suit la loi centrée réduite N(0;1). La courbe de f est symétrique par rapport à la droite d'équation x =

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "suit la loi centrée réduite N(0;1). La courbe de f est symétrique par rapport à la droite d'équation x ="

Transcription

1 T ES/L EXERCICES : LOI DE PROBABILITE A DENSITE Rappel Exercice 1 Soit X une variable aléatoire. X suit la loi normale N( ;²) lorsque Z = X suit la loi centrée réduite N(0;1). La courbe de f est symétrique par rapport à la droite d'équation x = Une assurance s'intéresse aux coûts des sinistres susceptibles de survenir en On note X la variable aléatoire qui à chaque sinistre associe son coût. L'étude des années précédentes montre que X suit la loi normale de moyenne 1130 et d'écart type 180. Quelle est la probabilité qu'en 2013 un sinistre pris au hasard coûte entre 850 et 1700 euros? Exercice 2 Une usine fabrique des puzzles de 512 pièces. Pour tester la conformité des puzzles, le service qualité de l'entreprise prélève au hasard un puzzle de 512 pièces. On appelle X la variable aléatoire qui à un puzzle donné associe le nombre de pièces non conforme. On estime que X suit le loi normale de moyenne 9 et d'écart type 3. 1) Déterminer la probabilité qu'il y ait au plus 12 pièces non conformes dans le puzzle. 2) Déterminer le réel x 0 tel que p(x > x 0 ) = 0,01. En déduire le plus petit entier k tel que la probabilité que le puzzle comporte plus de k pièces non conformes soit inférieure à 0,01. Exercice 3 On suppose que les masses des blocs de foie gras produites par la société Toutdeloi sont distribuées normalement avec une moyenne de 250g et d'un écart type de 10g. On considère qu'un bloc n'est pas rentable si sa masse est plus grande ou égale à 265g. Calculer le pourcentage de blocs non rentables fabriqués par cette société. Exercice 4 La sélection chez les vaches laitières de race «Française Frisonne Pis Noir» (*) La production laitière annuelle en litres des vaches laitières de la race Française Frisonne Pis Noir peut être modélisée par une variable aléatoire à densité X, de loi normale de moyenne =6000 et d'écart type =400. La fonction g désigne la fonction de densité de cette loi normale. 1) Afin de gérer au mieux son quota laitier, en déterminant la taille optimale de son troupeau, un éleveur faisant naître des vaches de cette race souhaite disposer de certaines probabilités. a) Calculer la probabilité qu'une vache quelconque de cette race produise moins de 5800 litres de lait par an. b) Calculer la probabilité qu'une vache quelconque de cette race produise entre 5900 et 6100 litres de lait par an. c) Calculer la probabilité qu'une vache quelconque de cette race produise plus de 6250 litres de lait par an. 2) Dans son futur troupeau, l'éleveur souhaite connaître : a) La production maximale prévisible des 30% de vaches les moins productives du troupeau. b) La production minimale prévisible des 20% de vaches les plus productives du troupeau.

2 Exercice 5 Réglage d'une machine d'embouteillage dans une coopérative (*) Sur une chaîne d'embouteillage dans une brasserie, la quantité X (en cl) de liquide fournie par la machine pour remplir chaque bouteille de contenance 110 cl peut être modélisée par une variable aléatoire de loi normale de moyenne μ et d écart-type = 2. La législation impose qu'il y ait moins de 0,1% de bouteilles contenant moins d'un litre. 1) a) À quelle valeur de la moyenne μ doit-on régler la machine pour respecter cette législation? b) La contenance des bouteilles étant de 110 cl, quelle est alors, dans ces conditions, la probabilité qu'une bouteille déborde lors du remplissage? 2) Le directeur de la coopérative veut qu'il y ait moins de 1% de bouteilles qui débordent au risque de ne plus suivre la législation. a) Quelle est alors la valeur de μ? b) Quelle est dans les conditions de la question a) la probabilité que la bouteille contienne moins d'un litre? 3) Déterminer μ et afin qu il y ait moins de 0,1% de bouteilles de moins d'un litre ET moins de 1% de bouteilles qui débordent. Exercice 6 Durée de vie d un appareil (*) La durée de vie d'un certain type d appareil est modélisée par une variable aléatoire suivant une loi normale de moyenne et d écart-type inconnus. Les spécifications impliquent que 80 % de la production des appareils ait une durée de vie entre 120 et 200 jours et que 5% de la production ait une durée de vie inférieure à 120 jours. 1) Quelles sont les valeurs de et ²? 2) Quelle est la probabilité d avoir un appareil dont la durée de vie soit comprise entre 200 jours et 230 jours? Exercice 7 Une confiserie produit des plaques de chocolat. On admet que la variable aléatoire égale au poids d une plaquette de 125 g suit une loi normale d espérance μ = 125 et d écart type = 0,5. La plaquette est jugée conforme lorsque son poids est compris entre μ 3 et μ ) Calculer la probabilité qu une plaquette prélevée aléatoirement au hasard en fin de chaîne soit non conforme. 2) Pour contrôler le réglage de la machine, on détermine des poids d alerte μ h et μ + h tels que P (μ h X μ + h ) = 0,99. Ces poids d alerte sont inscrits sur une carte de contrôle et correspondent à une marge de sécurité en lien avec des normes de conformité. Déterminer ces poids d alerte. (*) Tiré des documents ressources de Terminale

3 Exercice 8 Pondichery 2013 (S) Cette entreprise emploie 220 salariés. Pour la suite on admet que la probabilité pour qu'un salarié soit malade une semaine donnée durant cette période d'épidémie est égale à p=0,05. On suppose que l'état de santé d'un salarié ne dépend pas de l'état de santé de ses collègues. On désigne par X la variable aléatoire qui donne le nombre de salariés malades une semaine donnée. 1. Justifier que la variable aléatoire X suit une loi binomiale dont on donnera les paramètres. Calculer l'espérance mathématique μ et l'écart type de la variable aléatoire X. 2. On admet que l'on peut approcher la loi de la variable aléatoire X μ réduite c'est-à-dire de paramètres 0 et 1. On note Z une variable aléatoire suivant la loi normale centrée réduite. par la loi normale centrée Le tableau suivant donne les probabilités de l'évènement Z<x pour quelques valeurs du nombre réel x. x -1,55-1,24-0,93-0,62-0,31 0,00 0,31 0,62 0,93 1,24 1,55 P(Z<x) 0,061 0,108 0,177 0,268 0,379 0,500 0,621 0,732 0,823 0,892 0,939 Calculer, au moyen de l'approximation proposée en question b., une valeur approchée à10 2 près de la probabilité de l'évènement : «le nombre de salariés absents dans l'entreprise au cours d'une semaine donnée est supérieur ou égal à 7 et inférieur ou égal à 15».

4 T ES/L CORRECTION EXERCICES : LOI DE PROBABILITE A DENSITE Rappel Exercice 1 Soit X une variable aléatoire. X suit la loi normale N( ;²) lorsque Z = X suit la loi centrée réduite N(0;1). La courbe de f est symétrique par rapport à la droite d'équation x = Une assurance s'intéresse aux coûts des sinistres susceptibles de survenir en On note X la variable aléatoire qui à chaque sinistre associe son coût. L'étude des années précédentes montre que X suit la loi normale de moyenne 1130 et d'écart type 180. Quelle est la probabilité qu'en 2013 un sinistre pris au hasard coûte entre 850 et 1700 euros? Méthode 1 : Directe avec la calculatrice et la modification de μ et. On intéresse à p (850 X 1700) 0,939 Exercice 2 Méthode 2 : Avec la calculatrice et la loi centrée réduite N(0;1) X suit la loi N(1130,180²) Z = X Alors p(850 X 1700) = p ( suit la loi centrée réduite N(0;1) Z ) = p ( Z ) Une usine fabrique des puzzles de 512 pièces. Pour tester la conformité des puzzles, le service qualité de l'entreprise prélève au hasard un puzzle de 512 pièces. On appelle X la variable aléatoire qui à un puzzle donné associe le nombre de pièces non conforme. On estime que X suit le loi normale de moyenne 9 et d'écart type 3. 1) Déterminer la probabilité qu'il y ait au plus 12 pièces non conformes dans le puzzle. p(x 12) 0,8413, on utilise la calculatrice avec μ = 9 et = 3. X On peut aussi retrouver ce résultat avec : X 12 Z Z p (X 12) p (Z 1) et en utilisant la loi centrée réduite N(0;1) 2) Déterminer le réel x 0 tel que p(x > x 0 ) = 0,01. x 0 15, 97 Utilisation de la calculatrice et InvNorm. En déduire le plus petit entier k tel que la probabilité que le puzzle comporte plus de k pièces non conformes soit inférieure à 0,01. k = 16 pièces. Exercice 3 On suppose que les masses des blocs de foie gras produites par la société Toutdeloi sont distribuées normalement avec une moyenne de 250g et d'un écart type de 10g. On considère qu'un bloc n'est pas rentable si sa masse est plus grande ou égale à 265g. Calculer le pourcentage de blocs non rentables fabriqués par cette société. p (X 265) 0,06 Soit 6%.

5 Exercice 4 La sélection chez les vaches laitières de race «Française Frisonne Pis Noir» (*) La production laitière annuelle en litres des vaches laitières de la race Française Frisonne Pis Noir peut être modélisée par une variable aléatoire à densité X, de loi normale de moyenne =6000 et d'écart type =400. La fonction g désigne la fonction de densité de cette loi normale. 1) Afin de gérer au mieux son quota laitier, en déterminant la taille optimale de son troupeau, un éleveur faisant naître des vaches de cette race souhaite disposer de certaines probabilités. a) Calculer la probabilité qu'une vache quelconque de cette race produise moins de 5800 litres de lait par an. p (X 5800) 0,308 b) Calculer la probabilité qu'une vache quelconque de cette race produise entre 5900 et 6100 litres de lait par an. p (5900 X 6100) 0,197 c) Calculer la probabilité qu'une vache quelconque de cette race produise plus de 6250 litres de lait par an. p (6250 X) 0,2659 2) Dans son futur troupeau, l'éleveur souhaite connaître : a) La production maximale prévisible des 30% de vaches les moins productives du troupeau. p( X x 0 ) 0,3 Soit x Les 30% des vaches les moins productives produiront un maximum de 5790 litres. b) La production maximale prévisible des 20% de vaches les plus productives du troupeau. p( x 1 X ) 0,2 Les 20% des vaches les plus productives produiront un minimum de 6336 litres. Exercice 5 Réglage d'une machine d'embouteillage dans une coopérative (*) Sur une chaîne d'embouteillage dans une brasserie, la quantité X (en cl) de liquide fournie par la machine pour remplir chaque bouteille de contenance 110 cl peut être modélisée par une variable aléatoire de loi normale de moyenne μ et d écart-type = 2. La législation impose qu'il y ait moins de 0,1% de bouteilles contenant moins d'un litre. 1) a) À quelle valeur de la moyenne μ doit-on régler la machine pour respecter cette législation? Il s agit déterminer la valeur de μ telle que P(X < 100) < 0,001. On détermine d'abord la valeur z (on dit aussi quantile) de la loi normale centrée réduite, telle que P(Z < z) = 0,001. On trouve, à la calculatrice à l aide de FracNormale() ou InvN, z 3,09. Comme Z = X μ 2 On trouve 106,18., on obtient 3, μ 2 soit ,09 b) La contenance des bouteilles étant de 110 cl, quelle est alors, dans ces conditions, la probabilité qu'une bouteille déborde lors du remplissage? Avec μ 106,18, on obtient P(X > 110) 0,028. 2) Le directeur de la coopérative veut qu'il y ait moins de 1% de bouteilles qui débordent au risque de ne plus suivre la législation. a) Quelle est alors la valeur de μ? Il s agit cette fois de déterminer μ tel que P(X > 110) < 0,01. On détermine d'abord la valeur z de la loi normale centrée réduite, telle que P(Z > z) = 0,01 ou P(Z < z) = 0,99. On trouve, à la calculatrice à l aide de FracNormale() ou InvN, z 2,33. Comme Z = X μ 110 μ, on obtient 2,33 = 2 2 On trouve 105,34.

6 b) Quelle est dans les conditions de la question a) la probabilité que la bouteille contienne moins d'un litre? Avec cette valeur de μ, on obtient P(X < 100) 0,0038, ce qui est plus élevé que dans le cas précédent. 3) Déterminer μ et afin qu il y ait moins de 0,1% de bouteilles de moins d'un litre ET moins de 1% de bouteilles qui débordent. On cherche donc à déterminer les valeurs de μ et de de sorte que : P(X < 100) < 0,001 et P(X > 110) < 0,01. Les deux contraintes sur les probabilités fournissent les deux conditions suivantes. On détermine d'abord la valeur z sup de la loi normale centrée réduite telle que P(Z > z sup ) = 0,01 c'est-à-dire que P(Z < z sup ) = 0,99 On trouve avec la calculatrice z sup 2,33. On détermine ensuite la valeur z inf telle que P(Z < z inf ) = 0,001. On trouve z inf 3,09. Les deux contraintes se traduisent donc par les deux inégalités suivantes : ,33 et 3,09 On obtient donc un domaine de solutions et une discussion pourra être menée quant aux choix pertinents que le directeur de coopérative pourrait faire. Exercice 5 Durée de vie d un appareil (*) La durée de vie d'un certain type d appareil est modélisée par une variable aléatoire suivant une loi normale de moyenne et d écart-type inconnus. Les spécifications impliquent que 80 % de la production des appareils ait une durée de vie entre 120 et 200 jours et que 5% de la production ait une durée de vie inférieure à 120 jours. 1) Quelles sont les valeurs de et ²? On note X la variable durée de vie. Les spécifications se traduisent par : p(120 X 200) = 0,8 et p(x < 120) = 0,05 Alors p(x 200) = 0,8 + 0,05 et p(x < 120) = 0,05 Donc p(x 200) = 0,85 et p(x < 120) = 0,05 En notant toujours Z = X la variable centrée réduite, on obtient : p (Z 200 ) = 0,85 et p (Z 120 ) = 0,05 On trouve, à la calculatrice à l aide de FracNormale() ou InvN, z 1,04. et z 1,65. Z = X μ et Z = X μ 2 2 1,04 = 200 μ et 1,65 = 120 μ = 200 1,04 et = ,65 = 200 1,04 Par la résolution du système, { = ,65 = 200 1,04 Alors { 0 = 80 2,69 = 200 1,04 { = 80 2,69

7 8000 = 200 1, { = { = 169,07 29,74 On obtient donc = 169 et ² 29, 74² 884 2) Quelle est la probabilité d avoir un appareil dont la durée de vie soit comprise entre 200 jours et 230 jours? En utilisant la calculatrice, on obtient : P(200 X 230) 0,13 Exercice 7 Une confiserie produit des plaques de chocolat. On admet que la variable aléatoire égale au poids d une plaquette de 125 g suit une loi normale d espérance μ = 125 et d écart type = 0,5. La plaquette est jugée conforme lorsque son poids est compris entre μ 3 et μ ) Calculer la probabilité qu une plaquette prélevée aléatoirement au hasard en fin de chaîne soit non conforme. La probabilité qu une plaque soit conforme est égale à P (μ 3 X μ + 3) 0,997 Donc la probabilité qu une plaquette ne soit pas conforme vaut environ 0,003. 2) Pour contrôler le réglage de la machine, on détermine des poids d alerte μ h et μ + h tels que P (μ h X μ + h ) = 0,99. Ces poids d alerte sont inscrits sur une carte de contrôle et correspondent à une marge de sécurité en lien avec des normes de conformité. Déterminer ces poids d alerte. Afin de pouvoir utiliser la calculatrice, il faut déterminer P(X + h). On a P(X + h) = P(X ) + P( X + h) Or P(X ) = 0,5 (Rappel la courbe de la fonction densité est symétrique par rapport à la droite d équation x = ) Et P( X + h) = 1 2 Alors P(X + h) = 0,5 + 0,495 = 0,995 P( h X + h) = 0,99 2 = 0,495 Avec la calculatrice, comme X suit la loi normale N(125 ;0,5²), on trouve + h = 126,29 Alors h = 126,29 = 126, = 1,29 Donc + h = 125 1,29 = 123,71 D où les poids d alerte sont 123,71 et 126,29 Grâce à des échantillons prélevés en fin de chaîne, ces poids d alerte permettent de déceler l existence d anomalies de fonctionnement avant le dépassement des normes μ 3 et μ + 3 (*) Tiré des documents ressources de Terminale

8 Exercice 8 Pondichery 2013 (S) Cette entreprise emploie 220 salariés. Pour la suite on admet que la probabilité pour qu'un salarié soit malade une semaine donnée durant cette période d'épidémie est égale à p=0,05. On suppose que l'état de santé d'un salarié ne dépend pas de l'état de santé de ses collègues. On désigne par X la variable aléatoire qui donne le nombre de salariés malades une semaine donnée. 1. Justifier que la variable aléatoire X suit une loi binomiale dont on donnera les paramètres. Calculer l'espérance mathématique μ et l'écart type de la variable aléatoire X. La situation revient à répéter 220 fois de façon indépendante une expérience de Bernoulli dont la probabilité du succès (le salarié est malade) vaut 0,05. Donc la variable aléatoire X qui compte le nombre de salariés malades suit une loi binomiale B(220 ;0,05) (n=220 et p=0,05). En utilisant les formules du cours on a : μ = np = 220 0,05 = 11 = np(1 p) = 11(1 0,05) 3,23 2. On admet que l'on peut approcher la loi de la variable aléatoire X μ réduite c'est-à-dire de paramètres 0 et 1. On note Z une variable aléatoire suivant la loi normale centrée réduite. par la loi normale centrée Le tableau suivant donne les probabilités de l'évènement Z<x pour quelques valeurs du nombre réel x. x -1,55-1,24-0,93-0,62-0,31 0,00 0,31 0,62 0,93 1,24 1,55 P(Z<x) 0,061 0,108 0,177 0,268 0,379 0,500 0,621 0,732 0,823 0,892 0,939 Calculer, au moyen de l'approximation proposée en question b., une valeur approchée à10 2 près de la probabilité de l'évènement : «le nombre de salariés absents dans l'entreprise au cours d'une semaine donnée est supérieur ou égal à 7 et inférieur ou égal à 15». P(7 X 15) = P( 7 μ Avec 7 μ ,23 15 μ Z 1,24 et 15 μ ) ,23 1,24. Donc il faut calculer P( 1,24 Z 1,24) où Z suit la loi N(0 ;1). Par lecture dans le tableau on a : P(Z < 1,24) 0,108 et P(Z < 1,24) 0,892. Donc P( 1,24 Z 1,24)= P(Z < 1,24) - P(Z < 1,24) 0,892 0,108 0,78 Donc la probabilité que le nombre de salariés absents dans l'entreprise au cours d'une semaine donnée est supérieur ou égal à 7 et inférieur ou égal à 15 est de 0,78.

Baccalauréat STMG Polynésie 12 septembre 2014 Correction

Baccalauréat STMG Polynésie 12 septembre 2014 Correction Baccalauréat STMG Polynésie 1 septembre 014 Correction Durée : 3 heures EXERCICE 1 6 points Pour une nouvelle mine de plomb, les experts d une entreprise modélisent le chiffre d affaires (en milliers d

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES/spé TL Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la rédaction

Plus en détail

T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013

T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013 T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Corrrigé du sujet de Baccalaurat S. Pondichery 2015. Spécialité

Corrrigé du sujet de Baccalaurat S. Pondichery 2015. Spécialité Corrrigé du sujet de Baccalaurat S Pondichery 2015 Spécialité EXERCICE 1 (4 points) commun à tous les candidats Partie A Soit f la fonction définie sur R par f(x) et la droite d équation et la droite d

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé Baccalauréat ES/L Amérique du Sud 2 novembre 2 Corrigé A. P. M. E. P. EXERCICE Commun à tous les candidats 5 points. Diminuer le budget de 6 % sur un an revient à multiplier par 6 =,94. Diminuer le budget

Plus en détail

1 Variable aléatoire discrète... 1. 1.1 Rappels... 1. 1.2 Exemple... 2 2 Couples de variables aléatoires... 3. 2.1 Définition... 3

1 Variable aléatoire discrète... 1. 1.1 Rappels... 1. 1.2 Exemple... 2 2 Couples de variables aléatoires... 3. 2.1 Définition... 3 CHAPITRE : LOIS DISCRÈTES Sommaire Variable aléatoire discrète................................... Rappels........................................... Exemple......................................... Couples

Plus en détail

Baccalauréat STL Biotechnologies juin 2014 Polynésie Correction

Baccalauréat STL Biotechnologies juin 2014 Polynésie Correction Baccalauréat STL Biotechnologies juin 014 Polynésie Correction EXERCICE 1 Les trois parties de cet exercice peuvent être traitées de manière indépendante. Les résultats seront arrondis, si nécessaire,

Plus en détail

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale MT8 A 0 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale. Fonction de répartition.. Variable aléatoire à valeurs réelles Définition : Soit un ensemble fondamental

Plus en détail

Baccalauréat ES Polynésie 10 juin 2016

Baccalauréat ES Polynésie 10 juin 2016 Baccalauréat ES Polynésie 0 juin 06 EXERCICE Les parties A et B sont indépendantes On s intéresse à l ensemble des demandes de prêts immobiliers auprès de trois grandes banques. Une étude montre que %

Plus en détail

[ Baccalauréat S Nouvelle-Calédonie \ 19 novembre 2015

[ Baccalauréat S Nouvelle-Calédonie \ 19 novembre 2015 Durée : 4 heures [ Baccalauréat S Nouvelle-Calédonie \ 19 novembre 015 A. P. M. E. P. EXERCICE 1 7 points Une usine produit de l eau minérale en bouteilles. Lorsque le taux de calcium dans une bouteille

Plus en détail

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 Durée : 3h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Niveau. Situations étudiées. Type d activité. Durée. Objectifs

Niveau. Situations étudiées. Type d activité. Durée. Objectifs Fourchettes, non réponses, fausses réponses et redressements... : la cuisine mathématique des sondages Niveau Exercice 1 : 3 ème 2 nde. Exercice 2 : 3 ème 2 nde. Exercice 3 : Seconde ou première. Exercice

Plus en détail

Échantillonnage et estimation

Échantillonnage et estimation Échantillonnage et estimation Dans ce chapitre, on s intéresse à un caractère dans une population donnée dont la proportion est notée. Cette proportion sera dans quelques cas connue (échantillonnage),

Plus en détail

Lycée Marlioz - Aix les Bains. Bac Blanc 2012. Mathématiques - Terminale ES. 16 mai 2012

Lycée Marlioz - Aix les Bains. Bac Blanc 2012. Mathématiques - Terminale ES. 16 mai 2012 Lycée Marlioz - Aix les Bains Bac Blanc 2012 Mathématiques - Terminale E Candidats n ayant pas choisi la spécialité maths 16 mai 2012 Pour cette épreuve, la rédaction, la clarté et la précision des explications

Plus en détail

Sujets. Formulaire. mai 2011. Amérique du Nord. novembre 2011. Nouvelle-Calédonie. mai 2012. BTS Métopole (B1) mai 2013.

Sujets. Formulaire. mai 2011. Amérique du Nord. novembre 2011. Nouvelle-Calédonie. mai 2012. BTS Métopole (B1) mai 2013. LOIS CONTINUES Sujets mai 2011 novembre 2011 mai 2012 mai 2013 Amérique du Nord Nouvelle-Calédonie BTS Métopole (B1) BTS Métropole (D) Formulaire LOIS CONTINUES 1 Amérique du Nord mai 2011. EXERCICE 2

Plus en détail

Fonctions Nombre Dérivé Fonction dérivée

Fonctions Nombre Dérivé Fonction dérivée Fonctions Nombre Dérivé Fonction dérivée Ce chapitre est le chapitre central de la classe de Terminale STG. Il permet (en partie) de clore ce qui avait été entamé dés le collège avec les fonctions affines

Plus en détail

Ressources pour le lycée technologique

Ressources pour le lycée technologique éduscol Enseignement de mathématiques Classe de première STMG Ressources pour le lycée technologique Échantillonnage : couleur des yeux au Canada Contexte pédagogique Objectifs Obtenir un intervalle de

Plus en détail

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé)

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) EXERCICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chacune des questions posées, une seule des quatre réponses

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES BACCALAURÉAT TECHNOLOGIQUE Session 2015 Jeudi 18 juin 2015 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DE LABORATOIRE Spécialité : BIOTECHNOLOGIES Durée de l épreuve : 4 heures Coefficient : 4 Calculatrice

Plus en détail

MATHEMATIQUES BTS1 2013-2014 Corrigés des devoirs

MATHEMATIQUES BTS1 2013-2014 Corrigés des devoirs MATHEMATIQUES BTS1 2013-201 Corrigés des devoirs CC 23 /09/2013 page2 CC 18/10/2013 page DV 25/11/2013 page 6 BTS Blanc 13/12/2013 page 8 CC 07/01/201 page 12 CC 0/02/201 page 1 BTS Blanc 27/02/201 page

Plus en détail

L'aire du domaine limité par la courbe, l'axe des abscisses et les droites d'équations 4 et 16 est d'environ 0,95 unités d'aire.

L'aire du domaine limité par la courbe, l'axe des abscisses et les droites d'équations 4 et 16 est d'environ 0,95 unités d'aire. T ES/L DEVOIR SURVEILLE 6 24 MAI 2013 Durée : 3h Calculatrice autorisée NOM : Prénom : «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations

Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations Exercice 1 11 points Une entreprise fabrique un certain type d articles. Sa capacité maximale de production

Plus en détail

Baccalauréat STG Mercatique Polynésie 8 juin 2012 Correction

Baccalauréat STG Mercatique Polynésie 8 juin 2012 Correction Baccalauréat SG Mercatique Polynésie 8 juin 2012 Correction La calculatrice (conforme à la circulaire N o 99-186 du 16-11-99) est autorisée. EXERCICE 1 4 points Cet exercice est un questionnaire à choix

Plus en détail

Fiche de révision sur les lois continues

Fiche de révision sur les lois continues Exercice 1 Voir la correction Le laboratoire de physique d un lycée dispose d un parc d oscilloscopes identiques. La durée de vie en années d un oscilloscope est une variable aléatoire notée X qui suit

Plus en détail

- 06 - LA GESTION DE LA PRODUCTION : PARTIE 1

- 06 - LA GESTION DE LA PRODUCTION : PARTIE 1 - 06 - LA GESTION DE LA PRODUCTION : PARTIE 1 Objectif(s) : o o Pré requis : o o o Contraintes de production, Optimisation de la gestion de la production. Coût de production, Production sous contraintes,

Plus en détail

Lois de probabilité. a ; avec a < b, toute fonction f vérifiant

Lois de probabilité. a ; avec a < b, toute fonction f vérifiant Lois de probabilité A) Lois à densité Loi continue Approche : Jusqu ici, les variables aléatoires étudiées prenaient un nombre fini de valeurs Or les issues d un grand nombre d expériences aléatoires prennent

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR SOUS ÉPREUVE : MATHÉMATIQUES. Le GROUPEMENT Agencement de l environnement architectural de 2001 à 2011

BREVET DE TECHNICIEN SUPÉRIEUR SOUS ÉPREUVE : MATHÉMATIQUES. Le GROUPEMENT Agencement de l environnement architectural de 2001 à 2011 BREVET DE TECHNICIEN SUPÉRIEUR A. P. M. E. P. SOUS ÉPREUVE : MATHÉMATIQUES Le GROUPEMENT Agencement de l environnement architectural de 2001 à 2011 Métropole 2001..........................................

Plus en détail

Estimation. Anita Burgun

Estimation. Anita Burgun Estimation Anita Burgun Estimation Anita Burgun Contenu du cours Sondages Mesures statistiques sur un échantillon Estimateurs Problème posé Le problème posé en statistique: On s intéresse à une population

Plus en détail

Baccalauréat ES Pondichéry 21 avril 2016

Baccalauréat ES Pondichéry 21 avril 2016 Exercice 1 Commun à tous les candidats Baccalauréat ES Pondichéry 21 avril 216 4 points Cet exercice est un QCM (questionnaire à choix multiples). Pour chacune des quatre questions posées, une seule des

Plus en détail

Classe : TES1 Le 11/03/2003 MATHEMATIQUES Devoir N 6 Calculatrice et formulaire autorisés. Durée : 3h

Classe : TES1 Le 11/03/2003 MATHEMATIQUES Devoir N 6 Calculatrice et formulaire autorisés. Durée : 3h Classe : TES1 Le 11/03/003 MATHEMATIQUES Devoir N 6 Calculatrice et ormulaire autorisés Durée : 3h Exercice 1 : (5 points) (correction) Un magasin de distribution vend deux types de téléphones portables

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités Sujet Métropole 01 EXERIE 1. [4 pts] Probabilités Une jardinerie vend de jeunes plants d arbres qui proviennent de trois horticulteurs : 5% des plants proviennent de l horticulteur H 1, 5% de l horticulteur

Plus en détail

Mesures et analyses statistiques de données - Probabilités. Novembre 2012 - Contrôle Continu, Semestre 1 CORRECTION

Mesures et analyses statistiques de données - Probabilités. Novembre 2012 - Contrôle Continu, Semestre 1 CORRECTION MASTER 1 GSI- Mentions ACCIE et RIM La Citadelle - ULCO Mesures et analyses statistiques de données - Probabilités Novembre 2012 - Contrôle Continu, Semestre 1 CORRECTION Exercice 1 Partie I 12pts 1 Étude

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

Correction du baccalauréat STMG Centres étrangers 17 juin 2014

Correction du baccalauréat STMG Centres étrangers 17 juin 2014 orrection du baccalauréat STMG entres étrangers 17 juin 2014 EXERIE 1 4 points On considère une fonction f définie sur l intervalle [ 5 ; 3] dont la représentation graphique f est donnée ci-dessous. Soit

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

Chapitre 7 Tests d hypothèse (partie 1)

Chapitre 7 Tests d hypothèse (partie 1) Chapitre 7 Tests d hypothèse (partie 1) I Qu est ce qu un test statistique? La philosophie est toujours la même : déterminer des informations sur une population à partir d informations sur un échantillon

Plus en détail

Chapitre 4. Fonction exponentielle. 4.1 Activité. Sommaire

Chapitre 4. Fonction exponentielle. 4.1 Activité. Sommaire Chapitre 4 Fonction exponentielle Sommaire 4.1 Activité............................................. 37 4. Fonctions exponentielles de base q (q > 0)........................ 39 4..1 Définition.........................................

Plus en détail

FONCTIONS (2) : FONCTIONS AFFINES REPRESENTATIONS GRAPHIQUES

FONCTIONS (2) : FONCTIONS AFFINES REPRESENTATIONS GRAPHIQUES SYNTHESE ( THEME 9 ) FONCTIONS (2) : FONCTIONS AFFINES REPRESENTATIONS GRAPHIQUES A - FONCTION AFFINE A : DEFINITION ET NOTATION a et b étant deux nombres fixés, on appelle fonction affine tout processus

Plus en détail

LOIS DE PROBABILITÉ À DENSITÉ

LOIS DE PROBABILITÉ À DENSITÉ LOIS DE PROBABILITÉ À DENSITÉ Une expérience aléatoire consiste à choisir au hasard un nombre réel X dans l'intervalle I = ]0 ; 0]. L'univers est l'intervalle I. C'est un univers infini. On ne peut pas

Plus en détail

Probabilités 6 : Loi normale N (μ ; σ 2 )

Probabilités 6 : Loi normale N (μ ; σ 2 ) Probabilités 6 : Loi normale N (μ ; 2 ) «I» : Définition Soit μ un nombre réel et un réel strictement positif, o n dit qu'une variable aléatoire X suit la loi normale N (μ ; 2 ), lorsque la variable aléatoire

Plus en détail

On hachurera la partie du plan qui ne convient pas sans aucune justification.

On hachurera la partie du plan qui ne convient pas sans aucune justification. Exercice 1 (7 points) : PARTIE I En annexe 1, à rendre avec la copie, on a construit dans un repère orthonormal les droites D et D d équations respectives D : x + y = 6 et D : x + 2y = 8. Déterminer graphiquement

Plus en détail

(a) Déterminer la probabilité que le chocolat choisi soit blanc et garni de praliné.

(a) Déterminer la probabilité que le chocolat choisi soit blanc et garni de praliné. Eercice / 5 points Une boîte de chocolats contient 50 % de chocolats au lait, 30 % de chocolats noirs et 0 % de chocolats blancs. Tous les chocolats de la boîte sont de même forme et d emballage identique.

Plus en détail

Deuxième épreuve d admission. Exemples de sujets

Deuxième épreuve d admission. Exemples de sujets Deuxième épreuve d admission. Exemples de sujets Thème : probabilités 1) On lance deux dés équilibrés à 6 faces et on note la somme des deux faces obtenues. 1.a) Donner un univers associé cette expérience.

Plus en détail

Contrôle commun : 4 heures

Contrôle commun : 4 heures Exercice 1 (5 points) Contrôle commun : 4 heures PARTIE A On considère la fonction f définie sur l intervalle ]0 ; + [ par f(x) = ln x + x. 1. Déterminer les limites de la fonction f en 0 et en +.. Étudier

Plus en détail

MASTER de Génie Civil, Lyon Année scolaire 2006-2007 DYNAMIQUE DES SOLS ET DES STRUCTURES. Sujet No 1, durée : 2 heures

MASTER de Génie Civil, Lyon Année scolaire 2006-2007 DYNAMIQUE DES SOLS ET DES STRUCTURES. Sujet No 1, durée : 2 heures MASTER de Génie Civil, Lyon Année scolaire 6-7 Epreuve du 6 mars 7 DYNAMIQUE DES SOLS ET DES STRUCTURES GENIE PARASISMIQUE Sujet No, durée : heures Les copies doivent être rédigées en français et écrites

Plus en détail

Agrégation interne de Sciences économiques et sociales - Session 2008 Épreuve de Mathématiques - sujet A

Agrégation interne de Sciences économiques et sociales - Session 2008 Épreuve de Mathématiques - sujet A Épreuve de Mathématiques - sujet A Exercice Une société de location de voitures possède trois agences, une à Rennes, une à Lyon, une à Marseille. Lorsqu un client loue une voiture, un jour donné, dans

Plus en détail

L e s m a t h é m a t i q u e s a u c o l l è g e Page 1. BREVET BLANC 21 avril 2013. Exercice 1 :

L e s m a t h é m a t i q u e s a u c o l l è g e Page 1. BREVET BLANC 21 avril 2013. Exercice 1 : Exercice 1 : 8 questions indépendantes Les huit questions suivantes sont indépendantes. 1. Écrire la fraction sous forme irréductible en détaillant tous les calculs. 1 ière étape : On cherche le P.G.C.D.

Plus en détail

CH.2 CODES CORRECTEURS

CH.2 CODES CORRECTEURS CH.2 CODES CORRECTEURS 2.1 Le canal bruité 2.2 La distance de Hamming 2.3 Les codes linéaires 2.4 Les codes de Reed-Muller 2.5 Les codes circulaires 2.6 Le câblage des codes circulaires 2.7 Les performances

Plus en détail

PROBABILITÉS Variable aléatoire

PROBABILITÉS Variable aléatoire PROBABILITÉS Variable aléatoire I Langage des événements Lors d'un oral de mathématiques, quatre questions sont proposées : une question de probabilités (P) ; une question de statistiques (S) ; une question

Plus en détail

Chapitre 1 : Programmation linéaire

Chapitre 1 : Programmation linéaire Graphes et RO TELECOM Nancy 2A Chapitre 1 : Programmation linéaire J.-F. Scheid 1 I. Introduction 1) Modélisation En Recherche Opérationnelle (RO), modéliser un problème consiste à identifier: les variables

Plus en détail

SONDAGE DANS LA MISSION D AUDIT UNITE MONETAIRE. Fethi NEJI & Mounir GRAJA

SONDAGE DANS LA MISSION D AUDIT UNITE MONETAIRE. Fethi NEJI & Mounir GRAJA SONDAGE DANS LA MISSION D AUDIT UNITE MONETAIRE Le sondage est une sélection d'éléments que l'auditeur décide d'examiner afin de tirer, en fonction des résultats obtenus, une conclusion sur les caractéristiques

Plus en détail

Lois de probabilité (2/3) Anita Burgun

Lois de probabilité (2/3) Anita Burgun Lois de probabilité (2/3) Anita Burgun Contenu des cours Loi binomiale Loi de Poisson Loi hypergéométrique Loi normale Loi du chi2 Loi de Student Loi hypergéométrique La loi du tirage exhaustif Puce à

Plus en détail

Chapitre 7 Solutions des problèmes

Chapitre 7 Solutions des problèmes Chapitre 7 Solutions des problèmes 1. Modifications à apporter à un réseau. Dans le réseau proposé, la tâche H ne précède pas la tâche F, contrairement à ce qui est spécifié dans le tableau des prédécesseurs

Plus en détail

5. Quelques lois discrètes

5. Quelques lois discrètes 5. Quelques lois discrètes MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: Lois discrètes 1/46 Plan 1. Loi de Bernoulli 2. Loi binomiale 3. Loi géométrique 4. Loi hypergéométrique

Plus en détail

Le tricercle de Mohr

Le tricercle de Mohr Sujet 1 Épreuve pratique de mathématiques en troisième Fiche élève Le tricercle de Mohr On considère un segment [AB] tel que AB = 10 cm et un point C quelconque du segment [AB]. Soit 1 le demi-cercle de

Plus en détail

Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007. Introduction aux probabilités

Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007. Introduction aux probabilités Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007 Introduction aux probabilités Série n 3 Exercice 1 Une urne contient neuf boules. Quatre de ces boules portent le numéro

Plus en détail

Remarques sur le premier contrôle de TD :

Remarques sur le premier contrôle de TD : Remarques sur le premier contrôle de TD : Démêlons les confusions en tous genres... Licence 1 MASS semestre 2, 2006/2007 La première remarque est qu il faut apprendre le cours, faire les exercices et poser

Plus en détail

Baccalauréat STG Pondichéry 17 avril 2015 Sciences et technologies du management et de la gestion

Baccalauréat STG Pondichéry 17 avril 2015 Sciences et technologies du management et de la gestion Baccalauréat ST Pondichéry 17 avril 015 Sciences et technologies du management et de la gestion Correction EXERCICE 1 6 points Le tableau ci-dessous, extrait d une feuille de calcul, donne le revenu disponible

Plus en détail

Variables aléatoires continues

Variables aléatoires continues IUT Aix-en-Provence Année 204-205 DUT Informatique TD Probabilités feuille n 6 Variables aléatoires continues Exercice (La station-service) Dans une station-service, la demande hebdomadaire en essence,

Plus en détail

TD : Microéconomie de l incertain. Emmanuel Duguet

TD : Microéconomie de l incertain. Emmanuel Duguet TD : Microéconomie de l incertain Emmanuel Duguet 2013-2014 Sommaire 1 Les loteries 2 2 Production en univers incertain 4 3 Prime de risque 6 3.1 Prime de risque et utilité CRRA.................. 6 3.2

Plus en détail

Chapitre I - Introduction et conseils au lecteur

Chapitre I - Introduction et conseils au lecteur Chapitre I - Introduction et conseils au lecteur Cette partie introductive situe la place de l'algorithmique dans le développement logiciel et fournit au lecteur des conseils : conseils pour bien analyser

Plus en détail

Statistiques et estimation

Statistiques et estimation DERNIÈRE IMPRESSION LE 23 juillet 2014 à 16:35 Statistiques et estimation Table des matières 1 Intervalle de fluctuation 2 1.1 Simulation................................. 2 1.2 Définition.................................

Plus en détail

Corrigé du baccalauréat ES Pondichéry 16 avril 2015

Corrigé du baccalauréat ES Pondichéry 16 avril 2015 Corrigé du baccalauréat ES Pondichéry 16 avril 2015 Exercice 1 Commun à tous les candidats 5 points Partie A On appelle B l événement «la batterie est défectueuse» ; l événement «le disque dur est défectueux».

Plus en détail

Tableau d amortissement et suite géométrique

Tableau d amortissement et suite géométrique Tableau d amortissement et suite géométrique ENONCE : Afin d être plus compétitive, une entreprise décide d emprunter 100 000 pour investir dans de nouvelles machines. Elle souhaite rembourser en 3 ans

Plus en détail

Bac Blanc de Mathématiques Correction Durée : 3 heures

Bac Blanc de Mathématiques Correction Durée : 3 heures Terminale STG Mercatique Jeudi 1 avril 2010 Bac Blanc de Mathématiques Correction Durée : 3 heures L usage de la calculatrice est autorisé. Le sujet comporte 6 pages. EXERCICE 1 3 points Cet eercice est

Plus en détail

2. Formalisation ... Or les variables sont indépendantes. Donc si

2. Formalisation ... Or les variables sont indépendantes. Donc si L'estimation 1. Concrètement... Dernièrement un quotidien affichait en première page : en 30 ans les françaises ont grandi de... je ne sais plus exactement, disons 7,1 cm. C'est peut-être un peu moins

Plus en détail

Baccalauréat Série S Métropole, juin 2014

Baccalauréat Série S Métropole, juin 2014 Baccalauréat Série S Métropole, juin 4 Sujet et Corrigé Stéphane PASQUET Disponible sur http://www.mathweb.fr juin 4 Exercice (5 points) - Commun à tous les candidats Partie A Dans le plan muni d un repère

Plus en détail

SUJETS D ANNALES CORRIGÉS

SUJETS D ANNALES CORRIGÉS CRPE epreuves d'admissibilite_2015.qxp_concours 170x240 mercredi19/08/15 11:10 Page563 DEUXIÈME ÉPREUVE D ADMISSIBILITÉ, GROUPEMENT 3, SESSION 2014 Sujet 5 points au maximum pourront être retirés pour

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES Série S ÉPREUVE DU JEUDI 19 JUIN 2014 Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont

Plus en détail

Couper en deux, encore et encore : la dichotomie

Couper en deux, encore et encore : la dichotomie Couper en deux, encore et encore : la dichotomie I : Jeu du nombre inconnu Un élève volontaire choisit un nombre entier compris entre 0 et 56. Un autre élève cherche à deviner ce nombre, en adoptant la

Plus en détail

LA QUALITÉ EN BIOCHIMIE -PRÉCISION ET EXACTITUDE

LA QUALITÉ EN BIOCHIMIE -PRÉCISION ET EXACTITUDE LA QUALITÉ EN BIOCHIMIE -PRÉCISION ET EXACTITUDE I. Incidences d'une mauvaise qualité dans le domaine industriel - Mise en vente de produits de mauvaise qualité. - Mécontentement des clients. - Perte de

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

Probabilités conditionelles

Probabilités conditionelles Probabilités conditionelles Exercice 1 Cet exercice est un questionnaire à choix multiples constitué de six questions ; chacune comporte trois réponses, une seule est exacte On notera sur la copie uniquement

Plus en détail

Thème : intégration d'un outil logiciel

Thème : intégration d'un outil logiciel Thème : intégration d'un outil logiciel Présentation du thème Introduit dés l'école élémentaire (par exemple avec l'utilisation de la calculatrice) De plus en plus important au cours de la scolarité (grâce

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Dénombrement et probabilités Version du juillet 05 Enoncés Exercice - YouTube Sur YouTube, les vidéos sont identifiées à l aide d une chaîne

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A

2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 013 Lectures graphiques (9 points) Les parties sont indépendantes Partie A Tous les clients d un petit restaurant ont opté pour la formule

Plus en détail

Corrigé du baccalauréat STMG Centres étrangers 11 juin 2015

Corrigé du baccalauréat STMG Centres étrangers 11 juin 2015 Corrigé du baccalauréat STMG Centres étrangers 11 juin 2015 La calculatrice (conforme à la circulaire n o 99-186 du 16 novembre 1999) est autorisée. Le candidat est invité à faire figurer sur la copie

Plus en détail

PC Brizeux TP N 1 - Correction Altmayer- Henzien 2015-2016

PC Brizeux TP N 1 - Correction Altmayer- Henzien 2015-2016 Correction TP N1 I. Etalonnage d'une solution de soude Q1. Si la solution de soude n'est pas fraîchement préparée, du dioxyde de carbone de l'air peut se dissoudre dedans puis réagir avec la soude par

Plus en détail

) 1 avec E. : «on obtient au moins une fois un 6 en n lancers». I. Méthode de dénombrement 1. Cas de deux lancers

) 1 avec E. : «on obtient au moins une fois un 6 en n lancers». I. Méthode de dénombrement 1. Cas de deux lancers première question supplémentaire. Cette méthode mène à une variable aléatoire suivant la loi binomiale. Copie n 5 : ce groupe résout très rapidement la question en considérant l'événement contraire! Heureusement

Plus en détail

x x² = y x -3-2 -1-0,5 0 0,5 1 2 3 y CHAPITRE 12 I. INTRODUCTION

x x² = y x -3-2 -1-0,5 0 0,5 1 2 3 y CHAPITRE 12 I. INTRODUCTION CHAPITRE 2 FONCTIONS I. INTRODUCTION Une fonction est «une machine à transformer des nombres». Par eemple, la fonction «carré» désigne la «machine» qui transforme les nombres en leurs carrés. Ainsi elle

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

Un sujet pour l épreuve B (modélisation et informatique)

Un sujet pour l épreuve B (modélisation et informatique) Un sujet pour l épreuve B modélisation et informatique) Présentation Le texte proposé ci-après est conçu pour l épreuve B, portant plus particulièrement sur la modélisation et l informatique l épreuve

Plus en détail

Mathématiques et Philosophie en classe de seconde

Mathématiques et Philosophie en classe de seconde Mathématiques et Philosophie en classe de seconde Intervention du Professeur de mathématiques. Effectif de la classe : 34 élèves. Intervention : quinze heures en alternance avec le cours de Philosophie.

Plus en détail

Annales de baccalauréat STG - Statistiques

Annales de baccalauréat STG - Statistiques Annales de baccalauréat STG - Statistiques Exercice 1 Pondichery - 2011 Voici la cote ARGUS d une voiture d occasion : Année de mise en circulation 2009 2008 2007 2006 2005 2004 Âge de la voiture en année

Plus en détail

Suites numériques, cours, classe de terminale STG. 1 Suites arithmétiques. 1.1 Propriétés des suites arithmétiques

Suites numériques, cours, classe de terminale STG. 1 Suites arithmétiques. 1.1 Propriétés des suites arithmétiques Suites numériques, cours, classe de terminale STG 1 Suites arithmétiques 1.1 Propriétés des suites arithmétiques Dénition : Soit r un nombre réel. On appelle suite arithmétique de raison r toute suite

Plus en détail

Chapitre 1. Rappels sur les fonctions Continuité. 1.1 Rappels sur les fonctions. Sommaire. 1.1.1 Fonctions de référence. 1.1.

Chapitre 1. Rappels sur les fonctions Continuité. 1.1 Rappels sur les fonctions. Sommaire. 1.1.1 Fonctions de référence. 1.1. Chapitre 1 Rappels sur les fonctions Continuité Sommaire 1.1 Rappels sur les fonctions.... 1 1.1.1 Fonctions de référence.... 1 1.1. Fonction trinôme....... 1 1. Continuité............. 4 1..1 Activités............

Plus en détail

Des mathématiques à l'usage des Sciences Économiques et Sociales

Des mathématiques à l'usage des Sciences Économiques et Sociales Des mathématiques à l'usage des Sciences Économiques et Sociales A quoi servent les suites, les fonctions, les intégrales, les probabilités, en Sciences Economiques et Sociales. Nous allons tenter ci-dessous

Plus en détail

Environnement Economique de l Entreprise. Cas 2 : Les décisions des entreprises

Environnement Economique de l Entreprise. Cas 2 : Les décisions des entreprises Environnement Economique de l Entreprise Cas 2 : Les décisions des entreprises Objectifs du cas : Comprendre les décisions des entreprises: - Choix des techniques et des facteurs de production (comment

Plus en détail

1 Probabilités. 1.1 Bac ES Métropole 2013

1 Probabilités. 1.1 Bac ES Métropole 2013 DIVERS EXERCICES TOUS ISSUS DE SUJETS DE BAC ES RECENTS Tous ces exercices sont conformes au programme, j ai essayé de vous indiqué l origine de chacun 1 Probabilités 1.1 Bac ES Métropole 2013 Une usine

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Série ST2S

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Série ST2S BACCALAURÉAT TECHNOLOGIQUE SESSION 2015 MATHÉMATIQUES Série ST2S Durée de l épreuve : 2 heures Coefficient : 3 Une feuille de papier millimétré est fournie au candidat Les calculatrices électroniques de

Plus en détail

Tracé de lignes et de courbes planes

Tracé de lignes et de courbes planes Département d informatique Université de Toulon et du Var Plan 1 Introduction 2 Tracé de segments 3 Tracé de cercles 4 Tracé de courbes Définition Le processus de représentation d objets graphiques continus

Plus en détail

Collège Blanche de Castille

Collège Blanche de Castille ème A - B - C Brevet blanc 2 de MATHÉMATIQUES Date : 15/04/2014 Durée : 2h Collège Blanche de Castille Coefficient : Note sur : 40 Présentation : /4 Consignes : La présentation, l orthographe et la rédaction

Plus en détail

TRINÔME DU SECOND DEGRÉ

TRINÔME DU SECOND DEGRÉ TRINÔME DU SECOND DEGRÉ Définition On appelle fonction trinôme du second degré, toute fonction f définie sur IR qui, à x associe f(x) = ax 2 + bx + c, a, b et c étant trois réels avec a 0. Exemple Les

Plus en détail

FORMATION INTERMÉDIAIRE MAT 2031 CAHIER 1 ET CORRIGÉ

FORMATION INTERMÉDIAIRE MAT 2031 CAHIER 1 ET CORRIGÉ FORMATION INTERMÉDIAIRE MAT 203 ET CORRIGÉ MAT 203 TABLE DES MATIÈRES I.0 ÉQUATIONS. Résoudre des équations... Exercice... 4 2.0... 5 2. Définir une inégalité... 5 Exercice 2... 7 2.2 Représenter graphiquement

Plus en détail

COURS DE DENOMBREMENT

COURS DE DENOMBREMENT COURS DE DENOMBREMENT 1/ Définition des objets : introduction Guesmi.B Dénombrer, c est compter des objets. Ces objets sont créés à partir d un ensemble E, formé d éléments. A partir des éléments de cet

Plus en détail

Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 2016

Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 2016 Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 0 A. P. M. E. P. EXERCICE Commun à tous les candidats points Partie A Une boite contient 00 médailles souvenir dont 50 sont argentées, les autres dorées.

Plus en détail