Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Dimension: px
Commencer à balayer dès la page:

Download "Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL"

Transcription

1 Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l inensié d coran : - dans le cas d n coran conin (inensié consane d coran a cors d emps), l inensié es définie par : I = Q / où Q es la charge ayan raversé ne porion d circi pendan la drée ; - dans le cas d n coran variable (inensié non consane d coran a cors d emps), l inensié es définie par : i = dq / d où dq es la charge élecriqe circlan dans le circi pendan ne drée d Orienaion d n circi : choix d sens d orienaion d coran élecriqe por leqel l inensié es > 0 e sens d orienaion es maérialisé par ne flèche inensié es ne grander algébriqe ; le branchemen d n ampèremère oriene de fai le circi : enrée par la borne de l ampèremère e sorie par la OM de l ampèremère Si l ampèremère affiche ne valer > 0, l orienaion d circi es correce ; dans le cas conraire, il fa inverser le sens d orienaion Tension élecriqe enre les dex bornes e B d n dipôle : différence de poeniel élecriqe ( ) V B poins a ension es ne grander algébriqe : U = U Elle es représenée par ne flèche B V enre ces dex onvenion réceper : la flèche précisan l orienaion d dipôle de vers B es en sens conraire de la flèche ilisée por représener la ension U Sens convenionnel d coran : sens de la borne + d généraer vers la borne d généraer à l exérier d circi e sens convenionnel d coran es de sens conraire à celi d déplacemen des élecrons ondensaer : composan consié de dex srfaces condcrices (armares) séparées par n isolan diélecriqe Un condensaer se caracérise par ne grander nommée capacié don l nié es le Farad, de symbole F Bobine : composan consié d n fil condcer enoré d ne gaine Une bobine se caracérise par dex granders : - l indcance don l nié es le Henry, de symbole H ; - la résisance r d fil condcer don l nié es l Ohm, de symbole Ω Dipôle : associaion série d n condcer ohmiqe de résisance e d n condensaer de capacié Dipôle : associaion série d n condcer ohmiqe de résisance e d ne bobine d indcance e de résisance r Echelon de ension : variaion brale de la ension appliqée à n dipôle (dipôle o dipôle ) harge d n dipôle : phénomène correspondan à n régime ransioire a cors dqel les ensions ax bornes d condcer ohmiqe e d condensaer agmenen progressivemen a charge d n condensaer nécessie le branchemen d condensaer à n généraer de ension E e généraer exrai les élecrons libres d ne armare e les fai circler vers l are armare : il y a déplacemen de charges omme les charges ne peven pas raverser le condensaer, elles s accmlen sr les armares armare d condensaer perd des élecrons e présene ne charge élecriqe q > 0 armare B d condensaer cape des élecrons e présene ne charge q B < 0 elle qe, à o insan : q = q = q B cors de la charge, q e U agmenen proporionnellemen selon la relaion : q = U a fin de la charge correspond à n régime permanen (o régime éabli o régime asympoiqe) où q e valers maximales ( q = E ; U = E) e i B U aeignen des Tos drois réservés Sdyrama 006 Fiche éléchargée sr wwwsdyramacom

2 Fiche ors Décharge d n dipôle : phénomène correspondan à n régime ransioire a cors dqel les ensions ax bornes d condcer ohmiqe e d condensaer diminen progressivemen e condensaer n es pls connecé a généraer es élecrons accmlés sr l armare négaive B lors de la charge d condensaer se déplacen vers l armare posiive cors de la décharge, q e U diminen proporionnellemen selon la relaion : q = U a fin de la décharge correspond à n régime permanen (o régime éabli o régime asympoiqe) où q e valers minimales ( q MIN e U ) e I MIN = E / B U aeignen des Eablissemen d coran dans n dipôle : phénomène correspondan à n régime ransioire a cors dqel l inensié d coran dans le circi agmene progressivemen To se passe comme si la bobine s opposai à l éablissemen d coran a fin de l éablissemen d coran correspond a régime permanen (o régime éabli o régime asympoiqe) : l inensié es consane (i = ce 0) e la bobine se compore alors comme n condcer ohmiqe Sppression d coran dans n dipôle : phénomène correspondan à n régime ransioire a cors dqel l inensié d coran dans le circi dimine progressivemen To se passe comme si la bobine s opposai à la sppression d coran a fin de la sppression d coran correspond a régime permanen (o régime éabli o régime asympoiqe) où i onsane de emps (o emps caracérisiqe) d n dipôle : grander homogène à n emps, définie par = e caracérisan la rapidié de charge (o de décharge) d n condensaer à ravers n condcer ohmiqe correspond à la drée nécessaire por charger n condensaer à 63 % de sa valer maximale o por décharger n condensaer à 37 % de sa valer maximale (voir méhodologie ci-après) bo de 5, la ension ax bornes d condensaer es égale : - lors de la charge, à 99 % de sa valer maximale ; - lors de la décharge, à % de sa valer maximale On considère a bo d n emps = 7 qe le condensaer es chargé (o déchargé) onsane de emps (o emps caracérisiqe) d n dipôle : grander homogène à n emps, définie par = / e caracérisan la rapidié d éablissemen (o de sppression) d coran dans la bobine correspond à la drée nécessaire por qe l inensié prenne ne valer égale à 63 % de sa valer finale lors de l éablissemen d coran o ne valer égale à 37 % de sa valer iniiale lors de la sppression d coran bo de 5, l inensié d coran es égale : - lors de l éablissemen d coran, à 99 % de sa valer maximale ; - lors de la sppression d coran, à % de sa valer maximale On considère a bo d n emps = 7 qe le coran es éabli (o spprimé) II - ègle Propriéés Propriéé n Un condensaer chargé es n réservoir d énergie : il resie de l énergie lorsq il se décharge Un condensaer es n inerrper over, socker de charges Propriéé n Une bobine emmagasine de l énergie mais ne pe pas resier en différé (comme le condensaer) l énergie sockée En régime permanen, ne bobine es n inerrper fermé Propriéé n 3 Dans n dipôle, la charge q d n condensaer e la ension Par conre, l inensié i d coran sbi ne disconinié ax bornes d condensaer ne son jamais disconines Propriéé n 4 Dans n dipôle, lors de l éablissemen o de la sppression d coran, l inensié i d coran n es jamais disconine Par conre, la ension ax bornes de la bobine sbi ne disconinié Propriéé n 5 a loi des nœds e la loi d addiivié des ensions s appliqen égalemen lorsqe les circis son parcors par des corans variables Tos drois réservés Sdyrama 006 Fiche éléchargée sr wwwsdyramacom

3 Fiche ors Propriéé n 6 a ension ax bornes d n condensaer es définie par : = q / armare pore la charge q ; l armare B pore la charge ( q) Propriéé n 7 a ension ax bornes d ne bobine es définie par : = r i + (di / d) Propriéé n 8 éqaion différenielle de la ension ax bornes d n condensaer lors de la charge de ce condensaer à ravers ne résisance en réponse à n échelon de ension s éabli comme si : E = + (applicaion de la loi d addiivié des ensions) Or : = i (loi d Ohm) e i = dq / d e qi condi à : i = ( d / d) Soi l éqaion différenielle de la ension lors de la charge : E = + [ ( d / d)] o, en posan = : E = + [ ( d / d)] a solion générale de cee éqaion différenielle es de la forme : = e + B où e B son des consanes qi se déerminen à parir des condiions iniiales : (0) Soi : + B condisan à = B D où : B( e ) = + e ( d / d) = ( B / ) e éqaion différenielle s écri : E = B( e + ) + ( B / ) e Soi : B = E condisan à : ( ) = E e où por, on a : = E ompe en qe : q =, alors : q = E ( ) e où por, on a : q = E i = dq / d, alors : i = (E / ) e / où por, on a : i Propriéé n 9 éqaion différenielle de la ension ax bornes d n condensaer lors de la décharge de ce condensaer à ravers ne résisance en réponse à n échelon de ension s éabli comme si : 0 = + (applicaion de la loi d addiivié des ensions) Soi l éqaion différenielle de la ension lors de la décharge : 0 = + [ ( d / d)] a solion générale de cee éqaion différenielle es de la forme : = e + B où e B son des consanes déerminées à parir des condiions iniiales : (0) = E Soi : 0 = E - ( / ) ondisan à : = E D où : (0) = E + B = E Soi : B lors : = E e où por, on a : ompe en qe : q =, alors : q = E e où por, on a : q i = dq / d, alors : i = ( E / ) e où por, on a : i = - (E /) Propriéé n 0 éqaion différenielle de l inensié d coran raversan ne bobine (, r) d n dipôle somis à n échelon de ension s éabli lors de l éablissemen d coran comme si : E = + (applicaion de la loi d addiivié des ensions) Or : = i (loi d Ohm) e = r i + ( di / d) e qi condi à : E = i + ( di / d) avec = r + éqaion différenielle de l inensié d coran lors de l éablissemen d coran s écri : ( E / ) = i + [ ( di / d) ] avec = / a solion générale de cee éqaion différenielle es de la forme : i = e + B où e B son des consanes déerminées à parir des condiions iniiales : i(0) Soi : 0 = + B D où : = B omme ( i / d) = E / = B / = d /, on en dédi : ( ) B Tos drois réservés Sdyrama 006 Fiche éléchargée sr wwwsdyramacom

4 Fiche ors Soi : ( ) ( ) = E / e i où por, on a : i = E / omme = r i + (di / d), on en dédi : ( ) ( ) ( ) = + / r E / e E e où por, on a : = ( r E) / Si la bobine a ne résisance négligeable, lors de l éablissemen d coran, varie de : 0 à E Propriéé n éqaion différenielle de l inensié d coran raversan ne bobine (, r) d n dipôle () somis à n échelon de ension s éabli lors de la sppression d coran comme si : 0 = + [ (di / d)] Soi : 0 = i + [ (di / d)] a solion générale de cee éqaion différenielle es de la forme : i = e + B où e B son des consanes déerminées à parir des condiions iniiales i (0) = E / = + B D où : omme ( di / d) = /, on en dédi : 0 = ( E / ) ( / ) = Soi : = E / Por, l éqaion différenielle s écri : E / = E / + B Soi : B D où : i = ( E / ) e où por, on a : i omme = r i + [ (di / d)], on en dédi : = ( ) r E / e E e où por, on a : Si la bobine a ne résisance négligeable, lors de la sppression de coran, varie de E à 0 Propriéé n énergie emmagasinée par n condensaer es : E ( ) ( ) = / ompe en de q =, on a : E ( / ) ( q ) En effe, la pissance reçe par le condensaer es : P = i = ( d / d) omme P de / d = / = o E = ( / ) ( q / ) =, on en dédi : [ ( ) ( ) ] k E + k es déerminée à parir des condiions iniiales : (0) Soi : k e E ( ) ( ) = / Propriéé n 3 énergie emmagasinée par ne bobine es : E ( ) ( ) = / i En effe, la pissance reçe par la bobine es : P = i = ( r i ) + ( i) ( di / d) e erme r i correspond à la pissance dissipée par effe Jole e ne conribe donc pas à l énergie emmagasinée par la bobine Soi : P = ( di / d) omme P = de / d, on en dédi : E [ ( / ) i ] k' = + K es déerminée à parir des condiions iniiales : i(0) E = / i Soi : k e ( ) ( ) III - Méhodologie Méhodes por déerminer la valer de la consane de emps d dipôle - première méhode : on connaî e On calcle = ; - dexième méhode : lecre graphiqe ; Tos drois réservés Sdyrama 006 Fiche éléchargée sr wwwsdyramacom

5 Fiche ors > charge d condensaer : () = E ( e ) 0,63 E Par lecre graphiqe de l abscisse d poin de la corbe de charge = f() don l ordonnée es égale à 0,63 E, on obien > décharge d condensaer : () = E e 0,37 E Par lecre graphiqe de l abscisse d poin de la corbe de décharge = f() don l ordonnée es égale à 0,37 E, on obien - roisième méhode : ilisaion de la angene à l origine > charge d condensaer : ( / d) = E d / a angene à l origine de la corbe = f() cope l asympoe = E a poin d abscisse = > décharge d condensaer : ( d / d) = E / a angene à l origine de la corbe de décharge = f() cope l axe des abscisses en = Méhodes por déerminer la consane de emps d dipôle - première méhode : on connaî, r e On calcle = / ( + r) ; - dexième méhode : lecre graphiqe ; > éablissemen d coran : ( ) = ( E / ) ( e ) 0,63( E / ) i Par lecre graphiqe de l abscisse d poin de la corbe d éablissemen d coran i = f() don l ordonnée es égale à 0,63 ( E / ), on obien > sppression d coran : i( ) = ( E / ) e 0,37 E / Par lecre graphiqe de l abscisse d poin de la corbe de sppression d coran i = f() don l ordonnée es égale à 0,37 ( E / ), on obien - roisième méhode : ilisaion de la angene à l origine > éablissemen d coran : ( d i / d) = E / a angene à l origine de la corbe d éablissemen d coran i = f() cope l asympoe i = E / a poin d abscisse = > sppression d coran : ( di / d) = E / a angene à l origine de la corbe de sppression d coran i = f() cope l axe des abscisses en = e prodi es homogène à n emps analyse dimensionnelle condi à : [] = [] [] Or : = / i e = q / = (i ) / D où : [] = [U] / I e [] = (I T) / [U] Soi : [] [] = T : homogène à n emps e rappor / es homogène à n emps analyse dimensionnelle condi à : [] = [] / [ ] Or : = / i e = (di / d) D où : [ ] = [U] / I e [U] = [] I T - <=> [] = [U] / ( I T ) Soi : [] / [ ] = T : homogène à n emps Tos drois réservés Sdyrama 006 Fiche éléchargée sr wwwsdyramacom

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

Circuits linéaires en régime transitoire

Circuits linéaires en régime transitoire MPSI - Élecrocnée I - rcs lnéares en régme ransore page 1/8 rcs lnéares en régme ransore 1 ondons nales e conné On va éder ce se passe enre enre dex régmes conns = régme ransore. es granders élecres ne

Plus en détail

Fonction dont la variable est borne d intégration

Fonction dont la variable est borne d intégration [hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes

Plus en détail

Cours d électrocinétique :

Cours d électrocinétique : Universié de Franche-Comé UFR des Sciences e Techniques STARTER 005-006 Cours d élecrocinéique : Régimes coninu e ransioire Elecrocinéique en régimes coninu e ransioire 1. INTRODUCTION 5 1.1. DÉFINITIONS

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

Oscillations forcées en régime sinusoïdal.

Oscillations forcées en régime sinusoïdal. Conrôle des prérequis : Oscillaions forcées en régime sinusoïdal. - a- Rappeler l expression de la période en foncion de la pulsaion b- Donner l expression de la période propre d un circui RLC série -

Plus en détail

CARACTERISTIQUES STATIQUES D'UN SYSTEME

CARACTERISTIQUES STATIQUES D'UN SYSTEME CARACTERISTIQUES STATIQUES D'UN SYSTEE 1 SYSTEE STABLE, SYSTEE INSTABLE 1.1 Exemple 1: Soi un sysème composé d une cuve pour laquelle l écoulemen (perurbaion) es naurel au ravers d une vanne d ouverure

Plus en détail

COMMANDE D UNE PORTE DE GARAGE COLLECTIF

COMMANDE D UNE PORTE DE GARAGE COLLECTIF COMMANDE D UNE PORTE DE GARAGE COLLECTIF Les quesions raiées devron êre soigneusemen numéroées e le documen-réponse fourni devra êre compléé selon les indicaions de l énoncé. Il es vivemen conseillé de

Plus en détail

CHAPITRE I : Cinématique du point matériel

CHAPITRE I : Cinématique du point matériel I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons

Plus en détail

Chapitre 15 c Circuits RL et RC

Chapitre 15 c Circuits RL et RC Chapire 15 c Circuis L e C en régime impulsionnel Sommaire Circuis en régime impulsionnel Signal impulsionnel Mesure d'un circui C en régime impulsionnel Applicaion praique Eude du circui C en régime impulsionnel

Plus en détail

Exercice 1. 1) Représenter le vecteur U ci-dessous. 2) Déterminer graphiquement le module et l'argument du nombre complexe z.

Exercice 1. 1) Représenter le vecteur U ci-dessous. 2) Déterminer graphiquement le module et l'argument du nombre complexe z. http://maths-sciencesfr EXERCICES SUR LES NOMBRES COMPLEXES Exercice Une minterie est alimentée par ne tension alternative sinsoïdale U(t) = U m sin(t + ) À n instant cette tension est représentée par

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PSI PHYSIQUE 1. Durée : 4 heures

EPREUVE SPECIFIQUE - FILIERE PSI PHYSIQUE 1. Durée : 4 heures SESSION PSIP3 EPREUVE SPECIFIQUE - FILIERE PSI PHYSIQUE Durée : 4 heures NB : Le candida aachera la plus grande imporance à la claré, à la précision e à la concision de la rédacion Si un candida es amené

Plus en détail

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1 Documenaion Technique de Référence Chapire 8 Trames ypes Aricle 8.14-1 Trame de Rappor de conrôle de conformié des performances d une insallaion de producion Documen valide pour la période du 18 novembre

Plus en détail

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1.

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1. Les premières consaaions sur l inapiude des produis indusriels à assurer les foncions qu ils éaien censés remplir pendan un emps suffisan remonen à la seconde guerre mondiale. En France cee prise de conscience

Plus en détail

Electrocinétique (révisions)

Electrocinétique (révisions) lcrocinéiq (révisions) ) Monags à bas d ransisor. n ransisor NPN s n composan smi-condcr à rois borns : as ollcr mr.. Qsions préliminairs. a) Qll rlaion xis--il nr ls corans,? b) Qll rlaion xis--il nr

Plus en détail

Sciences Industrielles pour l Ingénieur

Sciences Industrielles pour l Ingénieur Sciences Indusrielles pour l Ingénieur Cenre d Inérê 6 : CONVERTIR l'énergie Compéences : MODELISER, RESOUDRE CONVERSION ELECTROMECANIQUE - Machine à couran coninu en régime dynamique Procédés de piloage

Plus en détail

COURS GESTION FINANCIERE A COURT TERME SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX

COURS GESTION FINANCIERE A COURT TERME SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX COURS GESTION FINANCIERE A COURT TERME SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX Obje de la séance 9: défini le risque de aux e présener

Plus en détail

UNITÉ 1: LA CINÉMATIQUE

UNITÉ 1: LA CINÉMATIQUE UNITÉ 1: L CINÉMTIQUE Cinémaique: es la branche e la physique qui raie e la escripion u mouemen objes sans référence aux forces ni aux causes régissan ce mouemen. 1.1 L VITESSE ET L VITESSE VECTORIELLE

Plus en détail

( ) et est alors représenté par le graphe ci-

( ) et est alors représenté par le graphe ci- LE SIGNAL SINUSOIDAL : PRODUCTION ET OBSERVATION Le bu de ce premier TP es d une par la prise en main du maériel nécessaire pour l observaion des ondes lors de la prochaine séance (uilisaion de l oscilloscope),

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

Exercices M1: Cinématique du point. A) Questions de compréhension. LCD Physique 2eBC 1 Ex2eMeca1_13.docx 04/11/2013

Exercices M1: Cinématique du point. A) Questions de compréhension. LCD Physique 2eBC 1 Ex2eMeca1_13.docx 04/11/2013 LCD Physique ebc 1 Exercices M1: Cinémaique du poin A) Quesions de compréhension 1) Un voyageur dans un rain en mouvemen à viesse consane laisse omber un obje. Esquisser l allure de la rajecoire : pour

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL Bac blanc du vendredi 17 mars 006 - Lycée Élie Caran - La Tour du Pin Physique - Chimie Série S DURÉE DE L ÉPREUVE : h0 COEFFICIENT : 8 pour les spécialiés physique e chimie - 6 pour

Plus en détail

LES CAPTEURS. Perturbations. Acquérir et coder une information. Capteur

LES CAPTEURS. Perturbations. Acquérir et coder une information. Capteur CPGE / Sciences Indusrielles pour l Ingénieur CI9 Capeurs LES CAPTEURS Le domaine indusriel a besoin de conrôler de rès nombreux paramères physiques (longueur, force, poids, pression, déplacemen, posiion,

Plus en détail

AMPLIFICATEUR LINEAIRE INTEGRE (A.L.I) Montages Fondamentaux à base d A.L.I

AMPLIFICATEUR LINEAIRE INTEGRE (A.L.I) Montages Fondamentaux à base d A.L.I Chapire C1 Leçon C1 AMPLIFICATEU LINEAIE INTEGE (A.L.I) Monages Fondamenaux à base d A.L.I I. Uilisaion d un A.L.I en régime non linéaire : 1) Acivié praique : a) A l aide d une maquee fournie ou à parir

Plus en détail

«Savoir vendre les nouvelles classes d actifs financiers» Produits à capital garanti : méthode du coussin (CCPI) François Longin www.longin.

«Savoir vendre les nouvelles classes d actifs financiers» Produits à capital garanti : méthode du coussin (CCPI) François Longin www.longin. Formaion ESSEC Gesion de parimoine Séminaire i «Savoir vendre les nouvelles classes d acifs financiers» Produis à capial garani : méhode du coussin (CCPI) Origine de la méhode Descripion de la méhode Plan

Plus en détail

S5 Info-MIAGE 2012-2013 Mathématiques Financières Emprunts indivis. Université de Picardie Jules Verne Année 2012-2013 UFR des Sciences

S5 Info-MIAGE 2012-2013 Mathématiques Financières Emprunts indivis. Université de Picardie Jules Verne Année 2012-2013 UFR des Sciences S5 Info-MIAGE 2012-2013 Mahémaiques Financières Empruns indivis Universié de Picardie Jules Verne Année 2012-2013 UFR des Sciences Licence menion Informaique parcours MIAGE - Semesre 5 Mahémaiques Financières

Plus en détail

GBF et Oscilloscope. 1. «un seul bouton à la fois tu manipuleras»; 2. «aux boutons inconnus tu ne toucheras». I) Première approche

GBF et Oscilloscope. 1. «un seul bouton à la fois tu manipuleras»; 2. «aux boutons inconnus tu ne toucheras». I) Première approche e Oscilloscope objecif de ce TP es d apprendre à uiliser, ie. à régler, deux des appareils les plus courammen uilisés : le e l oscilloscope. Pour cela vous serez amené(e) à uiliser e à associer de nouveaux

Plus en détail

TB 352 TB 352. Entrée 1. Entrée 2

TB 352 TB 352. Entrée 1. Entrée 2 enrées série TB logiciel d applicaion 2 enrées à émission périodique famille : Inpu ype : Binary inpu, 2-fold TB 352 Environnemen Bouon-poussoir TB 352 Enrée 1 sories 230 V Inerrupeur Enrée 2 Câblage sur

Plus en détail

ÉTUDE CINÉMATIQUE D UN FLUIDE EN ÉCOULEMENT.

ÉTUDE CINÉMATIQUE D UN FLUIDE EN ÉCOULEMENT. Objecifs CINÉMATIQUE DES FLUIDES ÉTUDE CINÉMATIQUE D UN FLUIDE EN ÉCOULEMENT Coprendre les différences enre l approche lagrangienne e l approche eulérienne Saoir eprier une accéléraion lagrangienne en

Plus en détail

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»

Plus en détail

Université de Picardie Jules Verne 2013-2014 UFR des Sciences

Université de Picardie Jules Verne 2013-2014 UFR des Sciences Uiversié de Picardie Jles Vere 13-14 UFR des Scieces Licece meio Mahémaiqes - Semesre 3 Saisiqe Exame de ldi 7 javier 14 Drée h To docme ierdi - Calclarices aorisées Exercice 1 1) Das e poplaio doée, o

Plus en détail

VISUALISATION DES SIGNAUX ELECTRIQUES OSCILLOSCOPE CATHODIQUE ANALOGIQUE

VISUALISATION DES SIGNAUX ELECTRIQUES OSCILLOSCOPE CATHODIQUE ANALOGIQUE VISUALISATION DES SIGNAUX ELECTRIQUES OSCILLOSCOPE CATHODIQUE ANALOGIQUE INTRODUCTION L'oscilloscope es le plus polyvalen des appareils de mesures élecroniques. Il peu permere simulanémen de visualiser

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n es pas nécessairemen le graphe d une foncion ; c es pourquoi on parle de courbe paramérée e non pas

Plus en détail

Le redressement. 1. Intérêt du redressement MCC

Le redressement. 1. Intérêt du redressement MCC . Intérêt d redressement Le redressement MCC Si on désire faire fonctionner n moter à corant contin (MCC) en alternatif il ne torne pas mais vibre. Explication : le corant alternatif change de sens réglièrement

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

Chapitre II : Diusion thermique

Chapitre II : Diusion thermique Spéciale PSI - Cours "hermodynamique" 1 Phénomènes de ranspor Chapire II : Diusion hermique Conens 1 Les diérens modes de ransfer hermique 2 1.1 Le rayonnemen... 2 1.2 La convecion... 2 1.3 La conducion

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE Dans e hapire l'amplifiaeur différeniel inégré sera oujours onsidéré omme parfai, mais la ension de sorie ne pourra prendre que deux valeurs : V sa e V

Plus en détail

MSP430 Gestion d'un LCD multiplexé MSP 430. Gestion d'un LCD multiplexé

MSP430 Gestion d'un LCD multiplexé MSP 430. Gestion d'un LCD multiplexé MSP430 Gesion d'un LCD muliplexé MSP 430 Gesion d'un LCD muliplexé La famille de microconroleurs MSP430x4xxx inègre un piloe (driver) d'afficheur à crisaux liquides. Ceux-ci peuven êre à commande direce

Plus en détail

Méthode d'analyse économique et financière ***

Méthode d'analyse économique et financière *** Méhode d'analyse économique e financière *** Noion d acualisaion e indicaeurs économiques uilisables pour l analyse de projes. Dr. François PINTA CIRAD-Forê UR Bois - Kourou CHRONOLOGIE D INTERVENTION

Plus en détail

Distributeur automatique de café

Distributeur automatique de café BACCALAUREAT GENERAL Session 2002 Série S Sciences de l Ingénieur ETUDE D UN SYSTEME PLURITECHNIQUE Coefficien : 6 Durée de l épreuve : 4 heures Son auorisés les calcularices élecroniques e le maériel

Plus en détail

Capteurs CCD (Charge Coupled Device)

Capteurs CCD (Charge Coupled Device) Capeurs CCD (Charge Coupled Device) 1 NOTION SUR LES CONDUCTEURS, SEMI-CONDUCTEURS ET ONDES LUMINEUSES... 2 1.1 STRUCTURE DE LA MATIERE... 2 1.2 LES ISOLANTS... 2 1.3 LES CONDUCTEURS... 2 1.4 LES SEMI-CONDUCTEURS...

Plus en détail

ECONOMETRIE II - SERIES TEMPORELLES PARTIEL FEVRIER 2002

ECONOMETRIE II - SERIES TEMPORELLES PARTIEL FEVRIER 2002 Universié Paris IX Dauphine UFR Economie Appliquée Maîrise Economie Appliquée ECONOMETRIE II - SERIES TEMPORELLES PARTIEL FEVRIER 00 Noes de Cours Auorisées, Calcularices sans Mémoire Auorisées Durée :

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section Orthoptiste / stage i-prépa intensif - 1 Chapitre 10 : Condensateur et circuit RC I. Notions de base en électricité : a) Courant électrique

Plus en détail

Débuter avec Excel. Introduction

Débuter avec Excel. Introduction Débter avec Excel Introdction Dans ce chapitre Microsoft Excel 00 est n logiciel tabler qe vos povez employer dans n cadre personnel o professionnel, por sivre et analyser des ventes, créer des bdgets

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

SCIENCES DE L'INGÉNIEUR TP N 3 page 1 / 8 GÉNIE ÉLECTRIQUE TERMINALE Durée : 2h OUVRE PORTAIL FAAC : SERRURE CODÉE

SCIENCES DE L'INGÉNIEUR TP N 3 page 1 / 8 GÉNIE ÉLECTRIQUE TERMINALE Durée : 2h OUVRE PORTAIL FAAC : SERRURE CODÉE CIENCE DE L'INGÉNIEU TP N 3 page 1 / 8 GÉNIE ÉLECTIQUE TEMINALE Durée : 2h OUVE POTAIL FAAC : EUE CODÉE Cenres d'inérê abordés : Thémaiques : CI11 ysèmes logiques e numériques I6 Les sysèmes logiques combinaoires

Plus en détail

GEOMETRIE DANS L ESPACE. I) Vecteurs de l espace

GEOMETRIE DANS L ESPACE. I) Vecteurs de l espace GEOETRIE DNS L ESPCE ant tot, rappelons ne propriété fondamentale : Tot théorème de Géométrie plane s appliqe dans n importe qel plan de l espace. Les exemples de ce chapitre se réfèrent a dessin ci-contre

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce documen a éé mis en ligne par le Canopé de l académie de Bordeaux pour la Base Naionale des Sujes d Examens de l enseignemen professionnel. Base Naionale des Sujes d'examens de l'enseignemen professionnel

Plus en détail

Assimilation variationnelle de la dynamique conjointe de variables géophysiques

Assimilation variationnelle de la dynamique conjointe de variables géophysiques Assimilaion variaionnelle de la dynamiqe conjoine de variables éophysiqes Silèye BA posdoc SC/TB Sileye.ba@elecom-breane.e Séminaire SUPELEC Camps Rennes 15/11/2012 Principax collaboraers Sinal e Commnicaions

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

Comparaison des composantes de la croissance de la productivité : Belgique, Allemagne, France et Pays-Bas 1996-2007

Comparaison des composantes de la croissance de la productivité : Belgique, Allemagne, France et Pays-Bas 1996-2007 Bureau fédéral du Plan Avenue des Ars 47-49, 1000 Bruxelles hp://www.plan.be WORKING PAPER 18-10 Comparaison des composanes de la croissance de la producivié : Belgique, Allemagne, France e Pays-Bas 1996-2007

Plus en détail

Romain Burgot & Tchim Silué. Synthèse de l article : Note sur l évaluation de l option de remboursement anticipé

Romain Burgot & Tchim Silué. Synthèse de l article : Note sur l évaluation de l option de remboursement anticipé ENSAE 3 eme année Romain Burgo & Tchim Silué Synhèse de l aricle : Noe sur l évaluaion de l opion de remboursemen anicipé Mémoire de gesion ALM Juin 2006 Résumé Depuis 1979, la loi offre à l empruneur

Plus en détail

CI-2 : MODÉLISER ET SIMULER LES SYS-

CI-2 : MODÉLISER ET SIMULER LES SYS- CI-2 : MODÉLISER ET SIMULER LES SYS- TÈMES LINÉAIRES CONTINUS INVARIANTS. Objecifs ANALYSER MODELISER A l issue de la séquence, avec l aide du cours sur les ransformées de Laplace, l élève doi êre capable

Plus en détail

F 2 = - T p K 0. ... F T = - T p K 0 - K 0

F 2 = - T p K 0. ... F T = - T p K 0 - K 0 Correcion de l exercice 2 de l assisana pré-quiz final du cours Gesion financière : «chéancier e aux de renabilié inerne d empruns à long erme» Quesion : rappeler la formule donnan les flux à chaque échéance

Plus en détail

CH.3 PROBLÈME DE FLOTS

CH.3 PROBLÈME DE FLOTS H.3 PROLÈME E FLOTS 3.1 Le réeaux de ranpor 3.2 Le flo maximum e la coupe minimum 3.3 L'algorihme de Ford e Fulkeron 3. Quelque applicaion Opi-comb ch 3 1 3.1 Le réeaux de ranpor Réeau de ranpor : graphe

Plus en détail

Circuit de commande d'un moteur brushless DC par onduleur triphasé commandé en modulation de largeur d'impulsion par microcontrôleur

Circuit de commande d'un moteur brushless DC par onduleur triphasé commandé en modulation de largeur d'impulsion par microcontrôleur Circui de commande d'un moeur brushless DC par onduleur riphasé commandé en modulaion de largeur d'impulsion par microconrôleur Ing. V. LELEUX Ir. N. GILLIEAUX-VETCOUR GRAMME Liège Ce aricle présene la

Plus en détail

Montages à plusieurs transistors

Montages à plusieurs transistors etor a men! ontages à plsiers transistors mplificaters à plsiers étages Dans de nombrex amplificaters, on cerce à obtenir n grand gain, ne impédance d entrée élevée (afin de ne pas pertrber la sorce d

Plus en détail

17 Conversion de signaux Modulation de l énergie. Chapitre 17

17 Conversion de signaux Modulation de l énergie. Chapitre 17 Chapire 17 Conversion de signaux Modulaion de l énergie Perurbaion e compaibilié élecromagnéique INTRODUCTION 3 1. LES FONCTIONS DE CONVERSION 4 1.1. La commuaion 4 1.2. La emporisaion 15 1.3. L amplificaion

Plus en détail

Introduction aux produits dérivés

Introduction aux produits dérivés Chapire 1 Inroducion aux produis dérivés de crédi Le risque de crédi signifie les risques financiers liés aux incapaciés d un agen (un pariculier, une enreprise ou un éa souverain) de payer un engagemen

Plus en détail

ETUDE DES DIFFERENTES COMMANDES DU SYSTEME. 1 - Commande manuelle par BP "marche-arrêt" (2 sens de marche)

ETUDE DES DIFFERENTES COMMANDES DU SYSTEME. 1 - Commande manuelle par BP marche-arrêt (2 sens de marche) BS Mainenance Indusrielle Elecroechnique Eude d un mone charge Moeur asynchrone deux sens de roaion e 2 viesses enroulemens séparés Rappels emporisaions Présenaion es manuenions dans un grand magasin son

Plus en détail

Guides d installation 300-012-581 Rév. 03

Guides d installation 300-012-581 Rév. 03 EMC Matériel VNXe3300 dans les environnements compatibles NEBS Gides d installation 300-012-581 Rév. 03 Les composants d système de stockage EMC VNXe3300 sivants ont passé avec sccès la site de tests de

Plus en détail

CONDITONNEMENT DU SIGNAL

CONDITONNEMENT DU SIGNAL I) Présenaion "La diode" CONITONNMNT U IGNAL La diode es un composan élecronique semi conduceur qui se compore comme un inerrupeur fermé quand elle es polarisée en direc e comme un inerrupeur ouver polarisée

Plus en détail

Electronique de puissance

Electronique de puissance Haue Ecole d Ingénierie e de Gesion du Canon du Vaud Elecronique de puissance Chapire 9 MODÉLISAION HERMIQUE DES COMPOSANS DE PUISSANCE M. Correvon A B L E D E S M A I E R E S PAGE 9. ANALYSE HERMIQUE

Plus en détail

Chromatographie en Phase Gazeuse CPG.

Chromatographie en Phase Gazeuse CPG. TEISSIER Thomas MADET Nicolas Licence IUP SIAL Universié de Créeil-Paris XII COMPTE-RENDU DE TP DE CHROMATOGRAPHIE: Chromaographie en Phase Gazeuse CPG. Année universiaire 23/24 Sommaire. I OBJECTIF...3

Plus en détail

2 ème Partie Cinématique: Déplacement, vitesse, accélération

2 ème Partie Cinématique: Déplacement, vitesse, accélération ème Parie Cinémaique: Déplacemen, viesse, accéléraion Inroducion Noes de cours de Licence de A. Colin de Verdière Un obje es en mouvemen si sa posiion mesurée par rappor à un aure obje change. Si cee posiion

Plus en détail

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3 Chapire Eercices de snhèse 6 CHAPITRE EXERCICES..a), ±,55 b) 97,75 ±,455 c) 95,5 ±,475.±,6π cm.a) 44,, erreur absolue de,5 e erreur relaive de, % b) 5,56, erreur absolue de,5 e erreur relaive de,9 % 4.a)

Plus en détail

B34 - Modulation & Modems

B34 - Modulation & Modems G. Pinson - Physique Appliquée Modulaion - B34 / Caracérisiques d'un canal de communicaion B34 - Modulaion & Modems - Définiions * Half Duplex ou simplex : ransmission un sens à la fois ; exemple : alky-walky

Plus en détail

Compensation des amétropies sphériques

Compensation des amétropies sphériques Compensation des amétropies sphériqes Principe de la compensation e verre compensater théoriqe (o verre correcter) de l'amétropie, placé devant l'œil, permet a sjet de voir net à l'infini sans accommoder.

Plus en détail

ELECTRICITE. Chapitre 10 Energie et puissance électrique. Analyse des signaux et des circuits électriques. Michel Piou

ELECTRICITE. Chapitre 10 Energie et puissance électrique. Analyse des signaux et des circuits électriques. Michel Piou ELECRICIE Analyse des sgnax e des crcs élecrqes Mchel Po Chapre Energe e pssance élecrqe Edon /3/4 able des maères POURQUOI E COMMEN?... ENERGIE ELECRIQUE ECHANGEE DANS UN DIPOLE..... Rappel sr le régme

Plus en détail

Chapitre III- 2- RÉGIME SINUSOÏDAL GÉNÉRALITÉS. 2π T II- GRANDEURS RELATIVES AU RÉGIME SINUSOÏDAL OBJECTIFS I- POURQUOI ÉTUDIER LE RÉGIME SINUSOÏDAL?

Chapitre III- 2- RÉGIME SINUSOÏDAL GÉNÉRALITÉS. 2π T II- GRANDEURS RELATIVES AU RÉGIME SINUSOÏDAL OBJECTIFS I- POURQUOI ÉTUDIER LE RÉGIME SINUSOÏDAL? OBJECTFS Chapre - - RÉGME SNSOÏDAL GÉNÉRALTÉS - Monrer l'mporance d régme snsoïdal en élecronqe e dans d'ares domanes. - Défnr les granders relaves à n sgnal snsoïdal. - Savor représener ne grander snsoïdale

Plus en détail

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2 Les soluions solides e les diagrammes d équilibre binaires 1. Les soluions solides a. Descripion On peu mélanger des liquides par exemple l eau e l alcool en oue proporion, on peu solubiliser un solide

Plus en détail

Nature de l information

Nature de l information Naure de l informaion PAGE : Siuaion : Parfois l informaion fournie par un capeur Tou Ou Rien (TOR) n es pas suffisane pour piloer l équipemen. Dans ce cas nous devons avoir recours à des capeurs e déeceurs

Plus en détail

Exercice du Gestion Financière à Court Terme «Cas FINEX Gestion du risque de taux d intérêt»

Exercice du Gestion Financière à Court Terme «Cas FINEX Gestion du risque de taux d intérêt» Exercice du Gesion Financière à Cour Terme «Cas FINEX Gesion du risque de aux d inérê» Ce cas raie des différens aspecs de la gesion du risque de aux d inérê liée à la dee d une enreprise : analyse d emprun,

Plus en détail

2 exercices corrigés d Electronique de puissance sur l onduleur

2 exercices corrigés d Electronique de puissance sur l onduleur 2 exercces corrgés d lecronqe de pssance sr l ondler xercce nd01 : ondler aonome n réalse le monage svan en lsan qare nerrpers élecronqes, fonconnan dex par dex : Le généraer de enson conne a ne f.e.m.

Plus en détail

FONCTIONS EXPONENTIELLES - FONCTIONS LOGARITHMES. lim e x = 0 et. x y

FONCTIONS EXPONENTIELLES - FONCTIONS LOGARITHMES. lim e x = 0 et. x y FONCTIONS EPONENTIELLES - FONCTIONS LOGARITHMES. D la foncion ponnill (d bas ) à la foncion logarihm népérin.. Théorèm La foncion ponnill (d bas ) s conin, sricmn croissan sr : = = + + Coninié La foncion

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

DEVOIR DE SYNTHESE N 1 SECTION TECHNIQUE

DEVOIR DE SYNTHESE N 1 SECTION TECHNIQUE LYCEE KHAZNADAR DEVOIR DE SYNTHESE N 1 Proposé par : MLAOUHI S & ABAAB T Disciplines echniques SECTION TECHNIQUE Consiuion du suje : un dossier echnique : pages 1/4 2/4 3/4 e 4/4 Des feuilles réponses

Plus en détail

Cahier technique n 114

Cahier technique n 114 Collecion Technique... Cahier echnique n 114 Les proecions différenielles en basse ension J. Schonek Building a ew Elecric World * Les Cahiers Techniques consiuen une collecion d une cenaine de ires édiés

Plus en détail

LES ALIMENTATIONS ELECTRIQUES SOMMAIRE. I) Généralités... 3. II) Les alimentations linéaires... 5 II.1) Schéma fonctionnel... 5

LES ALIMENTATIONS ELECTRIQUES SOMMAIRE. I) Généralités... 3. II) Les alimentations linéaires... 5 II.1) Schéma fonctionnel... 5 AMNAON CQ OMMA ) Généraliés... 3 ) es alimenaions linéaires... 5.1) chéma foncionnel... 5.2) ude de F1 : ransformaion ou abaissemen... 5.3) ude de F2 : edressemen.... 8.3.1) edressemen : Mono alernance....

Plus en détail

1ère partie : caractéristiques générales d'un signal périodique v(t) v V max

1ère partie : caractéristiques générales d'un signal périodique v(t) v V max G. Pinson - Physique Appliquée Signaux périodiques A3-P / A3 - Mesurage des signaux périodiques ère parie : caracérisiques générales d'un signal périodique () 3 + 4 sin 5 max pp DC (ms) min () Signal arian

Plus en détail

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION 2 IUT Blois Déparemen GTR J.M. Giraul, O. Bou Maar, D. Ceron M. Richard, P. Sevesre e M. Leberre. -TP- Modulaions digiales ASK - FSK IUT Blois Déparemen du Génie des Télécommunicaions e des Réseaux. Le

Plus en détail

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement Chapire 2 L invesissemen. Les principales caracérisiques de l invesissemen.. Définiion de l invesissemen Définiion générale : ensemble des B&S acheés par les agens économiques au cours d une période donnée

Plus en détail

Plan : : Les méthodes de codage numérique en

Plan : : Les méthodes de codage numérique en Plan : : Les méhodes de codage numérique en 3.1 Inroducion 3.2 Codages binaires 3.2.1 Codage NRZ (Non Reour à Zéro) 3.2.2 Codage biphasé ou (Mancheser) 3.2.3 Codage CMI (Code Mark Inversion) 3.3 Codages

Plus en détail

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t Annuiés I Définiion : On appelle annuiés des sommes payables à inervalles de emps déerminés e fixes. Les annuiés peuven servir à : - consiuer un capial ( annuiés de placemen ) - rembourser une dee ( annuiés

Plus en détail

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple

Plus en détail

1 Cours Sciences Physiques MP. Analyse de Fourier

1 Cours Sciences Physiques MP. Analyse de Fourier Cours Sciences Physiques MP Analyse de Fourier En 86, le physicien e mahémaicien français Joseph Fourier (768-83) éudiai les ransfers hermiques. En pariculier, il chauffai un endroi de la périphérie d

Plus en détail

Présentation groupe de travail

Présentation groupe de travail Présenaion groupe de ravail Sofiane Saadane jeudi 23 mai 2013 Résumé L aricle sur lequel on ravaille [LP09] présene un problème de bandi à deux bras comporan une pénalié. Nous commencerons par présener

Plus en détail

CHAPITRE III LA PREVISION

CHAPITRE III LA PREVISION CHAPITRE III LA PREVISION Prévoir ce qui va se passer dans le fuur es d'une imporance capiale pour la plupar des enreprises. En effe, la producion es selon le ype d'acivié un processus plus ou moins long,

Plus en détail

Dimensionnement des installations de chauffage

Dimensionnement des installations de chauffage Dimensionnemen es insallaions e chaffage Jean-Marie SEYNHAEVE Esimaion e la pissance hermiqe à insaller Logiqe e imensionnemen Déperiions calorifiqes (Norme NBN 62-003) («K55») Approche globale par raios

Plus en détail

budgétaire et extérieure

budgétaire et extérieure Insiu pour le Développemen des Capaciés / AFRITAC de l Oues / COFEB Cours régional sur la Gesion macroéconomique e les quesions de dee Dakar, Sénégal du 4 au 5 novembre 203 Séance S-4 : Souenabilié budgéaire

Plus en détail

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 +

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 + Universié Pierre e Marie Curie Licence de Mahéaiques Séries e inégrales généralisées - Approfondisseen (2M26) Janvier-Juin 25. Devoir Maison n o Exercice : Convergence e calcul d inégrales. Éudier la naure

Plus en détail

CHAPITRE 6 CONSOMMATION ET CALCUL INTERTEMPOREL : L HYPOTHESE DU REVENU PERMANENT

CHAPITRE 6 CONSOMMATION ET CALCUL INTERTEMPOREL : L HYPOTHESE DU REVENU PERMANENT icence Sciences Economiques 3ème année er semesre MICROECONOMIE APPROFONDIE ET CACU INTERTEMPORE CHAPITRE 6 CONSOMMATION ET CACU INTERTEMPORE : HYPOTHESE DU REVENU PERMANENT Vision simplifiée du schéma

Plus en détail

France : la consommation privée bridée par la faiblesse des revenus en sortie de crise

France : la consommation privée bridée par la faiblesse des revenus en sortie de crise N 150 21 juille 2010 France : la consommaion privée bridée par la faiblesse des revenus en sorie de crise La consommaion des ménages en France a neemen freiné depuis la crise financière. La récession qui

Plus en détail

SunSolutions MC. Votre guide sur les produits et les services de la Financière Sun Life du secteur des régimes de garanties collectives

SunSolutions MC. Votre guide sur les produits et les services de la Financière Sun Life du secteur des régimes de garanties collectives SnSolions MC Vore gide sr les prodis e les services de la Financière Sn Life d secer des régimes de garanies collecives La vie es pls radiese sos le soleil. Table des maières SnSolions...1 Solions de service...2

Plus en détail

FONCTIONS LOGIQUES I INTRODUCTION : II FONCTION LOGIQUE ET OPERATEUR BINAIRE : III DEFINITION ET REPRESENTATIONS D UN OPERATEUR BINAIRE :

FONCTIONS LOGIQUES I INTRODUCTION : II FONCTION LOGIQUE ET OPERATEUR BINAIRE : III DEFINITION ET REPRESENTATIONS D UN OPERATEUR BINAIRE : I INTRODUCTION : FONCTION LOGIQUE BT MI Variabl binair : L élcrochniqu, l élcroniqu, la mécaniqu éudin uilisn la variaion d grandurs physiqus lls qu la prssion, la forc, la nsion, c. Crains applicaions

Plus en détail

Panorama des méthodes de coûtenance

Panorama des méthodes de coûtenance Recherche en Managemen de Proje Panorama des méhodes de coûenance Pour réduire les coûs de vos projes e augmener vos marges, quelle méhode choisir? François GAGNÉ, FGF Consulan Les Renconres 2005 du Managemen

Plus en détail