Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires"

Transcription

1 Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires 25 Lechapitreprécédent avait pour objet l étude decircuitsrésistifsalimentéspar dessourcesde tension ou de courant continues. Par contre la présence de condensateur(s) et de bobine(s) est généralement liée à un courant (ou une tension) variable dans le temps. Nous allons voir ici comment se comporte le signal en fonction du temps dans un tel cas. 3.. Etude des régimes libres Le régime libreest le régime observé quand toutesles sources sont éteintes. Des composants passifset linéairesforment un circuit dans lequel setrouve initialement de l énergie sous forme de tension (dans un condensateur) ou de courant (dans une bobine).l objectif est ici d étudier l évolution des tensions et des courants dans le circuit, pour des conditions initiales données (sur i et u) Le régime libre d un circuit C 3... Position du problème Interrupteur I(t) C UC(t) Fig.3.. CircuitC Soit un circuit composé d une résistance, d un condensateur et d un interrupteur. Les conditions initiales sont les suivantes : l interrupteur est ouvert (donc empêche le courant de passer) et le condensateur est chargé q o. A t =, l interrupteur est fermé, ce qui permet L. Menguy, Lycée Montesquieu, Le Mans 23 novembre 23

2 26 Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires ensuite au courant de passer donc au condensateur de se décharger. L objectif de ce paragraphe est le suivant :. Etablir l équation di érentielle véri ée par u c (t) aux bornes du condensateur; 2. donner une solution de u c (t) pour cette équation di érentielle ; 3. en déduire également l évolution i c (t) dans le circuit; 4. e ectuer un bilan énergétique Etablissement de l équation di érentielle Le circuit C ne comporte qu une maille. La tension est identique aux bornes de la résistance et du condensateur. Il vient donc : µ u C = i = C du C du C C est l équation di érentielle à résoudre pour obtenir u c (t): + C u C = : () emarque 3. L équation obtenue est une équation di érentielle linéaire du ier ordre : le circuit est lui-même dit linéaire du premier ordre. C est homogène à un temps On pose = C. Ce temps intervient dans l équation di érentiellecommegrandeur caractéristique. On appelle ainsi = C letempscaractéristique du circuit C (ou temps de relaxation) Solution La solution de l équation di érentielle ()est : u C (t) = Aexp( t= ): Il reste à déterminer la constante A qui est donnée par les conditions initiales : à t =, u C (t = +) = q =C donc A = q =C. La solution est donc nalement : u C (t) = q C exp( t= ): emarque 3.2 L équation di érentielle étant du premier ordre, seule une condition initiale su t pour déterminer la solution. emarque 3.3 La tangente à l origine de la courbe coupe l axe des abscisses en t =. (Démonstration donnée en cours) emarque 3.4 Le signal u C (t) tend vers quand le temps tend vers l in ni (le condensateur se décharge). On peut considérer que le condensateur est quasiment déchargé à t quand il ne reste plus que % de la tension initiale à ses bornes : u C (t ) = q C = q C exp( t = ) 23 novembre 23 L. Menguy, Lycée Montesquieu, Le Mans

3 Section 3. Etude des régimes libres Fig.3.2. Décharge du condensateur : tension en fonction du temps. Les échelles sont normalisées : u C(t)=(q =C) en ordonnée, ett= en abscisse. exp( t = ) = ; t = ln() t ' 4; 6 : Il faut 4 à 5 pour que le condensateur se décharge. Ensuite, le calcul du courant i(t) s e ectue simplement en écrivant i = u C = q C exp( t= ): Fig.3.3. Courant en fonction du temps. Les échelles sont normalisées :i(t)c=q en ordonnée, et t= en abscisse. emarque 3.5 La courbe 3.2 est continue : pour t < ; u C = q =C puis décroît de cette L. Menguy, Lycée Montesquieu, Le Mans 23 novembre 23

4 28 Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires valeur après t =. Ceci était prévisible : la tension aux bornes du condensateur est toujours continue dans le temps. emarque 3.6 La courbe 3.3 est discontinue : pour t < ; i C = puis passe subitement à q =(C) à t = +. Il n y a pas de présence de bobine dans le circuit : rien n empêche le courant d être discontinu dans le temps Etude énergétique La méthode consiste à faire apparaître une grandeur homogène à une énergie ou une puissance. On sait qu une puissance est homogène à u i : on peut donc obtenir simplement une égalité entre les di érentes puissances en écrivant une loi des mailles (avec u) que l on multiplie par i, une loi des noeuds (avec i) que l on multiplie par u. On écrit ici la loi des mailles appliquée à l unique maille présente : u C + i = : La multiplication par le courant i donne donc un bilan de puissance : i:u C + i 2 = µ C du C u C = i 2 µ d 2 Cu2 C = i 2 : Cette équation s interprète de la manière suivante : l énergie =2Cu 2 C perdue par le condensateur par unité de temps est égale à la puissance dissipée par la résistance i 2 (sous forme de chaleur par e et Joule) égime libre d un circuit L Position du problème Soit un circuit composé d une résistance et d une bobine. On part des conditions initiales suivantes : un générateur de courant i a été placé aux bornes de la bobine : un courant i o circule alors dans la bobine. A t =, l interrupteur est ouvert, ce qui revient à enlever le générateur du circuit. Le courant de la bobine va alors passer dans la résistance et être freiné par la résistance. L énergie contenue dans la bobine au départ va progressivement être dissipée dans la résistance. L objectif de ce paragraphe est le suivant :. Etablir l équation di érentielle véri ée par i(t) dans la bobine ; 2. donner une solution de l évolution i(t) dans le circuit; 3. en déduire l évolution de la tension u(t) aux bornes de la bobine; 4. e ectuer un bilan énergétique Etablissement de l équation di érentielle Le circuit L ne comporte qu une maille. La tension est identique aux bornes de la résistance et de la bobine. Il vient donc : 23 novembre 23 L. Menguy, Lycée Montesquieu, Le Mans

5 Section 3. Etude des régimes libres 29 Interrupteur i(t) Io u(t) L Fig.3.4. CircuitL u = i = L di di + i = : (2) L C est l équation di érentielle à résoudre pour obtenir i(t): emarque 3.7 L équation obtenue est une équation di érentielle linéaire du ier ordre : le circuit est lui-même dit linéaire du premier ordre. =L est homogène à l inverse d un temps On pose = L=. Ce temps intervient dans l équation di érentielle comme grandeur caractéristique. On appelle = L= le temps caractéristique du circuit L (ou temps de relaxation). est : solution La solution de l équation di érentielle di + i = : (3) i(t) = B exp( t= ): Il reste à déterminer B qui est donnée par les conditions initiales : à t =, i(t = + ) = i donc B = i. La solution est nalement : i(t) = i exp( t= ): emarque 3.8 L équation di érentielle étant du premier ordre, seule une condition initiale su t pour déterminer la solution. L. Menguy, Lycée Montesquieu, Le Mans 23 novembre 23

6 3 Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires Fig.3.5. Courant en fonction du temps. Les échelles sont normalisées :i(t)=i en ordonnée, ett= en abscisse. emarque 3.9 La tangente à l origine de la courbe coupe l axe des abscisses en t =. emarque 3. Comme pour le circuit C, il faut 4 à 5 pour que le courant devienne quasi-nul. Ensuite, le calcul de la tension u(t) s e ectue simplement en écrivant u = i = i exp( t= ): Fig.3.6. Tension en fonction du temps. Les échelles sont normalisées :uc(t)=(i ) en ordonnée, et t= en abscisse. emarque 3. La courbe 3.5 est continue : à t < ; i = i puis décroît de cette valeur après t =. Ceci était prévisible : l intensité du courant dans une bobine est toujours continue dans le temps. emarque 3.2 La courbe 3.6 est discontinue : à t < ; u = puis passe subitement à i à t = +. Il n y a pas de présence de condensateur. 23 novembre 23 L. Menguy, Lycée Montesquieu, Le Mans

7 Section 3. Etude des régimes libres Etude énergétique Comme pour le circuit C l équation du circuit (loi des mailles) est multipliée par le courant i : µ i L di = i µ d 2 Li2 = i 2 : Cette équation s interprète de la manière suivante : l énergie =2Li 2 perdue par la bobine par unité de temps est égale à la puissance dissipée par la résistance i 2 (sous forme de chaleur par e et Joule) Le régime libre d un circuit LC série Position du problème Interrupteur i(t) UC(t) q C L UL(t) U(t) Fig.3.7. CircuitLC Soit un circuit composé d une résistance, d un condensateur, d une bobine et d un interrupteur. Les conditions initialessont lessuivantes : l interrupteur est ouvert (donc empêchele courant de passer) et le condensateur est chargé q o. A t =, l interrupteur est fermé, ce qui permet ensuite au courant de passer donc au condensateur de se décharger Etablissement de l équation di érentielle Le circuit LC série ne comporte qu une maille : u L + u + u C = L. Menguy, Lycée Montesquieu, Le Mans 23 novembre 23

8 32 Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires L di + i + u C = : (4) Il y a alors deux méthodes pour obtenir une équation di érentielle. La première méthode consiste à dériver l équation(4) ce qui donne une équation di érentielle en i(t) : L d2 i + di 2 + du C = L d2 i 2 + di + C i = : La deuxième méthode consiste à exprimer i(t) et u C (t) en fonction de la charge q(t):compte tenu du fait que u C = q=c et que i = dq=, l équation (4) s écrit : L d2 q 2 + dq + q C = ; d 2 q + dq 2 L + q = : (5) LC ce qui donne une équation di érentielle en q(t). C est l équation di érentielle que nous allons résoudre. emarque 3.3 L équation obtenue est une équation di érentielle linéaire du 2 iµeme ordre : le circuit est lui-même dit linéaire du second ordre. =L est homogène à l inverse d un temps et LC à un temps au carré. On pose : LC =!2 et L =! Q ou L = 2! = = p LC appelé la pulsation propre du circuit (en s ); Q = = p L=C est appelé le facteur de qualité du circuit (sans unité) = =(2L) est appelé le coe cient d amortissement du circuit (en s ). emarque 3.4 L équation di érentielle (5) peut s écrire respectivement, suivant que l on fait le choix d utiliser la facteur de qualité Q ou le coe cient d amortissement : ou d 2 q 2 +! dq Q +!2 q = (6) d 2 q dq +!2 q = : C est l écriture sous forme de l équation (6) que nous allons utiliser pour la résolution. 23 novembre 23 L. Menguy, Lycée Montesquieu, Le Mans

9 Section 3. Etude des régimes libres Solution La résolution de l équation di érentielle (6) s e ectue en écrivant l équation caractéristique : dont les deux racines (réelles ou complexes) sont r =! p 2Q 2 r 2 +! Q r +!2 = ; (7) avec = µ 2! 4! 2 Q : Les typesde solutionsdi èrent suivant lesigne de, c est-à-diresuivant la valeur du facteur de qualité Q. Cas du régime apériodique ( >, Q < =2). Ce cas correspond à un fort amortissement, ou un faible facteur de qualité. Les 2 solutions de l équation caractéristique (7) sont réelles : s µ r =! s 2 µ 2Q +! et r 2 =! 2 2Q 2Q! : 2Q emarquons que ce deux solutions réelles sont négatives. La solution générale est alors : q(t) = Aexp(r t) + B exp(r 2 t): A et B sont déterminées avec les 2 conditions initiales données d une part par la présence de la bobine, et d autre part par la présence du condensateur : i(t = ) = et q(t = ) = q. emarque 3.5 Pour le circuit LC, l équation di érentielle obtenue est du second ordre ; il y a donc 2 constantes à déterminer, qui correspondent à 2 conditions initiales. Les conditions initiales donnent : ½ q(t = ) = q = A + B (dq=)(t = ) = = Ar + Br 2 : Ce système permet de déterminer A et B (résolution par substitution faite en classe) : A = q r 2 r r 2 = q r ³ 2Q + 2Q 2 r ³ 2 2Q 2 B = r ³ q r 2Q + 2Q 2 = q r r 2 ³ 2r 2Q 2 La tension aux bornes du condensateur est alors (voir gure (3.8)) : u C (t) = q(t) C = C (Aexp(r t) + B exp(r 2 t)): L. Menguy, Lycée Montesquieu, Le Mans 23 novembre 23

10 34 Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires Le courant se déduit ensuite par : i(t) = C du C(t) = Ar exp(r t) + Br 2 exp(r 2 t) ; ce qui donne après simpli cation (en ayant explicité Ar, et Br 2 dans l expression ci-dessus) : q! i(t) = ³ (exp(r t) + exp(r 2 t)) : 2 2r 2Q La représentation de cette courbe est donnée sur la gure (3.9) pour di érentes valeurs du facteur de qualité Q. Cas du régime critique ( =, Q = =2). La solution de l équation caractéristique (7) est réelle et double : La solution générale est alors : r =! 2Q =! : q(t) = (A + Bt)exp(! t): A et B sont déterminées avec les 2 conditions initiales : i(t = ) = et q(t = ) = q : ½ q(t = ) = q = A (dq=)(t = ) = = B! A A = q B =! q.5 Q=.2 Q=.4 Qc=/ Fig.3.8. Décharge du condensateur : tension en fonction du temps pour di érents facteurs de qualité (régime apériodique Q<=2 et critique Q==2). Les échelles sont normalisées : uc(t)=(q =C) en ordonnée, et! t en abscisse. 23 novembre 23 L. Menguy, Lycée Montesquieu, Le Mans

11 Section 3. Etude des régimes libres Q= Q= Q=/ Fig.3.9. Courant en fonction du temps pour di érents facteurs de qualité (régime apériodique Q < =2 et critique Q = =2). Les échelles sont normalisées : i(t)=(! q ) en ordonnée, et! t en abscisse. La tension aux bornes du condensateur est alors (voir gure (3.8)) : u C (t) = q(t) C = q C ( +! t)exp(! t): Le courant se déduit ensuite par : i(t) = dq = q C! exp(! t) + q C ( +! t)(! ) exp(! t) i(t) = q C!2 texp(! t): La représentation de cette courbe est donnée sur la gure (3.9). L observation des courbes (3.8) et (3.9) amène les remarques suivantes : bien que les solutions mathématiques des régime apériodique et critique sont di érentes, les allures graphiques sont similaires. Concernant l évolution de la tension, la décharge du générateur est d autant plus rapide que le facteur dequalité serapproche de Q = =2; une trop forterésistance est un frein à la décharge du condensateur. Il en est de même pour la disparition du courant. Cas du régime pseudo-périodique ( <, Q >=2). Cecascorrespond à un faible amortissement, ou un grand facteur de qualité. Les2 solutions de l équation caractéristique (7) sont complexes : r =! 2Q + j! s La solution générale est alors : ou q(t) = exp µ s 2 et r 2 =! 2Q 2Q j! µ! 2Q t (Acos!t + B sin!t) µ q(t) = D exp! 2Q t cos(!t + ') µ 2 : 2Q L. Menguy, Lycée Montesquieu, Le Mans 23 novembre 23

12 36 Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires avec! =! q (=2Q) 2. A et B (ou D et ') sont des constantes à déterminer avec les 2 conditions initiales : i(t = ) = et q(t = ) = q : q(t = ) = q = A (dq=)(t = ) = = B!! 2Q A A = q ; B = q r ³ 2Q La tension aux bornes du condensateur est alors (voir gure (3.)) : u C (t) = q(t) C = q µ C exp! 2Q t cos!t + r ³ 2Q 2 : 2Q 2Q sin!tc 2 A :.5 Q= Fig.3.. Décharge du condensateur ³ : tension en fonction du tempspour Q= 4. La courbe en pointillés représente l enveloppe exp! t. Les échelles sont normalisées : uc(t)=(q 2Q =C) en ordonnée, et! t en abscisse. Le courant se déduit ensuite par : ce qui donne après simpli cation : q! i(t) = r ³ i(t) = C du C 2Q µ exp! 2 2Q t sin!t: La représentation de cette courbe est donnée sur la gure (3.). 23 novembre 23 L. Menguy, Lycée Montesquieu, Le Mans

13 Section 3.2 éponse à un échelon de tension 37.5 Q= Fig.3.. Courant en fonction ³ du temps pour un facteur de qualité Q=4. La courbe en pointillés représente l enveloppe exp! 2Q t. Les échelles sont normalisées : i(t)=(! q ) en ordonnée, et! t en abscisse. La pseudo-période de ce signal représentele temps quisépare 2 passagesà dela tension ou de l intensité, c est-à-dire T = 2¼! = 2¼ q :! (=2Q) 2 En n, plus ³ le facteur t de qualité est important, plus la décroissance exponentielle de l enveloppe exp! 2Q est lente, c est-à-dire qu il y a un plus grand nombre d oscillations. Le signal s atténue alors plus lentement. emarque 3.6 Pour le régime critique, quand Q augmente pour s approcher de =2, le condensateur se décharge plus rapidement. Pour le régime pseudo-périodique inversement, plus Q diminue et se rapproche de =2, moins il y a d oscillations donc le condensateur se décharge plus rapidement. Finalement, le régime qui tend le plus vite vers est le régime critique Etude énergétique L équation du circuit (loi des mailles) est multipliée par le courant i : µ i L di + i + u C = µ d d + q dq C 2 Li2 µ 2 Li2 + 2 q 2 C = i 2 ; = i 2 : Cette équation s interprète de la manière suivante : l énergie totale =2Li 2 + =2Cu 2 C perdue par le circuit par unitéde temps (stockée dans la bobine +le condensateur) est égale à la puissance dissipée par la résistance i 2 (sous forme de chaleur par e et Joule). L. Menguy, Lycée Montesquieu, Le Mans 23 novembre 23

14 38 Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires condens. En.totale Q=4.5 bobine 5 5 Fig.3.2. Décroissance de l énergie dans un circuit LC série ; les courbes pointillées représentent l énergie stockée dans le condensateur et dans la bobine, et la courbe continue leur somme (énergie totale). Les échelles sont normalisées : énergiee=e init en ordonnée, et! t en abscisse éponse à un échelon de tension Dans la première partie, l énergie était stockée au départ dans le condensateur ou dans le bobine. Il s agissait d étudier la dissipation de cette énergie dans la résistance. Cettedeuxièmeparties attacheau contraireà étudier un circuit necomportant pasd énergie au départ, et de voir comment un générateur, qui alimente ce circuit, apporte l énergie à ce circuit (en chargeant progressivement le condensateur ou en établissant le courant dans la bobine). Le générateur est au préalable éteint (tension nulle). A t =, le générateur est allumé et délivre une tension constante notée e : e(t) = pour t < e(t) = e pour t < Charge d un condensateur dans un circuit C Position du problème Soit un circuit composé d une résistance, d un condensateur et d un générateur. Les conditionsantérieures à t = sont les suivantes : le générateur délivre une tension nulle, le courant est nul et le condensateur n est pas chargé. A t =, le générateur délivre subitement une tension e constante : un courant va alors circuler dans le circuit et charger le condensateur. L objectif est le suivant :. Etablir l équation di érentielle véri ée par u c (t) aux bornes du condensateur; 2. donner une solution de u c (t) pour cette équation di érentielle ; 3. en déduire également l évolution i c (t) dans le circuit; 4. e ectuer un bilan énergétique Etablissement de l équation di érentielle Le circuit ne comporte qu une maille : 23 novembre 23 L. Menguy, Lycée Montesquieu, Le Mans

15 Section 3.2 éponse à un échelon de tension 39 I(t) e(t) C UC(t) Fig.3.3. et u C + i = e du C i = C du C + C u C = e C : (8) C est l équation di érentielle à résoudre pour obtenir u c (t): L équation obtenue est une équation di érentielle linéaire du ier ordre contenant un temps caractéristique (ou temps derelaxation) noté avec = C Solution La solution de l équation di érentielle (8) est la somme de la solution particulière u C = e et de la solution de l équation sans second membre : u C (t) = e + Aexp( t= ): Il reste à déterminer la constante A qui est donnée par les conditions initiales : à t =, u C (t = + ) = = e + A donc A = e. La solution est donc nalement : Le courant se déduit par u C (t) = e ( exp( t= )): i(t) = C du C i(t) = e exp( t= ): = Ce exp( t= ) L. Menguy, Lycée Montesquieu, Le Mans 23 novembre 23

16 4 Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires La tangente à l origine de la courbe coupe l axe des abscisses en t =. Le signal u C (t) tend vers e quand le temps tend vers l in ni (le condensateur se charge). Au bout de quelques, (temps de relaxation), le circuit atteint un régime établi (ou permanent). est un temps caractéristique qui donne un ordre de grandeur de la durée du régime transitoire. emarque 3.7 Les courbes correspondantes seront ultérieurement ajoutées ici!! Etude énergétique L équation électrique i + q C = e est multipliée par le courant i = (dq=), ce qui donne : i 2 + q C dq = e i µ d 2 Cu2 C = e i i 2 : Cette équation s interprète de la manière suivante : la variation d énergie =2Cu 2 C dans le condensateur par unité de temps est égale à la puissance délivrée par le générateur (e i) à laquelle est enlevée la puissance dissipée par la résistance i 2 (sous forme de chaleur par e et Joule) Etablissement d un courant dans un circuit inductif L Position du problème I(t) e(t) L UL(t) Fig novembre 23 L. Menguy, Lycée Montesquieu, Le Mans

17 Section 3.2 éponse à un échelon de tension 4 Soit un circuit composé d une résistance, d une bobine et d un générateur. Les conditions antérieures à t = sont les suivantes : le générateur délivre une tension nulle et le courant est nul. A t =, le générateur délivre subitement une tension e constante : un courant va alors circuler dans le circuit. L objectif est le suivant :. Etablir l équation di érentielle véri ée par i(t) dans le circuit; 2. donner une solution de i(t) pour cette équation di érentielle; 3. en déduire également l évolution u L (t) dans le circuit; 4. e ectuer un bilan énergétique Etablissement de l équation di érentielle Le circuit ne comporte qu une maille : et u L + i = e u L = L di di + L i = e L : (9) C est l équation di érentielle à résoudre pour obtenir i(t): L équation obtenue est une équation di érentielle linéaire du ier ordre contenant un temps caractéristique (ou temps derelaxation) noté avec = L= Solution La solution de l équation di érentielle (9)est la somme de la solution particulière (i = e =) et de la solution de l équation sans second membre : i(t) = e + Aexp( t= ): Il reste à déterminer la constante A qui est donnée par les conditions initiales : à t =, i(t = +) = = e = + A donc A = e =. La solution est donc nalement : La tension u L (t) se déduit par i(t) = e ( exp( t= )): u L (t) = L di = Le exp( t= ) u L (t) = e exp( t= ): La tangente à l origine de la courbe coupe l axe des abscisses en t =. Le signal i(t) tend vers (e =) quand le temps tend vers l in ni (le courant s établi). Au bout de quelques, (temps de relaxation), le circuit atteint un régime établi (ou permanent). est un temps caractéristique qui donne un ordre de grandeur de la durée du régime transitoire. L. Menguy, Lycée Montesquieu, Le Mans 23 novembre 23

18 42 Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires Etude énergétique L équation électrique est multipliée par le courant i, ce qui donne : L di + i = e i 2 + L di i = e i µ d 2 Li2 = e i i 2 : Cette équation s interprète de la manière suivante : la variation d énergie =2Li 2 dans la bobine par unité de temps est égale à la puissance délivrée par le générateur (e i) à laquelle est enlevée la puissance dissipée par la résistance i 2. emarque 3.8 Les courbes correspondantes seront ultérieurement ajoutées ici!! éponse à un échelon de tension d un circuit LC série Position du problème I(t) e(t) C UC(t) L Fig.3.5. Soit un circuit composéd unerésistance, d une bobine, d un condensateur et d un générateur. Les conditions antérieures à t = sont les suivantes : le générateur délivre une tension nulle, le courant est nul et le condensateur n est pas chargé. A t =, le générateur délivre subitement une tension e constante : un courant circule alors dans le circuit et charge le condensateur. 23 novembre 23 L. Menguy, Lycée Montesquieu, Le Mans

19 Section 3.2 éponse à un échelon de tension Etablissement de l équation di érentielle Le circuit LC série ne comporte qu une maille : u L + u + u C = e L di + i + u C = e : () i(t) et u C (t) sont ensuite exprimés en fonction de la charge q(t):compte tenu du fait que u C = q=c et que i = dq=, l équation () s écrit : L d2 q 2 + dq + q C = e ; d 2 q + dq 2 L + LC q = e L : () ce qui donne une équation di érentielle en q(t). C est l équation di érentielle à résoudre. Le circuit est dit linéaire du second ordre car l équation di érentielle obtenue est linéaire du second ordre. =L est homogène à l inverse d un temps et LC à un temps au carré. Comme pour le circuit LC série en régime libre, on pose : LC =!2 et L =! Q ou L = 2! = = p LC appelé la pulsation propre du circuit (en s ); Q = = p L=C est appelé le facteur de qualité du circuit (sans unité) = =(2L) est appelé le coe cient d amortissement du circuit (en s ) Solution L équation di érentielle () à résoudre est d 2 q 2 + dq L + LC q = e L : La solution générale est la somme de la solution particulière et de la solution de l équation sans second membre. La solution particulière est q = Ce. La solution est donc q(t) = Ce + sol ESSM. L équation sans second membre est identique à celle du paragraphe (3..3). Il faut écrire l équation caractéristique ou r 2 + L r + LC = r 2 +! Q r +!2 = L. Menguy, Lycée Montesquieu, Le Mans 23 novembre 23

20 44 Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires si l on choisit d introduire la pulsation propre et le facteur de qualité. Suivant la valeur du facteur de qualité (Q < =2, Q = =2 ou Q > =2) la solution de l équation sans second membre donnera respectivement un régime apériodique ou critique ou pseudo-périodique. Il reste tout de même à exprimer les deux conditions initiales pour déterminer les constantes qui apparaissent dans la solution de l équation sans second membre. Ces conditions initiales sont dans le cas présent : u C (t = ) = q(t = ) = et i(t = ) = (dq=)(t = ) =. emarque 3.9 Attention! les conditions initiales doivent être exprimées sur l ensemble de la solution générale (sol ESSM+sol part). emarque 3.2 Les solutions et les courbes correspondantes de la tension et du courant seront ultérieurement ajoutées ici!! Conclusion : établissement d un régime forcé Paragraphe traité en classe. 23 novembre 23 L. Menguy, Lycée Montesquieu, Le Mans

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP. Union générale des étudiants de Tunisie Modèle de compte-rendu de TP Dipôle RC Ce document a été publié pour l unique but d aider les étudiants, il est donc strictement interdit de l utiliser intégralement

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section Orthoptiste / stage i-prépa intensif - 1 Chapitre 10 : Condensateur et circuit RC I. Notions de base en électricité : a) Courant électrique

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

1.1.1 Signaux à variation temporelle continue-discrète

1.1.1 Signaux à variation temporelle continue-discrète Chapitre Base des Signaux. Classi cation des signaux.. Signaux à variation temporelle continue-discrète Les signaux à variation temporelle continue sont des fonctions d une ou plusieurs variables continues

Plus en détail

TP 7 : oscillateur de torsion

TP 7 : oscillateur de torsion TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Conversion électronique statique

Conversion électronique statique Conversion électronique statique Sommaire I) Généralités.2 A. Intérêts de la conversion électronique de puissance 2 B. Sources idéales.3 C. Composants électroniques..5 II) III) Hacheurs..7 A. Hacheur série

Plus en détail

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT TP CIRCUITS ELECTRIQUES R.DUPERRAY Lycée F.BUISSON PTSI CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT OBJECTIFS Savoir utiliser le multimètre pour mesurer des grandeurs électriques Obtenir expérimentalement

Plus en détail

Chapitre 1 Cinématique du point matériel

Chapitre 1 Cinématique du point matériel Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Chapitre 4 Le deuxième principe de la thermodynamique

Chapitre 4 Le deuxième principe de la thermodynamique Chapitre 4 Le deuxième principe de la thermodynamique 43 4.1. Evolutions réversibles et irréversibles 4.1.1. Exemples 4.1.1.1. Exemple 1 Reprenons l exemple 1 du chapitre précédent. Une masse est placée

Plus en détail

Module : filtrage analogique

Module : filtrage analogique BSEL - Physique appliquée Module : filtrage analogique Diaporama : aucun ésumé de cours - Les différents types de filtres - Transmittance en z d un filtre numérique 3- Algorithme de calcul de y n 4- Stabilité

Plus en détail

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année Cours d électricité Circuits électriques en courant constant Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre

Plus en détail

4éme année secondaire

4éme année secondaire Physique-chimie PHYSIQUE CHIMIE 4éme année secondaire Math Science expérimentale - Technique Tome 1 Résumé de cours Exercices corrigés Devoirs corrigés Bahloul. Mourad Prof d enseignement secondaire Adresse

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Le moteur asynchrone triphasé

Le moteur asynchrone triphasé Cours d Electricité 2 Électrotechnique Le moteur asynchrone triphasé I.U.T Mesures Physiques Université Montpellier 2 Année universitaire 2008-2009 Table des matières 1 Définition et description 2 2 Principe

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Equations différentielles linéaires à coefficients constants

Equations différentielles linéaires à coefficients constants Equations différentielles linéaires à coefficients constants Cas des équations d ordre 1 et 2 Cours de : Martine Arrou-Vignod Médiatisation : Johan Millaud Département RT de l IUT de Vélizy Mai 2007 I

Plus en détail

Donner les limites de validité de la relation obtenue.

Donner les limites de validité de la relation obtenue. olutions! ours! - Multiplicateur 0 e s alculer en fonction de. Donner les limites de validité de la relation obtenue. Quelle est la valeur supérieure de? Quel est le rôle de 0? - Multiplicateur e 0 s alculer

Plus en détail

Contrôle final de Thermique,

Contrôle final de Thermique, Contrôle final de Thermique, GM3C mars 08 2heures, tous documents autorisés Calculatrices autorisées Problèmes de refroidissement d un ordinateur On se donne un ordinateur qui dissipe une certaine puissance,

Plus en détail

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2 BTS Mécanique et Automatismes Industriels Équations différentielles d ordre, Année scolaire 005 006 . Définition Notation Dans tout ce paragraphe, y désigne une fonction de la variable réelle x. On suppose

Plus en détail

TS Physique L automobile du futur Electricité

TS Physique L automobile du futur Electricité P a g e 1 TS Physique Electricité Exercice résolu Enoncé Le moteur thermique, étant très certainement appelé à disparaître, les constructeurs automobiles recourront probablement au «tout électrique» ou

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Charges électriques - Courant électrique

Charges électriques - Courant électrique Courant électrique Charges électriques - Courant électrique Exercice 6 : Dans la chambre à vide d un microscope électronique, un faisceau continu d électrons transporte 3,0 µc de charges négatives pendant

Plus en détail

Premier ordre Expression de la fonction de transfert : H(p) = K

Premier ordre Expression de la fonction de transfert : H(p) = K Premier ordre Expression de la fonction de transfert : H(p) = K + τ.p. K.e τ K.e /τ τ 86% 95% 63% 5% τ τ 3τ 4τ 5τ Temps Caractéristiques remarquables de la réponse à un échelon e(t) = e.u(t). La valeur

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

ELEC2753 Electrotechnique examen du 11/06/2012

ELEC2753 Electrotechnique examen du 11/06/2012 ELEC2753 Electrotechnique examen du 11/06/2012 Pour faciliter la correction et la surveillance, merci de répondre aux 3 questions sur des feuilles différentes et d'écrire immédiatement votre nom sur toutes

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

CALCULATRICE AUTORISEE

CALCULATRICE AUTORISEE Lycée F. MISTRAL AVIGNON BAC BLANC 2012 Epreuve de MATHEMATIQUES Série S CALCULATRICE AUTORISEE DUREE : 4 heures Dès que le sujet vous est remis, assurez-vous qu il est complet Ce sujet comporte 3 pages

Plus en détail

La charge électrique C6. La charge électrique

La charge électrique C6. La charge électrique Fiche ACTIVIT UM 8. / UM 8. / 8. La charge électrique 8. La charge électrique C6 Manuel, p. 74 à 79 Manuel, p. 74 à 79 Synergie UM S8 Corrigé Démonstration La charge par induction. Comment un électroscope

Plus en détail

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1 1 Introduction Un convertisseur statique est un montage utilisant des interrupteurs à semiconducteurs permettant par une commande convenable de ces derniers de régler un transfert d énergie entre une source

Plus en détail

Les transistors à effet de champ.

Les transistors à effet de champ. Chapitre 2 Les transistors à effet de champ. 2.1 Les différentes structures Il existe de nombreux types de transistors utilisant un effet de champ (FET : Field Effect Transistor). Ces composants sont caractérisés

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

Cours 9. Régimes du transistor MOS

Cours 9. Régimes du transistor MOS Cours 9. Régimes du transistor MOS Par Dimitri galayko Unité d enseignement Élec-info pour master ACSI à l UPMC Octobre-décembre 005 Dans ce document le transistor MOS est traité comme un composant électronique.

Plus en détail

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable

Plus en détail

IV- Equations, inéquations dans R, Systèmes d équations

IV- Equations, inéquations dans R, Systèmes d équations IV- Equations, inéquations dans R, Systèmes d équations 1- Equation à une inconnue Une équation est une égalité contenant un nombre inconnu noté en général x et qui est appelé l inconnue. Résoudre l équation

Plus en détail

LIMITES EXERCICES CORRIGES

LIMITES EXERCICES CORRIGES ours et eercices de mathématiques LIMITES EXERIES ORRIGES M UAZ, http://mathscyrreer Eercice n Déterminer la ite éventuelle en de chacune des onctions suivantes : ) ) ) 4 ( ) Déterminer la ite éventuelle

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

Le moteur à courant continu à aimants permanents

Le moteur à courant continu à aimants permanents Le moteur à courant continu à aimants permanents Le moteur à courant continu à aimants permanents Principe, caractéristiques Alimentation, variation de vitesse Puissance, rendement Réversibilité Cette

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

TP Cours Ferromagnétisme - Transformateur

TP Cours Ferromagnétisme - Transformateur TP Cours Ferromagnétisme - Transformateur 1. PROPRIETES DES MILIEUX FERROMAGNETIQUES La réalisation de transformateurs nécessite l utilisation de matériaux fortement aimantables. Ce sont les ferromagnétiques.

Plus en détail

SYSTEMES LINEAIRES DU PREMIER ORDRE

SYSTEMES LINEAIRES DU PREMIER ORDRE SYSTEMES LINEIRES DU PREMIER ORDRE 1. DEFINITION e(t) SYSTEME s(t) Un système est dit linéaire invariant du premier ordre si la réponse s(t) est liée à l excitation e(t) par une équation différentielle

Plus en détail

MESURE DE LA TEMPERATURE

MESURE DE LA TEMPERATURE 145 T2 MESURE DE LA TEMPERATURE I. INTRODUCTION Dans la majorité des phénomènes physiques, la température joue un rôle prépondérant. Pour la mesurer, les moyens les plus couramment utilisés sont : les

Plus en détail

Notion de fonction. Résolution graphique. Fonction affine.

Notion de fonction. Résolution graphique. Fonction affine. TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................

Plus en détail

ELECTROTECHNIQUE. Chapitre 5 Bobines couplées magnétiquement Inductances mutuelles. Électromagnétisme. Michel PIOU. Édition: 01/06/2010

ELECTROTECHNIQUE. Chapitre 5 Bobines couplées magnétiquement Inductances mutuelles. Électromagnétisme. Michel PIOU. Édition: 01/06/2010 ELECTROTECHNIQUE Électromagnétisme Michel PIOU Chapitre 5 Bobines couplées magnétiquement Inductances mutuelles Édition: 0/06/00 Extrait de la ressource en ligne MagnElecPro sur le site Internet Table

Plus en détail

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie Cours d électricité Introduction Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Le terme électricité provient du grec ἤλεκτρον

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives. L G L G Prof. Éric J.M.DELHEZ ANALYSE MATHÉMATIQUE ÉALUATION FORMATIE Novembre 211 Ce test vous est proposé pour vous permettre de faire le point sur votre compréhension du cours d Analyse Mathématique.

Plus en détail

TP : Une résistance pour se chauffer?

TP : Une résistance pour se chauffer? TP : Une résistance pour se chauffer? Document extrait d un site Internet : L'effet Joule est un mode de production de chaleur qui se produit lors du passage du courant électrique dans un conducteur présentant

Plus en détail

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance. XIII. 1 CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance. Dans les chapitres précédents nous avons examiné des circuits qui comportaient différentes

Plus en détail

Dérivation : Résumé de cours et méthodes

Dérivation : Résumé de cours et méthodes Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2

CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2 CHPITRE IX Modèle de Thévenin & modèle de Norton Les exercices EXERCICE N 1 R 3 E = 12V R 1 = 500Ω R 2 = 1kΩ R 3 = 1kΩ R C = 1kΩ E R 1 R 2 U I C R C 0V a. Dessiner le générateur de Thévenin vu entre les

Plus en détail

Analyse et Commande des systèmes linéaires

Analyse et Commande des systèmes linéaires Analyse et Commande des systèmes linéaires Frédéric Gouaisbaut LAAS-CNRS Tel : 05 61 33 63 07 email : fgouaisb@laas.fr webpage: www.laas.fr/ fgouaisb September 24, 2009 Présentation du Cours Volume Horaire:

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique Chapitre 7 Circuits Magnétiques et Inductance 7.1 Introduction 7.1.1 Production d un champ magnétique Si on considère un conducteur cylindrique droit dans lequel circule un courant I (figure 7.1). Ce courant

Plus en détail

CHAPITRE VIII : Les circuits avec résistances ohmiques

CHAPITRE VIII : Les circuits avec résistances ohmiques CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 8 : EQUATIONS DIFFERENTIELLES - COURS + ENONCE EXERCICE - Olivier

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Automatique Linéaire 1 1A ISMIN

Automatique Linéaire 1 1A ISMIN Automatique linéaire 1 J.M. Dutertre 2014 Sommaire. I. Introduction, définitions, position du problème. p. 3 I.1. Introduction. p. 3 I.2. Définitions. p. 5 I.3. Position du problème. p. 6 II. Modélisation

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

Automatique Modélisation et commande de systèmes par représentation d état

Automatique Modélisation et commande de systèmes par représentation d état Automatique Modélisation et commande de systèmes par représentation d état Marc BACHELIER - PPS5 October 30, 2013 Abstract Ce cours a pour objectif de faire découvrir des méthodes de conception de commande

Plus en détail

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

CH IV) Courant alternatif Oscilloscope.

CH IV) Courant alternatif Oscilloscope. CH IV) Courant alternatif Oscilloscope. Il existe deux types de courant, le courant continu et le courant alternatif. I) Courant alternatif : Observons une coupe transversale d une «dynamo» de vélo. Galet

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN Automatique Linéaire 1 Travaux Dirigés Travaux dirigés, Automatique linéaire 1 J.M. Dutertre 2014 TD 1 Introduction, modélisation, outils. Exercice 1.1 : Calcul de la réponse d un 2 nd ordre à une rampe

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Chapitre 3 : Mesure et Incertitude.

Chapitre 3 : Mesure et Incertitude. Chapitre 3 : Mesure et ncertitude. Le scientifique qui étudie un phénomène naturel se doit de faire des mesures. Cependant, lors du traitement de ses résultats ce pose à lui la question de la précision

Plus en détail

Session de Juillet 2001. Durée 2 H Documents interdits.

Session de Juillet 2001. Durée 2 H Documents interdits. Session de Juillet 2001 Durée 2 H Documents interdits. Exercice 1 : Oscillations forcées de dipôles électriques Lors d une séance de travaux pratiques, les élèves sont conduits à étudier les dipôles en

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS David Ryckelynck Centre des Matériaux, Mines ParisTech David.Ryckelynck@mines-paristech.fr Bibliographie : Stabilité et mécanique non linéaire,

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Licence Sciences et Technologies Examen janvier 2010

Licence Sciences et Technologies Examen janvier 2010 Université de Provence Introduction à l Informatique Licence Sciences et Technologies Examen janvier 2010 Année 2009-10 Aucun document n est autorisé Les exercices peuvent être traités dans le désordre.

Plus en détail

LES RESISTANCES. Caractéristiques, rôle et utilisation de la résistance

LES RESISTANCES. Caractéristiques, rôle et utilisation de la résistance LES RESISTANCES Caractéristiques, rôle et utilisation de la résistance Le rôle de la résistance est de limiter le courant dans un circuit. Elle possède plusieurs caractéristiques technique : La valeur

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Energie et conversions d énergie

Energie et conversions d énergie Chapitre 6 et conversions d énergie I) NOTIONS GENERALES Les différentes formes d énergie : électrique (liée aux courants et tensions) lumineuse (liée à un mouvement ou à l altitude) thermique (liée à

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

COMPOSITION DE PHYSIQUE ET SCIENCES DE L INGÉNIEUR (X) Quelques aspects de la mesure du temps

COMPOSITION DE PHYSIQUE ET SCIENCES DE L INGÉNIEUR (X) Quelques aspects de la mesure du temps X Physique et Sciences de l ingénieur MP 2011 Énoncé 1/14 ÉCOLE POLYTECHNIQUE CONCOURS D ADMISSION 2011 FILIÈRE MP COMPOSITION DE PHYSIQUE ET SCIENCES DE L INGÉNIEUR (X) (Durée : 4 heures) L utilisation

Plus en détail

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure Introduction CORRECTION TP Multimètres - Mesures de résistances - La mesure d une résistance s effectue à l aide d un multimètre. Utilisé en mode ohmmètre, il permet une mesure directe de résistances hors

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail