Partie 1 - Séquence 3 Original d une fonction

Dimension: px
Commencer à balayer dès la page:

Download "Partie 1 - Séquence 3 Original d une fonction"

Transcription

1 Partie - Séquence 3 Original d une fonction Lycée Victor Hugo - Besançon - STS 2

2 I. Généralités

3 I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t) = L [F(p)].

4 I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t) = L [F(p)]. Exemple La fonction p 2 p 3 admet pour original la fonction t t2 U (t).

5 I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t) = L [F(p)]. Exemple La fonction p 2 p 3 admet pour original la fonction t t2 U (t). Remarque On admet que si l original existe alors il est unique.

6 I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t) = L [F(p)]. Exemple La fonction p 2 p 3 admet pour original la fonction t t2 U (t). Remarque On admet que si l original existe alors il est unique. L application L est appelée transformation de Laplace inverse.

7 I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t) = L [F(p)]. Exemple La fonction p 2 p 3 admet pour original la fonction t t2 U (t). Remarque On admet que si l original existe alors il est unique. L application L est appelée transformation de Laplace inverse. On admet que l application L est linéaire, ce qui sera très utile pour la recherche d originaux.

8 II. Recherche d originaux

9 II. Recherche d originaux D une manière générale, la recherche d originaux s apparente à celle de la recherche de primitives, on utilise principalement :

10 II. Recherche d originaux D une manière générale, la recherche d originaux s apparente à celle de la recherche de primitives, on utilise principalement : Le tableau des transformées de Laplace des fonctions usuelles.

11 II. Recherche d originaux D une manière générale, la recherche d originaux s apparente à celle de la recherche de primitives, on utilise principalement : Le tableau des transformées de Laplace des fonctions usuelles. Le théorème du retard.

12 II. Recherche d originaux D une manière générale, la recherche d originaux s apparente à celle de la recherche de primitives, on utilise principalement : Le tableau des transformées de Laplace des fonctions usuelles. Le théorème du retard. L effet de la multiplication par e at.

13 II. Recherche d originaux D une manière générale, la recherche d originaux s apparente à celle de la recherche de primitives, on utilise principalement : Le tableau des transformées de Laplace des fonctions usuelles. Le théorème du retard. L effet de la multiplication par e at. Des décompositions de fractions en éléments simples.

14 II. Recherche d originaux D une manière générale, la recherche d originaux s apparente à celle de la recherche de primitives, on utilise principalement : Le tableau des transformées de Laplace des fonctions usuelles. Le théorème du retard. L effet de la multiplication par e at. Des décompositions de fractions en éléments simples. La mise sous forme canonique de polynômes du second degré.

15 III. Exemples

16 III. Exemples Exemple Calculons l original de F(p) = 3 p 5 2p 2 + p p 2 +4

17 III. Exemples Exemple Calculons l original de F(p) = 3 p 5 2p 2 + p p 2 +4 On reconnait une somme de transformées de Laplace connues.

18 III. Exemples Exemple Calculons l original de F(p) = 3 p 5 2p 2 + p p 2 +4 On reconnait une somme de transformées de Laplace connues. L original de F est la fonction t ( 3+

19 III. Exemples Exemple Calculons l original de F(p) = 3 p 5 2p 2 + p p 2 +4 On reconnait une somme de transformées de Laplace connues. L original de F est la fonction t ( t+

20 III. Exemples Exemple Calculons l original de F(p) = 3 p 5 2p 2 + p p 2 +4 On reconnait une somme de transformées de Laplace connues. L original de F est la fonction t (3+ 52 t+ cos(2t) ) U (t)

21 III. Exemples Exemple Calculons l original de F(p) = 3 p 5 2p 2 + p p 2 +4 On reconnait une somme de transformées de Laplace connues. L original de F est la fonction t (3+ 52 t+ cos(2t) ) U (t)

22 Exemple 2 Calculons l original de F(p) = 3 p 3 p p 2 +9

23 Exemple 2 Calculons l original de F(p) = 3 p 3 p p 2 +9 On reconnaît une somme de transformées de Laplace connues.

24 Exemple 2 Calculons l original de F(p) = 3 p 3 p p 2 +9 On reconnaît une somme de transformées de Laplace connues. L original de F est la fonction t ( 3 2 t2 +

25 Exemple 2 Calculons l original de F(p) = 3 p 3 p p 2 +9 On reconnaît une somme de transformées de Laplace connues. L original de F est la fonction t ( 3 2 t t5 +

26 Exemple 2 Calculons l original de F(p) = 3 p 3 p p 2 +9 On reconnaît une somme de transformées de Laplace connues. L original de F est la fonction t ( 3 2 t2 + ) 20 t5 + sin(3t) U (t)

27 Exemple 2 Calculons l original de F(p) = 3 p 3 p p 2 +9 On reconnaît une somme de transformées de Laplace connues. L original de F est la fonction t ( 3 2 t2 + ) 20 t5 + sin(3t) U (t)

28 Exercice Calculer l original de F(p) = p + 2p 2 2(p 2 +2)

29 Exercice Calculer l original de Solution On sait que L [ p F(p) = p + 2p 2 2(p 2 +2) ] =

30 Exercice Calculer l original de Solution On sait que L [ p F(p) = p + 2p 2 2(p 2 +2) ] = U (t)

31 Exercice Calculer l original de Solution On sait que L [ p F(p) = p + 2p 2 2(p 2 +2) ] [ ] = U (t)et L 2p 2 =

32 Exercice Calculer l original de Solution On sait que L [ p F(p) = p + 2p 2 2(p 2 +2) ] [ ] = U (t)et L 2p 2 = tu (t). 2

33 Exercice Calculer l original de Solution On sait que L [ p F(p) = p + 2p 2 2(p 2 +2) Il reste à trouver l original de ] [ ] = U (t)et L 2p 2 = tu (t). 2 2(p 2 +2).

34 Solution (suite) On sait que l original de ω p 2 +ω 2 est

35 Solution (suite) On sait que l original de ω p 2 est sin(ωt)u (t), +ω2

36 Solution (suite) On sait que l original de 2(p 2 +2) ω p 2 est sin(ωt)u (t), or : +ω2 =

37 Solution (suite) On sait que l original de 2(p 2 +2) ω p 2 est sin(ωt)u (t), or : +ω2 = 2 p 2 +2

38 Solution (suite) On sait que l original de 2(p 2 +2) ω p 2 est sin(ωt)u (t), or : +ω2 = 2 p = 2 2 p

39 Solution (suite) On sait que l original de ω p 2 est sin(ωt)u (t), or : +ω2 2(p 2 = +2) 2 p = 2 2 p [ ] Et donc L 2(p 2 = +2)

40 Solution (suite) On sait que l original de ω p 2 est sin(ωt)u (t), or : +ω2 2(p 2 = +2) 2 p = 2 2 p [ ] Et donc L 2(p 2 = +2) 2 2 sin( 2t)U (t).

41 Solution (suite) On sait que l original de ω p 2 est sin(ωt)u (t), or : +ω2 2(p 2 = +2) 2 p = 2 2 p [ ] Et donc L 2(p 2 = +2) 2 2 sin( 2t)U (t). ( Ainsi f(t) = + 2 t ) 2 2 sin( 2t) U (t).

42 Exercice 2 Calculer l original de F(p) = +3e 2p p 2 +2p+2

43 Exercice 2 Calculer l original de F(p) = +3e 2p p 2 +2p+2 Solution On a : F(p) = +3e 2p p 2 +2p+2

44 Exercice 2 Calculer l original de F(p) = +3e 2p p 2 +2p+2 Solution On a : F(p) = +3e 2p p 2 +2p+2 +3e 2p = (p+) 2 +

45 Exercice 2 Calculer l original de F(p) = +3e 2p p 2 +2p+2 Solution On a : F(p) = +3e 2p p 2 +2p+2 +3e 2p = (p+) 2 + = e 2p (p+) (p+) 2 +

46 Exercice 2 Calculer l original de F(p) = +3e 2p p 2 +2p+2 Solution On a : F(p) = +3e 2p p 2 +2p+2 +3e 2p = (p+) 2 + = e 2p (p+) (p+) 2 + = G(p)+3G(p)e 2p

47 Exercice 2 Calculer l original de F(p) = +3e 2p p 2 +2p+2 Solution On a : avec G(p) = F(p) = +3e 2p p 2 +2p+2 +3e 2p = (p+) 2 + = (p+) 2 +. e 2p (p+) (p+) 2 + = G(p)+3G(p)e 2p

48 Solution (suite) On détermine alors l original g de G :

49 Solution (suite) On détermine alors l original g de G : On sait que l original de p 2 + est

50 Solution (suite) On détermine alors l original g de G : On sait que l original de p 2 est sin(t)u (t), et on sait que + le fait de remplacer p par p+ correspond à multiplier l original par e t.

51 Solution (suite) On détermine alors l original g de G : On sait que l original de p 2 est sin(t)u (t), et on sait que + le fait de remplacer p par p+ correspond à multiplier l original par e t. On obtient donc g(t) = sin(t)e t U (t).

52 Solution (suite) On détermine alors l original g de G : On sait que l original de p 2 est sin(t)u (t), et on sait que + le fait de remplacer p par p+ correspond à multiplier l original par e t. On obtient donc g(t) = sin(t)e t U (t). Et donc on obtient l original f de F en utilisant la linéarité et le théorème du retard :

53 Solution (suite) On détermine alors l original g de G : On sait que l original de p 2 est sin(t)u (t), et on sait que + le fait de remplacer p par p+ correspond à multiplier l original par e t. On obtient donc g(t) = sin(t)e t U (t). Et donc on obtient l original f de F en utilisant la linéarité et le théorème du retard : f(t) = g(t)+3g(t 2) et donc :

54 Solution (suite) On détermine alors l original g de G : On sait que l original de p 2 est sin(t)u (t), et on sait que + le fait de remplacer p par p+ correspond à multiplier l original par e t. On obtient donc g(t) = sin(t)e t U (t). Et donc on obtient l original f de F en utilisant la linéarité et le théorème du retard : f(t) = g(t)+3g(t 2) et donc : f(t) = sin(t)e t U (t)+3sin(t 2)e (t 2) U (t 2)

55 Solution (suite) On détermine alors l original g de G : On sait que l original de p 2 est sin(t)u (t), et on sait que + le fait de remplacer p par p+ correspond à multiplier l original par e t. On obtient donc g(t) = sin(t)e t U (t). Et donc on obtient l original f de F en utilisant la linéarité et le théorème du retard : f(t) = g(t)+3g(t 2) et donc : f(t) = sin(t)e t U (t)+3sin(t 2)e (t 2) U (t 2)

56 Exercice 3 Calculer l original de F(p) = 2p 2 +p

57 Exercice 3 Calculer l original de F(p) = 2p 2 +p Solution On décompose F en éléments simples et on obtient

58 Exercice 3 Calculer l original de F(p) = 2p 2 +p Solution On décompose F en éléments simples et on obtient F(p) = ( 3 p+ + ) p 2

59 Solution (suite) On sait que L[U (t)](p) =, et que p F(p+a) = L[f(t)e at U (t)](p).

60 Solution (suite) On sait que L[U (t)](p) =, et que p F(p+a) = L[f(t)e at U (t)](p). Ainsi L [ p+ ] = e t U (t) et L [ p 2 ] = e 2 t U (t).

61 Solution (suite) On sait que L[U (t)](p) =, et que p F(p+a) = L[f(t)e at U (t)](p). Ainsi L [ p+ ] = e t U (t) et L [ p 2 Pour conclure on utilise la linéarité : f(t) = 3 ( e t +e 2 t) U (t) ] = e 2 t U (t).

62 Solution (suite) On sait que L[U (t)](p) =, et que p F(p+a) = L[f(t)e at U (t)](p). Ainsi L [ p+ ] = e t U (t) et L [ p 2 Pour conclure on utilise la linéarité : f(t) = 3 ( e t +e 2 t) U (t) ] = e 2 t U (t).

63 Exercice 4 Calculer l original de F(p) = 4p 2 +6p+7

64 Exercice 4 Calculer l original de Solution F(p) = 4p 2 +6p+7 Le polynôme 4p 2 +6p+7 n admet pas de racine réelle, on ne peut donc pas le factoriser. On va donc utiliser la forme canonique.

65 Solution (suite) F(p) = 4p 2 +6p+7

66 Solution (suite) F(p) = = 4p 2 +6p+7 4 ( p 2 +4p+ 7 ) 4

67 Solution (suite) F(p) = 4p 2 +6p+7 = 4 ( p 2 +4p+ 7 ) 4 = 4 (p+2)

68 Solution (suite) F(p) = 4p 2 +6p+7 = 4 ( p 2 +4p+ 7 ) 4 = 4 (p+2) = 4 (p+2) 2 + 4

69 Solution (suite) F(p) = 4p 2 +6p+7 = 4 ( p 2 +4p+ 7 ) 4 = 4 (p+2) = 4 (p+2) = 2 2 (p+2) 2 + ( ) 2 2

70 Solution (suite) F(p) = 4p 2 +6p+7 = 4 ( p 2 +4p+ 7 ) 4 = 4 (p+2) = 4 (p+2) = 2 2 (p+2) 2 + ( ) 2 2 L original de F est donc la fonction :

71 Solution (suite) F(p) = 4p 2 +6p+7 = 4 ( p 2 +4p+ 7 ) 4 = 4 (p+2) = 4 (p+2) = 2 2 (p+2) 2 + ( ) 2 2 L original de F est donc la fonction : t 2 sin ( 2 t )e 2t U (t)

72 Solution (suite) F(p) = 4p 2 +6p+7 = 4 ( p 2 +4p+ 7 ) 4 = 4 (p+2) = 4 (p+2) = 2 2 (p+2) 2 + ( ) 2 2 L original de F est donc la fonction : t 2 sin ( 2 t )e 2t U (t)

Transformée de Laplace. Laplace transforme une fonction temporelle f(t).u(t) en une fonction complexe F(p) avec p C.

Transformée de Laplace. Laplace transforme une fonction temporelle f(t).u(t) en une fonction complexe F(p) avec p C. Transformée de Laplace Dans la résolution des équations différentielles linéaires à coefficients constants, les propriétés de la transformée de Laplace, concernant la linéarité et la transformée de la

Plus en détail

Transformée de Laplace

Transformée de Laplace Transformée de Laplace Ecole d'electricité, de Production et des Méthodes Industrielles 3, Boulevard de l'hautil 95092 CERGY-PONTOISE CEDEX Tél. : 0 30 75 60 40 Fax : 0.30.75.60.4 E-mail : contact@epmi.fr

Plus en détail

Chapitre 02 : Transformation de Laplace- Transformation de Fourier

Chapitre 02 : Transformation de Laplace- Transformation de Fourier Chapitre 02 : Transformation de Laplace- Transformation de Fourier I. Transformation de Laplace : 1. Définitions et conditions d existence : Définition 01 : une fonction f est dite d ordre exponentiel,

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail

Cycle 4: Analyser, modéliser et étudier le comportement des Systèmes Linéaires Continus et Invariants

Cycle 4: Analyser, modéliser et étudier le comportement des Systèmes Linéaires Continus et Invariants Cycle 4: Analyser, modéliser et étudier le comportement des Systèmes Linéaires Continus et Invariants Chapitre 2 page 1/13 Sommaire 1. Modèle utilisé (SLCI) 3 1.1. Modèle de comportement des systèmes les

Plus en détail

Étude des fonctions polynômes du second degré

Étude des fonctions polynômes du second degré Étude des fonctions polynômes du second degré Définitions Définition d une fonction polynôme de degré 2 Une fonction, définie sur est une fonction polynôme de degré 2 lorsqu il existe trois réels et avec

Plus en détail

Primitives usuelles. fonction primitive. x 4 x = x

Primitives usuelles. fonction primitive. x 4 x = x Primitives usuelles fonction primitive x ln x x α, α α+ xα+ exemples : x 3 4 x 4 x = x /2 2 3 x 3/2 x 2 = x 2 e x cos(x) sin(x) cos 2 (x) = + tan2 (x) x = x e x sin(x) cos(x) tan(x) +x 2 Arctan(x) x 2

Plus en détail

1. Montrer que B est une base de. 2. Donner la dimension de f ( 3 ), puis la dimension de Ker f, qu en conclure?

1. Montrer que B est une base de. 2. Donner la dimension de f ( 3 ), puis la dimension de Ker f, qu en conclure? Chapitre Applications linéaires Testez vos connaissances Pourquoi s intéresse-t-on au applications linéaires en économie? Qu est-ce qu un noyau, un rang et une image d une application linéaire? Donner

Plus en détail

Étude des fonctions polynômes du second degré

Étude des fonctions polynômes du second degré Étude des fonctions polynômes du second degré Définitions Définition d une fonction polynôme de degré 2 Une fonction, définie sur est une fonction polynôme de degré 2 lorsqu il existe trois réels et avec

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

GEL-7064 : Théorie et pratique des codes correcteurs Codes cycliques Notes de cours

GEL-7064 : Théorie et pratique des codes correcteurs Codes cycliques Notes de cours linéaires GEL-7064 : Théorie et pratique des codes correcteurs Notes de cours Département de génie électrique et de génie informatique Université Laval jean-yves.chouinard@gel.ulaval.ca 12 février 2013

Plus en détail

Objectifs: connaître les propriétés des fonctions élémentaires pour pouvoir étudier des fonctions plus complexes.

Objectifs: connaître les propriétés des fonctions élémentaires pour pouvoir étudier des fonctions plus complexes. FONCTIONS DE REFERENCE Objectifs: connaître les propriétés des fonctions élémentaires pour pouvoir étudier des fonctions plus complexes. I. LES FONCTIONS ELEMENTAIRES ce sont les touches «fct» de la calculatrice

Plus en détail

Continuité Compléments de dérivation

Continuité Compléments de dérivation Continuité Compléments de dérivation Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Notion de continuité 1.1 Limite finie en un réel a......................................... 1. Définitions

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7.

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7. Mathématiques pour l informatique IMAC première année - Soutien - Nombres complexes Rappels. Un nombre complexe z admet plusieurs représentations : représentation vectorielle z = (a, b) où a, b R représentation

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Les paraboles. x ax 2 + bx + c.

Les paraboles. x ax 2 + bx + c. 1ES Résumé du cours sur le second degré. Les paraboles. On appelle fonction du second degré une fonction de la forme x ax 2 + bx + c. Bien sûr a doit être différent de 0 sinon ce n est pas une fonction

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

Le second degré. Table des matières

Le second degré. Table des matières Le second degré Table des matières 1 La forme canonique du trinôme 1.1 Le trinôme du second degré......................... 1. Quelques exemples de formes canoniques................. 1.3 Forme canonique

Plus en détail

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007 ÉCOLE NATIONALE DE L AVIATION CIVILE Session 27 CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS DU CONTRÔLE DE LA NAVIGATION AÉRIENNE Épreuve commune obligatoire de MATHÉMATIQUES Durée : 4 Heures Coefficient

Plus en détail

Cours de Signaux PeiP2

Cours de Signaux PeiP2 PeiP Signaux Table des matières Cours de Signaux PeiP S. Icart Généralités. Définitions..................................... Propriétés de la transformée de Laplace.....................3 Transformées de

Plus en détail

1 Equation du second degré ax 2 + bx+ c = 0, a 0

1 Equation du second degré ax 2 + bx+ c = 0, a 0 1 Equation du second degré ax 2 + bx+ c = 0, a 0 1.1 Trinôme : Définition Définition 1. Un polynôme du second degré est une fonction x ax 2 + bx+ c, où a,b,c sont des réels avec a 0. On dit aussi trinôme.

Plus en détail

P (X) = (X a) 2 T (X)

P (X) = (X a) 2 T (X) Université Bordeaux I - année 00-0 MHT0 Structures Algébriques Correction du devoir maison Exercice. Soit P (X) Q[X]\Q.. Soit D(X) := pgcd(p (X), P (X)). a) Montrer que si deg D alors il existe α C tel

Plus en détail

Introduction des nombres complexes en TS

Introduction des nombres complexes en TS Introduction des nombres complexes en TS 1 À la découverte de nouveaux nombres Résoudre : dans, puis dans, l équation 5 + x = 0 ; dans, puis dans, l équation 3x + 2 = 0 ; dans, puis dans, l équation x

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité?

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité? Université Paris Dauphine DEMIE e année Algèbre linéaire 3 Examen - septembre 01 Le sujet comporte pages. L épreuve dure heures. Les documents, calculatrices et téléphones portables sont interdits. Question

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Introduction Pré-requis : Etude de fonctions dérivées logarithmes et exponentielles continuité Plan du cours 1. Intégrales 2. Primitives 1. Intégrales A. Aire sous la courbe Méthode des rectangles : Pour

Plus en détail

Exercices - Calcul d intégrales : corrigé. Intégration par parties - Changements de variable

Exercices - Calcul d intégrales : corrigé. Intégration par parties - Changements de variable Intégration par parties - Changements de variable Eercice - Changements de variables - Niveau - L/Math Sup -. La fonction t t est une bijection de classe C de, 4] sur, ]. On peut donc poser u t. Lorsque

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

Corrigé du BTS, groupement A, Nouvelle-Calédonie, novembre 2008

Corrigé du BTS, groupement A, Nouvelle-Calédonie, novembre 2008 Corrigé du BTS, groupement A, Nouvelle-Calédonie, novembre EXERCICE 1 séries de FOURIER 1 si t α ft) = si α < t < α avec < α < 1 si α t et f paire et périodique de période 1 Représentation de f sur ; lorsque

Plus en détail

Cours et exercices par Michel LECOMTE Ecole des Mines de Douai Juillet 2001

Cours et exercices par Michel LECOMTE Ecole des Mines de Douai Juillet 2001 Transformation de Fourier Cours et exercices par Michel LECOMTE Ecole des Mines de Douai Juillet LA TRANSFORMATION DE FOURIER I. Introduction. A. Rappel sur le développement en série de Fourier Soit f

Plus en détail

La forme canonique. Quand on ne sait pas!

La forme canonique. Quand on ne sait pas! La forme canonique Quand on ne sait pas! La plupart des polynômes du second degré peuvent s écrire sous 3 formes : développée, factorisée et canonique. EXEMPLE Ax ( ) EXEMPLE ( ) = æ x 3 ö ç +. çè Ici,

Plus en détail

Cours de mathématiques.

Cours de mathématiques. Orsay 008-009 IFIPS S Mathématiques (M160). Cours de mathématiques. 1. Equations différentielles linéaires du second ordre. La fonction C : x cos x est indéfiniment dérivable sur R, et C (x) = S(x), avec

Plus en détail

Equations Différentielles

Equations Différentielles Cours optionnel S4 - Maths Renforcées 1 Equations Différentielles I- Définitions élémentaires. On appelle Equation Différentielle Ordinaire (EDO) toute équation (E) du type (E) : y (n) (t) = F (t; y(t);

Plus en détail

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-201 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Polynômes 1 Fonctions polynômes & polynômes Définition 1. Soit

Plus en détail

CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS

CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS CHAPITRE 5 ÉTUDE DES SYSTÈMES FONDAMENTAUX DU SECOND ORDRE Amortisseur d un véhicule automobile Schématisation du mécanisme

Plus en détail

Les polynômes du second degré

Les polynômes du second degré Les polynômes du second degré exercices corrigés 12 septembre 2013 Les polynômes du second degré Exercice 1 Exercice 2 Exercice 3 Les polynômes du second degré Exercice 1 Les polynômes du second degré

Plus en détail

1.1 Définition de la transformée de Laplace. La transformée de Laplace d une fonction est donnée par l expression suivante : f(t)e st dt (1.

1.1 Définition de la transformée de Laplace. La transformée de Laplace d une fonction est donnée par l expression suivante : f(t)e st dt (1. Chapitre La Transformée de Laplace Ce chapitre présente une méthode très puissante et très utile pour analyser des circuits. La méthode est basée sur la transformée de Laplace, qu on verra dans ce chapitre.

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

FONCTIONS POLYNOMES DU SECOND DEGRE

FONCTIONS POLYNOMES DU SECOND DEGRE FONCTIONS POLYNOMES DU SECOND DEGRE I- Comparaison de deux nombres réels Exemple On veut comparer les nombres a et a 2 pour a nombre réel positif on nul quelconque. Si a = 0, 5, alors a 2 = 0, 25 et on

Plus en détail

LIMITES EXERCICES CORRIGES

LIMITES EXERCICES CORRIGES ours et eercices de mathématiques LIMITES EXERIES ORRIGES M UAZ, http://mathscyrreer Eercice n Déterminer la ite éventuelle en de chacune des onctions suivantes : ) ) ) 4 ( ) Déterminer la ite éventuelle

Plus en détail

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre 1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Les deux modes de représentation des sous-espaces vectoriels Il existe deux modes

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Fonctions Remise à Niveau Mathématiques Deuième partie : Fonctions Corrigés des eercices Page sur 0 RAN Fonctions Eercices corrigés - Rev 03 Mathématiques RAN - Fonctions DÉFINITIONS

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Analyse spectrale du signal

Analyse spectrale du signal Analyse spectrale du signal Principe de l analyse spectrale (ou harmonique) La réponse en fréquence des circuits est un élément caractéristique du comportement dynamique des circuits R, L et C. L autre

Plus en détail

1 Notion d espace vectoriel

1 Notion d espace vectoriel Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Résumé de cours sur les espaces vectoriels et les applications linéaires Les vecteurs du plan, les nombres réels, et les polynômes à coefficients

Plus en détail

Polynômes. Motivation. 1. Définitions. Exo7. 1.1. Définitions

Polynômes. Motivation. 1. Définitions. Exo7. 1.1. Définitions Exo7 Polynômes Vidéo partie 1. Définitions Vidéo partie 2. Arithmétique des polynômes Vidéo partie 3. Racine d'un polynôme, factorisation Vidéo partie 4. Fractions rationnelles Exercices Polynômes Exercices

Plus en détail

CHAPITRE 01 LES FONCTIONS POLYNÔMES DU SECOND DEGRÉ

CHAPITRE 01 LES FONCTIONS POLYNÔMES DU SECOND DEGRÉ CHAPITRE 01 LES FONCTIONS POLYNÔMES DU SECOND DEGRÉ I OBJECTIFS L objectif de ce chapitre est de maîtriser parfaitement les fonctions polynômes du second degré, différentes formes, racines du polynôme,

Plus en détail

Détermination de la primitive d une fraction rationnelle à l aide de la V200

Détermination de la primitive d une fraction rationnelle à l aide de la V200 Détermination de la primitive d une fraction rationnelle à l aide de la V00 Rappelons qu une fraction rationnelle est une fonction du type : n( ) f ( ). d( ) où le numérateur n et le dénominateur d sont

Plus en détail

Décomposition des fractions rationnelles

Décomposition des fractions rationnelles Décomposition des fractions rationnelles Cas des fractions rationnelles réelles Johan MILLAUD Département Génie Civil de l IUT du Limousin Mars 2006 version 2 I Avant-propos 4 I.1 Navigation dans le cours......................

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Autour des polynômes

Autour des polynômes utour des polynômes Introduction Nous nous limiterons au polynômes à une indéterminée X, construits sur les réels IR ou les complees C. Un polynôme P est défini par : k=n P X = a 0 + a X + a 2 X 2 +...

Plus en détail

Contrôle continu - 5 décembre 2011

Contrôle continu - 5 décembre 2011 Université Paris Dauphine DEMIE e année Algèbre linéaire 3 Contrôle continu - décembre 011 Le sujet comporte 1 page. L épreuve dure 1 heure 30. Les documents, calculatrices et téléphones portables sont

Plus en détail

Exercices d oraux de la banque CCP BANQUE ALGÈBRE

Exercices d oraux de la banque CCP BANQUE ALGÈBRE Exercices d oraux de la banque CCP 2014-2015 20 exercices sur les 37 d algèbre peuvent être traités en Maths Sup. BANQUE ALGÈBRE EXERCICE 59 Soit E l espace vectoriel des polynômes à coefficients dans

Plus en détail

Cours. 1 ) Fonction affine Déf. Fonctions affines, polynômes. I FONCTIONS AFFINES Fonctions affines par morceaux. x x

Cours. 1 ) Fonction affine Déf. Fonctions affines, polynômes. I FONCTIONS AFFINES Fonctions affines par morceaux. x x Cours FONCTIONS USUELLES Fonctions affines, polynômes F1 I FONCTIONS AFFINES Fonctions affines par morceaux 1 ) Fonction affine a et b sont deux réels donnés. La fonction f définie sur R par f (x) = ax

Plus en détail

Séminaire MaMuX. Propriétés cyclotomiques des canons apériodiques

Séminaire MaMuX. Propriétés cyclotomiques des canons apériodiques Séminaire MaMuX IRCAM, 2 février 2008 Propriétés cyclotomiques des canons apériodiques Franck. Jedrzejewski@Cea.fr 1 - Introduction 2 - Canons de Vuza 3 - Polynômes cyclotomiques 4 - Décomposition des

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

Continuité d une fonction, Théorème des valeurs intermédiaires

Continuité d une fonction, Théorème des valeurs intermédiaires Continuité d une fonction, Théorème des valeurs intermédiaires I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative

Plus en détail

Fonctions Affines Problèmes du premier degré

Fonctions Affines Problèmes du premier degré Fonctions Affines Problèmes du premier degré Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Fonctions Affines 2 1.1 Définition Représentation graphique.................................

Plus en détail

Université Claude Bernard Lyon-1 Licence «sciences et technologie» CONTROLE FINAL de Math II Algèbre 04 Juin-durée 2h

Université Claude Bernard Lyon-1 Licence «sciences et technologie» CONTROLE FINAL de Math II Algèbre 04 Juin-durée 2h Université Claude Bernard Lyon-1 Licence «sciences et technologie» CONTROLE FINAL de Math II Algèbre 04 Juin-durée 2h Le barème est indicatif Documents, calculatrices et téléphones portables sont interdits

Plus en détail

Fonctions - Continuité Cours maths Terminale S

Fonctions - Continuité Cours maths Terminale S Fonctions - Continuité Cours maths Terminale S Dans ce module, introduction d une nouvelle notion qu est la continuité d une fonction en un point. En repartant de la définition et de l illustration graphique

Plus en détail

Fonctions d une variable réelle

Fonctions d une variable réelle Fonctions d une variable réelle BTS Table des matières Fonctions usuelles. Fonctions en escalier..................................... Fonctions affines....................................... Fonction logarithme......................................4

Plus en détail

Fonctions d une variable réelle

Fonctions d une variable réelle Fonctions d une variable réelle BTS Table des matières Fonctions usuelles. Fonctions en escalier.......................................... Fonctions affines............................................

Plus en détail

CH1 : Langages de la continuité Limites

CH1 : Langages de la continuité Limites CH : Langages de la continuité Limites I. Continuité- Théorème des valeurs intermédiaires. Définition : Soit f une fonction définie sur un intervalle I de R. Lorsque la courbe représentative de f ne présente

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

La distance euclidienne d dans E est définie par d(x, y) = x y. Le produit scalaire est déterminé par la norme associée:

La distance euclidienne d dans E est définie par d(x, y) = x y. Le produit scalaire est déterminé par la norme associée: 2 Produit scalaire Espaces Euclidiens 21 Soit E un R-espace vectoriel Un produit scalaire dans E est une forme bilinéaire symétrique définie positive, noté La norme associée est définie par x 2 =

Plus en détail

Équations du second degré

Équations du second degré Équations du second degré Racines du trinôme et factorisation Soit le trinôme, avec. Transformation de l écriture de : ( ) [ ] [ ]. On a donc l égalité : [ ] pour tout réel. La factorisation éventuelle

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

Equations différentielles

Equations différentielles Equations différentielles Mathématiques Martine Arrrou-Vignod FORMAV 2009 I Equations différentielles linéaires à coefficients constants du premier ordre 3 I.1 Vocabulaire Définitions......................

Plus en détail

x x² = y x -3-2 -1-0,5 0 0,5 1 2 3 y CHAPITRE 12 I. INTRODUCTION

x x² = y x -3-2 -1-0,5 0 0,5 1 2 3 y CHAPITRE 12 I. INTRODUCTION CHAPITRE 2 FONCTIONS I. INTRODUCTION Une fonction est «une machine à transformer des nombres». Par eemple, la fonction «carré» désigne la «machine» qui transforme les nombres en leurs carrés. Ainsi elle

Plus en détail

Brevet Blanc de Mathématiques ** Corrigé **

Brevet Blanc de Mathématiques ** Corrigé ** Brevet Blanc de Mathématiques ** Corrigé ** Collège Goscinny de Valdoie Le soin et la qualité de la rédaction comptent pour 4 points. L usage de la calculatrice est autorisé. Sujet et corrigé écrits avec

Plus en détail

Exercice corrigé application de la dérivée. 1 er décembre 2010

Exercice corrigé application de la dérivée. 1 er décembre 2010 application de la dérivée 1 er décembre 2010 Enoncé On considère la fonction f définie sur R par : f : x 6x 3 3x 2 + 1 2 x + 24 1 Étudier les variations de f. 2 Justifier que l équation f(x) = 0 admet

Plus en détail

Trinômes du second degré

Trinômes du second degré Trinômes du second degré A. Fonctions trinômes du second degré On appelle fonction trinôme une fonction qui à tout réel associe a + b + c, avec a, b et c réels et a non nul. a + b + c est la forme développée

Plus en détail

Les différentes méthodes de calcul intégral

Les différentes méthodes de calcul intégral Les différentes méthodes de calcul intégral Connaissances de primitives Le calcul d une intégrale est immédiat quand on connaît une primitive de la fonction à intégrer. Tableau des primitives usuelles

Plus en détail

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES VINCENT GUEDJ 1. Notions fondamentales 1.1. Noyau, Image. On se donne E un K-espace vectoriel de dimension finie (K = R, C principalement) et f L(E) un

Plus en détail

Trinôme du second degré

Trinôme du second degré 1 Trinôme du second degré I. POLYNÔMES résumés de cours Polynôme Un polynôme de degré n est une fonction définie sur qui s écrit sous la forme n n1 an an 1... a 1 a0 où a n, an 1,, a 0 sont des nombres

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

Second degré. Christophe ROSSIGNOL. Année scolaire 2008/2009

Second degré. Christophe ROSSIGNOL. Année scolaire 2008/2009 Second degré Christophe ROSSIGNOL Année scolaire 008/009 Table des matières 1 Polynômes du second degré 1.1 Définition................................................. 1. Forme canonique.............................................

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

TD 3: Différentielle des fonctions de plusieurs variables Correction

TD 3: Différentielle des fonctions de plusieurs variables Correction TD 3: Différentielle des fonctions de plusieurs variables Correction 1 Calculs de dérivées partielles Exercice 1 Calculez les dérivées partielles des fonctions suivantes : 1 Pour tous réels x et y, (x,

Plus en détail

Polynômes et fractions rationnelles Trinômes du second degré

Polynômes et fractions rationnelles Trinômes du second degré Polynômes et fractions rationnelles Trinômes du second degré 1 Rappels 1. Carré d une somme : 2. Carré d une différence : 3. Différence de deux carrés : Pour tous réels a et b, a + b) 2 =........ Pour

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Frédéric Messine Introduction Dans ce chapitre, nous allons étudier une application de la dérivation des fonctions de plusieurs variables

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

7 FONCTIONS USUELLES. 1 Parité d une fonction. 2 Fonctions affines

7 FONCTIONS USUELLES. 1 Parité d une fonction. 2 Fonctions affines Cours 7 FONCTIONS USUELLES Parité d une fonction Définition Soit f une fonction définie sur un ensemble D. On dit que f est paire si : { D est symétrique par rapport à 0 Pour tout x D, f ( x) = f (x) On

Plus en détail

Notes de cours L1 MATH120. Hervé Le Dret

Notes de cours L1 MATH120. Hervé Le Dret Notes de cours L1 MATH120 Hervé Le Dret 18 octobre 2004 40 Chapitre 3 Vecteurs dans R m Dans ce chapitre, nous allons nous familiariser avec la notion de vecteur du point de vue algébrique. Nous reviendrons

Plus en détail

Nombre dérivé, interprétations géométrique et cinématique

Nombre dérivé, interprétations géométrique et cinématique CHAPITRE 4 DÉRIVATION ET PRIMITIVATION Nombre dérivé, interprétations géométrique et cinématique 08. Nombre dérivé Soit f une fonction numérique, définie sur un intervalle ou une réunion d intervalles,

Plus en détail

CORRECTION DU DEVOIR DU 21/11/2016. Partie I. 1 cos (2t) 2

CORRECTION DU DEVOIR DU 21/11/2016. Partie I. 1 cos (2t) 2 Lycée Thiers CORRECTION DU DEVOIR DU //06 Partie I Rappelons d une part que : et d autre part que : t R, sin (t cos (t ( t [, ], cos (arcsin (t t ( La formule de linéarisation ( est bien connue. La formule

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

DERIVATION I. DE LA TANGENTE A LA DERIVABILITE. a) Tangente et nombre dérivé. Ch2 : Dérivation (TES)

DERIVATION I. DE LA TANGENTE A LA DERIVABILITE. a) Tangente et nombre dérivé. Ch2 : Dérivation (TES) DERIVATION I. DE LA TANGENTE A LA DERIVABILITE a) Tangente et nombre dérivé Aux origines la dérivation, était un problème purement géométrique : il s'agissait de connaître le coefficient directeur ou pente

Plus en détail

La décomposition de Dunford des endomorphismes.

La décomposition de Dunford des endomorphismes. Document de travail pour l atelier de la journée régionale APMEP d Aix-Marseille du 17 mai André BONNET andre.bonnet9@orange.fr La décomposition de Dunford des endomorphismes. En travaillant avec un jeune

Plus en détail