a) Il n y a pas de contre indication à utiliser la loi normale. On peut donc utiliser des tests basés sur la loi normale comme ceux vus au cours.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "a) Il n y a pas de contre indication à utiliser la loi normale. On peut donc utiliser des tests basés sur la loi normale comme ceux vus au cours."

Transcription

1 Probabilités et statistique Été 2006 ELEC, MICRO, MX Dr. Diego Kuonen Corrigé du TP 2 Exercice 1. Test de Student Normal Q Q Plot Sample Quantiles a) Il n y a pas de contre indication à utiliser la loi normale. On peut donc utiliser des tests basés sur la loi normale comme ceux vus au cours. b) i) > t.test(compteurs, mu=1000, alternative= two.sided, conf.level=0.95) One Sample t-test data: compteurs t = , df = 9, p-value = alternative hypothesis: true mean is not equal to mean of x 994 1) 1ère ligne: indique quel type de test a été effectué, ici un test t sur un échantillon. 2) 2ème ligne: le nom des données, ici compteurs. 3) 3ème ligne: on voit la valeur de la statistique observée, t obs = x 1000 s/ 10 = , puis df signifie degrees of freedom, c est le paramètre de la loi t que suit la statistique T sous l hypothèse nulle H 0 : µ = µ 0. Ici df= n 1 = 10 1 = 9. Enfin il y a la p-valeur (cf cours), c est-à-dire que le niveau α de notre test doit être inférieur à ce nombre pour qu on ne rejette pas H 0. Ici α = 0.05 > donc l hypothèse H 0 est rejetée. 4) 4ème ligne: indique l hypothèse alternative H 1 : µ µ 0. 5) 5 et 6èmes lignes: donnent un intervalle de confiance de niveau conf.level (95%) pour la moyenne µ des données. Comme cet intervalle ne couvre pas µ 0 = 1000, on voit bien ici encore que H 0 est rejetée. 6) 7, 8 et 9èmes lignes: donnent l estimation de la moyenne x = 994.

2 ii) > t.test(compteurs, mu=1000, alternative= two.sided, conf.level=0.90) t = , df = 9, p-value = percent confidence interval: Ici on voit bien que seul l intervalle de confiance est modifié lorsque l on change conf.level. L intervalle ne couvre toujours pas 1000 donc l hypothèse nulle est à nouveau rejetée. On pouvait le savoir d avance puisque α = 0.1 est encore plus grand qu avant. iii) > t.test(compteurs, mu=1000, alternative= two.sided, conf.level=0.99) ************** 99 percent confidence interval: Comme prévu, ici α = 0.01 < donc H 0 est acceptée et l intervalle de confiance couvre la valeur c) Le niveau du test α est la probabilité de faire une erreur du type on rejette H 0 alors que H 0 est vraie. Donc diminuer α impose d être de plus en plus sûr que l on ne rejette pas H 0 alors que H 0 est vraie, ainsi on va accepter plus facilement H 0 (et donc l intervalle de confiance grandit) quitte à l accepter alors que c est H 1 qui est vraie. Exercice 2. Têtes de vis > t.test(tete2vis, mu=0.73, alternative= two.sided, conf.level=0.99) t = , df = 249, p-value = alternative hypothesis: true mean is not equal to percent confidence interval: mean of x L hypothèse nulle H 0 : µ = µ 0 = 0.73 est rejetée, selon cet échantillon les têtes de vis sont d un diamètre différent de Exercice 3. Test de Student apparié Ce test correspond au 6ème test du tableau qui a été distribué. > t.test(x=agneau[,1], y=agneau[,2], alternative= less, mu=0, paired=true, conf.level=0.95) Paired t-test data: agneau[, 1] and agneau[, 2] t = , df = 11, p-value = alternative hypothesis: true difference in means is less than 0 -Inf mean of the differences Les données ici sont appariées, on regarde donc la différence entre les deux régimes au sein de chaque paire d agneaux jumeaux, puis on teste si la moyenne de ces différences est nulle. Ici cela est indiqué 2

3 par la première ligne Paired t-test. Comme l indique la p-valeur (3ème ligne) de qui est plus petite que 0.05, l hypothèse nulle est rejetée et on accepte l hypothèse alternative le régime II est plus riche qui est donnée ici sous la forme true difference in means is less than 0 c est-à-dire la vraie différence des moyennes entre agneau[,1] et agneau[,2] est négative. Cela peut se voir également par le fait que 0 n est pas dans l intervalle de confiance. Noter également que l intervalle de confiance est infini à gauche comme le veut l hypothèse alternative (on fait un test unilatéral). Si, par exemple l hypothèse alternative avait été le régime I est plus riche que le II, l intervalle aurait été infini à droite, et si l hypothèse alternative avait été les deux régimes sont différents, l intervalle aurait été borné des deux côtés (comme dans les exercices précédents). Exercice 4. Une analyse de données Histogram of iqnd Histogram of iqd Frequence Frequence Meres non depressives Meres depressives QI des enfants de meres non depressives QI des enfants de meres depressives QQ plot normal des QI des enfants de meres non depressives QQ plot normal des QI des enfants de meres non depressives a) Les deux boxplots indiquent une valeur douteuse pour chaque jeu de données. Les lieux sont comparables, un peu en faveur de iqnd. La dispersion est semblable et la plus grande partie des valeurs est entre 80 et 145, disons. L histogramme de iqnd montre que sans la valeur extrême le jeu de données peut éventuellement bien s ajuster à une densité gaussienne. L histogramme iqd ne montre pas grand chose de clair, mettons cela sur le compte du nombre trop faible de données. Les QQ-plots normaux ne contre-indiquent pas l utilisation de la loi normale, si ce n est par ces deux valeurs très faibles. Encore une fois le faible nombre de données pour iqd impose la prudence pour ces conclusions. b) > t.test(iqnd, iqd, alternative= two.sided, mu=0, paired=false, conf.level=0.95) Welch Two Sample t-test 3

4 t = , df = , p-value = alternative hypothesis: true difference in means is not equal to mean of x mean of y Ce test (test sur la différence des moyennes pour des données non-appariées avec variances inconnues et différentes) est le 5ème de la feuille distribuée. Ici on accepte l hypothèse nulle car la p-valeur est plus grande que Donc selon ces échantillons, il n y a pas d effet de l état dépressif ou non d une mère sur le QI de son enfant. Note: df correspond à ν dans la feuille distribuée. c) > var.test(iqnd, iqd, ratio=1, alternative= two.sided, conf.level=0.95) F test to compare two variances F = , num df = 76, denom df = 13, p-value = alternative hypothesis: true ratio of variances is not equal to ratio of variances L hypothèse d égalité des variances est acceptée. d) On doit donc utiliser la deuxième ligne de code proposée. > t.test(iqnd, iqd, alternative= two.sided, mu=0, paired=false, var.equal=true, + conf.level=0.95) Two Sample t-test t = , df = 89, p-value = alternative hypothesis: true difference in means is not equal to mean of x mean of y On accepte à nouveau l hypothèse nulle. e) Dans ce cas, le fait d avoir retiré les valeurs supposées aberrantes ne change pas beaucoup les résultats, il n y a donc pas de grands débats à tenir. Si cela avait induit un rejet du test alors qu il avait été accepté auparavant il est du devoir de l ingénieur de motiver cette modification des données. Ces valeurs aberrantes sont-elles des erreurs de copie des données (auquel cas elles doivent être retirées), proviennent-elles de conditions particulières dans lesquelles l expérience s est déroulée (auquel cas rien n est sûr) ou sont-elles simplement des valeurs qui empêchent la conclusion voulue et que l on souhaiterait retirer (auquel cas c est de la manipulation malhonnête)? Une étude statistique ne peut que les révéler, pas décider pour vous de ce qu il faut en faire. 4

5 Exercice 5. Régression linéaire Il n y a pas grand chose à faire si ce n est observer les magnifiques résultats graphiques. Vitesse moyenne de marche Vitesse moyenne de marche Longueur des pas Longueur des pas 5

TESTS STATISTIQUES: COMPARAISON, INDÉPENDANCE ET RÉGRESSION LINÉAIRE

TESTS STATISTIQUES: COMPARAISON, INDÉPENDANCE ET RÉGRESSION LINÉAIRE TESTS STATISTIQUES: COMPARAISON, INDÉPENDANCE ET RÉGRESSION LINÉAIRE Les résultats donnés par R et SAS donnent les valeurs des tests, la valeur-p ainsi que les intervalles de confiance. TEST DE COMPARAISON

Plus en détail

Cours 8 Les tests statistiques

Cours 8 Les tests statistiques Cours 8 Les tests statistiques Intervalle de confiance pour une proportion Dans le cas de grands échantillons (np>5 et n(1-p)>5 ) l'intervalle de confiance au niveau (1- α ) est pour la proportion inconnue

Plus en détail

Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques

Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques Cours 7 : Exemples I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques Exemple 1 : On cherche à expliquer les variations de y par celles d une fonction linéaire de

Plus en détail

Débuter avec R. Maxime Hervé. UMR 1099 INRA Agrocampus Ouest Université Rennes 1 BiO3P. 28 avril 2011

Débuter avec R. Maxime Hervé. UMR 1099 INRA Agrocampus Ouest Université Rennes 1 BiO3P. 28 avril 2011 Débuter avec R Maxime Hervé UMR 1099 INRA Agrocampus Ouest Université Rennes 1 BiO3P 28 avril 2011 Maxime Hervé (UMR BiO3P) Débuter avec R 28 avril 2011 1 / 23 R, c est quoi? Trois caractéristiques importantes

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2 UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 Master d économie Cours de M. Desgraupes MATHS/STATS Document 4 : Les tests statistiques 1 Généralités sur les tests

Plus en détail

Statistique (MATH-F-315, Cours #3)

Statistique (MATH-F-315, Cours #3) Statistique (MATH-F-315, Cours #3) Thomas Verdebout Université Libre de Bruxelles 2015 Plan de la partie Statistique du cours 1. Introduction. 2. Théorie de l estimation. 3. Tests d hypothèses et intervalles

Plus en détail

Correction de l épreuve de Statistiques et Informatique appliquées à la Psychologie

Correction de l épreuve de Statistiques et Informatique appliquées à la Psychologie Université de Bretagne Occidentale Année Universitaire 2013-2014 U.F.R. de Lettres et Sciences Humaines CS 93837-29238 BREST CEDEX 3 Section : Psychologie - Licence 3è année Enseignant responsable : F.-G.

Plus en détail

Les statistiques en biologie expérimentale

Les statistiques en biologie expérimentale Les statistiques en biologie expérimentale Qualités attendues d une méthode de quantification : Le résultat numérique de la mesure permet d estimer avec précision la grandeur mesurée (ex. : il lui est

Plus en détail

Tests Non Paramétriques. J Gaudart, LERTIM, Faculté de Médecine Marseille 1

Tests Non Paramétriques. J Gaudart, LERTIM, Faculté de Médecine Marseille 1 Tests Non Paramétriques J Gaudart, LERTIM, Faculté de Médecine Marseille 1 Plan 1. Paramétriques ou non? 2. Test d'une distribution de probabilité 3. Comparaison de moyennes 4. Comparaison de pourcentages

Plus en détail

Traitement statistique. des petits échantillons. Application avec JMP - 3 jours (*)

Traitement statistique. des petits échantillons. Application avec JMP - 3 jours (*) Traitement statistique Application avec JMP - 3 jours (*) Référence : STA-N1-SPECHAJMP Durée : 3 jours soit 21 heures (*) : La durée proposée est une durée standard. Elle peut être adaptée selon les besoins,

Plus en détail

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq»

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Guy Perrière Pôle Rhône-Alpes de Bioinformatique 14 novembre 2012 Guy Perrière (PRABI) Tests statistiques 14 novembre 2012 1 / 40 Plan

Plus en détail

TD de statistique : tests du Chi 2

TD de statistique : tests du Chi 2 TD de statistique : tests du Chi 2 Jean-Baptiste Lamy 6 octobre 2008 1 Test du Chi 2 C est l équivalent de la comparaison de moyenne, mais pour les variables qualitatives. 1.1 Cas 1 : comparer les répartitions

Plus en détail

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50 10. Estimation MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: estimation 1/50 Plan 1. Introduction 2. Estimation ponctuelle 3. Estimation par intervalles de confiance 4. Autres

Plus en détail

Principe des tests statistiques : Application à la comparaison d une moyenne à une valeur de référence

Principe des tests statistiques : Application à la comparaison d une moyenne à une valeur de référence 1 / 57 Principe des tests statistiques : Application à la comparaison d une moyenne à une valeur de référence M-A Dronne 2016-2017 2 / 57 Introduction Remarques préliminaires Etablir un plan d expérience

Plus en détail

Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire

Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire Julien JACQUES Polytech Lille - Université Lille 1 Julien JACQUES (Polytech Lille) Statistiques de base 1 / 48 Plan 1 Tests

Plus en détail

ECGE 1224 - Statistiques en économie et gestion : TP 1

ECGE 1224 - Statistiques en économie et gestion : TP 1 ECGE 14 - Statistiques en économie et gestion : TP 1 Exercice 1 Un dé parfaitement équilibré est lancé. Soit X la variable aléatoire (v.a.) correspondant au résultat obtenu avec le dé. a) Justifer pourquoi

Plus en détail

4.1 Planification d une expérience complètement randomisée

4.1 Planification d une expérience complètement randomisée Chapitre 4 La validation des hypothèses d ANOVA à un facteur Dans le modèle standard d ANOVA, on a fait quelques hypothèses. Pour que les résultats de l analyse effectuée soient fiables, il est nécessaire

Plus en détail

DIU Infirmières de Santé au Travail - IDF. Service Central de Santé au Travail de l AP-HP PLAN DE COURS

DIU Infirmières de Santé au Travail - IDF. Service Central de Santé au Travail de l AP-HP PLAN DE COURS DIU Infirmières de Santé au Travail - IDF Faculté de Médecine Paris VII - Denis Diderot Mardi 7 juin 2016 STATISTIQUES EN SANTE AU TRAVAIL : NOTIONS ESSENTIELLES Service Central de Santé au Travail de

Plus en détail

Corrigé examen atelier de statistiques Cogmaster

Corrigé examen atelier de statistiques Cogmaster Corrigé examen atelier de statistiques Cogmaster Tous documents autorisés. Durée de l épreuve = 2h 1 Questions 1. La moyenne d un échantillon de 10 nombres distribués selon une loi normale centrée réduite

Plus en détail

distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position

distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position Arbre de NESI distribution quelconque Signe 1 échantillon distribution symétrique non gaussienne Wilcoxon gaussienne Student position appariés 1 échantillon sur la différence avec référence=0 2 échantillons

Plus en détail

Statistiques industrielles Management de la production et de la qualité

Statistiques industrielles Management de la production et de la qualité Statistiques industrielles Management de la production et de la qualité Francois.Kauffmann@unicaen.fr Université de Caen Basse-Normandie 12 novembre 2015 Francois.Kauffmann@unicaen.fr UCBN MSP 12 novembre

Plus en détail

INTRODUCTION A LA RECHERCHE QUANTITATIVE

INTRODUCTION A LA RECHERCHE QUANTITATIVE INTRODUCTION A LA RECHERCHE QUANTITATIVE Deuxième partie : de la base de données aux résultats Juin 2010 Julien Gelly, Caroline Huas, Josselin Le Bel Plan 2 1. Introduction 2. Saisie des données : Epi

Plus en détail

Cours 2 : Rappels de Statistique descriptive. A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle

Cours 2 : Rappels de Statistique descriptive. A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle Cours 2 : Rappels de Statistique descriptive A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle A- Introduction A- Introduction Rappel : Série statistique

Plus en détail

Université de Nantes UFR des Sciences et Techniques Département de Mathématiques. Master 1 Ingénierie mathématique Année 2012-2013

Université de Nantes UFR des Sciences et Techniques Département de Mathématiques. Master 1 Ingénierie mathématique Année 2012-2013 Université de Nantes UFR des Sciences et Techniques Département de Mathématiques Master 1 Ingénierie mathématique Année 2012-2013 TP 1: Statistique descriptive F. Lavancier, A. Philippe Le logiciel utilisé

Plus en détail

Validation d une méthode performante de dosage des steviols glycosides de Stevia Rebaudiana

Validation d une méthode performante de dosage des steviols glycosides de Stevia Rebaudiana Validation d une méthode performante de dosage des steviols glycosides de Stevia Rebaudiana J.M. Roussel, Consultant, Aix-en-Pce Prof. Dr. Gertrud Morlock, Chair of Food Science, JLU Giessen S. Meyer,

Plus en détail

Chapitre 8: Inférence, échantillonnage et estimation

Chapitre 8: Inférence, échantillonnage et estimation Chapitre 8: Inférence, échantillonnage et estimation 1. Echantillonnage aléatoire simple 2. Inférence statistique 3. Estimation 4. Evaluation graphique de l adéquation d un modèle de distribution 1 L inférence

Plus en détail

Master Biologie Intégrative Biostatistiques avancées. Travaux Dirigés n o 2

Master Biologie Intégrative Biostatistiques avancées. Travaux Dirigés n o 2 Master Biologie Intégrative 2017-2018 Biostatistiques avancées Responsable du cours : Yves Desdevises Travaux Dirigés n o 2 Corrigé Exercice 1 Les diamètres de branches de corail peuvent être mesurés de

Plus en détail

Introduction aux Statistiques et à l utilisation du logiciel R

Introduction aux Statistiques et à l utilisation du logiciel R Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil

Plus en détail

Chapitre 6 TESTS STATISTIQUES

Chapitre 6 TESTS STATISTIQUES Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 6 TESTS STATISTIQUES Les tests statistiques sont des méthodes de la statistique inférentielle qui, comme

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

8. Statistique descriptive

8. Statistique descriptive 8. Statistique descriptive MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: statistique descriptive 1/47 Plan 1. Introduction 2. Terminologie 3. Descriptions graphiques des

Plus en détail

2 Travail sur les données (3 points/40)

2 Travail sur les données (3 points/40) Examen pratique 03 octobre 2014 Durée 2H Les formulaires, les sujets et les programmes des TP sont autorisés. Les notes de cours et de TD, le livre ainsi que les calculatrices ne sont pas autorisés. Les

Plus en détail

Analyse des données 1: erreurs expérimentales et courbe normale

Analyse des données 1: erreurs expérimentales et courbe normale Analyse des données 1: erreurs expérimentales et courbe normale 1 Incertitude vs. erreur Une mesure expérimentale comporte toujours deux parties: la valeur vraie de la grandeur mesurée et l'erreur sur

Plus en détail

Statistiques descriptives Variance et écart type

Statistiques descriptives Variance et écart type Statistiques descriptives Variance et écart type I) Rappel : la moyenne (caractéristique de position ) Définition Soit la série statistique définie dans le tableau suivant : Valeur... Effectif... Fréquences

Plus en détail

«Cours Statistique et logiciel R»

«Cours Statistique et logiciel R» «Cours Statistique et logiciel R» Rémy Drouilhet (1), Adeline Leclercq-Samson (1), Frédérique Letué (1), Laurence Viry (2) (1) Laboratoire Jean Kuntzmann, Dép. Probabilites et Statistique, (2) Laboratoire

Plus en détail

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon PACES - APEMK UE 4 Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie

Plus en détail

Normalité des rendements?

Normalité des rendements? Normalité des rendements? Daniel Herlemont 31 mars 2011 Table des matières 1 Introduction 1 2 Test de Normalité des rendements 2 3 Graphiques quantile-quantile 2 4 Estimation par maximum de vraisemblance

Plus en détail

Informations importantes

Informations importantes Informations importantes Dernière semaine de cours (semaine du 12 au 16 décembre) Lundi 12 décembre, cours avec T. Mout en F111 (8h30-10h30: groupe1; 10h30-12h30: groupe 2): séance sur l examen de l an

Plus en détail

Analyse de la variance à un facteur

Analyse de la variance à un facteur Analyse de la variance à un facteur Frédéric Bertrand et Myriam Maumy-Bertrand IRMA, UMR 7501, Université de Strasbourg 08 juin 2015 F. Bertrand et M. Maumy-Bertrand (UdS) Analyse de la variance à un facteur

Plus en détail

11. Tests d hypothèses (partie 1/2)

11. Tests d hypothèses (partie 1/2) 11. Tests d hypothèses (partie 1/2) MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v1) MTH2302D: tests d hypothèses 1/30 Plan 1. Introduction 2. Hypothèses et erreurs 3. Tests d hypothèses

Plus en détail

Test de Poisson à 1 échantillon et à 2 échantillons

Test de Poisson à 1 échantillon et à 2 échantillons Test de Poisson à 1 échantillon et à 2 échantillons Sous-menus de Minitab 15 : Stat>Statistiques élémentaires>test de Poisson à 1 échantillon Stat>Statistiques élémentaires>test de Poisson à 2 échantillons

Plus en détail

Statistiques appliquées avec Geogebra

Statistiques appliquées avec Geogebra Université Claude Bernard Lyon-1 Stage PAF Statistiques appliquées avec Geogebra Anne Perrut Janvier 2014 2 Table des matières 1 Statistique descriptive à une variable 7 1.1 Variables quantitatives discrètes.........................

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2008/2009 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

Statistiques. IUT Biotechnologie 2ème année. Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008

Statistiques. IUT Biotechnologie 2ème année. Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008 Statistiques IUT Biotechnologie 2ème année Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008 version du 04 octobre 2008 Table des matières 1 Lois de probabilité usuelles 1 1.1 Dénombrement................................

Plus en détail

TESTS DE NORMALITE. qu elle est symétrique ) son moment centré d ordre 3 est nul 3 = 0. 3 estimé par c 3 =

TESTS DE NORMALITE. qu elle est symétrique ) son moment centré d ordre 3 est nul 3 = 0. 3 estimé par c 3 = TESTS DE NORMALITE Dans le chapitre précédent on a vu les propriétés nécessaires sur les erreurs pour que les coe cients des MCO soient les meilleurs. Dans la pratique bien sur ce ne sera pas toujours

Plus en détail

Statistiques des lois à queue régulière avec l application sur les perturbations des comètes

Statistiques des lois à queue régulière avec l application sur les perturbations des comètes Statistiques des lois à queue régulière avec l application sur les perturbations des comètes Shuyan LIU Université Paris - SAMM Youri DAVYDOV et Radu STOICA Université Lille - Laboratoire Paul Painlevé

Plus en détail

TP 3 : analyses statistiques

TP 3 : analyses statistiques TP 3 : analyses statistiques Exercice I : Le test de student Construire un vecteur (nommé X de 100 valeurs dont chaque élément est issu d une loi normale de moyenne nulle et de variance unitaire. Construire

Plus en détail

LE TRAITEMENT STATISTIQUE. I. Les types de traitements statistiques en fonction des questions-problèmes (QP)

LE TRAITEMENT STATISTIQUE. I. Les types de traitements statistiques en fonction des questions-problèmes (QP) LE TRAITEMENT STATISTIQUE I. Les types de traitements statistiques en fonction des questions-problèmes (QP) Dans une recherche, on se pose toujours une ou plusieurs questions qu'il s'agira de résoudre.

Plus en détail

Principes Pourcentage / Standard Moyenne / Standard. Tests d'hypothèse. Formation Fondamentale

Principes Pourcentage / Standard Moyenne / Standard. Tests d'hypothèse. Formation Fondamentale Tests d'hypothèse Formation Fondamentale Sommaire 1 Principes Généralités 2 Pourcentage par rapport à un standard 3 Moyenne par rapport à un standard Sommaire 1 Principes Généralités 2 Pourcentage par

Plus en détail

1 Retour sur le cours 3 Présentation de tableaux et graphiques Les mesures de tendance centrale Moyenne Mode (et classe modale) Médiane Les mesures de position Quartiles Déciles Mesures tendance centrale

Plus en détail

Statistiques I. Alexandre Caboussat alexandre.caboussat@hesge.ch Classe : Mercredi 8h15-10h00 Salle : C114 http://campus.hesge.

Statistiques I. Alexandre Caboussat alexandre.caboussat@hesge.ch Classe : Mercredi 8h15-10h00 Salle : C114 http://campus.hesge. Statistiques I Alexandre Caboussat alexandre.caboussat@hesge.ch Classe : Mercredi 8h15-10h00 Salle : C114 http://campus.hesge.ch/caboussata A. Caboussat, HEG STAT I, 2010 1 / 54 Rappel Représentations

Plus en détail

partie a Introduction à la statistique 1

partie a Introduction à la statistique 1 table des matières F AVANT-PROPOS À L ÉDITION AMÉRICAINE Abréviations viii xiv partie a Introduction à la statistique 1 1. Statistique et probabilité ne sont pas intuitives 3 Nous avons tendance à passer

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

TP 3 : STATISTIQUE PARAMÉTRIQUE

TP 3 : STATISTIQUE PARAMÉTRIQUE Statistique Numérique et Analyse de Données Ecole des Ponts ParisTech, 2 ème année TP 3 : STATISTIQUE PARAMÉTRIQUE La séance de TP se fait sous environnement Windows, sauf si vous avez une nette préférence

Plus en détail

LEHALLIER Benoît YGUEL Benjamin. Tutorial : Utilisation de R pour une modélisation optimale de phénomènes expérimentaux.

LEHALLIER Benoît YGUEL Benjamin. Tutorial : Utilisation de R pour une modélisation optimale de phénomènes expérimentaux. LEHALLIER Benoît YGUEL Benjamin Tutorial : Utilisation de R pour une modélisation optimale de phénomènes expérimentaux. ECIM Comportement et socialisation Mars 2006 La modélisation est utilisée pour comprendre

Plus en détail

Approche empirique du test χ 2 d ajustement

Approche empirique du test χ 2 d ajustement Approche empirique du test χ 2 d ajustement Alain Stucki, Lycée cantonal de Porrentruy Introduction En lisant des rapports, on rencontre souvent des raisonnements du style : «le premier groupe est meilleur

Plus en détail

Mathématiques pour les Sciences de la Vie CC3 Jeudi 4 juin 2015 Durée 60 minutes. Instructions. Identité. 3 4... Numéro d étudiant :

Mathématiques pour les Sciences de la Vie CC3 Jeudi 4 juin 2015 Durée 60 minutes. Instructions. Identité. 3 4... Numéro d étudiant : +//+ Mathématiques pour les Sciences de la Vie CC Jeudi juin Durée minutes Instructions Ce formulaire sera analysé par lecture optique, toute intervention manuelle rendue nécessaire par le non-respect

Plus en détail

ANALYSE : OUTIL D ANALYSE DE DONNEES POUR LES SCIENCES HUAMINES MANUEL DE L UTILISATEUR : PRISE EN MAIN

ANALYSE : OUTIL D ANALYSE DE DONNEES POUR LES SCIENCES HUAMINES MANUEL DE L UTILISATEUR : PRISE EN MAIN Pôle Informatique de Recherche et d Enseignement en Histoire ANALYSE : OUTIL D ANALYSE DE DONNEES POUR LES SCIENCES HUAMINES MANUEL DE L UTILISATEUR : PRISE EN MAIN A. PREMIER PAS 1. INTEGRATION DU TABLEAU

Plus en détail

Test de comparaison de deux modèles de régression non paramétriques basé sur les coefficients de Fourier

Test de comparaison de deux modèles de régression non paramétriques basé sur les coefficients de Fourier Test de comparaison de deux modèles de régression non paramétriques basé sur les coefficients de Fourier Zaher Mohdeb Université Mentouri Département de Mathématiques, Constantine, Algérie E-mail: zaher.mohdeb@umc.edu.dz

Plus en détail

Groupe : (h, k) ( 5, 12)

Groupe : (h, k) ( 5, 12) Fiche de soutien Les propriétés de la fonction racine carrée PROPRIÉTÉ FONCTION SOUS FORME CANONIQUE f(x) = a + k (ou f(x) = a 1 + k et a 1 = a ) EXEMPLE f(x) = 2 12 (ou f(x) = 6 12) Coordonnées du sommet

Plus en détail

S-Plus. Prise en main rapide

S-Plus. Prise en main rapide 1 S-Plus Prise en main rapide Rachid BOUMAZA INH Département ETIC rachid.boumaza@inh.fr AVANT-PROPOS Ce document n'est pas un manuel d'utilisation du logiciel S-Plus mais une invitation à aller découvrir

Plus en détail

1. Calculer: P(Z<1.34); P(Z<-1.72); P(Z>2.41); P(Z>-1.53); P(1.121.96)

1. Calculer: P(Z<1.34); P(Z<-1.72); P(Z>2.41); P(Z>-1.53); P(1.12<Z<1.57); P(- 0.75<Z<0.36); P( Z >1.96) EXERCICES SUR LA LOI NORMALE Exercice 1. Soit Z une V.A. de loi N(0,1). 1. Calculer: P(Z-1.53); P(1.12

Plus en détail

Essai de répétabilité et de reproductibilité : calculs à effectuer à la main pour comprendre la démarche générale.

Essai de répétabilité et de reproductibilité : calculs à effectuer à la main pour comprendre la démarche générale. 4. EXEMPLE N 4 Essai de répétabilité et de reproductibilité : calculs à effectuer à la main pour comprendre la démarche générale. 4.1. Objectif Le calcul de la répétabilité et de la reproductibilité implique

Plus en détail

Qualité Six Sigma. Sommaire. Sylvain ROZÈS. 28 mars 2008. 1 Introduction 1. 2 Étude séparée de quatre échantillons 1

Qualité Six Sigma. Sommaire. Sylvain ROZÈS. 28 mars 2008. 1 Introduction 1. 2 Étude séparée de quatre échantillons 1 Qualité Six Sigma Sylvain ROZÈS 28 mars 2008 Sommaire 1 Introduction 1 2 Étude séparée de quatre échantillons 1 3 Étude sur l ensemble des échantillons 8 4 Étude sur les range 13 1 Introduction Le but

Plus en détail

16. Comment introduire les valeurs prises par la variable SPORT pour les 30 premiers sujets introduits dans L2?

16. Comment introduire les valeurs prises par la variable SPORT pour les 30 premiers sujets introduits dans L2? T.P. 5 partie 1 Variable ordinale Calcul manuel de quantiles Utilisation des fonctions intégrées de la TI-84 Utilisation du programme D1 (Corrigé pour 30 cas) V. Prise en compte de 30 cas (pour éviter

Plus en détail

L analyse des données statistiques

L analyse des données statistiques L analyse des données statistiques Public : Les cadres devant analyser des données quantitatives et qualitatives Objectif : Apprendre, en utilisant principalement Excel : - à traiter des données provenant

Plus en détail

Statistique (MATH-F-315, Cours #1)

Statistique (MATH-F-315, Cours #1) Statistique (MATH-F-315, Cours #1) Thomas Verdebout Université Libre de Bruxelles 2015 Plan de la partie Statistique du cours 1. Introduction. 2. Théorie de l estimation. 3. Tests d hypothèses et intervalles

Plus en détail

Analyse de la variance à deux facteurs

Analyse de la variance à deux facteurs 1 1 IRMA, Université Louis Pasteur Strasbourg, France Master 1 Psychologie du développement 06-10-2008 Contexte Nous nous proposons d analyser l influence du temps et de trois espèces ligneuses d arbre

Plus en détail

Travaux dirigés - Régression linéaire simple: corrigé partiel Julien Chiquet et Guillem Rigaill 1er octobre 2015

Travaux dirigés - Régression linéaire simple: corrigé partiel Julien Chiquet et Guillem Rigaill 1er octobre 2015 Travaux dirigés - Régression linéaire simple: corrigé partiel Julien Chiquet et Guillem Rigaill 1er octobre 2015 Quelques révisions de R 1. Manipulation de vecteur. On rappelle que e x = k 0 Créer dans

Plus en détail

GUIDE D AIDE STATISTIQUE A LA PREPARATION DE LA THESE

GUIDE D AIDE STATISTIQUE A LA PREPARATION DE LA THESE Département Universitaire de Recherche et d Enseignement en Médecine Générale GUIDE D AIDE STATISTIQUE A LA PREPARATION DE LA THESE Enseignants : Esther GUERY, Julien LE BRETON, Emilie FERRAT, Jacques

Plus en détail

Exercices de Statistique

Exercices de Statistique Université Joseph Fourier, Grenoble I Licence Sciences et Technologies e année STA30 : Méthodes Statistiques pour la Biologie Exercices de Statistique http ://ljk.imag.fr/membres/bernard.ycart/sta30/ Chaque

Plus en détail

PREMIERE ANNEE COMMUNE DES ETUDES DE SANTE. Faculté de Médecine Lyon Est Année Universitaire 2010-2011 UE4. Epreuve du jeudi 16 décembre 2010

PREMIERE ANNEE COMMUNE DES ETUDES DE SANTE. Faculté de Médecine Lyon Est Année Universitaire 2010-2011 UE4. Epreuve du jeudi 16 décembre 2010 PREMIERE ANNEE COMMUNE DES ETUDES DE SANTE Faculté de Médecine Lyon Est Année Universitaire 2010-2011 UE4 Epreuve du jeudi 16 décembre 2010 Dr Claire BARDEL, Dr Marie-Aimée DRONNE, Dr Delphine MAUCORT-BOULCH

Plus en détail

Chapitre 7 Tests d hypothèse (partie 1)

Chapitre 7 Tests d hypothèse (partie 1) Chapitre 7 Tests d hypothèse (partie 1) I Qu est ce qu un test statistique? La philosophie est toujours la même : déterminer des informations sur une population à partir d informations sur un échantillon

Plus en détail

Test d indépendance de deux variables qualitatives (Chi2) Rapport de chances et Odds-ratio

Test d indépendance de deux variables qualitatives (Chi2) Rapport de chances et Odds-ratio Université Paris Ouest - Nanterre La Défense Master M1 SES Enquêtes et méthodes d analyses quantitatives A.K. FERMIN et C. Hardouin Test d indépendance de deux variables qualitatives (Chi2) Rapport de

Plus en détail

Tests statistiques élémentaires

Tests statistiques élémentaires Résumé Il serait vain de chercher à présenter l ensemble des tests statistiques, la littérature est très abondante sur le sujet. Cette vignette introduit les plus couramment calculés par les logiciels

Plus en détail

TP 2 : Modèle linéaire et ANOVA à 1 facteur Charlotte Baey 21 octobre 2016

TP 2 : Modèle linéaire et ANOVA à 1 facteur Charlotte Baey 21 octobre 2016 TP 2 : Modèle linéaire et ANOVA à 1 facteur Charlotte Baey 21 octobre 2016 Exercice 1 - théorème de Cochran et ANOVA à un facteur Dans cet exercice, on se propose d étudier le jeu de données sur les fleurs

Plus en détail

Influence des réglages d un appareil photographique

Influence des réglages d un appareil photographique Influence des réglages d un appareil photographique Ce document présente les résultats concernant l influence de différents réglages sur une image lors d une prise de vue par un appareil photographique.

Plus en détail

Analyses statistiques avec

Analyses statistiques avec Analyses statistiques avec Introduction et éléments de base M. Bailly-Bechet, adapté de J. R. Lobry, adapté de Deepayan Sarkar Biostatistiques & Bioinformatique (L2) Table des matières Premiers pas en

Plus en détail

Statistiques I: Séance informatique - Corrections

Statistiques I: Séance informatique - Corrections Haute Ecole de Gestion Automne 2010 Geneva School of Business Administration Mercredi 8h15-10h00 A. Caboussat, STAT I Statistiques I: Séance informatique - Corrections Part I Exercices sur Excel Problème

Plus en détail

TUTORAT UE 4 2015-2016 Biostatistiques Séance n 5 Semaine du 19/10/2015

TUTORAT UE 4 2015-2016 Biostatistiques Séance n 5 Semaine du 19/10/2015 TUTORAT UE 4 2015-2016 Biostatistiques Séance n 5 Semaine du 19/10/2015 Tests statistiques 2 M. Molinari. Séance préparée par Cécile JOURDAN, Charlotte SILVESTRE, Brice LAVABRE, Julie DUSSAUT, Mathilde

Plus en détail

Faire et analyser un graphique de Bland-Altman pour évaluer la concordance entre deux instruments ou plus

Faire et analyser un graphique de Bland-Altman pour évaluer la concordance entre deux instruments ou plus Faire et analyser un graphique de Bland-Altman pour évaluer la concordance entre deux instruments ou plus Par Marie-Pierre Sylvestre Contexte On désire comparer deux instruments qui mesurent le même concept.

Plus en détail

Les Meta-analyses. Sibilia Quilici. Université René Descartes Paris V Faculté de Pharmacie Master Science de la vie et de la santé 28/01/2014

Les Meta-analyses. Sibilia Quilici. Université René Descartes Paris V Faculté de Pharmacie Master Science de la vie et de la santé 28/01/2014 Les Meta-analyses Sibilia Quilici Université René Descartes Paris V Faculté de Pharmacie Master Science de la vie et de la santé 28/01/2014 Nombre de publication en méta-analyses 8000 7000 6000 5000 4000

Plus en détail

ETUDE DE LA RENTABILITE DES ENTREPRISES «PRIVEES VS PUBLIQUES»ALGERIENNES : TEST DE DIFFERENCE DE MOYENNE

ETUDE DE LA RENTABILITE DES ENTREPRISES «PRIVEES VS PUBLIQUES»ALGERIENNES : TEST DE DIFFERENCE DE MOYENNE ETUDE DE LA RENTABILITE DES ENTREPRISES «PRIVEES VS PUBLIQUES»ALGERIENNES : TEST DE DIFFERENCE DE MOYENNE Ali Nabil Belouard Université de Mhamed Bouguerra-Boumerdès Belouard_na@yahoo.fr Résumé: L objectif

Plus en détail

Pour utiliser les menus statistiques fournis par excel

Pour utiliser les menus statistiques fournis par excel Pour utiliser les menus statistiques fournis par excel Préalable: Dans Outils/Macro complémentaires, cocher si ce n'est pas déjà fait "utilitaires d'analyse": Partie 1 Analyse de variance A] Plan S n

Plus en détail

TP2 : ANALYSE DESCRIPTIVE MULTIVARIÉE

TP2 : ANALYSE DESCRIPTIVE MULTIVARIÉE Statistique Numérique et Analyse de Données Ecole des Ponts ParisTech, 2 ème année TP2 : ANALYSE DESCRIPTIVE MULTIVARIÉE Analyse des données de peintures de Rembrandt et de Van Gogh On se propose, à titre

Plus en détail

T.P. 8 - Exercice 1 Khi-Carré d ajustement (Corrigé)

T.P. 8 - Exercice 1 Khi-Carré d ajustement (Corrigé) T.P. 8 - Exercice 1 Khi-Carré d ajustement (Corrigé) Connaissances préalables : Buts spécifiques : Outils nécessaires : Consignes générales : Distribution de fréquences, proportions. Test d ajustement.

Plus en détail

Comment construire un diagramme de Henry avec Excel et comment l interpréter

Comment construire un diagramme de Henry avec Excel et comment l interpréter Comment construire un diagramme de Henry avec Ecel et comment l interpréter Kathy Chapelain et Emmanuel Grenier emmanuel.grenier@lasalle-beauvais.fr Relu par Henry P. Aubert, Jacques Goupy et Jacques Vaillé

Plus en détail

Chapitre 9: Introduction aux tests statistiques

Chapitre 9: Introduction aux tests statistiques Chapitre 9: Introduction aux tests statistiques 1. Approche 2. Formalisme général d un test statistique 3. P-value 4. Intervalle de confiance 5. Test bilatéral et test unilatéral 1 1. Approche Procédé

Plus en détail

Epi Info Analyse Univariée

Epi Info Analyse Univariée analyse data Importation des données read import Epi Info-analyse univariée 1 Type de fichier (excel, epi info ) Chemin d accès Si epi info : view, si excel : feuille nombre de patients Epi Info-analyse

Plus en détail

Chapitre 9 Section 9.1 Test d indépendance du khi-deux (c 2 )

Chapitre 9 Section 9.1 Test d indépendance du khi-deux (c 2 ) Chapitre 9 Section 9.1 Test d indépendance du khi-deux (c 2 ) page 154 Ariane Robitaille (Modifications par Eric T., A14, Joanie L., H14 et Marc-Élie Lapointe H15) 8.1 Relations entre les variables Ex.1

Plus en détail

STATISTICA Test d hypothèseshè

STATISTICA Test d hypothèseshè TEST D HYPOTHESES STATISTICA Test d hypothèseshè TEST D HYPOTHESES Les étapes : Problématique Revue de la littérature Formulation d une hypothèse théorique Construction de l expérience (méthodologie) Lister

Plus en détail

L analyse de la variance avec R commander

L analyse de la variance avec R commander L analyse de la variance avec R commander 19 mars 2014 1 Installer R Pour installer R, il vous suffit d aller sur le site http://www.r-project.org/. Choisissez un miroir pour le téléchargement. Sélectionner

Plus en détail

3 - Pratique des tests élémentaires

3 - Pratique des tests élémentaires Fiches de Biostatistique 3 - Pratique des tests élémentaires D. Chessel & A.B. Dufour Résumé La fiche met en évidence le raisonnement commun à tous les tests statistiques utilisés dans des conditions variées.

Plus en détail

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur

Plus en détail

Devoir de «Logiciels statistiques» à réaliser avec Commander

Devoir de «Logiciels statistiques» à réaliser avec Commander Devoir de «Logiciels statistiques» à réaliser avec Commander et R Pour réaliser cet exercice, commencez par les étapes suivantes. Respectez scrupuleusement les consignes sous peine de perte de données

Plus en détail

Introduction à l analyse quantitative

Introduction à l analyse quantitative Introduction à l analyse quantitative Vue d ensemble du webinaire Le webinaire sera enregistré. Les diapositives et tous les autres documents seront envoyés aux participants après la séance. La séance

Plus en détail

Université d Orléans - Licence Economie et Gestion Statistique Mathématique

Université d Orléans - Licence Economie et Gestion Statistique Mathématique Université d Orléans - Licence Economie et Gestion tatistique Mathématique C. Hurlin. Correction du Contrôle de Décembre 9 Exercice Barème : 6 points. Ratio de harpe et tests paramétriques Question préliminaire

Plus en détail

Principe des Tests Statistiques

Principe des Tests Statistiques Principe des Tests Statistiques Vocabulaire & Notions Générales Marc AUBRY Plateforme Transcriptome Biogenouest Rennes Askatu Les Étapes d un Test Statistique Question scientifique Choix d un test statistique

Plus en détail

Enquête.sba Procédure Tableaux croisés

Enquête.sba Procédure Tableaux croisés Enquête.sba Procédure Tableaux croisés Tris croisés p. 27 «Cette procédure est conçue pour le calcul et l édition massive de tableaux croisés. On obtient à partir de cette procédure des tableaux de contingence,

Plus en détail