ELECTRICITE. Chapitre 13 Régimes transitoires des circuits RC et RL. Analyse des signaux et des circuits électriques. Michel Piou

Dimension: px
Commencer à balayer dès la page:

Download "ELECTRICITE. Chapitre 13 Régimes transitoires des circuits RC et RL. Analyse des signaux et des circuits électriques. Michel Piou"

Transcription

1 LCTICIT Analys ds sgnaux ds crcus élcrqus Mchl Pou Chapr 13 égms ransors ds crcus C L don 14/3/214

2 Tabl ds maèrs 1 POUQUOI T COMMNT? GIMS TANSITOIS DS CICUITS C T L xponnll décrossan Sysèm élcrqu du 1 ordr avc un sourc d nson ou d couran consan ésumé d la méhod par ls schémas d régm lbr, d régm forcé ds condons nals POBLMS T XCICS...11 Chap 13. xrcc 1 : Dpôl L soums à un échlon d nson...11 Chap 13. xrcc 2 : Dpôl L soums à un échlon d nson rardé...11 Chap 13. xrcc 3 : Dpôl L soums à un mpulson d nson rardé...11 Chap 13. xrcc 4 : Dpôl L soums à un ran d mpulsons d nson Chap 13. xrcc 5 : Dpôl C soums à un mpulson d nson rardé...12 Chap 13. xrcc 6 : Dpôl C sér almné par un sourc d couran...13 Chap 13. xrcc 7 : égm ransor avc un condon nal Chap 13. xrcc 8 : égm ransor avc un condon nal Chap 13. xrcc 9 : égm ransor avc un condon nal Chap 13. xrcc 1 : Calcul du mps nécssar pour déplacr un pon d fonconnmn Chap 13. xrcc 11 : Dpôl C avc un sourc d nson alrnav snusoïdal C QU J AI TNU DU CHAPIT «GIMS TANSITOIS DS CICUITS C T L» PONSS AUX QUSTIONS DU COUS...17 Tmps d raval smé pour un apprnssag d c chapr n auonom : 9 hurs xra d la rssourc n lgn sur l s Inrn Copyrgh : dros oblgaons ds ulsaurs L auur n rnonc pas à sa qualé d'auur aux dros moraux qu s'y rapporn du fa d la publcaon d son documn. Ls ulsaurs son auorsés à far un usag non commrcal, prsonnl ou collcf, d c documn d la rssourc Baslcpro noammn dans ls acvés d'nsgnmn, d formaon ou d losrs. Tou ou par d c rssourc n do pas far l'obj d'un vn - n ou éa d caus, un cop n pu pas êr facuré à un monan supérur à clu d son suppor. Pour ou xra d c documn, l'ulsaur do mannr d façon lsbl l nom d l auur Mchl Pou, la référnc à Baslcpro au s Inrn IUT n lgn. La dffuson d ou ou par d la rssourc Baslcpro sur un s nrn aur qu l s IUT n lgn s nrd. Un vrson lvr s dsponbl aux édons llpss dans la collcon Tchnosup sous l r ÉLCTICITÉ GÉNÉAL Ls los d l élcrcé Mchl PIOU - Agrégé d gén élcrqu IUT d Nans Franc Du mêm auur : MagnlcPro (élcromagnésm/ransformaur) PowrlcPro (élcronqu d pussanc)

3 Chapr 13 - égms ransors ds crcus C L POUQUOI T COMMNT? L compormn ds crcus comporan ds dpôls lnéars ls qu ds réssancs, ds nducancs ds condnsaurs a déjà éé éudé dans l cas du régm alrnaf snusoïdal. Nous avons alors consaé qu ds ouls ls qu ls vcurs d Frsnl ou ls complxs éan rès uls pour calculr ls nsons ls courans. Lorsqu cs dpôls n son pas ulsés n régm alrnaf snusoïdal, on n pu pas far appl aux vcurs d Frsnl aux complxs. Il fau alors rvnr aux los ds malls ds nœuds résoudr ds équaons dfférnlls. On sa qu un nducanc s oppos aux varaons du couran qu la ravrs qu un condnsaur s oppos aux varaons d la nson à ss borns. n assocan un réssanc un nducanc ou un réssanc un condnsaur, on pu produr ds sgnaux don l évoluon s progrssv. Cs assocaons son fréqummn rnconrés n élcronqu dans ls crcus oscllaurs monosabls (ulsés par xmpl dans ls horlogs). On ls rrouv égalmn n élcronqu d pussanc dans ls almnaons à découpag, ls hachurs ou ls ondulurs. Prérqus : La noon d logarhm d xponnll ans qu ds noons sur ls équaons dfférnlls du 1 r ordr à coffcns consans. Objcfs : Connaîr ls spécfcés ds nsons ds courans dans un crcu comporan un réssanc assocé à un nducanc «L» ou un condnsaur «C». Ls assocaons comporan smulanémn, «L» «C» n sron pas abordés dans c chapr. Méhod d raval : Ls méhods d résoluon mahémaqus ds équaons dfférnlls n sron abordés qu dans un prmèr phas d présnaon. Dans un scond mps, on prvlégra un démarch plus graphqu prman dans un cran nombr d cas d obnr ls résulas sans s ngagr dans d grands calculs. Il convndra d apprndr rapdmn la méhod proposé pour rr plnmn par ds xrccs. Traval n auonom : Pour prmr un éud du cours d façon auonom, ls réponss aux qusons du cours son donnés n fn d documn. Corrgés n lgn : Pour prmr un vérfcaon auonom ds xrccs, consulr «Baslcpro» (chrchr «baslcpro accul» sur Inrn avc un mour d rchrch) IUT n lgn - Baslcpro

4 2 GIMS TANSITOIS DS CICUITS C T L. (Cs crcus son ds «crcus du 1 ordr».) Chapr 13 - égms ransors ds crcus C L xponnll décrossan appl sur la foncon xponnll : x x x x Graph ds foncons du yp f ( ) = A. Nous allons éudr ds sysèms élcrqus donc ls courbs d répons son d yp «xponnll décrossan». Commnçons par éudr plusurs foncons d c yp. Pour chaqu foncon, on consdèrra A = consan > = consan >. So f1( ) = A. Calculr f 1 ( ); lm f1( ) ; (épons 1:) ( ) d f d 1 ( ) ; f 1 ( ) ; f 1 ( 4. ) f 1 ( 5. ). présnr c-conr l graph d f 1 ( ) A f 1 (épons 2:) IUT n lgn - Baslcpro

5 Chapr 13 - égms ransors ds crcus C L - 3 So f 2( ) = A.. So f 3( ) = A A.. présnr c-dssous l graph d f2( ). (épons 3:) présnr c-dssous l graph d f3( ). (épons 4:) f 2 A f 3 - A So f 4( ) = B A. avc B=c > A >. So f 5( ) = B + A. avc B = c >. présnr c-dssous l graph d f4( ). (épons 5:) présnr c-dssous l graph d f5( ). (épons 6:) B f 4 f 5 B + A B - A B D ous cs xmpls, on rndra : * La angn à l orgn rjon l asympo n un consan d mps. * n un consan d mps, la courb parcour 63% d l écar nr l pon d dépar l asympo. * On pu consdérr qu la courb rjon son asympo n 4 (à 2% près) IUT n lgn - Baslcpro

6 Chapr 13 - égms ransors ds crcus C L Sysèm élcrqu du 1 ordr avc un sourc d nson ou d couran consan xmpl N 1 C uc Pour < : () = uc() = Pour > : ( ) = =. ( ) + uc ( ) ( ( )) =. C. duc + uc( ). d C s un équaon dfférnll du 1 ordr à coffcns consans scond mmbr consan. Pour dérmnr uc() lorsqu >, l nous fau résoudr c équaon dfférnll. Nous allons procédr n parallèl avc dux méhods dfférns. * La méhod «mahémaqu» (colonn d gauch) : 1 : rchrch d la soluon général d l équaon sans scond mmbr. 2 : rchrch d un soluon parculèr. 3 : dérmnaon d la consan à parr d la valur n un pon parculr (applé «condon nal») * La méhod «graphqu» (colonn d dro) : 1 : rprésnaon du schéma d «régm lbr». 2 : rprésnaon du schéma d «régm forcé». 3 : rprésnaon du schéma «ds condons nals». IUT n lgn - Baslcpro

7 Chapr 13 - égms ransors ds crcus C L - 5 ésoluon d l équaon sans scond mmbr: d( uc( )) =.C. + uc( ) d La soluon uc( ) = s un soluon évdn. chrchons un soluon uc( ) ( uc( )) d d uc( ) = 1.C S dux xprssons son égals, lurs prmvs son égals à un consan près. l n 1 ( uc( ) ) =. + consan. C [ ln( uc( ) ) ] = uc ( ) = 1. uc( ). C =. n concluson : uc( ) = A.. C 1. + consan C consan. C [ consan] avc «A» : consan posv, négav ou null à défnr ulérurmn. Soluon parculèr (obnu lorsqu donc n régm prmann) Lorsqu, ous ls courans ls nsons son consans car la sourc s consan. (Il n y a pas d xcaon suscpbl d ngndrr ds varaons) ( ) d uc( ) uc ( ) = consan = C. = d. = uc( ) = Soluon général: La soluon général s égal à la somm d la soluon d l équaon sans scond mmbr d la soluon parculèr : uc( ) = A. + Schéma d régm lbr : L équaon sans scond mmbr c-conr s obnu à parr d l équaon dfférnll d dépar, n man la sourc à zéro. ll corrspond au schéma c-conr (d «schéma d régm lbr») : Lorsqu on obn c schéma n régm lbr, on sa (vor c-conr) qu la soluon d l équaon sans scond mmbr s d yp : ( ) = A. l ou uc l ( ) avc : =.C : consan d mps = A. On pu auss écrr l équaon dfférnll d uc( ) sous la form général : d( f ( )) f ( ) +. = b dnfr d Schéma d régm forcé: L «schéma du régm forcé» n s aur qu la raducon d la phras c-conr sous form d un schéma. Lorsqu, ous ls courans nsons F son consans l condnsaur s uc compor comm un F crcu ouvr. On consa qu uc F = F = Soluon général: La soluon général s égal à la somm d la soluon d régm lbr d la soluon d régm forcé: uc( ) = uc ( ) + ucf = A. l + C l uc l IUT n lgn - Baslcpro

8 Chapr 13 - égms ransors ds crcus C L - 6 Dérmnaon d la consan A par ls condons nals (La nson aux borns du condnsaur n pu pas présnr d dsconnués) uc = uc + =. donc ( ) ( ) présnr c-dssous uc() (). xprmr ls équaons d uc() (). (épons 7:) Schéma pour ls condons nals: L «schéma pour ls condons nals» n s aur qu la raducon d la phras C c-conr sous form d un schéma : On consa qu uc( ) = ( ) = () uc xmpl N 2 L u L Pour < : () = () = Pour > : ( ) = =.( ) + ul( ) ( ) L d ( ) =.( ) +.. d C s un équaon dfférnll du 1 ordr à coffcns consans scond mmbr consan. Pour dérmnr () lorsqu >, l nous fau résoudr c équaon dfférnll: Nous allons procédr comm dans l xmpl précédn : IUT n lgn - Baslcpro

9 Chapr 13 - égms ransors ds crcus C L - 7 ésoluon d l équaon sans scond L d( ( )) mmbr: = ( ) +. d C équaon s d mêm yp qu cll d l xmpl N 1. Sa résoluon s ffcu d la mêm façon. sa soluon s : ( ) = A. L avc «A» : consan à défnr ulérurmn. Schéma d régm lbr : L équaon sans scond mmbr c-conr s obnu à parr d l équaon dfférnll d dépar, n man la sourc à zéro. ll corrspond au schéma c-conr (d «schéma d régm lbr») : Lorsqu on obn c schéma n régm lbr, on sa (vor c-conr) qu la soluon d l équaon sans scond mmbr s d yp : ( ) = A. l ou ul l ( ) = avc : = L/ : consan d mps On pu auss écrr l équaon dfférnll d uc( ) sous la form général : d( f ( )) f ( ) +. = b dnfr d Soluon parculèr (obnu lorsqu Schéma d régm forcé: donc n régm prmann) Lorsqu, ous ls F courans nsons son Lorsqu, ous ls courans ls consans l nducanc s L u LF nsons son consans car la sourc s compor comm un courcrcu. consan. = consan d( ( )) u L ( ) = L. = ( ) = d On consa qu u LF = F = Soluon général: La soluon général s égal à la somm d la soluon d l équaon sans scond mmbr d la soluon parculèr : A. L l u Ll Soluon général: La soluon général s égal à la somm d la soluon d régm lbr d la soluon d régm forcé: ( ) = A. + ( ) = ( ) + F = A. l + Dérmnaon d la consan A par ls Schéma pour ls condons nals (L couran dans condons nals: l nducanc n pu pas présnr d dsconnués). ( ) = ( + ) =. On consa qu ( ) = u L ( ) = L = u L = IUT n lgn - Baslcpro

10 Chapr 13 - égms ransors ds crcus C L - 8 présnr c-dssous () u L (). xprmr ls équaons d () u L (). (épons 8:) u L Pour racr ls graphs du couran d la nson, l fau l pon d dépar, l asympo la consan d mps. Cs ros nformaons son obnus avc l schéma ds condons nals, l schéma d régm forcé l schéma d régm lbr ou l équaon dfférnll. Cs obsrvaons sur ls dux xmpls précédns puvn êr généralsés (sans démonsraon) IUT n lgn - Baslcpro

11 Chapr 13 - égms ransors ds crcus C L ésumé d la méhod par ls schémas d régm lbr, d régm forcé ds condons nals. Soluon d l'équaon sans scond mmbr: (régm lbr) ll corrspond au compormn du monag sans ss xcaons: - Ls sourcs d nson ndépndans son mss à zéro u = cour-crcu. - Ls sourcs d couran ndépndans son mss à zéro = crcu ouvr. L schéma ans obnu ("schéma d régm lbr") prm d dr s c's ffcvmn un 1 ordr (boucl C ou L); dans c cas on obn la consan d mps. (On pu auss écrr l équaon d( f ( )) dfférnll d uc( ) sous la form général : f ( ) +. = b dnfr ) d C =.C L = L La soluon du régm lbr s alors du yp A. Soluon parculèr d l'équaon général: (régm forcé ou régm prmann) obnu lorsqu : ff(): * S ls sourcs d nson d couran son connus: ls nsons ls courans dans l monag son connus n régm forcé. La soluon du régm forcé s un consan. = consan L cour-crcu C u = consan crcu ouvr * S ls sourcs d nson d couran son alrnavs snusoïdals d mêm fréqunc: ulsr l calcul complx. La soluon du régm forcé s d yp alrnaf snusoïdal. * S ls sourcs d nson d couran son aurs: non raé c. * S ls sourcs d nson d couran son dvrss: ulsr l héorèm d suprposon. Soluon général: f ( ) = A. + f f ( ) IUT n lgn - Baslcpro

12 Chapr 13 - égms ransors ds crcus C L - 1 Condons nals: La nson aux borns d'un condnsaur n pu pas présnr d dsconnué. L couran dans un nducanc n pu pas présnr d dsconnué. * La condon nal prm d dérmnr la valur d la consan A. * La «condon nal» n s pas nécssarmn à = : So un nsan pour lqul on connaî la valur d f. xprmr f() n foncon d f( ), f f (). (épons 9:) (C rlaon pu êr ulsé drcmn sans la rdémonrr à chaqu ulsaon) marqu : Lorsqu ls sourcs d nson d couran son connus, on pu racr drcmn l graph ds sgnaux rchrchés à parr ds schémas d régm lbr, forcé ds condons nals n ulsan ls ros propréés suvans: - 63% d l écar nr un pon d la courb l'asympo son parcourus n un consan d mps. (63% 2/3) - La angn n un pon d la courb s obnu par consrucon graphqu: c's un dro qu pass par l pon consdéré qu an l'asympo au bou d'un consan d mps. - On pu consdérr qu la courb rjon son asympo n 4 consans d mps (à 2% près). (S on accp un écar d 5%, on pu s connr d 3 consans d mps) IUT n lgn - Baslcpro

13 Chapr 13 - égms ransors ds crcus C L POBLMS T XCICS Chap 13. xrcc 1 : v = 1 Ω L = 1 mh v L Dpôl L soums à un échlon d nson. So l dpôl.l sér c-conr almné par un sourc d nson () produsan un échlon d nson à parr d =. Pour < : () = () =. a) crr ls équaons dfférnlls d v L () v () pour >. b) présnr ls schémas du régm lbr, du régm forcé ds condons nals (à = + ). c) xprmr rprésnr v L () v () pour >. Chap 13. xrcc 2 : v = 1 Ω L = 1 mh v L Dpôl L soums à un échlon d nson rardé. o So l dpôl.l sér c-conr almné par un sourc d nson () produsan un échlon d nson à parr d o. Pour < o : () = () =. a) présnr ls schémas du régm lbr, du régm forcé ds condons nals (à = o + ). b) xprmr rprésnr v L () v () pour > o. Chap 13. xrcc 3 : v = 1 Ω Dpôl L soums à un mpulson d nson rardé. So l dpôl.l sér c-conr almné par un sourc d nson () produsan un mpulson d nson d largur 2 ms d amplud. à parr d l nsan o. L = 1 mh v L o 2 ms Pour < o : () = () =. xprmr rprésnr v L () v () pour > o. IUT n lgn - Baslcpro

14 Chap 13. xrcc 4 : v = 1 Ω L = 1 mh v L Chapr 13 - égms ransors ds crcus C L - 12 Dpôl L soums à un ran d mpulsons d nson. So l dpôl.l sér c-conr almné par un sourc d nson ( ) produsan un ran d mpulsons d nson d largur 1 ms, d pérod 2 ms d amplud. à parr d l nsan o. Pour < o : () = () =. présnr () v L () pour > o. o 1 ms 1 ms Chap 13. xrcc 5 : v = 1 kω Dpôl C soums à un mpulson d nson rardé. So l dpôl.c sér c-conr almné par un sourc d nson ( ) produsan un mpulson d nson d largur 1 ms d amplud. à parr d l nsan. C = 2 µf v C Pour < o : () = () =. o 1 ms a) crr ls équaons dfférnll d v C () v () pour >. b) présnr v C () v () pour > o. IUT n lgn - Baslcpro

15 Chapr 13 - égms ransors ds crcus C L - 13 Chap 13. xrcc 6 : v = 1 kω Io Dpôl C sér almné par un sourc d couran So l dpôl.c sér c-conr almné par un sourc d couran () produsan un mpulson d couran d largur 1 ms d amplud I o = 1 ma à parr d l nsan o. C = 1 µf v C o 1 ms Pour < o : v C () =. présnr v C () v (). Chap 13. xrcc 7 : égm ransor avc un condon nal 1. = 1 Ω C = 1 µf v C 2 1 o So l dpôl.c sér c-conr almné par un sourc d nson () produsan un brusqu varaon à l nsan o. Pour < o : () = 1 pour > o : () = 2. a) crr l équaon dfférnll d v C ( ) pour >. (On n dmand pas d la résoudr). b) ablr l schéma d régm lbr (pour > ). Qu n dédu-on? c) ablr l schéma d régm forcé (pour > ). Qu n dédu-on pour v C ( )? d) xprmr v ( + C ). Jusfr n qulqus mos. ) présnr l graph d v C ( ). Mr n évdnc la consan d mps l asympo. f) ablr l xprsson analyqu d v C ( ) pour >. IUT n lgn - Baslcpro

16 Chapr 13 - égms ransors ds crcus C L - 14 Chap 13. xrcc 8 : égm ransor avc un condon nal 2. L = 1 mh T : Inrrupur ouvr pour < frmé pour >. I = 1,5 A T = 1 Ω = 1 V v Qusons : présnr c-dssous l graph d v() pour 1 ms < < 6 ms. ablr l xprsson analyqu d v() pour >. 15 V v = 1 V 1 V 5 V - 1 ms 1 ms 2 ms 3 ms 4 ms 5 ms 6 ms - 5 V Chap 13. xrcc 9 : égm ransor avc un condon nal 3. = 1 kω 15 V T = 1 kω C = 15 µf v T : Inrrupur ouvr pour < frmé pour >. Qusons : présnr c-dssous l graph d v() pour 1 ms < < 6 ms. ablr l xprsson analyqu d v() pour >. 15 V v 1 V 5 V - 1 ms 1 ms 2 ms 3 ms 4 ms 5 ms 6 ms - 5 V IUT n lgn - Baslcpro

17 Chapr 13 - égms ransors ds crcus C L - 15 Chap 13. xrcc 1 : fonconnmn. Calcul du mps nécssar pour déplacr un pon d V F V 1 v() v ( ) = A. + VF Calculr la valur d l nrvall = [, 1] n foncon d V,V1, VF. V 1 Chap 13. xrcc 11 : snusoïdal v Dpôl C avc un sourc d nson alrnav So l monag c-conr. v = 1 kω C = 33 nf v C a) Sachan qu v() = 2.cos(6.) Avc la méhod ds complxs, calculr () n régm prmann. Vérfr l'ordr d grandur du résula par un dagramm d Frsnl (à man lvé). b) Sachan qu < : v() =, > : v() = 2.cos(6.), calculr (). IUT n lgn - Baslcpro

18 Chapr 13 - égms ransors ds crcus C L C QU J AI TNU DU CHAPIT «GIMS TANSITOIS DS CICUITS C T L» a) Sur l graph d un xponnll décrossan (d yp f ( ) = A. + B avc A B consan : La angn à l orgn pass par l orgn par un aur pon parculr. Précsr c aur pon. n un consan d mps, la courb progrss d 63% ; Mas 63% d quo? (Anon, sauf cas parculr, c n s pas 63% d la valur fnal). b) Qu s c qu «l schéma d régm lbr? Qu n dédu-on? c) Qu s c qu «l schéma d régm forcé? Qu n dédu-on? d) Qu s c qu «l schéma ds condons nals»? Qulls non-dsconnués prnd--l n comp? Qu n dédu-on? ) S un régm ransor a un soluon d yp f ( ) = A. + B : Qu rprésn «B»? Commn procèd--on pour dérmnr la valur d la consan «A»? f) Lorsqu un crcu C ou L s soums à ds sourcs consans, pour obnr l xprsson ds nsons ou ds courans on uls parfos la formul ou fa : o f ( ) = ( f ( o) F f ). + F f Précsr la sgnfcaon d chaqu paramèr présn dans c formul. g) Lorsqu on s n présnc d un xponnll décrossan d yp f ( ) = A. + B, pour obnr un nrvall d mps, on uls parfos la formul ou fa : = 1 F o F f =.ln F1 F f = " c qu' l falla parcourr" ( c d mps). ln " c qu rs à parcourr" Précsr la sgnfcaon d chaqu paramèr présn dans c formul. (On pu s référr à Chap 13. xrcc 1 :) Ds ss nracfs son dsponbls sur l s «1394» ou «1376». Dans l ongl «rssourcs», ndqur ou sur l s GII/ lcrcé / Sysèms du 1r du 2èm ordr - Flrs IUT n lgn - Baslcpro

19 Chapr 13 - égms ransors ds crcus C L PONSS AUX QUSTIONS DU COUS épons 1: appl : = 1 x f ( ) = A. 1 = A ; lm f1( ) = A. = ; x 1 = x lm x x = a + b = a. b ( x ) x d dx = ( u( x ) ) u( x d( u( x )) d = ). dx dx d = A.. ( f ( )) 1 d( f ( )) 1 d 1 d ( ) = A. 1. = A ; f ( ) A. 1 1 = =, 368.A ; f ( 4. ) A. 4 1 = =, 18. A f (. ) A. 5, = = A. our épons 2: A f1( ) = A. 63% 1% ( f ( )) d * 1 A ( ) = La angn à l orgn d rjon l asympo n un consan d mps. * f1( ) =, 368. A n un consan d mps, la courb parcour 63% d l écar nr l pon d dépar l asympo. * f1( 4. ) =, 18. A On pu consdérr qu la courb rjon son asympo n 4 (à 2% près) our IUT n lgn - Baslcpro

20 Chapr 13 - égms ransors ds crcus C L - 18 épons 3: - A f2( ) = A % 1% ( f ( )) d 2 A ( ) = La angn à l orgn d rjon l asympo n un consan d mps. f2( ) =, 368. A n un consan d mps, la courb parcour 63% d l écar nr l pon d dépar l asympo. f2( 4. ) =, 18. A On pu consdérr qu la courb rjon son asympo n 4 (à 2% près) C courb s l symérqu d f 1 ( ) par rappor à l ax ds abscsss. our épons 4: A f3( ) = A A. ( f ( )) d 3 + A ( ) = La angn à l orgn d rjon l asympo n un consan d mps. 63% 1% f3( ) =, 63. A n un consan d mps, la courb parcour 63% d l écar nr l pon d dépar l asympo. f3( 4. ) =, 982. A On pu consdérr qu la courb rjon son asympo n 4 (à 2% près) On rrouv f 3 ( ) n ranslaan f 2 ( ) par un ranslaon d valur «A» sur l ax ds ordonnés. our épons 5: d( f4( )) + A ( ) = La angn à l orgn f 4( ) = B A. d B rjon l asympo n un consan d mps. 1% 63% B - A f4( ) = B, 368. A n un consan d mps, la courb parcour 63% d l écar nr l pon d dépar l asympo. f4( 4. ) = B, 18. A On pu consdérr qu la courb rjon son asympo n 4 (à 2% près) On rrouv f 4 ( ) n ranslaan f 2 ( ) par un ranslaon d valur «B» sur l ax ds ordonnés. our IUT n lgn - Baslcpro

21 Chapr 13 - égms ransors ds crcus C L - 19 épons 6: B + A B f5( ) = B + A. 63% 1% ( f ( )) d 5 A ( ) = La angn à d l orgn rjon l asympo n un consan d mps. f5( ) = B +, 368. A n un consan d mps, la courb parcour 63% d l écar nr l pon d dépar l asympo. f5( 4. ) = B +, 18. A On pu consdérr qu la courb rjon son asympo n 4 (à 2% près) On rrouv f 5 ( ) n ranslaan f 1 ( ) par un ranslaon d valur «B» sur l ax ds ordonnés. our épons 7: uc régm forcé 1% 63% =.C Condon nal régm lbr uc( ) = uc ( ) + ucf = A. l + uc ( ) = uc( ) = = A. + = A + uc( ) =. + avc =. C A = Condon nal ( ) = + = l ( ) F A. + ( ) = 63% 1% régm forcé ( ) = = A. = A =.C régm lbr 4. ( ) =. avc =. C our IUT n lgn - Baslcpro

22 Chapr 13 - égms ransors ds crcus C L - 2 épons 8: 63% 1% régm forcé = L/ 4. Condon nal régm lbr ( ) = ( ) + F = A. l + ( ) = ( ) = = A. + ( ) = = A +. + avc = L A = u L Condon nal u = + = L( ) ull ( ) ul F A. + u L ( ) = 63% 1% régm forcé u L ( ) = = A. = A = L/ régm lbr 4. u L( ) =. avc = L our épons 9: f ( ) = A. + f f ( ) f ( ) = A. + f f ( ) A = ( f ( ) f ( )). f f ( f ( ) = ) = ( f ( ) f ( )).. f ( ) f + f + ( f ( ) f ( )). f ( ) f f C rlaon pu évnullmn êr mémorsé pour êr ulsé drcmn dans ls applcaons. S l régm forcé s un consan F F (lorsqu la ou ls sourcs son ds consans sur l nrvall consdéré) la rlaon dvn : f ( ) = +. our ( f ( ) FF ). FF IUT n lgn - Baslcpro

BILAN EN ELECTRICITE : RC, RL ET RLC

BILAN EN ELECTRICITE : RC, RL ET RLC IN N TIIT :, T I. INTNSIT : = dq d en couran varable I = Q en couran connu Méhode générale d éablssemen des équaons dfférenelles : lo d addvé des ensons pus relaons dq caracérsques :, lo d Ohm u = aux

Plus en détail

Ecole des JDMACS, Angers, 19-21 Mars 2009 Commande prédictive : interaction optimisation commande

Ecole des JDMACS, Angers, 19-21 Mars 2009 Commande prédictive : interaction optimisation commande Par : Inrodcon à la ommand Prédcv Ecol ds JDMAS, Angrs, 9- Mars 009 ommand prédcv : nracon opmsaon command Plan d la présnaon. Inrodcon. Qls rpèrs. Phlosoph. s concps d la ommand Prédcv. Prncps d bas.

Plus en détail

Chapitres 7 et 15 Les cours (ou taux) de change

Chapitres 7 et 15 Les cours (ou taux) de change Chaprs 7 5 Ls cours (ou aux) d chang Taux d chang : rprésn l prx d un dvs par rappor a un aur. L ablau suvan rprésn l aux cross du dollar canadn par rappor a d aurs dvss. Nor qu l y a dux façon d xprmr

Plus en détail

FONCTIONS LOGIQUES I INTRODUCTION : II FONCTION LOGIQUE ET OPERATEUR BINAIRE : III DEFINITION ET REPRESENTATIONS D UN OPERATEUR BINAIRE :

FONCTIONS LOGIQUES I INTRODUCTION : II FONCTION LOGIQUE ET OPERATEUR BINAIRE : III DEFINITION ET REPRESENTATIONS D UN OPERATEUR BINAIRE : I INTRODUCTION : FONCTION LOGIQUE BT MI Variabl binair : L élcrochniqu, l élcroniqu, la mécaniqu éudin uilisn la variaion d grandurs physiqus lls qu la prssion, la forc, la nsion, c. Crains applicaions

Plus en détail

Cours Thème VIII.3 CONVERSION STATIQUE D'ÉNERGIE

Cours Thème VIII.3 CONVERSION STATIQUE D'ÉNERGIE ours hème VIII.3 ONVSION SAIQU D'ÉNGI 3- Famlles de conversseurs saques Suvan le ype de machne à commander e suvan la naure de la source de pussance, on dsngue pluseurs famlles de conversseurs saques (schéma

Plus en détail

ANNEXE I TRANSFORMEE DE LAPLACE

ANNEXE I TRANSFORMEE DE LAPLACE ANNEE I TRANSFORMEE DE LAPLACE Perre-Smon Lalace, mahémacen franças 749-87. Lalace enra à l unversé de Caen a 6 ans. Très ve l s néressa aux mahémaques e fu remarqué ar d Alember. En analyse, l nrodus

Plus en détail

Equations différentielles et Cinétique chimique

Equations différentielles et Cinétique chimique Equaions différnills Cinéiqu chimiqu En Cinéiqu, l'éud ds visss lors ds réacions condui à ds équaions différnills don la plupar corrspondn au programm d Mahémaiqus ds classs d STS chimiss Ls sujs raiés

Plus en détail

République Algérienne Démocratique et Populaire Ministère de l Enseignement supérieur et de La Recherche Scientifique. Polycopie:

République Algérienne Démocratique et Populaire Ministère de l Enseignement supérieur et de La Recherche Scientifique. Polycopie: Réublque Algérenne Déocraque e Poulare Mnsère de l Ensegneen suéreur e de a Recherche Scenfque Unversé : Hassba BENBOUAI de CHEF Faculé : Scences Déareen : Physque Doane : ST-SM Polycoe: Vbraons e Ondes

Plus en détail

Série n 3 d Electrocinétique : Régime sinusoïdal forcé

Série n 3 d Electrocinétique : Régime sinusoïdal forcé Séri n 3 d Elctrocinétiqu : Régim sinusoïdal forcé Exrcic n 1 : Résonanc n tnsion d un circuit RLC parallèl 1.\ Détrminr l équation différntill qui régi l évolution d u(t). 2.\ Exprimr l amplitud complx

Plus en détail

Clemenceau. Régime sinusoïdal forcé. Impédances Lois fondamentales - Puissance. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.

Clemenceau. Régime sinusoïdal forcé. Impédances Lois fondamentales - Puissance. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O. ycé Clnca PCS - Physq ycé Clnca PCS (O.Granr) ég snsoïdal forcé pédancs os fondantals - Pssanc ycé Clnca PCS - Physq ntérêt ds corants snsoïdax : Expl d tnsons snsoïdals : tnson d sctr (50 H 0 V) s lgns

Plus en détail

COMMANDE D UNE PORTE DE GARAGE COLLECTIF

COMMANDE D UNE PORTE DE GARAGE COLLECTIF COMMANDE D UNE PORTE DE GARAGE COLLECTIF Les quesions raiées devron êre soigneusemen numéroées e le documen-réponse fourni devra êre compléé selon les indicaions de l énoncé. Il es vivemen conseillé de

Plus en détail

Contrôle de TP Dictionnaire & Arbres Binaires mercredi 20 mars 2013 durée : 3h 6 pages

Contrôle de TP Dictionnaire & Arbres Binaires mercredi 20 mars 2013 durée : 3h 6 pages IUT ds Pays d l Adour - RT2 Informatiqu - Modul IC2 - Algorithmiqu Avancé Contrôl d TP Dictionnair & Arbrs Binairs mrcrdi 20 mars 2013 duré : 3h 6 pags Ls programms d corrction orthographiqu ont bsoin

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

Epreuve Commune de TIPE : Partie D

Epreuve Commune de TIPE : Partie D Epruv Commun d TIPE : Pari D TITRE : Convrsion ds signaux analogiqus n numériqu Tmps d préparaion :.2h15 Tmps d présnaion dvan l jury :...10 minus Enrin avc l jury : 10 minus GUIDE POUR LE CANDIDAT : L

Plus en détail

Guide de correction TD 6

Guide de correction TD 6 Guid d corrction TD 6 JL Monin nov 2004 Choix du point d polarisation 1- On décrit un montag mttur commun à résistanc d mttur découplé, c st à dir avc un condnsatur n parallèl sur R. La condition d un

Plus en détail

( ) PROBLEME 1 : ASSOCIATION DE CIRCUITS RC. 6 septembre 2014. I Réponse indicielle d un circuit RC PC*1 / PC*2 / PC DEVOIR SURVEILLE DE PHYSIQUE N 1

( ) PROBLEME 1 : ASSOCIATION DE CIRCUITS RC. 6 septembre 2014. I Réponse indicielle d un circuit RC PC*1 / PC*2 / PC DEVOIR SURVEILLE DE PHYSIQUE N 1 P* / P* / P DEVOI SUVEILLE DE PHYSIQUE N 6 sptmbr 4 POBLEME : ASSOIATION DE IUITS On analys, à laid dun oscilloscop, l circuit ci-contr comportant un génératur d tnsion E,r ( ), rprésnté dans l cadr pointillé,

Plus en détail

ANNEXE A : MATRICES DE MAC

ANNEXE A : MATRICES DE MAC Annx ANNEXE A : MARICES DE MAC La matrc d MAC (Modal Auranc Crtron) au applé matrc d corrélaton modal t ouvnt utlé pour la comparaon ntr dux nmbl d mod propr [Y ] t [Y ]. Sont : [{ } { k} { N } ] { } {

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

Cahier technique n 154

Cahier technique n 154 Collecon Technque... Caher echnque n 154 Technques de coupure des dsjonceurs BT R. Morel Les Cahers Technques consuen une collecon d une cenane de res édés à l nenon des ngéneurs e echncens qu recherchen

Plus en détail

Exemples de questions de sujets d'oraux possibles. Session 2013.

Exemples de questions de sujets d'oraux possibles. Session 2013. Exmpls d qustions d sujts d'oraux possibls. Sssion 0. Complxs. Donnr la ou ls réponss justs. Soit A, B dux points d'affixs rspctivs : a= 5 i 5 t b = i 6 a. Soit n N;. Un argumnt d a n st n b. O appartint

Plus en détail

f n (x) = x n e x. T k

f n (x) = x n e x. T k EXERCICE 3 (7 points) Commun à tous ls candidats Pour tout ntir naturl n supériur ou égal à, on désign par f n la fonction défini sur R par : f n (x) = x n x. On not C n sa courb rprésntativ dans un rpèr

Plus en détail

Informatique des systèmes embarqués

Informatique des systèmes embarqués 1 Iformaqu ds sysèms mbarqués Objcf Formr ds géurs capabls d appréhdr la programmao l égrao d sysèms complxs pouva êr mbarqués, égrés, racfs commucas. Cla écss d maîrsr ls aspcs maérls (archcur) logcls

Plus en détail

Arbres CSI2510 1. Arbres. Terminologie Arbre. Arbres

Arbres CSI2510 1. Arbres. Terminologie Arbre. Arbres rrs rrs rrs nrs Proprétés s rrs nrs rvrsés rrs Struturs onnés pour rrs rrs Un rp = (V,) onsst n un sér V SOMMS t un sér lns, v = {(u,v): u,v V, u v} Un rr st un rp onnté ylqu (sns yls) un mn ntr qu pr

Plus en détail

Notice d information contractuelle Loi Madelin. Generali.fr

Notice d information contractuelle Loi Madelin. Generali.fr parculers PRFESSINNELS enreprses Noce d nformaon conracuelle Lo Madeln General.fr Noce d nformaon conracuelle Le présen documen es rems à re de proposon e de proje de conra. Naure de la Convenon : LA RETRAITE

Plus en détail

Oscillations forcées en régime sinusoïdal.

Oscillations forcées en régime sinusoïdal. Conrôle des prérequis : Oscillaions forcées en régime sinusoïdal. - a- Rappeler l expression de la période en foncion de la pulsaion b- Donner l expression de la période propre d un circui RLC série -

Plus en détail

Contact SCD Nancy 1 : theses.sciences@scd.uhp-nancy.fr

Contact SCD Nancy 1 : theses.sciences@scd.uhp-nancy.fr AVETISSEMENT C doumn s l fu d'un long aval appouvé pa l uy d sounan ms à dsposon d l'nsmbl d la ommunaué unvsa élag Il s soums à la popéé nllull d l'auu C mplqu un oblgaon d aon d éfénmn los d l ulsaon

Plus en détail

Corrigé du baccalauréat S Pondichéry 13 avril 2011

Corrigé du baccalauréat S Pondichéry 13 avril 2011 Corrigé du baccalauréat S Pondichéry avril EXERCICE Commun à tous ls candidats Parti I points. L ax ds ordonnés st asymptot à C au voisinag d ; la fonction étant décroissant sur ] ; + [, la limit quand

Plus en détail

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h.

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h. A2 Analyser le système Converson statque de l énerge Date : Nom : Cours 2 h 1 Introducton Un ConVertsseur Statque d énerge (CVS) est un montage utlsant des nterrupteurs à semconducteurs permettant par

Plus en détail

Notice d information contractuelle Loi Madelin. Generali.fr

Notice d information contractuelle Loi Madelin. Generali.fr parculers PRFESSINNELS enreprses Noce d nformaon conracuelle Lo Madeln General.fr Noce d nformaon conracuelle Le présen documen es rems à re de proposon e de proje de conra. Naure de la Convenon : LA RETRAITE

Plus en détail

Notice d information contractuelle Entreprise article 83. Generali.fr

Notice d information contractuelle Entreprise article 83. Generali.fr parculers professonnels ENTREPRISES Noce d nformaon conracuelle Enreprse arcle 83 General.fr Noce d nformaon conracuelle Sommare Préambule... 3 Arcle 1 - Défnons... 3 Arcle 2 - bje... 4 Arcle 3 - Garanes...

Plus en détail

Oscillations électriques libres

Oscillations électriques libres Oscllatons électrues lbres A Oscllatons lbres amortes 1/ Etude expérmentale a Expérence et observatons Après avor chargé le condensateur (poston 1) On bascule l nterrupteur sur la poston, on obtent l oscllogramme

Plus en détail

Exercice 1 :(15 points)

Exercice 1 :(15 points) TE/pé TL Elémnts d corrction du D. n 2 du Vndrdi 2 0ctobr 2012 sans documnt, avc calculatric 1h1min Ercic 1 :(1 points) À l occasion d un fstival culturl, un agnc d voyags propos trois typs d transport

Plus en détail

Curative healthcare demand Self-protection and Self-insurance

Curative healthcare demand Self-protection and Self-insurance GATE Group d Anals d Théori Économiqu UMR 584 du CNRS DOCUMENTS DE TRAVAIL - WORKING PAPERS W.P. 04-0 Curaiv halhcar dmand Slf-procion and Slf-insuranc Mohamd Anouar RAZGALLAH Avril 004 GATE Group d Anals

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

But... 2. I. Généralités sur la quantification des risques dans le SST... 2. I.1 Modèle analytique... 3. I.1.1 Version intégrale...

But... 2. I. Généralités sur la quantification des risques dans le SST... 2. I.1 Modèle analytique... 3. I.1.1 Version intégrale... GUIDE PRATIQUE sur le modèle sandard SST pour les rsques de marché Edon du 23 décembre 204 Table des maères Bu... 2 I. Généralés sur la quanfcaon des rsques dans le SST... 2 I. Modèle analyque... 3 I..

Plus en détail

Taux de change réel et compétitivité de l économie réunionnaise

Taux de change réel et compétitivité de l économie réunionnaise CERDI, Euds Documns, E 2010.29 Documn d ravail d la séri Euds Documns E 2010.29 Taux d chang rél compéiivié d l économi réunionnais Fabin CANDAU CATT, Univrsié d PAU Michaël GOUJON CERDI, Univrsié d Auvrgn

Plus en détail

Cours Introduction à la finance - EDC 2008

Cours Introduction à la finance - EDC 2008 Cous noducon à la fnanc - EDC 8 Cla Pl o c hs vson: Cla Pl. Cous noducon à la fnanc - EDC 8. Écol d ngénu. noducon à la fnanc, Ecol ds Céaus dgans d npss La défns, 8, pp.44. HAL d: cl-65395

Plus en détail

CSMA 2013 11e Colloque National en Calcul des Structures 13-17 Mai 2013

CSMA 2013 11e Colloque National en Calcul des Structures 13-17 Mai 2013 Enrichissmnt modal du Slctiv Mass Scaling Sylvain GAVOILLE 1 * CSMA 2013 11 Colloqu National n Calcul ds Structurs 13-17 Mai 2013 1 ESI, sylvain.gavoill@si-group.com * Autur corrspondant Résumé En raison

Plus en détail

Regional Wind Speed Evolution Identification and Longterm Correlation Application

Regional Wind Speed Evolution Identification and Longterm Correlation Application Regonal Wnd Speed Evoluon Idenfcaon and Longerm Correlaon Applcaon Idenfcaon de l évoluon régonale de la vesse du ven e applcaon à la corrélaon long erme B. Buffard, Theola France, Monpeller Exernal Arcle

Plus en détail

Valeur économique de dettes subordonnées pour des sociétés non-vie

Valeur économique de dettes subordonnées pour des sociétés non-vie Valeur économque de dees subordonnées our des socéés non-ve - Franços Bonnn (Hram Fnance) - Frédérc Planche (Unversé Lyon, Laboraore SAF) - Monassar Tammar (Prm Ac) - Amédée de Clermon-Tonnerre (Cohen

Plus en détail

CERES logiciel de gestion commerciale pour négociants en vin

CERES logiciel de gestion commerciale pour négociants en vin CERES logicil gion commrcial pour négocian n vin. Gion complè acha vn : comman, rérvaion, gion courag commrciaux.. Moul campagn primur : piloag la campagn via un ablau bor prman viualir accér aux informaion

Plus en détail

VALORISATION D OPTIONS DIGITALES EN SITUATION DE MARCHE INCOMPLET

VALORISATION D OPTIONS DIGITALES EN SITUATION DE MARCHE INCOMPLET VALORIAION D OPION DIGIALE EN IUAION DE MARCHE INCOMPLE Parck NAVAE Chrsophe VILLA CREREG, Insu de Geson de Rennes REUME L objecf prncpal poursuv dans ce arcle, es d éuder quelques applcaons e exensons

Plus en détail

Recueil d'exercices de logique séquentielle

Recueil d'exercices de logique séquentielle Recueil d'exercices de logique séquenielle Les bascules: / : Bascule JK Bascule D. Expliquez commen on peu modifier une bascule JK pour obenir une bascule D. 2/ Eude d un circui D Q Q Sorie A l aide d

Plus en détail

Formation Veille stratégique sur internet et e-réputation (Ref : E13) Optimiser la veille stratégique et protéger son image par l'utilisation du web.

Formation Veille stratégique sur internet et e-réputation (Ref : E13) Optimiser la veille stratégique et protéger son image par l'utilisation du web. 39bdO y ad1-93288sa n Dn Cdx ap d2000000u o SBob ma on, n g é oul numé Fomaon Vll aégqu u nn -épuaon (Rf : E13) Opm la vll aégqu poég on mag pa l'ulaon du wb. OBJECTIFS LES PLUS DE LA FORMATI Accoî l pfomanc

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

au Point Info Famille

au Point Info Famille Qustion / Répons au Point Info Famill Dossir Vivr un séparation La séparation du coupl st un épruv souvnt longu t difficil pour la famill. C guid vous présnt ls différnts démarchs n fonction d votr situation

Plus en détail

ELECTROTECHNIQUE. Chapitre 5 Bobines couplées magnétiquement Inductances mutuelles. Électromagnétisme. Michel PIOU. Édition: 01/06/2010

ELECTROTECHNIQUE. Chapitre 5 Bobines couplées magnétiquement Inductances mutuelles. Électromagnétisme. Michel PIOU. Édition: 01/06/2010 ELECTROTECHNIQUE Électromagnétisme Michel PIOU Chapitre 5 Bobines couplées magnétiquement Inductances mutuelles Édition: 0/06/00 Extrait de la ressource en ligne MagnElecPro sur le site Internet Table

Plus en détail

Comment utiliser une banque en France. c 2014 Fabian M. Suchanek

Comment utiliser une banque en France. c 2014 Fabian M. Suchanek Commnt utilisr un banqu n Franc c 2014 Fabian M. Suchank Créditr votr compt: Étrangr Commnt on mt d l argnt liquid sur son compt bancair à l étrangr : 1. rntrr dans la banqu, attndr son tour 2. donnr l

Plus en détail

Structures et mécanismes

Structures et mécanismes Structurs t mécanisms Bloc 1 : L rndmnt, c st important Duré : 3 hurs Princips scintifiqus Ls princips scintifiqus s adrssnt aux nsignants t aux nsignants. Il xist six machins simpls, soit l lvir, la

Plus en détail

Journée d échanges techniques sur la continuité écologique

Journée d échanges techniques sur la continuité écologique 16 mai 2014 Journé d échangs tchniqus sur la continuité écologiqu Pris n compt d critèrs coûts-bénéfics dans ls étuds d faisabilité Gstion ds ouvrags SOLUTION OPTIMALE POUR LE MILIEU Gstion ds ouvrags

Plus en détail

jean-marc.routoure@unicaen.fr

jean-marc.routoure@unicaen.fr n u u xq u i m ut a v s r o u o c id s i v d Un long VERS UN ENSEIGNEMENT MIXTE : PARTAGE D EXPÉRIENCES! EXEMPLE D UN DISPOSITIF D ENSEIGNEMENT MIXTE JEAN-MARC ROUTOURE, CORENTIN JOREL, DIDIER ROBBES,

Plus en détail

UNE AVENTVRE DE AGILE & CMMI POTION MAGIQUE OU GRAND FOSSÉ? AGILE TOVLOVSE 2011 I.VI VERSION

UNE AVENTVRE DE AGILE & CMMI POTION MAGIQUE OU GRAND FOSSÉ? AGILE TOVLOVSE 2011 I.VI VERSION UN AVNTVR D AGIL & CMMI POTION MAGIQU OU GRAND FOÉ? AGIL TOVLOV 2011 VRION I.VI @YAINZ AKARIA HT T P: / / W WW.MA RTVIW.F HT T P: / / W R WW.KIND OFMAG K.COM OT @ PAB L OP R N W.FR MARTVI. W W W / :/ P

Plus en détail

Etude et Conception Assistée par Ordinateur d un Système de Réfrigération par Voie Solaire

Etude et Conception Assistée par Ordinateur d un Système de Réfrigération par Voie Solaire Rev. Energ. Ren. : Journées de hermue (200) 25-30 Eude e Concepon sssée pr Ordneur d un Sysème de Réfrgéron pr Voe Solre M. Belrb, F. Benyrou e B. Benyoucef Lborore des Méru e Energes Renouvelbles, Fculé

Plus en détail

Projet Couverture des Produits Dérivés

Projet Couverture des Produits Dérivés Sommair Proj Couvrur ds Produis Dérivés Objcifs moivaions: mr n œuvr comparr ds méhods d'évaluaion sraégis d couvrur d opions complxs n uilisan ds méhods numériqus à dévloppr n C Rappls sur ls opions xoiqus:

Plus en détail

FOIRE AUX QUESTIONS. Foire aux Questions 2

FOIRE AUX QUESTIONS. Foire aux Questions 2 FOIRE AUX QUESTIONS Q pt ncrr à CIH ON LINE? Cmmnt ncrr à CIH ON LINE? Ql t l cût d l ncrptn à CIH ON LINE? Ql cd nt nécar pr accédr à CIH ON LINE? Cmmnt j px accédr à mn cmpt CIH ON LINE? Q far n ca d

Plus en détail

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l

Plus en détail

par Yazid Dissou** et Véronique Robichaud*** Document de travail 2003-18

par Yazid Dissou** et Véronique Robichaud*** Document de travail 2003-18 Deparmen of Fnance Mnsère des Fnances Workng Paper Documen de raval Conrôle des émssons de GES à l ade d un sysème de perms échangeables avec allocaon basée sur la producon Une analyse en équlbre général

Plus en détail

Mutuelle santé. Auto-entrepreneur Lancez-vous en toute sérénité

Mutuelle santé. Auto-entrepreneur Lancez-vous en toute sérénité Mutull anté Auto-ntpnu Lancz-vou n tout éénité Vou voilà lancé n tant qu auto-ntpnu Bavo! C égim va vou pmtt d complét vo vnu n xçant un avoi fai ou un activité qui vou tint à cœu! Avc c nouvau dépat,

Plus en détail

Sommaire G-apps : Smart fun for your smartphone!

Sommaire G-apps : Smart fun for your smartphone! Sommair G-apps : Smart fun for your smartphon! Sommair Présntation G-apps Pourquoi choisir G-apps Sctorisation t sgmntation d marchés Votr accompagnmnt clints d A à Z ou à la cart Fonctionnalités G-apps

Plus en détail

Le document unique : Évaluation des risques pour la Santé et la Sécurité des travailleurs.

Le document unique : Évaluation des risques pour la Santé et la Sécurité des travailleurs. GETION DE RIQUE Le domen nqe : Évalaon des rsqes por la ané e la éré des ravallers. L Employer do respeer ses oblgaons en maère de sané e de séré a raval. Conformémen ax prnpes générax de prévenon nsrs

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

C est signé 11996 mars 2015 Mutuelle soumise au livre II du Code de la Mutualité - SIREN N 780 004 099 DOC 007 B-06-18/02/2015

C est signé 11996 mars 2015 Mutuelle soumise au livre II du Code de la Mutualité - SIREN N 780 004 099 DOC 007 B-06-18/02/2015 st signé 11996 mars 2015 Mutull soumis au livr II du od d la Mutualité - SIREN N 780 004 099 DO 007 B-06-18/02/2015 Édition 2015 Madam, Monsiur, Vous vnz d crér ou d rprndr un ntrpris artisanal ou commrcial

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

ECHANTILLONNAGE, QUANTIFICATION CONVERSION ANALOGIQUE-NUMERIQUE NUMERIQUE-ANALOGIQUE. (Vol. 3)

ECHANTILLONNAGE, QUANTIFICATION CONVERSION ANALOGIQUE-NUMERIQUE NUMERIQUE-ANALOGIQUE. (Vol. 3) Dpt GEII IUT Bordaux I ECHANTILLONNAGE, QUANTIFICATION CONVERSION ANALOGIQUE-NUMERIQUE t NUMERIQUE-ANALOGIQUE (Vol. 3) G. Couturir Tl : 05 56 84 57 58 mail : couturir@lc.iuta.u-bordaux.fr Sommair I- Spctr

Plus en détail

Exercices de baccalauréat série S sur la loi exponentielle

Exercices de baccalauréat série S sur la loi exponentielle Eercices de baccalauréa série S sur la loi eponenielle (page de l énoncé/page du corrigé) La compagnie d'auocars (Bac série S, cenres érangers, 23) (2/) Durée de vie d'un composan élecronique (Bac série

Plus en détail

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE HAITRE 4 : RAISONNEMENT DES SYSTÈMES DE OMMANDE RAISONNEMENT DES SYSTÈMES DE OMMANDE... 2 INTRODUTION... 22 RAELS... 22 alcul de la valeur ntale de la répone à un échelon... 22 alcul du gan tatque... 22

Plus en détail

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique Spécale PSI - Cours "Electromagnétsme" 1 Inducton électromagnétque Chaptre IV : Inductance propre, nductance mutuelle. Energe électromagnétque Objectfs: Coecents d nductance propre L et mutuelle M Blan

Plus en détail

N o 12-001-XIF au catalogue. Techniques d'enquête

N o 12-001-XIF au catalogue. Techniques d'enquête N o -00-XIF au caalogue echnques d'enquêe 005 Commen obenr d aures rensegnemens oue demande de rensegnemens au suje du présen produ ou au suje de sasques ou de serces connexes do êre adressée à : Dson

Plus en détail

Bloc 1 : La stabilité, une question d équilibre

Bloc 1 : La stabilité, une question d équilibre Bloc 1 : La stabilité, un qustion d équilibr Duré : 3 hurs Princips scintifiqus Ls princips scintifiqus s adrssnt aux nsignants t aux nsignants. Structur Un structur st un form qui résist aux forcs qui,

Plus en détail

Montage émetteur commun

Montage émetteur commun tour au menu ontage émetteur commun Polarsaton d un transstor. ôle de la polarsaton La polarsaton a pour rôle de placer le pont de fonctonnement du transstor dans une zone où ses caractérstques sont lnéares.

Plus en détail

A. RENSEIGNEMENTS GÉNÉRAUX. (Adresse civique) 3. Veuillez remplir l'annexe relative aux Sociétés en commandites assurées à la partie E.

A. RENSEIGNEMENTS GÉNÉRAUX. (Adresse civique) 3. Veuillez remplir l'annexe relative aux Sociétés en commandites assurées à la partie E. Chubb du Canada Compagni d Assuranc Montréal Toronto Oakvill Calgary Vancouvr PROPOSITION POLICE POUR DES INSTITUTIONS FINANCIÈRES Protction d l Actif Capital d Risqu A. RENSEIGNEMENTS GÉNÉRAUX 1. a. Nom

Plus en détail

CONDENSATION EN SURFACE ET DANS LA MASSE

CONDENSATION EN SURFACE ET DANS LA MASSE CONDENSATION EN SURFACE ET DANS LA MASSE 1 Rappls sur l air humid L'air ambiant n'st jamais parfaitmnt sc ; il contint toujours un crtain quantité d'au. Air Humid = Air Sc + Vapur d'eau A prssion atmosphériqu,

Plus en détail

Fonction logarithme exercices corrigés

Fonction logarithme exercices corrigés Trminal S Fonctions Logarithms Vrai-Fau Fonction ln, EPF 6 Equation, Franc 4 4 Dérivés t ln 4 5 Primitivs t ln 6 Calcul d limits 5 6 7 Résolution (in)équations 7 8 Avc ROC 8 9 Dérivation t ncadrmnt 9 Fonction+équation,

Plus en détail

Etape 1 : Rechercher une parcelle sur le plan cadastral

Etape 1 : Rechercher une parcelle sur le plan cadastral Etap 1 : Rchrchr un ur l plan cadatral Navigatur pour Zoomr, déplacr dan l documnt t rvnir la taill initial hoiiz la ur laqull trouv votr pui paz l étap uivant Navigatur pour Zoomr, déplacr dan l documnt

Plus en détail

TRAVAUX PRATIQUES N 5 INSTALLATION ELECTRIQUE DE LA CAGE D'ESCALIER DU BATIMENT A

TRAVAUX PRATIQUES N 5 INSTALLATION ELECTRIQUE DE LA CAGE D'ESCALIER DU BATIMENT A UIMBERTEAU UIMBERTEAU TRAVAUX PRATIQUES 5 ISTALLATIO ELECTRIQUE DE LA CAE D'ESCALIER DU BATIMET A ELECTROTECHIQUE Seconde B.E.P. méiers de l'elecroechnique ELECTROTECHIQUE HABITAT Ver.. UIMBERTEAU TRAVAUX

Plus en détail

Présentation de la plateforme IDS Prelude

Présentation de la plateforme IDS Prelude PrésnaiondlaplaformIDSPrlud SysèmdDécion d'inrusionhybrid PrésnaiondlaplaformIDSPrlud.IDShybrid 2006YoannVandoorslar,yoann.v@prlud ids.com >IDS >Définiion «UnSysèm d Décion d'inrusion (ou IDS : Inrusion

Plus en détail

MAISON DE LA RATP 54, quai de la Râpée -189, rue de Bercy - 75012 Paris. M Gare de Lyon. M Gare de Lyon

MAISON DE LA RATP 54, quai de la Râpée -189, rue de Bercy - 75012 Paris. M Gare de Lyon. M Gare de Lyon i d r c r m 3 1 0 2 r 9 octob s i a n n o c u? t è b a i d mon MISON D L RP 54, quai d la Râpé -189, ru d Brcy - 75012 Paris M Gar d Lyon È B I D L R U S N N O I C S L M R O D O F N I L D D N URdNlaÉRapé

Plus en détail

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement Chapire 2 L invesissemen. Les principales caracérisiques de l invesissemen.. Définiion de l invesissemen Définiion générale : ensemble des B&S acheés par les agens économiques au cours d une période donnée

Plus en détail

VÉHICULES MEUBLES CONTAINERS CONTAINERS FRIGORIFIQUES. La gamme NOTRE SOLUTION DE STOCKAGE FRIGORIFIQUE. www.petitforestier.fr

VÉHICULES MEUBLES CONTAINERS CONTAINERS FRIGORIFIQUES. La gamme NOTRE SOLUTION DE STOCKAGE FRIGORIFIQUE. www.petitforestier.fr VÉHICULES MEUBLES CONTAINERS CONTAINERS FRIGORIFIQUES La gamm NOTRE SOLUTION DE STOCKAGE FRIGORIFIQUE www.pttforstr.fr u stockag ffcac POUR UNE CHAÎNE DU FROID PRÉSERVÉE Cosrvato, pcs d actvté, stockag

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

Les nouvelles orientations politiques du budget 2015 du Gouvernement prévoient

Les nouvelles orientations politiques du budget 2015 du Gouvernement prévoient GO NEWSLETTER N 1/2015 19 janvir 2015 L «Spurpaak» du Gouvrnmnt t ss réprcussions sur la formation ACTUALITÉ L «Spurpaak» du Gouvrnmnt t ss réprcussions sur la formation Allianc pour la qualification profssionnll

Plus en détail

Optimisation du plan de gestion du stock d une entreprise de distribution des produits pharmaceutiques

Optimisation du plan de gestion du stock d une entreprise de distribution des produits pharmaceutiques Revue es Scences e e la Technologe - RST- Volume 3 1 / janver 2012 Opmsaon u plan e geson u sock une enreprse e srbuon es prous pharmaceuques D. Bellala, M.S. oune, A. Abessme Laboraore 'Auomaque e e Proucque

Plus en détail

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement.

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement. Choix d ives i s s eme e cer iude 1 Chapire 1 Choix d ivesissemes e ceriude. Défiiio L es décisios d ivesissemes fo parie des décisios sraégiques de l erepris e. Le choix ere différes projes d ivesisseme

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

Bouna FALL. To cite this version: HAL Id: tel-00973788 https://tel.archives-ouvertes.fr/tel-00973788

Bouna FALL. To cite this version: HAL Id: tel-00973788 https://tel.archives-ouvertes.fr/tel-00973788 Evaluaon des performances d un sysème de localsaon de véhcules de ranspors gudés fondé sur l assocaon d une echnque rado ULB e d une echnque de reournemen emporel. Bouna FALL To ce hs verson: Bouna FALL.

Plus en détail

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t Annuiés I Définiion : On appelle annuiés des sommes payables à inervalles de emps déerminés e fixes. Les annuiés peuven servir à : - consiuer un capial ( annuiés de placemen ) - rembourser une dee ( annuiés

Plus en détail

T E L E C H A R G E M E N T D E S D O C U M E N T S 2 P R O C E D U R E 2 C O N S T I T U T I O N DU D O S S I E R 5

T E L E C H A R G E M E N T D E S D O C U M E N T S 2 P R O C E D U R E 2 C O N S T I T U T I O N DU D O S S I E R 5 SAISIR UNE MUTATION FICHE A L USAGE DES CLUBS ------------- D a t e : 0 3 J u i n 2 0 0 9. --------- A u t e u r s : F é d é r a t i o n F r a n ç a i s e d e H a n d b a l l / M. S o u n a l e i x ( L

Plus en détail

INSTALLATION DE FORCE DE VENTE POUR EVALUATION

INSTALLATION DE FORCE DE VENTE POUR EVALUATION INSTALLATION DE FORCE DE VENTE POUR EVALUATION 1) Prncps d fonctonnmnt Forc d Vnt st n ogc d CRM/SFA tsab sr PC n mod cnt/srvr t sr appar Androd (Smartphon o tabtt vrson Androd mnmm 3.2 t écran mnmm 480

Plus en détail

Juin 2013. www.groupcorner.fr

Juin 2013. www.groupcorner.fr r p d r i Do Juin 2013 www.groupcornr.fr Contact Pr : Carolin Mlin & Jan-Claud Gorgt Carolin Mlin TIKA Mdia 06 61 14 63 64 01 40 30 95 50 carolin@tikamdia.com Jan-Claud Gorgt J COM G 06 10 49 18 34 09

Plus en détail

100 % gratuit. inédit. www.bimedia.com.fr

100 % gratuit. inédit. www.bimedia.com.fr é z s r séc abac 100 % gra b é a r f sps a grâc à www.bma.cm.fr l p m c f s l c x f! U sps p r c r a s VwM, l acr a sr l marché la ésrllac, a éé sélcé par Bma pr pmsr mps rél la sécré r p. Grâc à la chlg

Plus en détail

La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S

La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S D i r e c t e u r d e l a p u b l i c a t i o n : M a r t i n e M I N Y R é d a c t e u r e n c h e f : S e r g e C H A N T

Plus en détail

Demande de retraite de réversion

Demande de retraite de réversion Nous somms là pour vous aidr Dmand d rtrait d révrsion Ctt notic a été réalisé pour vous aidr à complétr vos dmand t déclaration d rssourcs. Pour nous contactr : Vous désirz ds informations complémntairs,

Plus en détail

UNE ÉVALUATION EMPIRIQUE DE LA NOUVELLE TARIFICATION DE L'ASSURANCE AUTOMOBILE (1992) AU QUÉBEC * par. Georges Dionne 1,2 Charles Vanasse 2

UNE ÉVALUATION EMPIRIQUE DE LA NOUVELLE TARIFICATION DE L'ASSURANCE AUTOMOBILE (1992) AU QUÉBEC * par. Georges Dionne 1,2 Charles Vanasse 2 UNE ÉVALUATION EMPIRIQUE DE LA NOUVELLE TARIFICATION DE L'ASSURANCE AUTOMOBILE (992) AU QUÉBEC * par Georges Donne,2 Charles Vanasse 2 * Cee recherche a éé rendu possble grâce en pare au Fonds pour la

Plus en détail

n 1 LES GRANDS THÈMES DE L ITB > 2009 Les intérêts simples et les intérêts composés ( ) C T D ( en mois)

n 1 LES GRANDS THÈMES DE L ITB > 2009 Les intérêts simples et les intérêts composés ( ) C T D ( en mois) LES GRANDS THÈMES DE L ITB Les iérês simples e les iérês composés RAPPELS THÉORIQUES Les iérês simples : l'iérê «I» es focio de la durée «D» (jour, quizaie, mois, rimesre, semesre, aée) de l'opéraio (placeme

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

DEMANDE DE GARANTIE FINANCIÈRE ET PACK RCP

DEMANDE DE GARANTIE FINANCIÈRE ET PACK RCP DEMANDE DE GARANTIE FINANCIÈRE ET PACK RCP ADMINISTRATEURS DE BIENS ET AGENTS IMMOBILIERS Compagni Europénn d Garantis t Cautions 128 ru La Boéti 75378 Paris Cdx 08 - Tél. : +33 1 44 43 87 87 Société anonym

Plus en détail

TD 20-21 : Modèles de marchés - Mouvement brownien

TD 20-21 : Modèles de marchés - Mouvement brownien Universié Paris VI Maser : Modèles sochasiques, applicaions à la finance (MM065) TD 20-2 : Modèles de marchés - Mouvemen brownien. Taux de change. Soi (Ω, P(Ω), P) un espace probabilisé fini non redondan

Plus en détail

Auris Hybride Dynamic

Auris Hybride Dynamic Sé pécal Au Hybd Dynac SE - 350 D cnd d éd lu p u van l h n Saln a pnnll c x n uc. v u b. v n 0 P28, 29 danch 3. l C an chz a ja u na n ya uvz v Pndan l Juné P Ouv chz ya, vu bénéfcz d cndn nc plu f qu

Plus en détail

«Modèle Bayésien de tarification de l assurance des flottes de véhicules»

«Modèle Bayésien de tarification de l assurance des flottes de véhicules» Arcle «Modèle Baésen de arcaon de l assurance des loes de véhcules» Jean-Franços Angers, Dense Desardns e Georges Donne L'Acualé économque, vol. 80, n -3, 004, p. 53-303. Pour cer ce arcle, ulser l'normaon

Plus en détail