ACTIVITÉS. Droites remarquables du triangle. 1 Carte d identité CHAPITRE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "ACTIVITÉS. Droites remarquables du triangle. 1 Carte d identité CHAPITRE"

Transcription

1 HPTRE 10 Droites remarquables du triangle TVTÉS 1 arte d identité À partir d un même triangle, et à l aide d un logiciel de géométrie, Philippe a réalisé ces quatre constructions. Fig. 1 Fig. 2 Fig. 3 Fig HPTRE 10 DRTES REMRQULES DU TRNGLE

2 TVTÉS 1. ndiquer à quelle figure correspond chacune des affirmations suivantes : a. «J ai tracé la droite qui partage l angle en deux angles de même mesure.» b. «J ai tracé la perpendiculaire à () passant par le milieu de [].» c. «J ai tracé la perpendiculaire à () passant par le point.» d. «J ai tracé le segment qui joint au milieu de [].» 2. a. ssocier chacun des mots médiatrice, hauteur, bissectrice à l une des figures. b. La figure qui n a pas été sélectionnée à la question a peut être associée au mot médiane. En déduire comment on peut définir une médiane dans un triangle. 3. a. Réaliser des constructions du même type que celles de Philippe à l aide d un logiciel de géométrie ou sur papier à l aide des instruments habituels de géométrie. b. llustrer chacune des constructions obtenues à la question a en utilisant l un des mots suivants : médiatrice, hauteur, bissectrice ou médiane. 2 Les trois médiatrices a Médiatrice et distance Voici une façon de procéder pour construire la médiatrice du segment []. La droite (J) est la médiatrice du segment []. J J 1. Que sait-on : a. du point d intersection de la droite (J) et du segment []? b. des droites (J) et ()? 2. Soit M un point quelconque de la droite (J). omparer les distances M et M. b Dans un triangle 1. Tracer un triangle et les médiatrices des côtés [] et []. Elles se coupent en. 2. Pourquoi a-t-on? Pourquoi a-t-on? 3. Déduire de la question 2 que : a. le cercle de centre qui passe par passe aussi par et par ; b. la médiatrice du segment [] passe aussi par. HPTRE 10 DRTES REMRQULES DU TRNGLE 179

3 TVTÉS 3 Les trois hauteurs 1. Soit un triangle. onstruire la droite perpendiculaire à () qui passe par, comme indiqué ci-dessous. Le résultat de cette question est démontré à l exercice 63, p n dit que la droite () est la hauteur du triangle issue de. ombien y a-t-il de hauteurs dans un triangle? 3. a. Tracer un triangle tel que 70 et 50. onstruire toutes les hauteurs de ce triangle. Quelle constatation peut-on faire? b. Reprendre la question a avec 120 et Les trois bissectrices 1. Pour tracer la bissectrice d un angle, il suffit de construire les sommets d un losange à l aide d un compas (voir figure 1). En pratique, on ne construit que des arcs de cercle (voir figure 2). y y M M x x Le résultat de cette question est admis sans démonstration. Fig. 1 Fig. 2 La figure obtenue présente une symétrie. ndiquer laquelle. 2. onstruire un triangle et les bissectrices des trois angles, et. Que constate-t-on? 3. n note le point d intersection des trois bissectrices obtenu à la question 2. Tracer la perpendiculaire au côté [] issue de. Elle coupe [] en M. Procéder de même pour les côtés [] et []. n obtient ainsi les points N sur [] et P sur []. 4. a. omparer en les mesurant les longueurs M, N et P. b. Tracer le cercle qui passe par M, N et P. À la vue du dessin, indiquer si ce cercle coupe chaque côté du triangle en plusieurs points. 180 HPTRE 10 DRTES REMRQULES DU TRNGLE

4 TVTÉS 5 Les trois médianes 1. À l aide d un logiciel de géométrie, ou sur une feuille de papier, tracer un triangle. Placer les milieux M, N et P des côtés [], [] et [] comme sur la figure cidessous. Tracer les médianes [M], [N] et [P]. Que constate-t-on? 2. Soit G le point d intersection des médianes obtenu à la question 1. a. Recopier le tableau suivant et le compléter à l aide d un double décimètre ou du logiciel de géométrie : G... GM... G... G M... G GN... G G N... GP... G... G.... GP... Les résultats de cette question sont démontrés à l exercice 64, p.194. b. Parmi les affirmations suivantes, indiquer celles qui paraissent correspondre aux résultats du tableau précédent : G est situé aux 3 de chaque médiane en partant du sommet ; 4 G est situé à la moitié de chaque médiane en partant du sommet ; G est situé aux 2 de chaque médiane en partant du sommet ; 3 G est situé au tiers de chaque médiane en partant du milieu du côté ; GM 1 3 G ; GM 1 3 M ; G 1 2 GP. HPTRE 10 DRTES REMRQULES DU TRNGLE 181

5 retenir le cours 1 Médiatrices DÉFNTN La médiatrice d un segment est la droite perpendiculaire à ce segment en son milieu. est un axe de symétrie du segment. PRPRÉTÉ La médiatrice d un segment est la droite constituée de tous les points qui sont à égale distance des extrémités de ce segment. M est un point de la médiatrice de []. M M M. M M. NLUSN NLUSN M est sur la médiatrice de []. THÉRÈME Les médiatrices des côtés d un triangle sont concourantes. Leur point d intersection est le centre du cercle circonscrit à ce triangle. (d ) (d ) (d), (d ) et (d ) sont les médiatrices des côtés du triangle. NLUSN (d), (d ) et (d ) sont concourantes en un point. est le centre du cercle circonscrit au triangle. 2 Hauteurs DÉFNTN Dans un triangle, on appelle hauteur une droite qui passe par un sommet et qui est perpendiculaire au côté opposé. K EXEMPLE (H) est la hauteur du triangle issue du sommet. (K) est la hauteur du triangle issue du sommet. H 182 HPTRE 10 DRTES REMRQULES DU TRNGLE

6 retenir le cours THÉRÈME Les trois hauteurs d un triangle sont concourantes. Leur point d intersection est appelé orthocentre de ce triangle. (d ) H (d ) (d), (d ) et (d ) sont les hauteurs du triangle. NLUSN (d), (d ) et (d ) sont concourantes en un point H. H est l orthocentre du triangle. 3 issectrices DÉFNTN La bissectrice d un angle est la droite qui le partage en deux angles de même mesure. est l axe de symétrie de l angle. x y THÉRÈME Les trois bissectrices d un triangle sont concourantes. Leur point d intersection est le centre du cercle inscrit dans ce triangle. (d ) (d ), (d ) et (d ) sont les bissectrices des angles du triangle. NLUSN, (d ) et (d ) sont concourantes en un point. est le centre du cercle inscrit dans le triangle. 4 Médianes DÉFNTN Dans un triangle, on appelle médiane un segment qui joint un sommet au milieu du côté opposé. EXEMPLE Le segment [] est la médiane du triangle issue de. REMRQUE n dit aussi que la droite () est la médiane issue de. HPTRE 10 DRTES REMRQULES DU TRNGLE 183

7 retenir le cours THÉRÈME Les trois médianes d un triangle sont concourantes. Leur point d intersection est appelé centre de gravité de ce triangle. l est situé aux deux tiers de chaque médiane à partir du sommet. K G J [], [J] et [K] sont les trois médianes du triangle. NLUSN Les trois médianes sont concourantes en un point G. G 2 3. G 2 3 J. G 2 3 K. 5 Triangles particuliers a Triangle isocèle PRPRÉTÉ Dans un triangle isocèle, la hauteur, la bissectrice et la médiane issues du sommet principal sont confondues avec la médiatrice du côté opposé. b Triangle équilatéral PRPRÉTÉ Dans un triangle équilatéral, le centre du cercle circonscrit, l orthocentre, le centre du cercle inscrit et le centre de gravité sont confondus. 184 HPTRE 10 DRTES REMRQULES DU TRNGLE

8 savoir démontrer savoir démontrer ÉNNÉ n considère un triangle. Le point E est le pied de la perpendiculaire à () issue de. D est le pied de la perpendiculaire à () issue de. (D) et (E) sont sécantes en H. Démontrer que (H) et () sont perpendiculaires. Première étape Je lis l énoncé u brouillon, je note les données : E H STUE Je reproduis la figure sur une feuille volante afin de l avoir toujours sous les yeux quand j écris mes réponses! D Je note le but de la question : (H) (). Deuxième étape Je recherche Je reconnais une configuration du cours : Je l adapte au problème : Deux hauteurs d un triangle suffisent pour connaître la position de la troisième hauteur. Troisième étape Je rédige J énonce les données utiles : D après les données, (E) et (D) sont deux hauteurs du triangle. Elles se coupent en H. Je cite le théorème utilisé : Dans un triangle, les hauteurs sont concourantes. Je conclus : H est donc l orthocentre du triangle et (H) est sa troisième hauteur. Donc (H) est perpendiculaire à (). HPTRE 10 DRTES REMRQULES DU TRNGLE 185

9 choisir les outils choisir les outils Exercice 1 Reconnaître le centre du cercle inscrit et utiliser une de ses propriétés Dans le triangle PS représenté ci-contre, les droites () et (S) sont les bissectrices des angles PS et PS. De plus, PS 76. alculer PS. S P 76 Solution Le point est le point d intersection des bissectrices de deux angles du triangle PS. Les trois bissectrices des angles d un triangle sont concourantes, donc la bissectrice du troisième angle passe aussi par. La droite (P) est la bissectrice de l angle PS. ommentaires Les bissectrices de deux angles du triangle suffisent à déterminer le centre du cercle inscrit et à connaître la position de la troisième bissectrice. Donc PS 1 2 PS. omme , on conclut : PS Exercice 2 Reconnaître le centre de gravité et utiliser une de ses propriétés G J Dans le triangle représenté ci-contre, on donne 33 mm et G 30 mm. alculer G et J. Solution D après le codage de la figure, [] et [J] sont deux médianes du triangle. Donc leur point d intersection G est le centre de gravité du triangle. e point est situé aux deux tiers de chaque médiane à partir du sommet. G donc G 22 mm. 3 Par ailleurs, G 2 3 J donc J. n multiplie chaque membre de l égalité par 3 et on 2 obtient : ommentaires Le codage indique que est le milieu de [] et que J est le milieu de []. Deux médianes d un triangle suffisent pour connaître la position du centre de gravité. n utilise une propriété du centre de gravité d un triangle J. D où finalement 45 J, autrement dit J 45 mm. n utilise l égalité pour chercher la valeur de J. 186 HPTRE 10 DRTES REMRQULES DU TRNGLE

exercices travail autonome

exercices travail autonome travail autonome 1 On considère les quatre figures suivantes : 6 On considère les quatre figures suivantes : R R R T Fig. 1 Fig. 2 (d) R T Fig. 1 Fig. 2 T Fig. 3 Fig. 4 À l aide du codage des figures,

Plus en détail

CHAPITRE IV. Utiliser la définition de la médiatrice d un segment ainsi que la caractérisation de ses points par la propriété d équidistance ( )

CHAPITRE IV. Utiliser la définition de la médiatrice d un segment ainsi que la caractérisation de ses points par la propriété d équidistance ( ) HPITRE IV TRINGLES OMPÉTENES ÉVLUÉES DNS E HPITRE : (T : compétences transversales, N : activités numériques, G : activités géométriques, F : gestion de données et fonctions) Intitulé des compétences Eval.1

Plus en détail

Thème N 2 : FIGURES PLANES (1)

Thème N 2 : FIGURES PLANES (1) Thème N 2 : FGURES PLNES (1) NTTN L EMNSTRTN TRNGLE ET RTES PRLLELES (1) : RTE ES MLEUX la fin du thème, tu dois savoir : Notion de émonstration : onnaître les Règles du débat mathématiques Savoir donner

Plus en détail

COURS : LA SYMÉTRIE AXIALE

COURS : LA SYMÉTRIE AXIALE HPTRE 7 OURS : L SYMÉTRE XLE Extrait du programme de la classe de Sixième : ONTENU Symétrie orthogonale par rapport à une droite (symétrie axiale) OMPÉTENES EXGLES -onstruire le symétrique d un point,

Plus en détail

Volume RESUME DE COURS DE MATHEMATIQUES. Copyright Ben. Troisième. Programme 1999

Volume RESUME DE COURS DE MATHEMATIQUES. Copyright Ben. Troisième. Programme 1999 Volume 2 RESUME DE OURS DE MTHEMTIQUES. opyright en. Troisième Programme 1999 introduction : e résumé, second du nom, a été conçu en tant qu'assistant pour les élèves de quatrième et de troisième. Il regroupe

Plus en détail

Triangles. I - Définition du triangle. II - Somme des angles d un triangle

Triangles. I - Définition du triangle. II - Somme des angles d un triangle Triangles Un chapitre complet sur les triangles. Ne pensez pas que puisqu il n y a qu un mot dans le titre, il sera court, au contraire. Beaucoup de nouvelles notions vont être énoncées dans ce cours sur

Plus en détail

DES ANGLES. Les angles des dessins suivants présentent des particularités. Mesure-les et indique ces particularités

DES ANGLES. Les angles des dessins suivants présentent des particularités. Mesure-les et indique ces particularités DES NGLES Les angles des dessins suivants présentent des particularités. Mesure-les et indique ces particularités Les deux droites sont sécantes en O... Deux droites sont parallèles...... est un triangle

Plus en détail

En mathématiques, pour savoir si un énoncé est vrai ou faux, on utilise certaines règles. En voici quelques-unes :

En mathématiques, pour savoir si un énoncé est vrai ou faux, on utilise certaines règles. En voici quelques-unes : 1. Les règles du débat mathématique En mathématiques, pour savoir si un énoncé est vrai ou faux, on utilise certaines règles. En voici quelques-unes : (1) Un énoncé mathématique est soit vrai, soit faux

Plus en détail

11 Géométrie. dans l espace. Chapitre

11 Géométrie. dans l espace. Chapitre hapitre éométrie dans l espace e chapitre reprend prolonge le travail fait en collège en géométrie dans l espace Les activités de conjecture de démonstration de construction de figures sont poursuivies

Plus en détail

3 ème Programme de révisions pour le brevet blanc travail à effectuer pendant les vacances d hiver, à votre rythme, pour être prêt fin mars.

3 ème Programme de révisions pour le brevet blanc travail à effectuer pendant les vacances d hiver, à votre rythme, pour être prêt fin mars. 3 ème Programme de révisions pour le brevet blanc travail à effectuer pendant les vacances d hiver, à votre rythme, pour être prêt fin mars. Trigonométrie : n 11 p : 201 ; n 45 p : 205 ; n 48 p : 205 ;

Plus en détail

QUADRILATÈRES PARTICULIERS

QUADRILATÈRES PARTICULIERS hapitre 8 QURLTÈRES PRTULERS - REOMMNTONS. NTROUTON l s'agit de consolider les connaissances acquises en 6e sur les parallélogrammes particuliers (rectangle, losange, carré) et le trapèze, et de les approfondir

Plus en détail

Du triangle au carré, en trois coups de ciseaux

Du triangle au carré, en trois coups de ciseaux PEP Dans nos classes 191 Du triangle au carré, en trois coups de ciseaux Jean-Pierre Friedelmeyer (*) Premier défi : En trois coups de ciseaux, découper un triangle quelconque en quatre morceaux qui, réarrangés,

Plus en détail

Géométrie synthétique : Juillet 2005 (première série) Nom. Question 3 : (25%) Numéro

Géométrie synthétique : Juillet 2005 (première série) Nom. Question 3 : (25%) Numéro Géométrie synthétique : Juillet 2005 (première série) Question 3 : (25%) On donne dans le même plan, un point fixe F, et un cercle fixe de centre O et de rayon R. Par F, on mène une droite qui intersecte

Plus en détail

Formulaire : Toute la Géométrie du Collège 2 nde

Formulaire : Toute la Géométrie du Collège 2 nde Formulaire : Toute la Géométrie du Collège nde Comment trouver la propriété dont vous avez besoin? Grâce à la table des matières bien sûr!! Table des matières I. Rappels sur la logique et les démonstrations

Plus en détail

RAPPELS DE GÉOMETRIE (sans didactique)

RAPPELS DE GÉOMETRIE (sans didactique) RPPELS DE GÉOMETRIE (sans didactique) Des animations avec applets java illustrant différentes parties de ce document sont disponibles à cette adresse : http://dpernoux.free.fr/expe1/anim.htm Les constructions

Plus en détail

La médiatrice d un segment

La médiatrice d un segment EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que

Plus en détail

Plusieurs façons de tracer deux parallèles CM1-CM2

Plusieurs façons de tracer deux parallèles CM1-CM2 Plusieurs façons de tracer deux parallèles CM1-CM2 Séance 1 : l écart constant entre deux droites parallèles donner une définition fonctionnelle du parallélisme de deux droites ; exhiber un procédé de

Plus en détail

Construction de la bissectrice d un angle

Construction de la bissectrice d un angle onstruction de la bissectrice d un angle 1. Trace un angle. 1. 2. Trace un angle cercle. de centre (le sommet de l angle) et de rayon quelconque. 1. 2. 3. Trace Le cercle un angle cercle coupe. de la demi-droite

Plus en détail

Chapitre 12 : Périmètres et aires

Chapitre 12 : Périmètres et aires hapitre 12 : Périmètres et aires Périmètres et aires par comptage 1 ire et périmètre par dénombrement Périmètres de figures usuelles 3 étermine, à l'aide de ta règle graduée, le périmètre de chacune des

Plus en détail

Deuxième épreuve d admission. Exemples de sujets

Deuxième épreuve d admission. Exemples de sujets Deuxième épreuve d admission. Exemples de sujets Thème : probabilités 1) On lance deux dés équilibrés à 6 faces et on note la somme des deux faces obtenues. 1.a) Donner un univers associé cette expérience.

Plus en détail

Pb de longueurs : reporter, mesurer. Cercle : propriétés d'équidistance. Géogebra : cercle et longueurs définies

Pb de longueurs : reporter, mesurer. Cercle : propriétés d'équidistance. Géogebra : cercle et longueurs définies séquence 2 Décrire et construire : éléments de base de la géométrie, cercle et vocabulaire, règle et compas, programmes et problèmes de construction. Initiation geogebra séquence 4 Pb de longueurs : reporter,

Plus en détail

Sommaire de la séquence 1

Sommaire de la séquence 1 Sommaire de la séquence 1 Séance 1...................................................................................................... 7 Je construis des triangles...................................................................................

Plus en détail

Repérage et configurations du plan

Repérage et configurations du plan I Repères et coordonnées a) Repères Définition : (O ;I,J) est un repère du plan. Il est constitué d un triplet de points non alignés. O est appelé origine du repère La droite graduée (O ;I) est l axe des

Plus en détail

CHAPITRE 4 PARALLÉLISME ET PERPENDICULARITÉ

CHAPITRE 4 PARALLÉLISME ET PERPENDICULARITÉ lasse de sixième HPITRE 4 PRLLÉLISME ET PERPENDIULRITÉ Parallélisme et perpendicularité Page 1 lasse de sixième 4.1. Sécantes et parallèles 4.2. Droites perpendiculaires 4.3. Propriétés M1 : Les propriétés.

Plus en détail

Vecteurs Translation et rotation

Vecteurs Translation et rotation HPTR 10 Vecteurs Translation et rotation bjectifs Établir une relation entre les vecteurs et la translation. onstruire un représentant du vecteur somme à l aide d un parallélogramme. onstruire et caractériser

Plus en détail

Démonstration des propriétés géométriques du plan niveau collège

Démonstration des propriétés géométriques du plan niveau collège Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est

Plus en détail

LES TICE EN GEOMETRIE DE L ESPACE : LOGICIELS 3D OU LOGICIELS 2D?

LES TICE EN GEOMETRIE DE L ESPACE : LOGICIELS 3D OU LOGICIELS 2D? François LMEZ Irem de Paris 7, équipe DIDIREM Résumé : u moment où se met en place l épreuve pratique de mathématiques au baccalauréat en section S, il est légitime de comparer l apport des logiciels 2D

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Définition : Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui

Plus en détail

Fiches méthode SOMMAIRE

Fiches méthode SOMMAIRE Fiches méthode Tableur (LibreOffice) SOMMAIRE 1. Saisir une formule dans une cellule page 2 2. Recopier une formule sur plusieurs cellules page 2 3. Créer une liste de nombres page 5 4. Trier une liste

Plus en détail

Une demi droite est limitée d un côté et illimitée de l autre

Une demi droite est limitée d un côté et illimitée de l autre I La demi-droite Une demi droite est limitée d un côté et illimitée de l autre Le point A s appelle l origine de la demi-droite. On la note [AB) ou [Ax). (B est un point de la demi-droite mais pas x qui

Plus en détail

Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3. Déroulement de l animation :

Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3. Déroulement de l animation : Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3 Déroulement de l animation : - 0] Préambule (30 min) a) Introduction b) Programme du cycle 3 - I] Première prise

Plus en détail

Triangle rectangle : Cercle circonscrit et médiane

Triangle rectangle : Cercle circonscrit et médiane Triangle rectangle : Cercle circonscrit et médiane I) Vocabulaire 1) Hypoténuse Définition : Dans un triangle rectangle le côté opposé à l angle droit est appelé hypoténuse. 2) Hauteurs, médianes, médiatrices

Plus en détail

Diplôme National du Brevet. Épreuve blanche Proposition de corrigé. Externat Notre Dame

Diplôme National du Brevet. Épreuve blanche Proposition de corrigé. Externat Notre Dame Diplôme National du Brevet Épreuve blanche Proposition de corrigé Externat Notre Dame Vendredi 9 décembre 2011 durée de l'épreuve : 2 h I - Activités numériques II - Activités géométriques III Problème

Plus en détail

TRIANGLE RECTANGLE. Chapitre 10. Triangle rectangle et cercle circonscrit Triangle rectangle et médiane

TRIANGLE RECTANGLE. Chapitre 10. Triangle rectangle et cercle circonscrit Triangle rectangle et médiane hapitre 10 TNGL TNGL Triangle rectangle et cercle circonscrit Triangle rectangle et médiane «git -Prop-Tram #2» de Dennis John shbaugh, 1974 TVTÉ TNGL TNGL T L NT TVTÉ 1 Dans un triangle rectangle oit

Plus en détail

Programme de 5 ème en mathématiques

Programme de 5 ème en mathématiques Programme de 5 ème en mathématiques 1. PRIORITE DES OPERATIONS ; DISTRIBUTIVITE 3 I. Suite d opérations sans parenthèses 3 II. Suites d opérations avec parenthèses 4 III. Ecritures avec des lettres 5 IV.

Plus en détail

Durée de l épreuve : 2 heures

Durée de l épreuve : 2 heures Ö ãú Ø Ð âò åò ÙâÑ Ö Ó½µ åñ Øá ãñ Ø Õ Ù ê ãñ Ö ¾¼½ Ó Ð Ð Â Ù Ð Ø Ø Ó Ù Durée de l épreuve : 2 heures L usage de la calculatrice est autorisé ucun prêt de matériel (calculatrice, compas, règle, équerre

Plus en détail

Bissectrices. Daniel Perrin

Bissectrices. Daniel Perrin Bissectrices Daniel Perrin Introduction Le but de ce texte est d essayer de donner une référence fiable sur la question des bissectrices, pour traiter notamment l exposé de CAPES intitulé Droites remarquables

Plus en détail

Des exemples de situations de primaire éclairant l élaboration de situations : liaison CM2/6 e

Des exemples de situations de primaire éclairant l élaboration de situations : liaison CM2/6 e Des exemples de situations de primaire éclairant l élaboration de situations : liaison CM2/6 e SOMMAIRE I Les programmes et les différences de conditions pédagogiques II La géométrie dans le plan III La

Plus en détail

Triangle inscrit dans un carré Aire maximale d'un triangle

Triangle inscrit dans un carré Aire maximale d'un triangle Des situations menant à des problèmes d'optimisation : calculs d'aires avec GéoPlan. Triangle inscrit dans un carré Aire maximale d'un triangle Sommaire 1. Triangle inscrit dans un carré 2. Triangle équilatéral

Plus en détail

OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES

OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES ACADÉMIE DE RENNES SESSION 2005 CLASSE DE PREMIERE DURÉE : 4 heures Le sujet s adressait à tous les élèves de première quelle que soit leur série. Il comportait

Plus en détail

Exercice 6 : Brevet des Collèges - Orléans-Tours - 94 L unité est le cm. Exercice 7 : Brevet des Collèges - Antilles-Guyane - 92

Exercice 6 : Brevet des Collèges - Orléans-Tours - 94 L unité est le cm. Exercice 7 : Brevet des Collèges - Antilles-Guyane - 92 THM : THLS T S RIPROQU XRIS xercice n 1 : revet des ollèges - ix-marseille - 1993 On considère la figure ci-après telle que les droites () et () sont parallèles, et telle que : = 3 = 7 = 4 = 4 L'unité

Plus en détail

Activité 2 : Parallélogramme et centre de symétrie

Activité 2 : Parallélogramme et centre de symétrie ctivités ctivité 1 : Les quadrilatères a. omment appelles-tu des figures géométriques qui ont plusieurs côtés? rois côtés? Quatre côtés? b. Quatre élèves ont nommé la igure 1. Quels sont ceux qui se sont

Plus en détail

DIPLÔME NATIONAL DU BREVET

DIPLÔME NATIONAL DU BREVET DIPLÔME NATIONAL DU BREVET SESSION 2012 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L ÉPREUVE : 2 h 00 Coefficient 2 Le candidat répondra sur une copie Éducation Nationale. Ce sujet comporte 7 pages numérotées

Plus en détail

Une axiomatisation du plan euclidien

Une axiomatisation du plan euclidien Nicole opp Strasbourg, avril 2007 Une axiomatisation du plan euclidien Le but de ce texte est de montrer comment on peut axiomatiser le plan euclidien d une manière qui se rapproche, autant que faire se

Plus en détail

a) Effectuer les calculs suivants et donner les résultats sous la forme de fractions irréductibles : C = 7 36 R = 36 4 (2 5)²

a) Effectuer les calculs suivants et donner les résultats sous la forme de fractions irréductibles : C = 7 36 R = 36 4 (2 5)² ème Fiches Révisions revet lanc 1/8 Puissances, Fractions : Effectuer les calculs suivants (donner l écriture scientifique de et écrire sous forme d un entier ou d une fraction). 1 = 15 x 10- x (10 ) 4

Plus en détail

1 S Le produit scalaire Exercices. Diverses expressions du produit scalaire et calcul de grandeurs.

1 S Le produit scalaire Exercices. Diverses expressions du produit scalaire et calcul de grandeurs. S e produit scalaire Eercices Diverses epressions du produit scalaire et calcul de grandeurs. Eercice. est un triangle et I est le milieu de []. Données : I 6, I I et I. alculer : ) (introduire le point

Plus en détail

Parallélogrammes. Cette construction futuriste a été réalisée dans le port de. Histoire des arts : l architecture

Parallélogrammes. Cette construction futuriste a été réalisée dans le port de. Histoire des arts : l architecture 10 Parallélogrammes istoire des arts : l architecture expression du chapitre ette construction futuriste a été réalisée dans le port de ambourg en llemagne en 2005. es architectes ont imaginé l immeuble

Plus en détail

Fonctions. Fonctions linéaires, affines et constantes

Fonctions. Fonctions linéaires, affines et constantes linéaires, affines et constantes 1. linéaires Comme il existe une infinité de fonctions différentes, on les classe par catégories. La première catégorie est constituée par les fonctions linéaires. Une

Plus en détail

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME 2012 FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME NOUS VOUS PRESENTONS ICI UN FORMULAIRE CONTENANT LES DEFINITIONS, PROPRIETES ET THEOREMES VUS EN COURS DE MATHEMATIQUES TOUT AU LONG DE VOTRE SCOLARITE

Plus en détail

4. Géométrie analytique du plan

4. Géométrie analytique du plan GÉOMÉTRIE ANALYTIQUE DU PLAN 35 4. Géométrie analytique du plan 4.1. Un peu d'histoire René Descartes (La Haye en Touraine, 31/3/1596 - Stockholm, 11/2/1650) La géométrie analytique est une approche de

Plus en détail

Test de sélection du 4 juin 2013

Test de sélection du 4 juin 2013 Test de sélection du 4 juin 2013 Vous étiez 270 candidat-e-s à ce test de sélection, et 62 d entre vous (23%) participeront au stage olympique de Montpellier, du 19 au 29 août 2013, dont 12 filles : la

Plus en détail

Il suffit de tracer deux médiatrices pour obtenir le centre du cercle circonscrit..

Il suffit de tracer deux médiatrices pour obtenir le centre du cercle circonscrit.. Correction-Exercices sur les droites remarquables 1. Construire un triangle ABC tel que AB = 5cm, BC = 6cm et AC= 8 cm et le cercle circonscrit à ce triangle Il suffit de tracer deux médiatrices pour obtenir

Plus en détail

ÉPREUVE EXTERNE COMMUNE CE1D 2010

ÉPREUVE EXTERNE COMMUNE CE1D 2010 NOM : Prénom : Classe : MINISTÈRE DE LA COMMUNAUTÉ FRANÇAISE ÉPREUVE EXTERNE COMMUNE CE1D 2010 Mathématiques Livret 1 Pour cette première partie : la calculatrice est interdite tu auras besoin de ton matériel

Plus en détail

Le tricercle de Mohr

Le tricercle de Mohr Sujet 1 Épreuve pratique de mathématiques en troisième Fiche élève Le tricercle de Mohr On considère un segment [AB] tel que AB = 10 cm et un point C quelconque du segment [AB]. Soit 1 le demi-cercle de

Plus en détail

Tracer des carrés. faut connaître la mesure du côté de chaque carré. Pour chaque carré, mesure un côté ou compte les carreaux.

Tracer des carrés. faut connaître la mesure du côté de chaque carré. Pour chaque carré, mesure un côté ou compte les carreaux. Unité 20 Tracer des carrés Reconnaître, décrire, nommer et reproduire, tracer des figures géométriques : carré, rectangle, losange, triangle rectangle. Construire un carré ou un rectangle de dimensions

Plus en détail

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

a. Avec la règle et l équerre : La médiatrice d une segment [AB] est la droite (d) perpendiculaire à ce segment et passant par son milieu.

a. Avec la règle et l équerre : La médiatrice d une segment [AB] est la droite (d) perpendiculaire à ce segment et passant par son milieu. :.. 6 - TR - SYTR XL URS STRUT L TR U ST []. a. vec la règle et l équerre : La médiatrice d une segment [] est la droite perpendiculaire à ce segment et passant par son milieu.. n mesure le segment []

Plus en détail

GLOSSAIRE MATHÉMATIQUE

GLOSSAIRE MATHÉMATIQUE Chapitre 9 - GM GLOSSAIRE MATHÉMATIQUE EN GÉOMÉTRIE DE L'ESPACE GM_01 règle GM_02 GM_03 GM_04 GM_05 GM_06 GM_07 tourne GM_08 GM_09 GM_10 GM_11 plan GM_12 GM_13 GM_14 GM_15 GM_16 GM_17 GM_18 Dessin schématisant

Plus en détail

Cours de mathématiques pour la classe de Sixième

Cours de mathématiques pour la classe de Sixième Cours de mathématiques pour la classe de Sixième Anne Craighero - Florent Girod 1 Année scolaire 2014 / 2015 1. Externat Notre Dame - Grenoble Table des matières 1 Nombres décimaux 4 I lire et écrire des

Plus en détail

Mathématiques Logiciel de géométrie: GeoGebra. GeoGebra. Mode d'emploi

Mathématiques Logiciel de géométrie: GeoGebra. GeoGebra. Mode d'emploi Mathématiques Logiciel de géométrie: GeoGebra GeoGebra Avant propos: Mode d'emploi Dans les programmes officiels de Mathématiques, un élève doit savoir utiliser un logiciel de géométrie pour construire

Plus en détail

Courbes représentatives de fonctions

Courbes représentatives de fonctions Courbes représentatives de fonctions I) Définitions. Soit une fonction définie sur un intervalle, à valeurs dans. 1) Graphe de la fonction. a) Définition. Le graphe de la fonction est l ensemble des couples

Plus en détail

COURS : LONGUEURS & PÉRIMÈTRES

COURS : LONGUEURS & PÉRIMÈTRES HPITRE 3 OURS : LONGUEURS & PÉRIMÈTRES Extrait du programme de la classe de Sixième : ONTENU Longueurs, masses, durées Médiatrice d un segment OMPÉTENES EXIGILES Effectuer, pour les longueurs et les masses,

Plus en détail

Mathématiques en Seconde. David ROBERT

Mathématiques en Seconde. David ROBERT Mathématiques en Seconde David ROERT 2011 2012 Sommaire 1 Translation Vecteurs 1 1.1 Translation......................................................... 1 1.1.1 Définition.....................................................

Plus en détail

38 Triangle. 1 - Par pliage, marque quatre droites. Combien de triangles peux-tu compter?

38 Triangle. 1 - Par pliage, marque quatre droites. Combien de triangles peux-tu compter? .M.1 38 Triangle 1 - Par pliage, marque quatre droites. ombien de triangles peux-tu compter? Trois droites qui se coupent déterminent un triangle. La quatrième droite recoupe les trois autres aux points,,.

Plus en détail

BREVET BLANC DES 5 et 6 février 2004 Corrigé MATHEMATIQUES

BREVET BLANC DES 5 et 6 février 2004 Corrigé MATHEMATIQUES Collège LANGEVIN WALLON BREVET BLANC DES et 6 février 004 Corrigé MATHEMATIQUES PARTIE I : ACTIVITES NUMERIQUES (1 points) Exercice I :1 1. En faisant apparaître les différentes étapes de calcul, écrire

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges POLYNÉSIE Juin 2014 Durée : 2h00 Calculatrice autorisée Toutes les réponses doivent être justifiées, sauf si une indication contraire est donnée. Pour chaque

Plus en détail

Tableau comparatif des connaissances et capacités des programmes de CM2 et 6ème

Tableau comparatif des connaissances et capacités des programmes de CM2 et 6ème Lundi Matin - «Comparatif des programmes de CM2 et 6 ème» Page 1 Tableau comparatif des connaissances et capacités des programmes de CM2 et 6ème CM2 6 ème Plus tard... Vocabulaire divers Le vocabulaire

Plus en détail

Mathématiques Complément et synthèse I

Mathématiques Complément et synthèse I Définition du domaine d'examen MAT-4- Mathématiques Complément et synthèse I Mise à jour novembre 004 Définition du domaine d'examen MAT-4- Mathématiques Complément et synthèse I Mise à jour novembre 004

Plus en détail

Éléments de solution. Concours René Merckhoffer

Éléments de solution. Concours René Merckhoffer Éléments de solution Concours René Merckhoffer Exercice Course poursuite Une course à pied d un type nouveau a été créée récemment. Les coureurs partent tous en même temps et n'ont pas de ligne d'arrivée

Plus en détail

OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2012. Série S

OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2012. Série S CLASSES DE PREMIERES GÉNÉRALES ET TECHNOLOGIQUES OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 01 Durée : 4 heures Série S Les calculatrices sont autorisées. Ce sujet comporte 4 exercices

Plus en détail

Secondes Devoir commun de mathématiques n 1

Secondes Devoir commun de mathématiques n 1 Classe : Secondes Devoir commun de mathématiques n 1 Janvier 2014 Sujet : A Durée : 2 heures -Calculatrice autorisée Nom : Prénom : Note : Eercice 1 (sur 9 points) y 4 3 2 On donne la représentation graphique

Plus en détail

Question 1 : Nous allons proposer une résolution de l'exercice par deux méthodes :

Question 1 : Nous allons proposer une résolution de l'exercice par deux méthodes : Introduction : Le problème présente plusieurs résolutions possibles et amène les élèves à prendre l'initiative de résoudre cet exercice avec la méthode de leur choix. Le but est d'optimiser une fonction.

Plus en détail

Problèmes à propos des nombres entiers naturels

Problèmes à propos des nombres entiers naturels Problèmes à propos des nombres entiers naturels 1. On dispose d une grande feuille de papier, on la découpe en 4 morceaux, puis on déchire certains morceaux (au choix) en 4 et ainsi de suite. Peut-on obtenir

Plus en détail

TOP SECRET. Réservés aux élèves de la classe de 6 ème 3

TOP SECRET. Réservés aux élèves de la classe de 6 ème 3 TOP SECRET Réservés aux élèves de la classe de 6 ème 3 Étude d une œuvre de Piet Mondrian La mission qui vous est confiée : Reproduire une œuvre de Piet Mondrian à l aide du logiciel GeoGebra sur le salon

Plus en détail

TRAVAUX DIRIGÉS DE O 3

TRAVAUX DIRIGÉS DE O 3 TRVUX DIRIGÉS DE O 3 Exercice : Constructions graphiques Pour chacune des figures, déterminer la position de l objet ou de son image par la lentille mince. Les points situés sur l axe optique sont les

Plus en détail

D après une idée originale dans «Les maths au quotidien» M.Colonval et A.Roumadni éd. Ellipses

D après une idée originale dans «Les maths au quotidien» M.Colonval et A.Roumadni éd. Ellipses LES ABEILLES D après une idée originale dans «Les maths au quotidien» M.Colonval et A.Roumadni éd. Ellipses 1. Présentation de la trame : Recherche et synthèse d infos Notion d optimisation Intérêt et

Plus en détail

Chapitre n 10 : «Les triangles»

Chapitre n 10 : «Les triangles» Chapitre n 10 : «Les triangles» I. Rappels Vocabulaire A, B et C sont les sommets. [ AB], [ BC ] et [ AC ] sont les trois côtés du triangle. BAC, BCA et ABC sont les trois angles du triangle. Le point

Plus en détail

Travaux pratiques en classe de Seconde

Travaux pratiques en classe de Seconde ANNÉE SCOLAIRE 2010-2011 Travaux pratiques en classe de Seconde DIDIER PIHOUÉ Table des matières TP n 1 : Conjecture et preuve..................................... 2 TP n 2 : Équations de droites.....................................

Plus en détail

Concours de recrutement de professeurs des écoles Exemple de sujet : épreuve écrite de mathématiques

Concours de recrutement de professeurs des écoles Exemple de sujet : épreuve écrite de mathématiques Concours de recrutement de professeurs des écoles Exemple de sujet : épreuve écrite de mathématiques À compter de la session 2014, les épreuves du concours sont modifiées. L arrêté du 19 avril 2013, publié

Plus en détail

1 Extrait du DNB Juin 2014 3ème

1 Extrait du DNB Juin 2014 3ème Exemples d activités et extraits d évaluations Pour chacune des évaluations et activités suivantes, 1 résoudre le problème et anticiper les différentes démarches que les élèves pourraient envisager 2 déterminer,

Plus en détail

MINISTERE DE LA COMMUNAUTE FRANÇAISE ÉPREUVE EXTERNE COMMUNE CE1D 2010. Mathématiques. Livret 1. Mme Cochez-ARU2 Page 1/19

MINISTERE DE LA COMMUNAUTE FRANÇAISE ÉPREUVE EXTERNE COMMUNE CE1D 2010. Mathématiques. Livret 1. Mme Cochez-ARU2 Page 1/19 MINISTERE DE LA COMMUNAUTE FRANÇAISE ÉPREUVE EXTERNE COMMUNE CE1D 2010 Mathématiques Livret 1 Mme Cochez-ARU2 Page 19 ATTENTION Pour cette première partie : la calculatrice est interdite tu auras besoin

Plus en détail

Théorème de Thalès et sa réciproque Rappel : signification de «réciproque»

Théorème de Thalès et sa réciproque Rappel : signification de «réciproque» Théorème de Thalès et sa réciproque Rappel : signification de «réciproque» «Si un bâtiment a un clocher alors ce bâtiment est une église» la réciproque est vraie «Si un bâtiment est une église alors ce

Plus en détail

VECTEURS-TRANSLATIONS. «La direction de l aiguille aimantée» Sens : ( n.m. ) Direction, orientation «Aller en sens contraire» Petit Larousse

VECTEURS-TRANSLATIONS. «La direction de l aiguille aimantée» Sens : ( n.m. ) Direction, orientation «Aller en sens contraire» Petit Larousse THEME : VECTEURS-TRANSLATIONS DEfinitions - Proprietes Notion de direction et de sens : Direction ( n.f. ) Orientation vers un point donné «La direction de l aiguille aimantée» Sens : ( n.m. ) Direction,

Plus en détail

L17 : Médiatrice d un segment.

L17 : Médiatrice d un segment. L17 : édiatrice d un segment. édiatrice d un segment : Définition : La médiatrice d un segment [] est la droite (d) perpendiculaire à ce segment et passant par son milieu. d Construction d une médiatrice

Plus en détail

Correction du Brevet Blanc de Mathématiques - Mai 2014

Correction du Brevet Blanc de Mathématiques - Mai 2014 Correction du Brevet Blanc de Mathématiques - Mai 014 Exercice 1 Amérique du Sud 01 3 points Cet exercice est un questionnaire à choix multiple (QCM). Pour chaque ligne du tableau trois réponses sont proposées,

Plus en détail

(2) 1 Côté du carré par rapport au rayon du disque :

(2) 1 Côté du carré par rapport au rayon du disque : Cet article est rédigé par des élèves. Il peut comporter des oublis et imperfections, autant que possible signalés par nos relecteurs dans les notes d'édition. La géométrie de Pierre Année 01-014 LEGENDRE

Plus en détail

Mathématiques niveau CFG

Mathématiques niveau CFG Mathématiques niveau CFG Chapitre 4 : Géométrie COURS 4 : QUADRILATERES 1. IDENTIFIER UN QUADRILATERE ABCD est une figure géométrique formée de 4 côtés et de 4 sommets : c est un quadrilatère Le segment

Plus en détail

ESTIMER UNE PENTE. Groupe MPS, IREM de Grenoble. Figure 1 Le skieur peut-il traverser cette pente neigeuse? Comment estimer son inclinaison?

ESTIMER UNE PENTE. Groupe MPS, IREM de Grenoble. Figure 1 Le skieur peut-il traverser cette pente neigeuse? Comment estimer son inclinaison? ESTIMER UNE PENTE Groupe MPS, IREM de Grenoble Ce document est à mettre en relation avec le thème des Avalanches proposé dans le diaporama. Il est destiné aux professeur(e)s. Il contient des propositions

Plus en détail

Ressources pour l école élémentaire

Ressources pour l école élémentaire Ressources pour l école élémentaire éduscol Mathématiques Progressions pour le cours élémentaire deuxième année et le cours moyen Ces documents peuvent être utilisés et modifiés librement dans le cadre

Plus en détail

CHAPITRE 3 Repères, points et droites

CHAPITRE 3 Repères, points et droites CHAPITRE 3 Repères, points et droites A) Repères et coordonnées des points 1) Repères Pour représenter le plan en géométrie analytique, on a besoin de définir deux axes, qu'on appelle axe des abscisses

Plus en détail

Chapitre 10 Géométrie dans l espace. Table des matières. Chapitre 10 Géométrie dans l espace TABLE DES MATIÈRES page -1

Chapitre 10 Géométrie dans l espace. Table des matières. Chapitre 10 Géométrie dans l espace TABLE DES MATIÈRES page -1 hapitre 10 Géométrie dans l espace TLE DES MTIÈRES page -1 hapitre 10 Géométrie dans l espace Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

Le nombre chromatique du plan

Le nombre chromatique du plan Le nombre chromatique du plan Cet article est le résultat d un travail mené dans le cadre d un atelier MATh.en.JEANS par des élèves des Lycées Montaigne de Bordeaux et Sud Médoc du Taillan-Médoc durant

Plus en détail

SÉQUENCE 5. Séance 1. Séquence 5. Je révise mes acquis 1) 3 (aa + a2) 3 (a² + 2a) 6a 3 2) 1 700 17 17 100 17 1 17 100 + 17 1 1 683

SÉQUENCE 5. Séance 1. Séquence 5. Je révise mes acquis 1) 3 (aa + a2) 3 (a² + 2a) 6a 3 2) 1 700 17 17 100 17 1 17 100 + 17 1 1 683 Séquence 5 c SÉQUENCE 5 Séance 1 Ce que tu devais faire Je révise mes acquis 3 (aa + a 3 (a² + a) 3 (a² + a) 6a 3 1 700 17 17 100 17 1 17 100 + 17 1 1 683 3) 10 3,9 64,35 5,35 (16,5 6,5) 3,9 3,9 (16,5

Plus en détail

Mathématiques et Philosophie en classe de seconde

Mathématiques et Philosophie en classe de seconde Mathématiques et Philosophie en classe de seconde Intervention du Professeur de mathématiques. Effectif de la classe : 34 élèves. Intervention : quinze heures en alternance avec le cours de Philosophie.

Plus en détail

2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A

2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 013 Lectures graphiques (9 points) Les parties sont indépendantes Partie A Tous les clients d un petit restaurant ont opté pour la formule

Plus en détail

Mathice 2 2008/2009. On veut étudier l existence d un minimum pour la longueur du pli créé, comme pour l aire de la partie repliée.

Mathice 2 2008/2009. On veut étudier l existence d un minimum pour la longueur du pli créé, comme pour l aire de la partie repliée. Expérimenter, conjecturer, démontrer Un devoir qui ne fait pas un pli! Fiche professeur I.Présentation de l activité Problème ouvert : On plie une feuille de format A4 en ramenant le coin inférieur droit

Plus en détail

Diplôme National du Brevet Brevet Blanc n 1

Diplôme National du Brevet Brevet Blanc n 1 Janvier 2011 Diplôme National du Brevet Brevet Blanc n 1 MATHÉMATIQUES Série Collège DURÉE DE L'ÉPREUVE : 2 h 00 L usage de la calculatrice est autorisé Le candidat remettra sa copie, accompagnée des documents

Plus en détail

DESSIN. Le point. La ligne CONCEPTS DE BASE SUR LA FORME

DESSIN. Le point. La ligne CONCEPTS DE BASE SUR LA FORME DESSIN CONCEPTS DE BASE SUR LA FORME Le point En géométrie, un point est le plus petit élément constitutif de l'espace géométrique, c'est-à-dire un lieu au sein duquel on ne peut distinguer aucun autre

Plus en détail

CORRECTION DU BREVET BLANC ---- MAI 2010 1 PARTIE : ACTIVITES NUMERIQUES

CORRECTION DU BREVET BLANC ---- MAI 2010 1 PARTIE : ACTIVITES NUMERIQUES CORRECTION DU BREVET BLANC ---- MAI 010 4 points sont attribués pour la qualité de la rédaction, le soin et la présentation. points correspondent au soin et à la propreté, ils sont proportionnels à la

Plus en détail

CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ECOLES

CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ECOLES Ministère de l'éducation nationale Session 2008 MAT-08-PG3 Repère à reporter sur la copie CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ECOLES Mercredi 30 avril 2008 - de 8h 30 à 11h 30 Deuxième épreuve d'admissibilité

Plus en détail