni «trop voisin» de 0 et ni «trop voisin» de, alors la loi B(n,p) est très proche de la loi N(m,σ) où m = n.p et σ(x) = n. p.( p) On convient en général d utiliser cette approximation lorsque n.p et n.( p) > 5 ou > 0. Exemple : Champ d intervention de la loi normale La loi normale intervient dans la modélisation de phénomènes aléatoires possédant de nombreuses causes indépendantes dont les effets s ajoutent, sans que l un d eux soit dominant. Utilisation en économie, en contrôle qualité Cours lois binomiale, Poisson, normale 8 / 8 A Chevalley

1 Variable aléatoire discrète... 1. 1.1 Rappels... 1. 1.2 Exemple... 2 2 Couples de variables aléatoires... 3. 2.1 Définition... 3

1 Variable aléatoire discrète... 1. 1.1 Rappels... 1. 1.2 Exemple... 2 2 Couples de variables aléatoires... 3. 2.1 Définition... 3 CHAPITRE : LOIS DISCRÈTES Sommaire Variable aléatoire discrète................................... Rappels........................................... Exemple......................................... Couples

Plus en détail

Theme 4 - Lois usuelles discrètes

Theme 4 - Lois usuelles discrètes L2 AES TD de statistique 2008/2009 Cours de Mme Mériot M.-A. Jambu & S.Turolla Theme 4 - Lois usuelles discrètes Exercice 1 (Loi binomiale) A et B sont deux avions ayant respectivement 4 et 2 moteurs.

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Dénombrement et probabilités Version du juillet 05 Enoncés Exercice - YouTube Sur YouTube, les vidéos sont identifiées à l aide d une chaîne

Plus en détail

Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 2016

Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 2016 Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 0 A. P. M. E. P. EXERCICE Commun à tous les candidats points Partie A Une boite contient 00 médailles souvenir dont 50 sont argentées, les autres dorées.

Plus en détail

Probabilités, fiche de T.D. n o 2

Probabilités, fiche de T.D. n o 2 U.F.R. de Mathématiques Licence de Mathématiques S6, M66, année 2013-2014 Probabilités, fiche de T.D. n o 2 Ex 1. Jour de chance Un site de jeux propose le jeu suivant. Chaque internaute désireux de jouer

Plus en détail

Corrrigé du sujet de Baccalaurat S. Pondichery 2015. Spécialité

Corrrigé du sujet de Baccalaurat S. Pondichery 2015. Spécialité Corrrigé du sujet de Baccalaurat S Pondichery 2015 Spécialité EXERCICE 1 (4 points) commun à tous les candidats Partie A Soit f la fonction définie sur R par f(x) et la droite d équation et la droite d

Plus en détail

PROBABILITÉS Variable aléatoire

PROBABILITÉS Variable aléatoire PROBABILITÉS Variable aléatoire I Langage des événements Lors d'un oral de mathématiques, quatre questions sont proposées : une question de probabilités (P) ; une question de statistiques (S) ; une question

Plus en détail

Lois de probabilité. a ; avec a < b, toute fonction f vérifiant

Lois de probabilité. a ; avec a < b, toute fonction f vérifiant Lois de probabilité A) Lois à densité Loi continue Approche : Jusqu ici, les variables aléatoires étudiées prenaient un nombre fini de valeurs Or les issues d un grand nombre d expériences aléatoires prennent

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

[ Baccalauréat S Nouvelle-Calédonie \ 19 novembre 2015

[ Baccalauréat S Nouvelle-Calédonie \ 19 novembre 2015 Durée : 4 heures [ Baccalauréat S Nouvelle-Calédonie \ 19 novembre 015 A. P. M. E. P. EXERCICE 1 7 points Une usine produit de l eau minérale en bouteilles. Lorsque le taux de calcium dans une bouteille

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES/spé TL Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la rédaction

Plus en détail

Mesures et analyses statistiques de données - Probabilités. Novembre 2012 - Contrôle Continu, Semestre 1 CORRECTION

Mesures et analyses statistiques de données - Probabilités. Novembre 2012 - Contrôle Continu, Semestre 1 CORRECTION MASTER 1 GSI- Mentions ACCIE et RIM La Citadelle - ULCO Mesures et analyses statistiques de données - Probabilités Novembre 2012 - Contrôle Continu, Semestre 1 CORRECTION Exercice 1 Partie I 12pts 1 Étude

Plus en détail

Exercices chapitre 8. Probabilités.

Exercices chapitre 8. Probabilités. Lycée Descartes PC 2014-15 M. Besbes Exercices chapitre 8. Probabilités. Exercice 1. Soit (Ω, B, P ) un espace probabilisé. Montrer que l ensemble : A = {A B; P (A) = 0 ou P (A) = 1} est une tribu. Exercice

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR SOUS ÉPREUVE : MATHÉMATIQUES. Le GROUPEMENT Agencement de l environnement architectural de 2001 à 2011

BREVET DE TECHNICIEN SUPÉRIEUR SOUS ÉPREUVE : MATHÉMATIQUES. Le GROUPEMENT Agencement de l environnement architectural de 2001 à 2011 BREVET DE TECHNICIEN SUPÉRIEUR A. P. M. E. P. SOUS ÉPREUVE : MATHÉMATIQUES Le GROUPEMENT Agencement de l environnement architectural de 2001 à 2011 Métropole 2001..........................................

Plus en détail

Probabilité mathématique et distributions théoriques

Probabilité mathématique et distributions théoriques Probabilité mathématique et distributions théoriques 3 3.1 Notion de probabilité 3.1.1 classique de la probabilité s Une expérience ou une épreuve est dite aléatoire lorsqu on ne peut en prévoir exactement

Plus en détail

Lois de probabilité (2/3) Anita Burgun

Lois de probabilité (2/3) Anita Burgun Lois de probabilité (2/3) Anita Burgun Contenu des cours Loi binomiale Loi de Poisson Loi hypergéométrique Loi normale Loi du chi2 Loi de Student Loi hypergéométrique La loi du tirage exhaustif Puce à

Plus en détail

5. Quelques lois discrètes

5. Quelques lois discrètes 5. Quelques lois discrètes MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: Lois discrètes 1/46 Plan 1. Loi de Bernoulli 2. Loi binomiale 3. Loi géométrique 4. Loi hypergéométrique

Plus en détail

Baccalauréat STL Biotechnologies juin 2014 Polynésie Correction

Baccalauréat STL Biotechnologies juin 2014 Polynésie Correction Baccalauréat STL Biotechnologies juin 014 Polynésie Correction EXERCICE 1 Les trois parties de cet exercice peuvent être traitées de manière indépendante. Les résultats seront arrondis, si nécessaire,

Plus en détail

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 Durée : 3h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES Série S ÉPREUVE DU JEUDI 19 JUIN 2014 Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont

Plus en détail

Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007. Introduction aux probabilités

Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007. Introduction aux probabilités Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007 Introduction aux probabilités Série n 3 Exercice 1 Une urne contient neuf boules. Quatre de ces boules portent le numéro

Plus en détail

LOIS DE PROBABILITÉ À DENSITÉ

LOIS DE PROBABILITÉ À DENSITÉ LOIS DE PROBABILITÉ À DENSITÉ Une expérience aléatoire consiste à choisir au hasard un nombre réel X dans l'intervalle I = ]0 ; 0]. L'univers est l'intervalle I. C'est un univers infini. On ne peut pas

Plus en détail

Baccalauréat Blanc 10 février 2015 Corrigé

Baccalauréat Blanc 10 février 2015 Corrigé Exercice Commun à tous les candidats Baccalauréat Blanc février 25 Corrigé. Réponse d. : e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e 5,4. 2. Réponse b. : positif

Plus en détail

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Fonctions affines Exercices corrigés

Fonctions affines Exercices corrigés Fonctions affines Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : antécédent, image, résolution d équation, représentation graphique d une fonction affine (coefficient directeur et ordonnée

Plus en détail

Sujets HEC B/L 2013-36-

Sujets HEC B/L 2013-36- -36- -37- Sujet HEC 2012 B/L Exercice principal B/L1 1. Question de cours : Définition et propriétés de la fonction de répartition d une variable aléatoire à densité. Soit f la fonction définie par : f(x)

Plus en détail

Baccalauréat S Amérique du Nord 2 juin 2015

Baccalauréat S Amérique du Nord 2 juin 2015 Durée : 4 heures Baccalauréat S Amérique du Nord 2 juin 2015 Exercice 1 Commun à tous les candidats 5 points Dans l espace, on considère ( une pyramide SABCE à base carrée ABCE de centre O. Soit D le point

Plus en détail

Suites numériques. Sommaire :

Suites numériques. Sommaire : Suites numériques I Activité n o 2 page 295 Sommaire : II Généralités sur les suites numériques III Variations et bornes IV Suites arithmétiques V Suites géométriques VI Suites convergentes VII Représentation

Plus en détail

MÉTHODE GRAPHIQUE DE CALCULS DE LA MOYENNE ET DE L'ÉCART TYPE DUNE DISTRIBUTION NORMALE TEST DE NORMALITÉ

MÉTHODE GRAPHIQUE DE CALCULS DE LA MOYENNE ET DE L'ÉCART TYPE DUNE DISTRIBUTION NORMALE TEST DE NORMALITÉ REVUE FORESTIÈRE FRANÇAISE 791 MÉTHODE GRAPHIQUE DE CALCULS DE LA MOYENNE ET DE L'ÉCART TYPE DUNE DISTRIBUTION NORMALE TEST DE NORMALITÉ r PAR R. TOMASSONE Ingénieur des Eaux et Forêts Ψ Section de la

Plus en détail

Échantillonnage et estimation

Échantillonnage et estimation Échantillonnage et estimation Dans ce chapitre, on s intéresse à un caractère dans une population donnée dont la proportion est notée. Cette proportion sera dans quelques cas connue (échantillonnage),

Plus en détail

Schéma de Bernoulli Loi binomiale

Schéma de Bernoulli Loi binomiale Schéma de Bernoulli Loi binomiale I) Epreuve et loi de Bernoulli 1) Définition On appelle épreuve de Bernoulli de paramètre, toute expérience aléatoire admettant deux issues exactement : L une appelée

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé Baccalauréat ES/L Amérique du Sud 2 novembre 2 Corrigé A. P. M. E. P. EXERCICE Commun à tous les candidats 5 points. Diminuer le budget de 6 % sur un an revient à multiplier par 6 =,94. Diminuer le budget

Plus en détail

Contrôle commun : 4 heures

Contrôle commun : 4 heures Exercice 1 (5 points) Contrôle commun : 4 heures PARTIE A On considère la fonction f définie sur l intervalle ]0 ; + [ par f(x) = ln x + x. 1. Déterminer les limites de la fonction f en 0 et en +.. Étudier

Plus en détail

Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations

Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations Exercice 1 11 points Une entreprise fabrique un certain type d articles. Sa capacité maximale de production

Plus en détail

Espérances et variances

Espérances et variances [http://mp.cpgedupuydelome.fr] édité le 29 décembre 201 Enoncés 1 Espérances et variances Exercice 1 [ 04018 ] [Correction] Soit X une variable aléatoire discrète à valeurs dans [a ; b]. a Montrer que

Plus en détail

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6 Probabilités et Statistiques Raphaël KRIKORIAN Université Paris 6 Année 2005-2006 2 Table des matières 1 Rappels de théorie des ensembles 5 1.1 Opérations sur les ensembles................... 5 1.2 Applications

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde partie 1/3 partie 2/3 partie 3/3 Sommaire 1 Ensemble

Plus en détail

Statistiques. IUT Biotechnologie 2ème année. Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008

Statistiques. IUT Biotechnologie 2ème année. Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008 Statistiques IUT Biotechnologie 2ème année Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008 version du 04 octobre 2008 Table des matières 1 Lois de probabilité usuelles 1 1.1 Dénombrement................................

Plus en détail

Baccalauréat Série S Métropole, juin 2014

Baccalauréat Série S Métropole, juin 2014 Baccalauréat Série S Métropole, juin 4 Sujet et Corrigé Stéphane PASQUET Disponible sur http://www.mathweb.fr juin 4 Exercice (5 points) - Commun à tous les candidats Partie A Dans le plan muni d un repère

Plus en détail

TES-sujets de révisions BAC Amérique du sud nov. 2009

TES-sujets de révisions BAC Amérique du sud nov. 2009 TES-sujets de révisions BAC Amérique du sud nov. 009 Exercice 3 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question, une seule des trois réponses est exacte. Indiquer

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR SOUS ÉPREUVE : MATHÉMATIQUES. Informatique de gestion de 2001 à 2011

BREVET DE TECHNICIEN SUPÉRIEUR SOUS ÉPREUVE : MATHÉMATIQUES. Informatique de gestion de 2001 à 2011 BREVET DE TECHNICIEN SUPÉRIEUR A. P. M. E. P. SOUS ÉPREUVE : MATHÉMATIQUES Informatique de gestion de 2001 à 2011 Nouvelle-Calédonie 2000................................ 4 2001..........................................

Plus en détail

MATHÉMATIQUES 3 PÉRIODES

MATHÉMATIQUES 3 PÉRIODES BACCALAURÉAT EUROPÉEN 006 MATHÉMATIQUES 3 PÉRIODES DATE : 8 juin 006 (matin) DURÉE DE L'EXAMEN : 3 heures (180 minutes) MATÉRIEL AUTORISÉ : Formulaire européen Calculatrice non graphique et non programmable

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES BACCALAURÉAT TECHNOLOGIQUE Session 2015 Jeudi 18 juin 2015 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DE LABORATOIRE Spécialité : BIOTECHNOLOGIES Durée de l épreuve : 4 heures Coefficient : 4 Calculatrice

Plus en détail

Estimation. Anita Burgun

Estimation. Anita Burgun Estimation Anita Burgun Estimation Anita Burgun Contenu du cours Sondages Mesures statistiques sur un échantillon Estimateurs Problème posé Le problème posé en statistique: On s intéresse à une population

Plus en détail

T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013

T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013 T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

2. Formalisation ... Or les variables sont indépendantes. Donc si

2. Formalisation ... Or les variables sont indépendantes. Donc si L'estimation 1. Concrètement... Dernièrement un quotidien affichait en première page : en 30 ans les françaises ont grandi de... je ne sais plus exactement, disons 7,1 cm. C'est peut-être un peu moins

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière PRO 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde PRO partie première PRO partie terminale PRO Sommaire

Plus en détail

Fonctions de référence

Fonctions de référence CLASSE : 2nde Durée approximative : 1 H DS 2N3 Correction Fonctions de référence EXERCICE 1 : / 4 points Difficulté : L'alcoolémie est le taux d'alcool présent dans le sang. Elle se mesure généralement

Plus en détail

La fonction logarithme népérien

La fonction logarithme népérien La fonction logarithme népérien Christophe ROSSIGNOL Année scolaire 204/205 Table des matières La fonction logarithme népérien 2. Définition Courbe représentative................................... 2.2

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

Séminaire de Statistique

Séminaire de Statistique Master 1 - Economie & Management Séminaire de Statistique Support (2) Variables aléatoires & Lois de probabilité R. Abdesselam - 2013/2014 Faculté de Sciences Economiques et de Gestion Université Lumière

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

II. Eléments des probabilités

II. Eléments des probabilités II. Eléments des probabilités Exercice II.1 Définir en extension l ensemble fondamental Ω des résultats associé à chacune des expériences aléatoires suivantes: 1. jeter une pièce de monnaie et observer

Plus en détail

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq»

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Guy Perrière Pôle Rhône-Alpes de Bioinformatique 14 novembre 2012 Guy Perrière (PRABI) Tests statistiques 14 novembre 2012 1 / 40 Plan

Plus en détail

COURS DE DENOMBREMENT

COURS DE DENOMBREMENT COURS DE DENOMBREMENT 1/ Définition des objets : introduction Guesmi.B Dénombrer, c est compter des objets. Ces objets sont créés à partir d un ensemble E, formé d éléments. A partir des éléments de cet

Plus en détail

Corrigé du baccalauréat ES Asie 19 juin 2014

Corrigé du baccalauréat ES Asie 19 juin 2014 Corrigé du baccalauréat ES Asie 9 juin 4 EXERCICE 4 points Commun à tous les candidats Proposition : fausse f (4) est le coefficient directeur de la tangente à la courbe au point C ; cette droite passe

Plus en détail

Fiche méthodologique Les pièges dans les dénombrements

Fiche méthodologique Les pièges dans les dénombrements Fiche méthodologique Les pièges dans les dénombrements BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Dans cette fiche, on résume quelques points techniques sur les dénombrements et la théorie des probabilités.

Plus en détail

Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve...

Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve... Sommaire Descriptif de l épreuve............................................. Conseils pour l épreuve............................................ Les pourcentages FICHES Pages 1 Pourcentage Proportions....................................7

Plus en détail

Lycée Marlioz - Aix les Bains. Bac Blanc 2012. Mathématiques - Terminale ES. 16 mai 2012

Lycée Marlioz - Aix les Bains. Bac Blanc 2012. Mathématiques - Terminale ES. 16 mai 2012 Lycée Marlioz - Aix les Bains Bac Blanc 2012 Mathématiques - Terminale E Candidats n ayant pas choisi la spécialité maths 16 mai 2012 Pour cette épreuve, la rédaction, la clarté et la précision des explications

Plus en détail

Initiation aux probabilités.

Initiation aux probabilités. Initiation aux probabilités. On place dans une boite trois boules identiques à l exception de leur couleur : une boule est noire, une est blanche, la troisième est grise. On tire une des boules sans regarder,

Plus en détail

Les paraboles. x ax 2 + bx + c.

Les paraboles. x ax 2 + bx + c. 1ES Résumé du cours sur le second degré. Les paraboles. On appelle fonction du second degré une fonction de la forme x ax 2 + bx + c. Bien sûr a doit être différent de 0 sinon ce n est pas une fonction

Plus en détail

Baccalauréat S Centres étrangers 12 juin 2014

Baccalauréat S Centres étrangers 12 juin 2014 Durée : 4 heures Baccalauréat S Centres étrangers juin 04 A. P. M. E. P. Dans l ensemble du sujet, et pour chaque question, toute trace de recherche même incomplète, ou d initiative même non fructueuse,

Plus en détail

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Résumé : A partir du problème de la représentation des droites sur un écran d ordinateur,

Plus en détail

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé)

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) EXERCICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chacune des questions posées, une seule des quatre réponses

Plus en détail

FONCTIONS (2) : FONCTIONS AFFINES REPRESENTATIONS GRAPHIQUES

FONCTIONS (2) : FONCTIONS AFFINES REPRESENTATIONS GRAPHIQUES SYNTHESE ( THEME 9 ) FONCTIONS (2) : FONCTIONS AFFINES REPRESENTATIONS GRAPHIQUES A - FONCTION AFFINE A : DEFINITION ET NOTATION a et b étant deux nombres fixés, on appelle fonction affine tout processus

Plus en détail

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50 10. Estimation MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: estimation 1/50 Plan 1. Introduction 2. Estimation ponctuelle 3. Estimation par intervalles de confiance 4. Autres

Plus en détail

FRANCE METROPOLITAINE (juin 2003)

FRANCE METROPOLITAINE (juin 2003) FRANCE METROPOLITAINE (juin 200) Eercice 1 : (4 points)(correction) Commun à tous les candidats Les guichets d une agence bancaire d une petite ville sont ouverts au public cinq jours par semaine : les

Plus en détail

Cours de DEUG Probabilités et Statistiques. Avner Bar-Hen

Cours de DEUG Probabilités et Statistiques. Avner Bar-Hen Cours de DEUG Probabilités et Statistiques Avner Bar-Hen Université Aix-Marseille III 3 Table des matières Table des matières i Analyse combinatoire 1 1 Arrangements................................ 1 1.1

Plus en détail

L2 2011/2012 USTV. Analyse. numérique M43. Recueil d exercices corrigés et aide-mémoire G. FACCANONI. Dernière mise-à-jour

L2 2011/2012 USTV. Analyse. numérique M43. Recueil d exercices corrigés et aide-mémoire G. FACCANONI. Dernière mise-à-jour L / Recueil d exercices corrigés et aide-mémoire USTV M Analyse numérique G FACCANONI Dernière mise-à-jour Jeudi mai Avertissement : ces notes sont régulièrement mises à jour et corrigées, ne vous étonnez

Plus en détail

Informatique 1ère Année 2012-2013

Informatique 1ère Année 2012-2013 SERIE D EXERCICES N 1 INTRODUCTION, STRUCTURE CONDITIONNELLE : IF..ELSE Exercice 1 Ecrire le programme qui lit deux entiers saisis et affiche leur produit. Modifier ensuite ce programme pour saisir des

Plus en détail

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités Sujet Métropole 01 EXERIE 1. [4 pts] Probabilités Une jardinerie vend de jeunes plants d arbres qui proviennent de trois horticulteurs : 5% des plants proviennent de l horticulteur H 1, 5% de l horticulteur

Plus en détail

Problèmes à propos des nombres entiers naturels

Problèmes à propos des nombres entiers naturels Problèmes à propos des nombres entiers naturels 1. On dispose d une grande feuille de papier, on la découpe en 4 morceaux, puis on déchire certains morceaux (au choix) en 4 et ainsi de suite. Peut-on obtenir

Plus en détail

TD : Microéconomie de l incertain. Emmanuel Duguet

TD : Microéconomie de l incertain. Emmanuel Duguet TD : Microéconomie de l incertain Emmanuel Duguet 2013-2014 Sommaire 1 Les loteries 2 2 Production en univers incertain 4 3 Prime de risque 6 3.1 Prime de risque et utilité CRRA.................. 6 3.2

Plus en détail

Exercices de probabilités et statistique

Exercices de probabilités et statistique Exercices de probabilités et statistique Université Paris 1 Panthéon-Sorbonne Cours de deuxième année de licence de sciences économiques Fabrice Rossi & Fabrice Le Lec Cette œuvre est mise à disposition

Plus en détail

CONTRÔLE DE GESTION. DCG - Session 2008 Corrigé indicatif

CONTRÔLE DE GESTION. DCG - Session 2008 Corrigé indicatif CONTRÔLE DE GESTION DCG - Session 2008 Corrigé indicatif DOSSIER 1 MISE EN PLACE D OUTILS D AIDE A LA DECISION Question 1 : Rédiger une note d environ une page destinée au directeur général visant à lui

Plus en détail

b) Exprimer B à l aide des événements A n et en déduire la probabilité de B Exercice 1.4. Inégalité de Bonferroni.

b) Exprimer B à l aide des événements A n et en déduire la probabilité de B Exercice 1.4. Inégalité de Bonferroni. MP 205/6 Feuille d exercices - Probabilités généralités). Univers, généralités Exercice.. Langage des probabilités. Soit Ω, A) un espace probabilisable. Soit A n ) n N une famille d événements et A, B,

Plus en détail

Nombre dérivé, interprétations géométrique et cinématique

Nombre dérivé, interprétations géométrique et cinématique CHAPITRE 4 DÉRIVATION ET PRIMITIVATION Nombre dérivé, interprétations géométrique et cinématique 08. Nombre dérivé Soit f une fonction numérique, définie sur un intervalle ou une réunion d intervalles,

Plus en détail

0.1 Espace de probabilité

0.1 Espace de probabilité 0.1. ESPACE DE PROBABILITÉ 1 0.1 Espace de probabilité Exercice 1 La population d une ville compte 48% d hommes et 52% de femmes. Le 1er Janvier 2002 5% des hommes et 1% des femmes avaient la grippe. a)

Plus en détail

2) Ecrire en utilisant la notation : 3+5+7+9+ 15+17

2) Ecrire en utilisant la notation : 3+5+7+9+ 15+17 STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES Exercice n. Les 5 élèves d'une classe ont composé et le tableau ci-dessous donne la répartition des diverses notes. Recopier et compléter ce tableau en calculant

Plus en détail

Le second degré. Table des matières

Le second degré. Table des matières Le second degré Table des matières 1 La forme canonique du trinôme 1.1 Le trinôme du second degré......................... 1. Quelques exemples de formes canoniques................. 1.3 Forme canonique

Plus en détail

Niveau. Situations étudiées. Type d activité. Durée. Objectifs

Niveau. Situations étudiées. Type d activité. Durée. Objectifs Fourchettes, non réponses, fausses réponses et redressements... : la cuisine mathématique des sondages Niveau Exercice 1 : 3 ème 2 nde. Exercice 2 : 3 ème 2 nde. Exercice 3 : Seconde ou première. Exercice

Plus en détail

1 C est quoi une fonction? 2. 2 Représentation graphique d une fonction. 6. 3 Fonction affine. 8. 4 Représentation graphique d une fonction affine.

1 C est quoi une fonction? 2. 2 Représentation graphique d une fonction. 6. 3 Fonction affine. 8. 4 Représentation graphique d une fonction affine. Sommaire 1 C est quoi une fonction? 2 2 Représentation graphique d une fonction. 6 3 Fonction affine. 8 4 Représentation graphique d une fonction affine. 10 5 Coefficient directeur d une fonction affine.

Plus en détail

Feuille d exercice n 22 : Probabilités

Feuille d exercice n 22 : Probabilités Lycée La Martinière Monplaisir Année 2015/2016 MPSI - Mathématiques Second Semestre Feuille d exercice n 22 : Probabilités Exercice 1 On se donne N N. Deux joueurs lancent tour à tour un dé. Le premier

Plus en détail

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année.

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année. MATHÉMATIQUES TERMINALE ES A. YALLOUZ Ce polcopié conforme au programme 00, regroupe les documents distribués au élèves en cours d année. Année 0-0 Année 0-0 T le ES A. YALLOUZ (MATH@ES) TABLE DES MATIÈRES

Plus en détail

Master de Formation des Formateurs Groupe Modélisation. Séance du 19 septembre 2003 Modélisation du trafic routier François Sauvageot

Master de Formation des Formateurs Groupe Modélisation. Séance du 19 septembre 2003 Modélisation du trafic routier François Sauvageot Master de Formation des Formateurs Groupe Modélisation Séance du 19 septembre 2003 Modélisation du trafic routier François Sauvageot Position du problème Modéliser le trafic routier c est tenter de prédire

Plus en détail

Équations différentielles en physique

Équations différentielles en physique Fiche Mathématiques pour la Physique - Équations différentielles en physique - MPSI 1 Lycée Chaptal - 2012 Équations différentielles en physique On ne considère en physique en prépa (quasiment) que des

Plus en détail

Statistiques et estimation

Statistiques et estimation DERNIÈRE IMPRESSION LE 23 juillet 2014 à 16:35 Statistiques et estimation Table des matières 1 Intervalle de fluctuation 2 1.1 Simulation................................. 2 1.2 Définition.................................

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mathématiques 2 première partie : Analyse 2 DEUG MIAS 1 e année, 2 e semestre. Maximilian F. Hasler Département Scientifique Interfacultaire B.P. 7209 F 97275 SCHOELCHER CEDEX Fax : 0596 72 73

Plus en détail

Amérique du Sud, novembre 2006

Amérique du Sud, novembre 2006 Exercice 1 ( 5 points) Commun à tous les candidats Un hôpital est composé de trois services : service de soins A, service de soins B, service de soins C. On s intéresse aux prises de sang effectuées dans

Plus en détail

Groupe : (h, k) ( 5, 12)

Groupe : (h, k) ( 5, 12) Fiche de soutien Les propriétés de la fonction racine carrée PROPRIÉTÉ FONCTION SOUS FORME CANONIQUE f(x) = a + k (ou f(x) = a 1 + k et a 1 = a ) EXEMPLE f(x) = 2 12 (ou f(x) = 6 12) Coordonnées du sommet

Plus en détail

UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités

UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités Chapitre II : Espaces probabilisés 1 Notions d événements 1.1 Expérience

Plus en détail

Fonctions Nombre Dérivé Fonction dérivée

Fonctions Nombre Dérivé Fonction dérivée Fonctions Nombre Dérivé Fonction dérivée Ce chapitre est le chapitre central de la classe de Terminale STG. Il permet (en partie) de clore ce qui avait été entamé dés le collège avec les fonctions affines

Plus en détail

Baccalauréat ES Pondichéry 21 avril 2016

Baccalauréat ES Pondichéry 21 avril 2016 Exercice 1 Commun à tous les candidats Baccalauréat ES Pondichéry 21 avril 216 4 points Cet exercice est un QCM (questionnaire à choix multiples). Pour chacune des quatre questions posées, une seule des

Plus en détail

Bac Blanc de Mathématiques Correction Durée : 3 heures

Bac Blanc de Mathématiques Correction Durée : 3 heures Terminale STG Mercatique Jeudi 1 avril 2010 Bac Blanc de Mathématiques Correction Durée : 3 heures L usage de la calculatrice est autorisé. Le sujet comporte 6 pages. EXERCICE 1 3 points Cet eercice est

Plus en détail

Définitions Covariance Corrélation Meilleur prédicteur linéaire. Chapitre 5 Couple de variables aléatoires

Définitions Covariance Corrélation Meilleur prédicteur linéaire. Chapitre 5 Couple de variables aléatoires Chapitre 5 Couple de variables aléatoires Définitions 1 On appelle couple de variables aléatoires (discrètes) l application: Ω R ω (X (ω), Y (ω)) 2 La distribution d un couple de v.a. est définie par les

Plus en détail

CHAPITRE II NOTIONS DE PROBABILITES

CHAPITRE II NOTIONS DE PROBABILITES CHAPITRE II NOTIONS DE PROBABILITES II.1. Un exemple : le poker Distribuer une main de poker (5 cartes sur 52) revient à tirer au hasard 5 cartes parmi 52. On appelle expérience aléatoire une telle expérience

Plus en détail

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien TRAVAUX DIRIGÉS DE l UE MNBif Informatique 3A MÉTHODES NUMÉRIQUES DE BASE 2015-2016, Automne N. Débit & J. Bastien Document compilé le 13 novembre 2015 Liste des Travaux Dirigés Avant-propos iii Travaux

Plus en détail