Partie 1 - Séquence 3 Original d une fonction

Dimension: px
Commencer à balayer dès la page:

Download "Partie 1 - Séquence 3 Original d une fonction"

Transcription

1 Partie - Séquence 3 Original d une fonction Lycée Victor Hugo - Besançon - STS 2

2 I. Généralités

3 I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t) = L [F(p)].

4 I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t) = L [F(p)]. Exemple La fonction p 2 p 3 admet pour original la fonction t t2 U (t).

5 I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t) = L [F(p)]. Exemple La fonction p 2 p 3 admet pour original la fonction t t2 U (t). Remarque On admet que si l original existe alors il est unique.

6 I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t) = L [F(p)]. Exemple La fonction p 2 p 3 admet pour original la fonction t t2 U (t). Remarque On admet que si l original existe alors il est unique. L application L est appelée transformation de Laplace inverse.

7 I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t) = L [F(p)]. Exemple La fonction p 2 p 3 admet pour original la fonction t t2 U (t). Remarque On admet que si l original existe alors il est unique. L application L est appelée transformation de Laplace inverse. On admet que l application L est linéaire, ce qui sera très utile pour la recherche d originaux.

8 II. Recherche d originaux

9 II. Recherche d originaux D une manière générale, la recherche d originaux s apparente à celle de la recherche de primitives, on utilise principalement :

10 II. Recherche d originaux D une manière générale, la recherche d originaux s apparente à celle de la recherche de primitives, on utilise principalement : Le tableau des transformées de Laplace des fonctions usuelles.

11 II. Recherche d originaux D une manière générale, la recherche d originaux s apparente à celle de la recherche de primitives, on utilise principalement : Le tableau des transformées de Laplace des fonctions usuelles. Le théorème du retard.

12 II. Recherche d originaux D une manière générale, la recherche d originaux s apparente à celle de la recherche de primitives, on utilise principalement : Le tableau des transformées de Laplace des fonctions usuelles. Le théorème du retard. L effet de la multiplication par e at.

13 II. Recherche d originaux D une manière générale, la recherche d originaux s apparente à celle de la recherche de primitives, on utilise principalement : Le tableau des transformées de Laplace des fonctions usuelles. Le théorème du retard. L effet de la multiplication par e at. Des décompositions de fractions en éléments simples.

14 II. Recherche d originaux D une manière générale, la recherche d originaux s apparente à celle de la recherche de primitives, on utilise principalement : Le tableau des transformées de Laplace des fonctions usuelles. Le théorème du retard. L effet de la multiplication par e at. Des décompositions de fractions en éléments simples. La mise sous forme canonique de polynômes du second degré.

15 III. Exemples

16 III. Exemples Exemple Calculons l original de F(p) = 3 p 5 2p 2 + p p 2 +4

17 III. Exemples Exemple Calculons l original de F(p) = 3 p 5 2p 2 + p p 2 +4 On reconnait une somme de transformées de Laplace connues.

18 III. Exemples Exemple Calculons l original de F(p) = 3 p 5 2p 2 + p p 2 +4 On reconnait une somme de transformées de Laplace connues. L original de F est la fonction t ( 3+

19 III. Exemples Exemple Calculons l original de F(p) = 3 p 5 2p 2 + p p 2 +4 On reconnait une somme de transformées de Laplace connues. L original de F est la fonction t ( t+

20 III. Exemples Exemple Calculons l original de F(p) = 3 p 5 2p 2 + p p 2 +4 On reconnait une somme de transformées de Laplace connues. L original de F est la fonction t (3+ 52 t+ cos(2t) ) U (t)

21 III. Exemples Exemple Calculons l original de F(p) = 3 p 5 2p 2 + p p 2 +4 On reconnait une somme de transformées de Laplace connues. L original de F est la fonction t (3+ 52 t+ cos(2t) ) U (t)

22 Exemple 2 Calculons l original de F(p) = 3 p 3 p p 2 +9

23 Exemple 2 Calculons l original de F(p) = 3 p 3 p p 2 +9 On reconnaît une somme de transformées de Laplace connues.

24 Exemple 2 Calculons l original de F(p) = 3 p 3 p p 2 +9 On reconnaît une somme de transformées de Laplace connues. L original de F est la fonction t ( 3 2 t2 +

25 Exemple 2 Calculons l original de F(p) = 3 p 3 p p 2 +9 On reconnaît une somme de transformées de Laplace connues. L original de F est la fonction t ( 3 2 t t5 +

26 Exemple 2 Calculons l original de F(p) = 3 p 3 p p 2 +9 On reconnaît une somme de transformées de Laplace connues. L original de F est la fonction t ( 3 2 t2 + ) 20 t5 + sin(3t) U (t)

27 Exemple 2 Calculons l original de F(p) = 3 p 3 p p 2 +9 On reconnaît une somme de transformées de Laplace connues. L original de F est la fonction t ( 3 2 t2 + ) 20 t5 + sin(3t) U (t)

28 Exercice Calculer l original de F(p) = p + 2p 2 2(p 2 +2)

29 Exercice Calculer l original de Solution On sait que L [ p F(p) = p + 2p 2 2(p 2 +2) ] =

30 Exercice Calculer l original de Solution On sait que L [ p F(p) = p + 2p 2 2(p 2 +2) ] = U (t)

31 Exercice Calculer l original de Solution On sait que L [ p F(p) = p + 2p 2 2(p 2 +2) ] [ ] = U (t)et L 2p 2 =

32 Exercice Calculer l original de Solution On sait que L [ p F(p) = p + 2p 2 2(p 2 +2) ] [ ] = U (t)et L 2p 2 = tu (t). 2

33 Exercice Calculer l original de Solution On sait que L [ p F(p) = p + 2p 2 2(p 2 +2) Il reste à trouver l original de ] [ ] = U (t)et L 2p 2 = tu (t). 2 2(p 2 +2).

34 Solution (suite) On sait que l original de ω p 2 +ω 2 est

35 Solution (suite) On sait que l original de ω p 2 est sin(ωt)u (t), +ω2

36 Solution (suite) On sait que l original de 2(p 2 +2) ω p 2 est sin(ωt)u (t), or : +ω2 =

37 Solution (suite) On sait que l original de 2(p 2 +2) ω p 2 est sin(ωt)u (t), or : +ω2 = 2 p 2 +2

38 Solution (suite) On sait que l original de 2(p 2 +2) ω p 2 est sin(ωt)u (t), or : +ω2 = 2 p = 2 2 p

39 Solution (suite) On sait que l original de ω p 2 est sin(ωt)u (t), or : +ω2 2(p 2 = +2) 2 p = 2 2 p [ ] Et donc L 2(p 2 = +2)

40 Solution (suite) On sait que l original de ω p 2 est sin(ωt)u (t), or : +ω2 2(p 2 = +2) 2 p = 2 2 p [ ] Et donc L 2(p 2 = +2) 2 2 sin( 2t)U (t).

41 Solution (suite) On sait que l original de ω p 2 est sin(ωt)u (t), or : +ω2 2(p 2 = +2) 2 p = 2 2 p [ ] Et donc L 2(p 2 = +2) 2 2 sin( 2t)U (t). ( Ainsi f(t) = + 2 t ) 2 2 sin( 2t) U (t).

42 Exercice 2 Calculer l original de F(p) = +3e 2p p 2 +2p+2

43 Exercice 2 Calculer l original de F(p) = +3e 2p p 2 +2p+2 Solution On a : F(p) = +3e 2p p 2 +2p+2

44 Exercice 2 Calculer l original de F(p) = +3e 2p p 2 +2p+2 Solution On a : F(p) = +3e 2p p 2 +2p+2 +3e 2p = (p+) 2 +

45 Exercice 2 Calculer l original de F(p) = +3e 2p p 2 +2p+2 Solution On a : F(p) = +3e 2p p 2 +2p+2 +3e 2p = (p+) 2 + = e 2p (p+) (p+) 2 +

46 Exercice 2 Calculer l original de F(p) = +3e 2p p 2 +2p+2 Solution On a : F(p) = +3e 2p p 2 +2p+2 +3e 2p = (p+) 2 + = e 2p (p+) (p+) 2 + = G(p)+3G(p)e 2p

47 Exercice 2 Calculer l original de F(p) = +3e 2p p 2 +2p+2 Solution On a : avec G(p) = F(p) = +3e 2p p 2 +2p+2 +3e 2p = (p+) 2 + = (p+) 2 +. e 2p (p+) (p+) 2 + = G(p)+3G(p)e 2p

48 Solution (suite) On détermine alors l original g de G :

49 Solution (suite) On détermine alors l original g de G : On sait que l original de p 2 + est

50 Solution (suite) On détermine alors l original g de G : On sait que l original de p 2 est sin(t)u (t), et on sait que + le fait de remplacer p par p+ correspond à multiplier l original par e t.

51 Solution (suite) On détermine alors l original g de G : On sait que l original de p 2 est sin(t)u (t), et on sait que + le fait de remplacer p par p+ correspond à multiplier l original par e t. On obtient donc g(t) = sin(t)e t U (t).

52 Solution (suite) On détermine alors l original g de G : On sait que l original de p 2 est sin(t)u (t), et on sait que + le fait de remplacer p par p+ correspond à multiplier l original par e t. On obtient donc g(t) = sin(t)e t U (t). Et donc on obtient l original f de F en utilisant la linéarité et le théorème du retard :

53 Solution (suite) On détermine alors l original g de G : On sait que l original de p 2 est sin(t)u (t), et on sait que + le fait de remplacer p par p+ correspond à multiplier l original par e t. On obtient donc g(t) = sin(t)e t U (t). Et donc on obtient l original f de F en utilisant la linéarité et le théorème du retard : f(t) = g(t)+3g(t 2) et donc :

54 Solution (suite) On détermine alors l original g de G : On sait que l original de p 2 est sin(t)u (t), et on sait que + le fait de remplacer p par p+ correspond à multiplier l original par e t. On obtient donc g(t) = sin(t)e t U (t). Et donc on obtient l original f de F en utilisant la linéarité et le théorème du retard : f(t) = g(t)+3g(t 2) et donc : f(t) = sin(t)e t U (t)+3sin(t 2)e (t 2) U (t 2)

55 Solution (suite) On détermine alors l original g de G : On sait que l original de p 2 est sin(t)u (t), et on sait que + le fait de remplacer p par p+ correspond à multiplier l original par e t. On obtient donc g(t) = sin(t)e t U (t). Et donc on obtient l original f de F en utilisant la linéarité et le théorème du retard : f(t) = g(t)+3g(t 2) et donc : f(t) = sin(t)e t U (t)+3sin(t 2)e (t 2) U (t 2)

56 Exercice 3 Calculer l original de F(p) = 2p 2 +p

57 Exercice 3 Calculer l original de F(p) = 2p 2 +p Solution On décompose F en éléments simples et on obtient

58 Exercice 3 Calculer l original de F(p) = 2p 2 +p Solution On décompose F en éléments simples et on obtient F(p) = ( 3 p+ + ) p 2

59 Solution (suite) On sait que L[U (t)](p) =, et que p F(p+a) = L[f(t)e at U (t)](p).

60 Solution (suite) On sait que L[U (t)](p) =, et que p F(p+a) = L[f(t)e at U (t)](p). Ainsi L [ p+ ] = e t U (t) et L [ p 2 ] = e 2 t U (t).

61 Solution (suite) On sait que L[U (t)](p) =, et que p F(p+a) = L[f(t)e at U (t)](p). Ainsi L [ p+ ] = e t U (t) et L [ p 2 Pour conclure on utilise la linéarité : f(t) = 3 ( e t +e 2 t) U (t) ] = e 2 t U (t).

62 Solution (suite) On sait que L[U (t)](p) =, et que p F(p+a) = L[f(t)e at U (t)](p). Ainsi L [ p+ ] = e t U (t) et L [ p 2 Pour conclure on utilise la linéarité : f(t) = 3 ( e t +e 2 t) U (t) ] = e 2 t U (t).

63 Exercice 4 Calculer l original de F(p) = 4p 2 +6p+7

64 Exercice 4 Calculer l original de Solution F(p) = 4p 2 +6p+7 Le polynôme 4p 2 +6p+7 n admet pas de racine réelle, on ne peut donc pas le factoriser. On va donc utiliser la forme canonique.

65 Solution (suite) F(p) = 4p 2 +6p+7

66 Solution (suite) F(p) = = 4p 2 +6p+7 4 ( p 2 +4p+ 7 ) 4

67 Solution (suite) F(p) = 4p 2 +6p+7 = 4 ( p 2 +4p+ 7 ) 4 = 4 (p+2)

68 Solution (suite) F(p) = 4p 2 +6p+7 = 4 ( p 2 +4p+ 7 ) 4 = 4 (p+2) = 4 (p+2) 2 + 4

69 Solution (suite) F(p) = 4p 2 +6p+7 = 4 ( p 2 +4p+ 7 ) 4 = 4 (p+2) = 4 (p+2) = 2 2 (p+2) 2 + ( ) 2 2

70 Solution (suite) F(p) = 4p 2 +6p+7 = 4 ( p 2 +4p+ 7 ) 4 = 4 (p+2) = 4 (p+2) = 2 2 (p+2) 2 + ( ) 2 2 L original de F est donc la fonction :

71 Solution (suite) F(p) = 4p 2 +6p+7 = 4 ( p 2 +4p+ 7 ) 4 = 4 (p+2) = 4 (p+2) = 2 2 (p+2) 2 + ( ) 2 2 L original de F est donc la fonction : t 2 sin ( 2 t )e 2t U (t)

72 Solution (suite) F(p) = 4p 2 +6p+7 = 4 ( p 2 +4p+ 7 ) 4 = 4 (p+2) = 4 (p+2) = 2 2 (p+2) 2 + ( ) 2 2 L original de F est donc la fonction : t 2 sin ( 2 t )e 2t U (t)

Transformée de Laplace. Laplace transforme une fonction temporelle f(t).u(t) en une fonction complexe F(p) avec p C.

Transformée de Laplace. Laplace transforme une fonction temporelle f(t).u(t) en une fonction complexe F(p) avec p C. Transformée de Laplace Dans la résolution des équations différentielles linéaires à coefficients constants, les propriétés de la transformée de Laplace, concernant la linéarité et la transformée de la

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail

Étude des fonctions polynômes du second degré

Étude des fonctions polynômes du second degré Étude des fonctions polynômes du second degré Définitions Définition d une fonction polynôme de degré 2 Une fonction, définie sur est une fonction polynôme de degré 2 lorsqu il existe trois réels et avec

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

1. Montrer que B est une base de. 2. Donner la dimension de f ( 3 ), puis la dimension de Ker f, qu en conclure?

1. Montrer que B est une base de. 2. Donner la dimension de f ( 3 ), puis la dimension de Ker f, qu en conclure? Chapitre Applications linéaires Testez vos connaissances Pourquoi s intéresse-t-on au applications linéaires en économie? Qu est-ce qu un noyau, un rang et une image d une application linéaire? Donner

Plus en détail

Continuité Compléments de dérivation

Continuité Compléments de dérivation Continuité Compléments de dérivation Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Notion de continuité 1.1 Limite finie en un réel a......................................... 1. Définitions

Plus en détail

Exercices - Calcul d intégrales : corrigé. Intégration par parties - Changements de variable

Exercices - Calcul d intégrales : corrigé. Intégration par parties - Changements de variable Intégration par parties - Changements de variable Eercice - Changements de variables - Niveau - L/Math Sup -. La fonction t t est une bijection de classe C de, 4] sur, ]. On peut donc poser u t. Lorsque

Plus en détail

Les polynômes du second degré

Les polynômes du second degré Les polynômes du second degré exercices corrigés 12 septembre 2013 Les polynômes du second degré Exercice 1 Exercice 2 Exercice 3 Les polynômes du second degré Exercice 1 Les polynômes du second degré

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7.

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7. Mathématiques pour l informatique IMAC première année - Soutien - Nombres complexes Rappels. Un nombre complexe z admet plusieurs représentations : représentation vectorielle z = (a, b) où a, b R représentation

Plus en détail

Corrigé du BTS, groupement A, Nouvelle-Calédonie, novembre 2008

Corrigé du BTS, groupement A, Nouvelle-Calédonie, novembre 2008 Corrigé du BTS, groupement A, Nouvelle-Calédonie, novembre EXERCICE 1 séries de FOURIER 1 si t α ft) = si α < t < α avec < α < 1 si α t et f paire et périodique de période 1 Représentation de f sur ; lorsque

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité?

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité? Université Paris Dauphine DEMIE e année Algèbre linéaire 3 Examen - septembre 01 Le sujet comporte pages. L épreuve dure heures. Les documents, calculatrices et téléphones portables sont interdits. Question

Plus en détail

Cours de Signaux PeiP2

Cours de Signaux PeiP2 PeiP Signaux Table des matières Cours de Signaux PeiP S. Icart Généralités. Définitions..................................... Propriétés de la transformée de Laplace.....................3 Transformées de

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

Fonctions Affines Problèmes du premier degré

Fonctions Affines Problèmes du premier degré Fonctions Affines Problèmes du premier degré Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Fonctions Affines 2 1.1 Définition Représentation graphique.................................

Plus en détail

P (X) = (X a) 2 T (X)

P (X) = (X a) 2 T (X) Université Bordeaux I - année 00-0 MHT0 Structures Algébriques Correction du devoir maison Exercice. Soit P (X) Q[X]\Q.. Soit D(X) := pgcd(p (X), P (X)). a) Montrer que si deg D alors il existe α C tel

Plus en détail

Cours et exercices par Michel LECOMTE Ecole des Mines de Douai Juillet 2001

Cours et exercices par Michel LECOMTE Ecole des Mines de Douai Juillet 2001 Transformation de Fourier Cours et exercices par Michel LECOMTE Ecole des Mines de Douai Juillet LA TRANSFORMATION DE FOURIER I. Introduction. A. Rappel sur le développement en série de Fourier Soit f

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007 ÉCOLE NATIONALE DE L AVIATION CIVILE Session 27 CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS DU CONTRÔLE DE LA NAVIGATION AÉRIENNE Épreuve commune obligatoire de MATHÉMATIQUES Durée : 4 Heures Coefficient

Plus en détail

Brevet Blanc de Mathématiques ** Corrigé **

Brevet Blanc de Mathématiques ** Corrigé ** Brevet Blanc de Mathématiques ** Corrigé ** Collège Goscinny de Valdoie Le soin et la qualité de la rédaction comptent pour 4 points. L usage de la calculatrice est autorisé. Sujet et corrigé écrits avec

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Continuité d une fonction, Théorème des valeurs intermédiaires

Continuité d une fonction, Théorème des valeurs intermédiaires Continuité d une fonction, Théorème des valeurs intermédiaires I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative

Plus en détail

Équations du second degré

Équations du second degré Équations du second degré Racines du trinôme et factorisation Soit le trinôme, avec. Transformation de l écriture de : ( ) [ ] [ ]. On a donc l égalité : [ ] pour tout réel. La factorisation éventuelle

Plus en détail

LIMITES EXERCICES CORRIGES

LIMITES EXERCICES CORRIGES ours et eercices de mathématiques LIMITES EXERIES ORRIGES M UAZ, http://mathscyrreer Eercice n Déterminer la ite éventuelle en de chacune des onctions suivantes : ) ) ) 4 ( ) Déterminer la ite éventuelle

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Le second degré. Table des matières

Le second degré. Table des matières Le second degré Table des matières 1 La forme canonique du trinôme 1.1 Le trinôme du second degré......................... 1. Quelques exemples de formes canoniques................. 1.3 Forme canonique

Plus en détail

Les différentes méthodes de calcul intégral

Les différentes méthodes de calcul intégral Les différentes méthodes de calcul intégral Connaissances de primitives Le calcul d une intégrale est immédiat quand on connaît une primitive de la fonction à intégrer. Tableau des primitives usuelles

Plus en détail

Cours FI-GET-GPE-IMIAE: Transformée de Laplace Transformée de Fourier

Cours FI-GET-GPE-IMIAE: Transformée de Laplace Transformée de Fourier Cours FI-GET-GPE-IMIAE: Transformée de Laplace Transformée de Fourier Préface. Le but de ce cours est d introduire les transformées de Laplace et Fourier et d en présenter les applications les plus usuelles.

Plus en détail

Exercice corrigé application de la dérivée. 1 er décembre 2010

Exercice corrigé application de la dérivée. 1 er décembre 2010 application de la dérivée 1 er décembre 2010 Enoncé On considère la fonction f définie sur R par : f : x 6x 3 3x 2 + 1 2 x + 24 1 Étudier les variations de f. 2 Justifier que l équation f(x) = 0 admet

Plus en détail

GEL-7064 : Théorie et pratique des codes correcteurs Codes cycliques Notes de cours

GEL-7064 : Théorie et pratique des codes correcteurs Codes cycliques Notes de cours linéaires GEL-7064 : Théorie et pratique des codes correcteurs Notes de cours Département de génie électrique et de génie informatique Université Laval jean-yves.chouinard@gel.ulaval.ca 12 février 2013

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

CORRECTION DU DEVOIR DU 21/11/2016. Partie I. 1 cos (2t) 2

CORRECTION DU DEVOIR DU 21/11/2016. Partie I. 1 cos (2t) 2 Lycée Thiers CORRECTION DU DEVOIR DU //06 Partie I Rappelons d une part que : et d autre part que : t R, sin (t cos (t ( t [, ], cos (arcsin (t t ( La formule de linéarisation ( est bien connue. La formule

Plus en détail

Polynômes et fractions rationnelles Trinômes du second degré

Polynômes et fractions rationnelles Trinômes du second degré Polynômes et fractions rationnelles Trinômes du second degré 1 Rappels 1. Carré d une somme : 2. Carré d une différence : 3. Différence de deux carrés : Pour tous réels a et b, a + b) 2 =........ Pour

Plus en détail

DERIVATION I. DE LA TANGENTE A LA DERIVABILITE. a) Tangente et nombre dérivé. Ch2 : Dérivation (TES)

DERIVATION I. DE LA TANGENTE A LA DERIVABILITE. a) Tangente et nombre dérivé. Ch2 : Dérivation (TES) DERIVATION I. DE LA TANGENTE A LA DERIVABILITE a) Tangente et nombre dérivé Aux origines la dérivation, était un problème purement géométrique : il s'agissait de connaître le coefficient directeur ou pente

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS

CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS CHAPITRE 5 ÉTUDE DES SYSTÈMES FONDAMENTAUX DU SECOND ORDRE Amortisseur d un véhicule automobile Schématisation du mécanisme

Plus en détail

Les paraboles. x ax 2 + bx + c.

Les paraboles. x ax 2 + bx + c. 1ES Résumé du cours sur le second degré. Les paraboles. On appelle fonction du second degré une fonction de la forme x ax 2 + bx + c. Bien sûr a doit être différent de 0 sinon ce n est pas une fonction

Plus en détail

Second degré. Christophe ROSSIGNOL. Année scolaire 2008/2009

Second degré. Christophe ROSSIGNOL. Année scolaire 2008/2009 Second degré Christophe ROSSIGNOL Année scolaire 008/009 Table des matières 1 Polynômes du second degré 1.1 Définition................................................. 1. Forme canonique.............................................

Plus en détail

Séminaire MaMuX. Propriétés cyclotomiques des canons apériodiques

Séminaire MaMuX. Propriétés cyclotomiques des canons apériodiques Séminaire MaMuX IRCAM, 2 février 2008 Propriétés cyclotomiques des canons apériodiques Franck. Jedrzejewski@Cea.fr 1 - Introduction 2 - Canons de Vuza 3 - Polynômes cyclotomiques 4 - Décomposition des

Plus en détail

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme Cahier de vacances Exercices PCSI - PC, Lycée Dupuy de Lôme Votre année de PCSI a été bien remplie et il est peu probable que l année de PC qui arrive vous paraisse plus facile. C est pourquoi, je vous

Plus en détail

Exercices d oraux de la banque CCP BANQUE ALGÈBRE

Exercices d oraux de la banque CCP BANQUE ALGÈBRE Exercices d oraux de la banque CCP 2014-2015 20 exercices sur les 37 d algèbre peuvent être traités en Maths Sup. BANQUE ALGÈBRE EXERCICE 59 Soit E l espace vectoriel des polynômes à coefficients dans

Plus en détail

Cours. 1 ) Fonction affine Déf. Fonctions affines, polynômes. I FONCTIONS AFFINES Fonctions affines par morceaux. x x

Cours. 1 ) Fonction affine Déf. Fonctions affines, polynômes. I FONCTIONS AFFINES Fonctions affines par morceaux. x x Cours FONCTIONS USUELLES Fonctions affines, polynômes F1 I FONCTIONS AFFINES Fonctions affines par morceaux 1 ) Fonction affine a et b sont deux réels donnés. La fonction f définie sur R par f (x) = ax

Plus en détail

Fonctions d une variable réelle

Fonctions d une variable réelle Fonctions d une variable réelle BTS Table des matières Fonctions usuelles. Fonctions en escalier.......................................... Fonctions affines............................................

Plus en détail

Cours de mathématiques.

Cours de mathématiques. Orsay 008-009 IFIPS S Mathématiques (M160). Cours de mathématiques. 1. Equations différentielles linéaires du second ordre. La fonction C : x cos x est indéfiniment dérivable sur R, et C (x) = S(x), avec

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-201 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Polynômes 1 Fonctions polynômes & polynômes Définition 1. Soit

Plus en détail

Introduction des nombres complexes en TS

Introduction des nombres complexes en TS Introduction des nombres complexes en TS 1 À la découverte de nouveaux nombres Résoudre : dans, puis dans, l équation 5 + x = 0 ; dans, puis dans, l équation 3x + 2 = 0 ; dans, puis dans, l équation x

Plus en détail

Décomposition des fractions rationnelles

Décomposition des fractions rationnelles Décomposition des fractions rationnelles Cas des fractions rationnelles réelles Johan MILLAUD Département Génie Civil de l IUT du Limousin Mars 2006 version 2 I Avant-propos 4 I.1 Navigation dans le cours......................

Plus en détail

CH1 : Langages de la continuité Limites

CH1 : Langages de la continuité Limites CH : Langages de la continuité Limites I. Continuité- Théorème des valeurs intermédiaires. Définition : Soit f une fonction définie sur un intervalle I de R. Lorsque la courbe représentative de f ne présente

Plus en détail

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines BTS Fonctions 0-0 FONCTIONS I Fonctions usuelles I. Fonctions affines Définition a et b sont deu réels donnés. La fonction définie sur R par f() = a + b est appelée fonction affine. Sa représentation graphique

Plus en détail

Correction Composition de mathématiques n 1

Correction Composition de mathématiques n 1 Page1 Correction Composition de mathématiques n 1 Exercice 1 Soit la fonction f définie sur [ 10 ; 7] par f(x) = x² + 2x + 3 1. Trouver la forme factorisée de f(x). a = 1 ; b = 2 ; c = 3 = 2² 4 ( 1) 3

Plus en détail

Equations Différentielles

Equations Différentielles Cours optionnel S4 - Maths Renforcées 1 Equations Différentielles I- Définitions élémentaires. On appelle Equation Différentielle Ordinaire (EDO) toute équation (E) du type (E) : y (n) (t) = F (t; y(t);

Plus en détail

CHAPITRE 01 LES FONCTIONS POLYNÔMES DU SECOND DEGRÉ

CHAPITRE 01 LES FONCTIONS POLYNÔMES DU SECOND DEGRÉ CHAPITRE 01 LES FONCTIONS POLYNÔMES DU SECOND DEGRÉ I OBJECTIFS L objectif de ce chapitre est de maîtriser parfaitement les fonctions polynômes du second degré, différentes formes, racines du polynôme,

Plus en détail

Les polynômes du second degré. Niveau : Première S. Vincent OBATON, Enseignant de mathématiques au lycée Stendhal de Grenoble

Les polynômes du second degré. Niveau : Première S. Vincent OBATON, Enseignant de mathématiques au lycée Stendhal de Grenoble Les polynômes du second degré Niveau : Première S Vincent OBATON, Enseignant de mathématiques au lycée Stendhal de Grenoble 1 I. Les trinômes du second degré 1. Grille d'auto-évaluation AN01 AN0 AN03 A

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Aire sous une courbe et calcul de primitives

Aire sous une courbe et calcul de primitives Aire sous une courbe et calcul de primitives Le calcul de primitives d une fonction et celui de l aire de la surface bordée par le graphique de cette fonction sont intimement liés. Les exemples qui suivent

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Nombre dérivé, interprétations géométrique et cinématique

Nombre dérivé, interprétations géométrique et cinématique CHAPITRE 4 DÉRIVATION ET PRIMITIVATION Nombre dérivé, interprétations géométrique et cinématique 08. Nombre dérivé Soit f une fonction numérique, définie sur un intervalle ou une réunion d intervalles,

Plus en détail

Intégration (2) - Intégrales dépendants d'un paramètre

Intégration (2) - Intégrales dépendants d'un paramètre Intégration (2) - Intégrales dépendants d'un paramètre Bachelor 2 C ESME Sudria Année 2012-2013 Dénitions et propriétés Intégrale de Wallis Dénition Vocabulaire et dénitions Continuité - Dérivabilité Exemples

Plus en détail

Continuité, cours, terminale S

Continuité, cours, terminale S Continuité, cours, terminale S Continuité, cours, terminale S F.Gaudon http://mathsfg.net.free.fr 26 mars 2013 1 Continuité 2 Généralisation à des intervalles quelconques Continuité 1 Continuité 2 Généralisation

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Devoir non surveillé Équation différentielle, fonction définie par une intégrale

Devoir non surveillé Équation différentielle, fonction définie par une intégrale Devoir non surveillé Équation différentielle, fonction définie par une intégrale Pelletier Sylvain, BCPST Lycée Hoche $\ CC BY: pour le 0 juin Eercice Résoudre l équation différentielle : E y y + 5y cos

Plus en détail

Equations différentielles

Equations différentielles Equations différentielles Mathématiques Martine Arrrou-Vignod FORMAV 2009 I Equations différentielles linéaires à coefficients constants du premier ordre 3 I.1 Vocabulaire Définitions......................

Plus en détail

Méthode d addition/soustraction de fractions Nanchen Raphaël, ECCG Monthey

Méthode d addition/soustraction de fractions Nanchen Raphaël, ECCG Monthey SIMPLIFIER SIMPLIFIER SIMPLIFIER DC : PPMC DES DES D SIMPLIFIER DC : PPMC DES DES D SIMPLIFIER SIMPLIFIER SIMPLIFIER SIMPLIFIER c. c. AMPLIFIER CHAQUE FRACTION (LE TOUT SUR UNE SEULE E FRACTION) SIMPLIFIER

Plus en détail

Polynômes. Motivation. 1. Définitions. Exo7. 1.1. Définitions

Polynômes. Motivation. 1. Définitions. Exo7. 1.1. Définitions Exo7 Polynômes Vidéo partie 1. Définitions Vidéo partie 2. Arithmétique des polynômes Vidéo partie 3. Racine d'un polynôme, factorisation Vidéo partie 4. Fractions rationnelles Exercices Polynômes Exercices

Plus en détail

Exos corrigés sur limites, continuité...classe : TS. Prof. MOWGLI Ahmed. Année scolaire

Exos corrigés sur limites, continuité...classe : TS. Prof. MOWGLI Ahmed. Année scolaire Eos corrigés sur ites, continuité...classe : TS Prof. MOWGLI Ahmed Année scolaire 04-05 Je suis un ancien élève du lycée Victor Hugo de Marrakech Bac C 986. Je donne des cours en maths et physique-chimie

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

Cours sur les systèmes asservis linéaires continus

Cours sur les systèmes asservis linéaires continus RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE Ministère de l Enseignement Supérieur et de la Recherche Scientifique UNIVERSITÉ MOULOUD MAMMERI DE TIZI-OUZOU FACULTÉ DE GENIE ELECTRIQUE ET D IFORMATIQUE

Plus en détail

Chapitre 4 : Méthode des moindres carrés

Chapitre 4 : Méthode des moindres carrés Chapitre 4 : Méthode des moindres carrés Table des matières 1 Introduction 2 11 Généralités 2 12 Notion de modèle et de regression linéaire multiple 2 2 Critère des moindres carrés - formulation 2 21 Critère

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Étude de fonctions Limites et continuité

Étude de fonctions Limites et continuité Chapitre 3 Term.S Étude de fonctions Limites et continuité Ce que dit le programme : CONTENUS Limites de fonctions Limite finie ou infinie d une fonction à l infini. Limite infinie d une fonction en un

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Une bien jolie curiosité

Une bien jolie curiosité Une bien jolie curiosité Roland Dassonval et Catherine Combelles Tracez un polygone régulier à n sommets inscrit dans un cercle de rayon 1, puis les cordes qui joignent un sommet donné aux n-1 autres.

Plus en détail

La décomposition de Dunford des endomorphismes.

La décomposition de Dunford des endomorphismes. Document de travail pour l atelier de la journée régionale APMEP d Aix-Marseille du 17 mai André BONNET andre.bonnet9@orange.fr La décomposition de Dunford des endomorphismes. En travaillant avec un jeune

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

TD Dérivation n 2 : étude des variations de fonctions

TD Dérivation n 2 : étude des variations de fonctions 1) f (x) = 7x+3 TD Dérivation n : étude des variations de fonctions Étude de variations f est une fonction affine, de coefficient directeur négatif, on sait donc qu elle est décroissante surê. Le calcul

Plus en détail

Seul document autorisé : le polycopié du cours Examen du 3 juin 2009 Durée : 3 heures

Seul document autorisé : le polycopié du cours Examen du 3 juin 2009 Durée : 3 heures Université P. et M. Curie (Paris VI) Master de sciences et technologies ère année - applications Spécialité : Mathématiques Fondamentales code UE : MMAT4020 Mention : Mathématiques et MO : (2 ECTS) code

Plus en détail

Analyse spectrale du signal

Analyse spectrale du signal Analyse spectrale du signal Principe de l analyse spectrale (ou harmonique) La réponse en fréquence des circuits est un élément caractéristique du comportement dynamique des circuits R, L et C. L autre

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Introduction Pré-requis : Etude de fonctions dérivées logarithmes et exponentielles continuité Plan du cours 1. Intégrales 2. Primitives 1. Intégrales A. Aire sous la courbe Méthode des rectangles : Pour

Plus en détail

2) Stabilite et precision

2) Stabilite et precision Table des matières Les nombres complexes 2. Présentation..................................... 2.2 Plan complexe.................................... 2.3 Module et argument................................

Plus en détail

Fiche d entraînement sur : LE CALCUL LITTERAL

Fiche d entraînement sur : LE CALCUL LITTERAL Fiche d entraînement sur : LE CALCUL LITTERAL Collège Exercices d entraînement personnel, classés par compétences. Compétence n 1 : savoir simplifier et réduire une expression littérale. 1.a) Simplifier

Plus en détail

( ) Question 2. . Calculer sa décomposition en éléments (x + 1)(x 2 + 2x + 2) simples f (x) = a x bx + c

( ) Question 2. . Calculer sa décomposition en éléments (x + 1)(x 2 + 2x + 2) simples f (x) = a x bx + c On considère les fonctions h et F définies par : x h(x) = x + arctan(x) et F( x) = dt x h t ( ) Question (A) La fonction h est continue et strictement croissante de vers (B) La fonction h est paire (C)

Plus en détail

Première ES DS1 second degré 2014-2015 S1

Première ES DS1 second degré 2014-2015 S1 1 Première ES DS1 second degré 2014-2015 S1 Exercice 1 : (3 points) Soit la parabole d équation y = 25x² - 10x + 1. On considère cette parabole représentée dans un repère (O ;I,J). 1) Déterminer les coordonnées

Plus en détail

Connaître les variations des fonctions polynômes de degré 2 (monotonie, extremum) et la propriété de symétrie de leurs courbes.

Connaître les variations des fonctions polynômes de degré 2 (monotonie, extremum) et la propriété de symétrie de leurs courbes. www.mathsenligne.com 2N3 - FONCTION CARRE ET SECOND DEGRE COURS (1/6) CONTENUS CAPACITES ATTENDUES COMMENTAIRES Expressions algébriques Transformations d expressions algébriques en vue d une résolution

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

INÉQUATIONS. Notations Inéquations Représentations graphiques 1 ]a ; b[ a < x < b

INÉQUATIONS. Notations Inéquations Représentations graphiques 1 ]a ; b[ a < x < b 27 5. Inéquations 5.1. Définition Exemple : x < 4 + 2x La droite réelle Le symbole utilisé pour les intervalles infinis est une notation et ne représente pas un nombre réel. Une inéquation affirme que

Plus en détail

7 FONCTIONS USUELLES. 1 Parité d une fonction. 2 Fonctions affines

7 FONCTIONS USUELLES. 1 Parité d une fonction. 2 Fonctions affines Cours 7 FONCTIONS USUELLES Parité d une fonction Définition Soit f une fonction définie sur un ensemble D. On dit que f est paire si : { D est symétrique par rapport à 0 Pour tout x D, f ( x) = f (x) On

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Corrigé des exercices de mise à niveau en Mathématiques

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Corrigé des exercices de mise à niveau en Mathématiques UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 04 05 L Économie Cours de M. Desgraupes Corrigé des exercices de mise à niveau en Mathématiques Séance 0 : Fonctions usuelles

Plus en détail

Automatique (AU3): Fonctions de transfert. Département GEII, IUT de Brest contact:

Automatique (AU3): Fonctions de transfert. Département GEII, IUT de Brest contact: Automatique (AU3): Fonctions de transfert Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr Plan de la présentation 1 Contexte 2 Modélisation des systèmes Hypothèses de travail Transformée

Plus en détail

Exercices sur les développements limités, avec le Classpad

Exercices sur les développements limités, avec le Classpad Eercices avec le Classpad développements limités Eercices sur les développements limités, avec le Classpad On trouvera ici quelques eercices sur les développements limités. Chaque eercice est corrigé complètement,

Plus en détail

Exo7. Sujets de l année Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit a R et A la matrice suivante 1 a

Exo7. Sujets de l année Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit a R et A la matrice suivante 1 a Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 7-8 1 Partiel Exercice 1 Soit a R et A la matrice suivante 1 a A = a 1. 1 a 1. Calculer le déterminant de A et déterminer pour quelles valeurs

Plus en détail