ANNEXE 3. QUELQUES FONCTIONS DE LA THEORIE DU CONSOMMATEUR...1

Dimension: px
Commencer à balayer dès la page:

Download "ANNEXE 3. QUELQUES FONCTIONS DE LA THEORIE DU CONSOMMATEUR...1"

Transcription

1 ANNEXE 3. QELQES FONCTIONS DE LA THEOIE D CONSOMMATE.... PESENTATION.... APPLICATION DANS LE CAS DE LA FONCTION D'TILITE COBB-DOGLAS L'EQATION DE SLTSKY Comenston de Hcks Comenston à l Slutsky L foncton d'utlté de tye Cobb-Dougls et l'équton de Slutsky LES ELASTICITES L'élstcté revenu L'élstcté r drecte L'élstcté r crosée L'équton de Slutsky en termes d'élstcté

2 ANNEXE 3. QELQES FONCTIONS DE LA THEOIE D CONSOMMATE. PESENTATION Nous vons récédemment écrt le rogrmme du consommteur de l fçon suvnte : M... n s.c. N ce qu eut s'écrre lus smlement en osnt le vecteur des N bens et le vecteur des N r : M s. c. Ce rogrmme ermet d'obtenr les fonctons de demnde. On eut donc réécrre l foncton d'utlté. L foncton est elée foncton d'utlté ndrecte. Elle ndque le nveu mmum d'utlté que le consommteur eut ttendre étnt donnés les r des bens et son revenu. En d'utres termes : m s. c. On l'églté cr à l'otmum les demndes sont telles que le revenu est entèrement déensé sous l'hyothèse de non-stété. Les rorétés de cette foncton d'utlté ndrecte sont : --

3 - est non crossnte en c'est-à-dre que s ' lors '. De même est strctement crossnte en s l'hyothèse de non-stété est vérfée. - est qus-convee en - est homogène de degré 0 en et donné donnés Le er grhque ndque le nveu d'utlté ttent our un nveu de revenu donné en foncton du r des bens. --

4 Le nd grhque ndque l'utlté ttente our des r données en foncton du nveu de revenu. Ce nd grhque eut églement se lre de fçon nverse comme ndqunt le nveu de revenu nécessre our ttendre un nveu d'utlté donné étnt donné le r des bens. L foncton qu rele ns le revenu et l'utlté c'est-à-dre l'nverse de l foncton d'utlté ndrecte s'elle l foncton de déense et est notée E. De fçon équvlente l foncton de déense est donnée r le rogrmme suvnt : E mn s. c. En d'utres termes l foncton de déenses ndque le coût mnmum our ttendre un certn nveu d'utlté. Cette foncton est strctement équvlente à l foncton de coût du roducteur elle en ossède les rorétés : - Elle est strctement non décrossnte en - Elle est homogène de degré en s les r sont multlés r un certn fcteur t le revenu étnt r défnton constnt l déense est multlée r ce fcteur t - Elle est concve en s le r d'un ben ugmente les utres étnt constnt l déense dot nécessrement ugmenter ms à un tu décrossnt cr le consommteur v substtuer u ben dont le r ugmente les utres bens L résoluton du rogrmme de mnmston de l déense cdessus ermet de défnr des fonctons de demnde qu sont foncton des r et de l'utlté. Ces fonctons de demnde -3-

5 s'ellent les fonctons de demnde Hcksennes ou fonctons de demnde comensée cr elle fournt l demnde otmle à utlté donnée et sont notées h. Ces fonctons de demnde ne sont ben entendues s drectement observble usqu'elles déendent de l'utlté. Seules les fonctons de demnde ermée en foncton des r et du revenu sont observbles ce sont les fonctons de demnde ordnres que l'on résentée vnt. On les elle rfos les fonctons de demnde Mrshllennes. Etnt données ces dfférentes fonctons on eut résenter quelques denttés mortntes qu relent ces fonctons entre elles. - E : l déense mnmle our ttendre un nveu d'utlté est. - E : le nveu mmum d'utlté que l'on eut retrer d'une déense E est - h : l demnde Mrshllenne our un nveu de revenu est l même que l demnde Hcksenne our un nveu d'utlté - h E : l demnde Hcksenne corresondnt à un nveu d'utlté est l même que l demnde Mrshlenne corresondnt à une déense E. L dernère dentté est robblement l lus mortnte cr elle rele ensemble l demnde Hcksenne "nobservble" et l demnde Mrshlenne "observble". Cette dentté ndque que l demnde Hcksenne c'est-à-dre l soluton du rogrmme de mnmston de l déense est égle à l demnde Mrshlenne our un nveu roré de revenu lus récsément le nveu de revenu nécessre à r donnés our ttendre le nveu désré d'utlté. Cel sgnfe que n'morte -4-

6 -5- quel ner otml est uss ben l soluton du rogrmme de mmston de l'utlté que du rogrmme de mnmston de l déense c'est l théore de l dulté cf. rès. ne mlcton de ces denttés est l'dentté de oy qu est : qu ndque que l demnde otmle Mrshlenne d'un ben est égle u TMS entre le revenu du consommteur et le r de ce ben. Démonstrton : L foncton d'utlté ndrecte est donnée r : S on dfférence r rort à on obtent : N Comme est l foncton de demnde elle stsft les condtons du er ordre du rogrmme de mmston de l'utlté λ. On obtent donc N λ

7 -6- L foncton de demnde est églement telle que le revenu est entèrement déensé sot.. S on dfférence cette dentté r rort à on obtent : + N 0 S on remlce cel dns l'équton c-dessus on obtent : λ Mntennt s l'on reft rel ms en dfférencnt r rort u revenu on obtent our l dfférencton de l foncton d'utlté ndrecte : N λ et our l dfférencton de l contrnte budgétre : N Ces deu dernères reltons nous donne : λ résultt que nous vons déà vu qu est que le multlcteur de Lgrnge rerésente l'utlté mrgnle du revenu.

8 On donc λ et λ ce qu ermet donc ben de démontrer l'dentté de oy : Les dfférentes fonctons que l'on résenté dns cette secton sont ssus de l théore de l dulté. Deu systèmes sont dts duu s les concets utlsés dns chcun d'entre eu ermettent d'étblr une corresondnce entre leurs résultts resectfs. Les théorèmes de dulté dsent lors que s une rooston eut être rouvée dns l'un des systèmes et s l'on eut montrer qu'une rooston dns l'utre système est dule de celle-c lors l rooston dule est églement vérfée. Ans les rogrmmes M s.c. budgétre et Mn E s.c. d'utlté sont strctement équvlents. L'ntérêt est que certnes démonstrtons sont rfos beucou lus smles à fre dns un système lutôt que dns l'utre. Ans lutôt que d'nlyser le système ntl rml on eut référer construre son système dul et y effectuer les démonstrtons. C'est ce que nous llons fre lus bs dns le cdre des équtons de Slutsky.. APPLICATION DANS LE CAS DE LA FONCTION D'TILITE COBB-DOGLAS Sot l foncton d'utlté. Les fonctons de demnde Mrshlennes euvent être obtenues en résolvnt le rogrmme de mmston de l'utlté. -7-

9 -8- Les condtons du er ordre nous donnent : En remlçnt dns l contrnte budgétre on obtent : + + On obtent donc les fonctons de demnde Mrshlennes : S on remlce ces fonctons de demnde dns l foncton d'utlté on obtent l foncton d'utlté ndrecte : L résoluton du rogrmme de mnmston de l déense nous donne l foncton de déenses : s c Mn E +.. On eut réécrre ce rogrmme : Mn + L condton du er ordre est 0 On obtent donc les demndes Hcksennes :

10 -9- h h S on remlce ces fonctons de demnde dns l foncton à mnmser on obtent l foncton de déense : E + On eut églement retrouver l'dentté de oy. Celle-c ndque : Or s on dérve l foncton d'utlté ndrecte on obtent : On donc : + ce qu corresond ben à l'dentté de oy. 3. L'EQATION DE SLTSKY

11 L'équton de Slutsky ermet d'ndquer ce qu se sse our l demnde Mrshlenne de ben lorsque le r du ben vre le r du ben et le revenu étnt constnt. Elle décomose l'effet du chngement de r en effets l'effet substtuton et l'effet revenu. Comme nous l'vons vu grhquement l'effet revenu rovent du ft que l vrton du r du ben ndut une vrton du revenu réel ouvor d'cht du consommteur rovoqunt donc une évoluton de l demnde de bens. A cet effet revenu vent s'outer un effet de substtuton l'ugmentton du r reltf du ben condut le consommteur à substtuer du ben u ben. Pour dstnguer cet effet de substtuton de l'effet revenu on suose que l'on fournt u consommteur un revenu comenstore lu ermettnt sot de conserver son nveu d'utlté ntle comenston de Hcks sot de se rocurer son ner de ben ntl comenston de Slutsky. 3.. Comenston de Hcks Dns le cs de l comenston de Hcks l'effet de substtuton ou effet r comensé ser égle à l vrton de l demnde ndute r une vrton des r à utlté nchngée. L'effet de substtuton de Hcks est donc tout smlement h. On l'écrt rfos uss. L'effet revenu v être le rodut de l vrton du revenu nécessre our grder un nveu d'utlté constnt r l'nfluence de l vrton du revenu sur l demnde de ben. L'nfluence de l vrton du revenu sur l demnde de ben est mesurée r. Il reste donc à clculer l vrton de revenu nécessre our mntenr l'utlté constnte. Ce qu revent à se demnder quelle est l déense mnmum que le -0-

12 consommteur dot fre our conserver son utlté constnte lorsque le r du ben vre. Cette déense est donc mesurée E r. Ceendnt du ft des rorétés de l foncton E de déense on. Donc u totl l'effet revenu est. ffecté d'un sgne négtf usque l'ugmentton du r du ben condut à rédure l consommton du ben. Donc u fnl l'équton de Slutsky dns le cs d'une vrton comenstrce à l Hcks est : Effet totl effet substtuton + effet revenu h 3.. Comenston à l Slutsky Lorsqu'on fournt u consommteur une comenston à l Slutsky on lu fournt un revenu comenstore lu ermettnt de contnuer à se rocurer son ner ntl. Comme récédemment l'nfluence de l vrton du revenu sur l demnde de ben est mesurée r. Il reste donc à clculer l vrton de revenu nécessre our mntenr l ossblté de consommer le ner ntl. Il consommt ntlement de ben son revenu réel ouvor d'cht dmnue donc u tu de frnc d'ugmentton dns le r du ben sgnfe de mons à déenser. Donc u totl l'effet --

13 revenu est de comme vnt on multle le tu de vrton de l consommton du ben ndute r une vrton du revenu r le tu de vrton du revenu. L'effet de substtuton de Slutsky s'étude églement de l même fçon qu'vnt. Il est égle à l vrton de l demnde de ben ndute r une vrton du r du ben schnt que l'on lu fournt un revenu comenstore contnuer à se rocurer son ner ntl. On eut lors défnr une foncton de demnde de Slutsky s. L'effet de substtuton de Slutsky sert lors s égl à qu mesure l'effet de l vrton du r du ben sur l demnde de ben schnt que le consommteur eut touours se rocurer le ner de ben ntl. Donc u totl l'effet sur l demnde Mrshlenne du ben est : s Effet totl effet substtuton + effet revenu On donc équtons de Slutsky dfférentes. Ceendnt on eut montrer que our des vrtons nfntésmles des r les effets de substtuton sont dentques condusnt u même effet totl. On retent donc en générl l ère comenston à l Hcks. équton de Slutsky S le r du ben vre de d on lors : d d h d d --

14 L foncton d'utlté de tye Cobb-Dougls et l'équton de Slutsky On eut retrouver l'équton de Slutsky dns le cs de l foncton d'utlté de tye Cobb-Dougls vec bens. Comme on l' vu récédemment on lors l foncton de demnde hcksenne our le ben qu est : h S on dérve r rort u r on obtent : h h On eut remlcer r l foncton d'utlté ndrecte cr cette foncton rerésente l'utlté mmum obtenue à l'otmum du consommteur : On obtent donc : h h

15 -4- Les fonctons de demnde mrshlenne our les bens et sont : S on dérve l foncton de demnde du ben r rort u revenu et u r on obtent : 0 On obtent donc : 0 h h ce qu corresond ben u équtons de Slutsky. 4. LES ELASTICITES Comme nous l'vons vu grhquement l vrton de l consommton d'un ben qu résulte de l vrton ou des r eut dfférer fortement selon les bens. Pour mesurer cette lus ou mons grnde sensblté de l demnde u revenu et u r on se réfère générlement à l noton d'élstcté.

16 4.. L'élstcté revenu On elle élstcté revenu de l demnde en ben le rort de l vrton reltve de l demnde de ben et de l vrton reltve du revenu sot : d d η qund l est évdent que l'on rle de d d demnde Mrshlenne l n'est s utle d'écrre l'ntégrlté de l foncton de demnde. Pour des ettes vrtons du revenu cette élstcté eut se clculer r les dérvées rtelles : η. Sot q le coeffcent budgétre du ben qu mesure l rt du revenu du consommteur conscrée à l'cht de ben. θ vec N θ θ On obtent donc : On donc : -5-

17 θ > 0 s > 0 cd s η > : l rt du revenu conscré à ce tye de ben ugmente vec le revenu ce sont des bens de lue losr culture trnsort etc. θ 0 s 0 cd s η : cel crctérse des bens dont le coeffcent budgétre ne vre s sensblement vec le revenu ce sont des bens normu. θ < 0 s < 0 cd s η < : le coeffcent budgétre de ces bens dmnue lorsque le revenu ugmente c'est le cs de l lurt des bens de ère nécessté que l'on elle générlement des bens rortres lmentton. Dns ce derner cs on eut vor uss les bens nféreurs our lesquels η < 0 c'est-à-dre dont l consommton dmnue lorsque le revenu ugmente. Ce sont les bens nféreurs comme certns bens lmentres omme de terre n. -6-

18 4.. L'élstcté r drecte On elle élstcté r drecte de l demnde en ben le rort de l vrton de l demnde de ben et de l vrton du r du ben sot our de ettes vrtons: ε d d Cette élstcté r drecte est générlement négtve suf dns le cs lus théorque que réel des bens Gffen. Pour récser l relton entre élstctés r drecte et sensblté de l demnde on note D l déense du consommteur en ben : D D On donc : ε On obtent lors : D D > 0 < 0 s s ε > ε < On donc tyes de bens. Ceu dont l'élstcté r drecte est fble en vleur bsolue ε >. Pour ces bens l husse du r ne rédut que fblement l demnde de sorte que l déense ugmente. Les roduts lmentres et l'énerge font rte des bens dont l demnde est fblement élstque r rort u r. On d'utre rt les bens dont l demnde est -7-

19 fortement élstque u r ε <. ne husse des r condut lors à une forte réducton de l consommton. Ce sont r eemle de nombreu bens de losr ou de culture L'élstcté r crosée On elle élstcté r crosée de l demnde en ben r rort u r du ben le rort de l vrton reltve de l demnde de ben et de l vrton reltve du r du ben sot our de ettes vrtons: ε d d Lorsque cette élstcté est ostve cel sgnfe que les bens sont substtubles tnds que s elle est négtve les bens sont comlémentres. ne élstcté nulle sgnfe que les bens sont ndéendnts tro élognés our que l consommton de l'un nfluence celle de l'utre. Etnt donnés ces dfférentes élstctés on eut lors réécrre l'équton de Slutsky en termes d'élstcté L'équton de Slutsky en termes d'élstcté L'équton de Slutsky est : h -8-

20 S on multle cette équton r / on obtent : sot ε ε η. θ h h L'élstcté r crosée du ben élstcté r crosée comensée du ben.e. à utlté constnte élstcté revenu du ben * coeffcent budgétre du ben. -9-

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot I - PRECISION DES SYSTEMES ASSERVIS A. Poton du roblème 1. Préentton On vu que le rôle d un ytème erv et de fre uvre à l orte (t) une

Plus en détail

POLITECNICO DI TORINO

POLITECNICO DI TORINO POLITECNICO DI TORINO SCUOL DI DOTTORTO Dottorto n Ingegner Elettronc e delle Comunczon XV cclo Tes d Dottorto Une technque de réducton d ordre coulée à des modèles PEEC : lcton sur équements éronutques

Plus en détail

TARIFICATION, PROVISIONNEMENT ET PILOTAGE D UN PORTEFEUILLE DÉPENDANCE

TARIFICATION, PROVISIONNEMENT ET PILOTAGE D UN PORTEFEUILLE DÉPENDANCE TARIFICATION, PROVISIONNEMENT ET PILOTAGE D UN PORTEFEUILLE DÉPENDANCE Mre-Pscle Deléglse, Chrstn Hess, Sébsten Nouet To cte ths verson: Mre-Pscle Deléglse, Chrstn Hess, Sébsten Nouet. TARIFICATION, PROVISION-

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

Dérivation. 1. Nombre dérivé, tangente 2. Fonction dérivée 3. Fonction dérivée et variations 4. Fonction dérivée et extrema

Dérivation. 1. Nombre dérivé, tangente 2. Fonction dérivée 3. Fonction dérivée et variations 4. Fonction dérivée et extrema «À l utomne 97 le présdent Non nnoncé que le tu d ugmentton de l nflton dmnué C étt l premère fos qu un présdent en eercce utlst l dérvée terce pour ssurer s réélecton» Hugo Ross, mtémtcen, à propos d

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Direction des Études et Synthèses Économiques G 2007 / 12. Aléa moral en santé : une évaluation dans le cadre du modèle causal de Rubin

Direction des Études et Synthèses Économiques G 2007 / 12. Aléa moral en santé : une évaluation dans le cadre du modèle causal de Rubin Drecton des Études et Synthèses Économques G 2007 / 12 Alé morl en snté : une évluton dns le cdre du modèle cusl de Rubn Vlére ALBOUY - Bruno CRÉPON Document de trvl Insttut Ntonl de l Sttstque et des

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

gfaubert septembre 2010 1

gfaubert septembre 2010 1 Notes de cours Pour l e secondire Compiltion et/ou crétion Guyline Fuert Septemre 00 gfuert septemre 00 Géométrie------------------------------------------------------------------------------------------------------------------------

Plus en détail

Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté»

Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté» Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer MD 8-9 Chre IV es oscllons coulées «es oscllons lbres d un ssèe à luseurs degrés de lberé» Dns ce chre, nous llons coencer r éuder les oscllons lbres

Plus en détail

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix?

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix? Note méthodologque Tratements hebdomadares Questlemonscher.com Quelle méthode de collecte de prx? Les éléments méthodologques ont été défns par le cabnet FaE onsel, socété d études et d analyses statstques

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire Assurance malade et aléa de moralté ex-ante : L ncdence de l hétérogénété de la perte santare Davd Alary 1 et Franck Ben 2 Cet artcle examne l ncdence de l hétérogénété de la perte santare sur les contrats

Plus en détail

Les jeunes économistes

Les jeunes économistes Chaptre1 : les ntérêts smples 1. défnton et calcul pratque : Défnton : Dans le cas de l ntérêt smple, le captal reste nvarable pendant toute la durée du prêt. L emprunteur dot verser, à la fn de chaque

Plus en détail

3- Les taux d'intérêt

3- Les taux d'intérêt 3- Les tux d'intérêt Mishkin (2007), Monnie, Bnque et mrchés finnciers, Person Eduction, ch. 4 et 6 Vernimmen (2005), Finnce d'entreprise, Dlloz, ch. 20 à 22 1- Mesurer les tux d'intérêt comprer les différents

Plus en détail

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

Montage émetteur commun

Montage émetteur commun tour au menu ontage émetteur commun Polarsaton d un transstor. ôle de la polarsaton La polarsaton a pour rôle de placer le pont de fonctonnement du transstor dans une zone où ses caractérstques sont lnéares.

Plus en détail

Effets de la dépendance entre différentes branches sur le calcul des provisions

Effets de la dépendance entre différentes branches sur le calcul des provisions Effets de l dépendnce entre dfférentes brnches sur le clcul des provsons Thème ASTIN : Contrôle des rsques Gllet Antonn Commsson de Contrôle des Assurnces 54, rue de Châteudun 75009 PARIS ntonn.gllet@cc.fnnces.gouv.fr

Plus en détail

IDEI Report # 18. Transport. December 2010. Elasticités de la demande de transport ferroviaire: définitions et mesures

IDEI Report # 18. Transport. December 2010. Elasticités de la demande de transport ferroviaire: définitions et mesures IDEI Report # 18 Transport December 2010 Elastctés de la demande de transport ferrovare: défntons et mesures Elastctés de la demande de transport ferrovare : Défntons et mesures Marc Ivald Toulouse School

Plus en détail

chapitre 2 interférences non localisées entre deux ondes monochromatiques cohérentes

chapitre 2 interférences non localisées entre deux ondes monochromatiques cohérentes nterférences non loclsées de deu ondes cohérentes chptre nterférences non loclsées entre deu ondes onochrotques cohérentes. epérence, condton d'nterférence, contrste. epérence des rors de Fresnel, et des

Plus en détail

Partie 4 : La monnaie et l'inflation

Partie 4 : La monnaie et l'inflation Prtie 4 : L monnie et l'infltion Enseignnt A. Direr Licence 2, 1er semestre 2008-9 Université Pierre Mendès Frnce Cours de mcroéconomie suite 4.1 Introduction Nous vons vu dns l prtie introductive que

Plus en détail

Etude et Conception Assistée par Ordinateur d un Système de Réfrigération par Voie Solaire

Etude et Conception Assistée par Ordinateur d un Système de Réfrigération par Voie Solaire Rev. Energ. Ren. : Journées de hermue (200) 25-30 Eude e Concepon sssée pr Ordneur d un Sysème de Réfrgéron pr Voe Solre M. Belrb, F. Benyrou e B. Benyoucef Lborore des Méru e Energes Renouvelbles, Fculé

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage Fche n 7 : Vérfcaton du débt et de la vtesse par la méthode de traçage 1. PRINCIPE La méthode de traçage permet de calculer le débt d un écoulement ndépendamment des mesurages de hauteur et de vtesse.

Plus en détail

Préparation à l'examen écrit de maturité Mathématiques 2013

Préparation à l'examen écrit de maturité Mathématiques 2013 Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir

Plus en détail

Modélisation d une chaîne de conversion éolienne de petite puissance

Modélisation d une chaîne de conversion éolienne de petite puissance Modélsaton d une chaîne de conerson éolenne de ette ussance O. GEGAUD, B. MULTON, H. BEN AHMED LÉS Antenne de Bretagne de l ENS de Cachan Camus de Ker Lann 37 BUZ ésumé Parallèlement au marché mortant

Plus en détail

Séquence 8. Probabilité : lois à densité. Sommaire

Séquence 8. Probabilité : lois à densité. Sommaire Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit

Plus en détail

Influence du milieu d étude sur l activité (suite) Inhibition et activation

Influence du milieu d étude sur l activité (suite) Inhibition et activation Influence du milieu d étude sur l ctivité (suite) Inhibition et ctivtion Influence de l tempérture Influence du ph 1 Influence de l tempérture Si on chuffe une préprtion enzymtique, l ctivité ugmente jusqu

Plus en détail

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h.

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h. A2 Analyser le système Converson statque de l énerge Date : Nom : Cours 2 h 1 Introducton Un ConVertsseur Statque d énerge (CVS) est un montage utlsant des nterrupteurs à semconducteurs permettant par

Plus en détail

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE HAITRE 4 : RAISONNEMENT DES SYSTÈMES DE OMMANDE RAISONNEMENT DES SYSTÈMES DE OMMANDE... 2 INTRODUTION... 22 RAELS... 22 alcul de la valeur ntale de la répone à un échelon... 22 alcul du gan tatque... 22

Plus en détail

Contrats prévoyance des TNS : Clarifier les règles pour sécuriser les prestations

Contrats prévoyance des TNS : Clarifier les règles pour sécuriser les prestations Contrats prévoyance des TNS : Clarfer les règles pour sécurser les prestatons Résumé de notre proposton : A - Amélorer l nformaton des souscrpteurs B Prévor plus de souplesse dans l apprécaton des revenus

Plus en détail

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Vdéo parte. Les nombres complexes, défntons et opératons Vdéo parte. Racnes carrées, équaton du second degré Vdéo parte 3. Argument et trgonométre Vdéo parte 4. Nombres complexes

Plus en détail

REGLEMENT DU CLASSEMENT NATIONAL

REGLEMENT DU CLASSEMENT NATIONAL REGLEMET DU CLASSEMET ATIOAL / Les règles indiquées ici sont celles utilisées pour clculer les ttributions de points de l sison -. I. PRICIPES DE BASE Le clssement ntionl de l F.F.B. est le seul uquel

Plus en détail

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie VARIABLES ALÉATOIRES déo oco de réro vrble léore dscrèe moyee - vrce - écr ye esérce mhémque vrble léore coue oco d ue vrble léore : rsormo combso lére de vrbles léores Déo E : eérece léore S : esce échllol

Plus en détail

Microéconomie de l Incertitude M1 Banque et Marchés Financiers

Microéconomie de l Incertitude M1 Banque et Marchés Financiers Microéconomie de l Incertitude M1 Bnque et Mrchés Finnciers Emmnuel DUGUET Notes de Cours, V1 2 1 Concepts de bse 5 1.1 Les loteries................................ 6 1.2 Le critère d espérnce mthémtique..................

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction -

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction - EXAME FIAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSIO 1 - Correcton - Exercce 1 : 1) Consdérons une entreprse E comportant deux établssements : E1 et E2 qu emploent chacun 200 salarés. Au sen de l'établssement

Plus en détail

Calculs financiers. Auteur : Philippe GILLET

Calculs financiers. Auteur : Philippe GILLET Clculs fcers Auteur : Phlppe GILLET Le tux d térêt Pour l empruteur qu e dspose ps des fods écessres, l représete le prx à pyer pour ue cosommto mmédte. Pour le prêteur, l représete le prx ecssé pour l

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

classification non supervisée : pas de classes prédéfinies Applications typiques

classification non supervisée : pas de classes prédéfinies Applications typiques Qu est ce que le clusterng? analyse de clusterng regroupement des obets en clusters un cluster : une collecton d obets smlares au sen d un même cluster dssmlares au obets appartenant à d autres clusters

Plus en détail

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels Etb=MK2, Timbre=G430, TimbreDnsAdresse=Vri, Version=W2000/Chrte7, VersionTrvil=W2000/Chrte7 Direction des Études et Synthèses Économiques Déprtement des Comptes Ntionux Division des Comptes Trimestriels

Plus en détail

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria.

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria. 1 CAS nédt d applcaton sur les normes IAS/IFRS Coût amort sur oblgatons à taux varable ou révsable La socété Plumera présente ses comptes annuels dans le référentel IFRS. Elle détent dans son portefeulle

Plus en détail

Le Calcul Intégral. niveau maturité. Daniel Farquet

Le Calcul Intégral. niveau maturité. Daniel Farquet Le Clcul Intégrl niveu mturité Dniel Frquet Eté 8 Tble des mtières Introduction Intégrle indéfinie 3. Définitions et générlités................................ 3.. Déf. d une primitive..............................

Plus en détail

Chapitre 6. Economie ouverte :

Chapitre 6. Economie ouverte : 06/2/202 Chaptre 6. Econome ouverte : le modèle Mundell Flemng Elsabeth Cudevlle Le développement des échanges nternatonaux (bens et servces et flux fnancers) a rendu fortement nterdépendantes les conjonctures

Plus en détail

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période)

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période) A-PDF OFFICE TO PDF DEMO: Purchase from www.a-pdf.com to remove the watermark Mathématques Facères : l essetel Les formules cotourables (F de érode) htt://www.ecogesam.ac-a-marselle.fr/esed/gesto/mathf/mathf.html#e5aels

Plus en détail

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................

Plus en détail

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

L'effet de l'allocation unique dégressive sur la reprise d'emploi

L'effet de l'allocation unique dégressive sur la reprise d'emploi EMPLOI L'effet de l'allocaton unque dégressve sur la rerse d'emlo Brgtte Dormont Dens Fougère et Ana Preto* Le rofl de l ndemnsaton du chômage nfluence-t-l la rerse d emlo? Cette queston est étudée en

Plus en détail

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE 1GEN ciences et Techniques Industrielles Pge 1 sur 7 Automtique et Informtiques Appliquées Génie Énergétique Première 1 - LA VARIABLE BINAIRE L électrotechnique, l électronique et l mécnique étudient et

Plus en détail

prix par consommateur identiques différents prix par identiques classique 3 unité différents 2 1

prix par consommateur identiques différents prix par identiques classique 3 unité différents 2 1 3- LE MONOOLE DISCRIMINANT Le monoole eut vendre ertaines unités de roduit à des rix différents. On arle de disrimination ar les rix. Selon une terminologie due à igou (The Eonomis of Welfare, 1920), on

Plus en détail

LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régime») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF

LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régime») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF 1 LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régme») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF AVIS AUX RETRAITÉS ET AUX PARTICIPANTS AVEC DROITS ACQUIS DIFFÉRÉS Expédteurs

Plus en détail

Exercices d Électrocinétique

Exercices d Électrocinétique ercces d Électrocnétque Intensté et densté de courant -1.1 Vtesse des porteurs de charges : On dssout une masse m = 20g de chlorure de sodum NaCl dans un bac électrolytque de longueur l = 20cm et de secton

Plus en détail

Mesure avec une règle

Mesure avec une règle Mesure avec une règle par Matheu ROUAUD Professeur de Scences Physques en prépa, Dplômé en Physque Théorque. Lycée Alan-Fourner 8000 Bourges ecrre@ncerttudes.fr RÉSUMÉ La mesure d'une grandeur par un système

Plus en détail

Méthodologie version 1, juillet 2006

Méthodologie version 1, juillet 2006 Méthodologe verson, ullet 2006 Tendances Carbone résente chaque mos sx groues d ndcateurs :. Synthèse du mos 2. Clmat 3. Actvté économque. Energe 5. Envronnement nsttutonnel 6. Tableau de bord Ce document

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Menu outils de navigation mennavi.htm

Menu outils de navigation mennavi.htm Pge de lncement index.htm Voici l représenttion schémtique de l structure du site Wllonie, toutes les crtes en mins... Pge d ccueil win.htm nevs générl menwin.htm À propos de l structure des données :

Plus en détail

Techniques d analyse de circuits

Techniques d analyse de circuits Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre

Plus en détail

STI2D Logique binaire SIN. L' Algèbre de BOOLE

STI2D Logique binaire SIN. L' Algèbre de BOOLE L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.

Plus en détail

Oscillations électriques libres

Oscillations électriques libres Oscllatons électrues lbres A Oscllatons lbres amortes 1/ Etude expérmentale a Expérence et observatons Après avor chargé le condensateur (poston 1) On bascule l nterrupteur sur la poston, on obtent l oscllogramme

Plus en détail

SIMULATION D UN JET TURBULENT POUR LE REFROIDISSEMENT DES AUBES DE TURBINE

SIMULATION D UN JET TURBULENT POUR LE REFROIDISSEMENT DES AUBES DE TURBINE 10 ème Sémnare Internatonal sur la Physque Energétque 10 th Internatonal Meetng on Energetcal Physcs SIMULAION D UN JE URBULEN POUR LE REFROIDISSEMEN DES AUBES DE URBINE Bounegta Bachr 1, Abdelarm Maamar

Plus en détail

Le Prêt Efficience Fioul

Le Prêt Efficience Fioul Le Prêt Effcence Foul EMPRUNTEUR M. Mme CO-EMPRUNTEUR M. Mlle Mme Mlle (CONJOINT, PACSÉ, CONCUBIN ) Départ. de nass. Nature de la pèce d dentté : Natonalté : CNI Passeport Ttre de séjour N : Salaré Stuaton

Plus en détail

Prêts bilatéraux et réseaux sociaux

Prêts bilatéraux et réseaux sociaux Prêts blatéraux et réseaux socaux Quand la sous-optmalté condut au ben-être collectf Phlppe Callou, Frederc Dubut et Mchele Sebag LRI, Unverste Pars Sud F-91405 Orsay France {callou;dubut;sebag}@lr.fr

Plus en détail

STATISTIQUE AVEC EXCEL

STATISTIQUE AVEC EXCEL STATISTIQUE AVEC EXCEL Excel offre d nnombrables possbltés de recuellr des données statstques, de les classer, de les analyser et de les représenter graphquement. Ce sont prncpalement les tros éléments

Plus en détail

Le canal étroit du crédit : une analyse critique des fondements théoriques

Le canal étroit du crédit : une analyse critique des fondements théoriques Le cnl étroit du crédit : une nlyse critique des fondements théoriques Rfl Kierzenkowski 1 CREFED Université Pris Duphine Alloctire de Recherche Avril 2001 version provisoire Résumé A l suite des trvux

Plus en détail

Détermination des épaisseurs Formule générale

Détermination des épaisseurs Formule générale Formule générle Hors le cs des vitrges pour le bâtiment, trité pr l NF DTU 39 P4, on peut clculer à l ide des formules de Timoshenko : - l épisseur minimle à donner ux vitrges plns monolithiques soumis

Plus en détail

Grandeur physique, chiffres significatifs

Grandeur physique, chiffres significatifs Grandeur physque, chffres sgnfcatfs I) Donner le résultat d une mesure en correspondance avec l nstrument utlsé : S avec un nstrument, ren n est ndqué sur l ncerttude absolue X d une mesure X, on consdère

Plus en détail

Page 5 TABLE DES MATIÈRES

Page 5 TABLE DES MATIÈRES Page 5 TABLE DES MATIÈRES CHAPITRE I LES POURCENTAGES 1. LES OBJECTIFS 12 2. LES DÉFINITIONS 14 1. La varaton absolue d'une grandeur 2. La varaton moyenne d'une grandeur (par unté de temps) 3. Le coeffcent

Plus en détail

Économétrie. Annexes : exercices et corrigés. 5 e édition. William Greene New York University

Économétrie. Annexes : exercices et corrigés. 5 e édition. William Greene New York University Économétre 5 e édton Annexes : exercces et corrgés Wllam Greene New York Unversty Édton françase drgée par Dder Schlacther, IEP Pars, unversté Pars II Traducton : Stéphane Monjon, unversté Pars I Panthéon-Sorbonne

Plus en détail

DOSSIER «Virtualisation»

DOSSIER «Virtualisation» NFE 107 Urbansaton et archtecture des systèmes d nformaton DOSSIER «Vrtuasaton» udteur BULE.L CNM Le Ma 2009 Page 1 sur 22 Sommare PREMBULE...3 1. LES PRINCIPES DE L VIRTULISTION...4 1.1. Hstorque...4

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

Dérivés actions: risques un (rapide) aperçu

Dérivés actions: risques un (rapide) aperçu Dérvés actons: rsques un (rapde) aperçu Lorenzo Bergom Equty Dervatves Quanttatve Research océté Générale lorenzo.bergom@sgcb.com 33 4 3 3 95 Introducton - le Dow Jones 9-6 () 4 Dow Jones Industral Average

Plus en détail

Cours de «concepts avancés de compilation» Travaux pratiques. Auteur : F. Védrine

Cours de «concepts avancés de compilation» Travaux pratiques. Auteur : F. Védrine Cours de «onepts vnés de ompiltion» Trvux prtiques Auteur : F. Védrine Les utomtes et les expressions régulières Les utomtes sont onstitués d étts et de trnsitions. Un étt définit l vnée dns l reonnissne

Plus en détail

Devoir de physique-chimie n 4bis (2H)

Devoir de physique-chimie n 4bis (2H) TS jn 2014 Devoir de physique-chimie n 4bis (2H) Nom:...... LES EXERIES SNT INDEPENDANTS ALULATRIE AUTRISEE PHYSIQUE : ETILE BINAIRE /20 1. Le télescope 8 Les 3 prties sont indépendntes. Document 1 : L

Plus en détail

Module : réponse d un système linéaire

Module : réponse d un système linéaire BSEL - Physique aliquée Module : réonse d un système linéaire Diaoramas () : diagrammes de Bode, réonse Résumé de cours - Caractérisation d un système hysique - Calcul de la réonse our une entrée donnée

Plus en détail

SYSTEMES LOGIQUES LOGIQUE COMBINATOIRE

SYSTEMES LOGIQUES LOGIQUE COMBINATOIRE Ch.I Commnde des systèmes logiques ogique comintoire - p1 SYSTEMES OGIQUES OGIQUE COMBINATOIRE I Commnde des systèmes logiques 1. Structure des systèmes utomtisés Reprenons l structure étlie dns le cours

Plus en détail

CONVENTION GÉNÉRALE. Intervenu en la ville de Grand-Mère, district judiciaire de St-Maurice, province de Québec, Canada.

CONVENTION GÉNÉRALE. Intervenu en la ville de Grand-Mère, district judiciaire de St-Maurice, province de Québec, Canada. - CONVENTION GÉNÉRALE Intervenu en la vlle de Grand-Mère, dstrct judcare de St-Maurce, provnce de Québec, Canada. ENTRE : ET : TRADING OVER THE WORLD INC., personne morale dûment consttuée en vertu des

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1 Lngges Automtes Non-déterminisme Grmmires Attiuées et Génértives Expressions régulières Correction Prtielle de Progrmmes Ceci n'est ps un cours de Lngge C++ 2.1 Comment implnter en C un reconnisseur de

Plus en détail

CHAPITRE 1 : Distribution statistique à une dimension

CHAPITRE 1 : Distribution statistique à une dimension Chatre1 : Dstrbuton Statstque à une dmenson I.H.E.T de Sd Dhr CHAPITRE 1 : Dstrbuton statstque à une dmenson Secton 1 : Vocabulare élémentare de la statstque descrtve 1. Poulaton et ndvdu Dénton On aelle

Plus en détail

La physiologie du cerveau montre que celui-ci est constitué de cellules (les neurones) interconnectées. Quelques étapes de cette découverte :

La physiologie du cerveau montre que celui-ci est constitué de cellules (les neurones) interconnectées. Quelques étapes de cette découverte : Chaptre 3 Apprentssage automatque : les réseaux de neurones Introducton Le Perceptron Les réseaux mult-couches 3.1 Introducton Comment l'homme fat-l pour rasonner, parler, calculer, apprendre,...? Comment

Plus en détail

I. Présentation générale des méthodes d estimation des projets de type «unité industrielle»

I. Présentation générale des méthodes d estimation des projets de type «unité industrielle» Evaluaton des projets et estmaton des coûts Le budget d un projet est un élément mportant dans l étude d un projet pusque les résultats économques auront un mpact sur la réalsaton ou non et sur la concepton

Plus en détail

Un protocole de tolérance aux pannes pour objets actifs non préemptifs

Un protocole de tolérance aux pannes pour objets actifs non préemptifs Un protocole de tolérance aux pannes pour objets actfs non préemptfs Françose Baude Dens Caromel Chrstan Delbé Ludovc Henro Equpe Oass, INRIA - CNRS - I3S 2004, route des Lucoles F-06902 Sopha Antpols

Plus en détail

Editions ENI. Project 2010. Collection Référence Bureautique. Extrait

Editions ENI. Project 2010. Collection Référence Bureautique. Extrait Edtons ENI Project 2010 Collecton Référence Bureautque Extrat Défnton des tâches Défnton des tâches Project 2010 Sasr les tâches d'un projet Les tâches représentent le traval à accomplr pour attendre l'objectf

Plus en détail

Définition des tâches

Définition des tâches Défnton des tâches Défnton des tâches Project 2010 Sasr les tâches d'un projet Les tâches représentent le traval à accomplr pour attendre l'objectf du projet. Elles représentent de ce fat, les éléments

Plus en détail

MATHEMATIQUES GENERALES partim A

MATHEMATIQUES GENERALES partim A Fculté des Sciences MATHEMATIQUES GENERALES prtim A Première nnée de bchelier en Biologie, Chimie, Géogrphie, Géologie, Physique et Informtique, Philosophie Année cdémique 04-05 Frnçoise BASTIN Introduction

Plus en détail

Licence M.A.S.S. Cours d Analyse S4

Licence M.A.S.S. Cours d Analyse S4 Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,

Plus en détail

Modification simultanée de plusieurs caractéristiques d un bien hédonique : une nouvelle méthode de calcul de la variation de bien-être des ménages

Modification simultanée de plusieurs caractéristiques d un bien hédonique : une nouvelle méthode de calcul de la variation de bien-être des ménages Modifiction simultnée de plusieurs crctéristiques d un bien hédonique : une nouvelle méthode de clcul de l vrition de bien-être des ménges Trvers Muriel * Version provisoire Résumé : De nombreuses situtions

Plus en détail

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états. ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie

Plus en détail

edatenq est une application qui permet aux entreprises de compléter et d'envoyer leurs déclarations statistiques par internet.

edatenq est une application qui permet aux entreprises de compléter et d'envoyer leurs déclarations statistiques par internet. Sttistique mensuelle tourisme et hôtellerie Introduction edatenq est une ppliction qui permet ux entreprises de compléter et d'envoyer leurs déclrtions sttistiques pr internet. Il s'git d'une ppliction

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Chapitre 1.5a Le champ électrique généré par plusieurs particules

Chapitre 1.5a Le champ électrique généré par plusieurs particules hapte.5a Le chap électque généé pa pluseus patcules Le chap électque généé pa pluseus chages fxes Le odule de chap électque d une chage ponctuelle est adal, popotonnel à la chage électque et neseent popotonnel

Plus en détail

Chapitre VI Contraintes holonomiques

Chapitre VI Contraintes holonomiques 55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce

Plus en détail

L information sera transmise selon des signaux de nature et de fréquences différentes (sons, ultrasons, électromagnétiques, électriques).

L information sera transmise selon des signaux de nature et de fréquences différentes (sons, ultrasons, électromagnétiques, électriques). CHAINE DE TRANSMISSION Nous avons une information que nous voulons transmettre (signal, images, sons ). Nous avons besoin d une chaîne de transmission comosée de trois éléments rinciaux : 1. L émetteur

Plus en détail

ET INCERTITUDES DE MESURE

ET INCERTITUDES DE MESURE LGCIE - Hdrologe Urbane Mater «Géne Cvl» Cour de Tronc Commun «Epérmentaton et modélaton» CAPTEURS, ETALONNAGES ET INCERTITUDES DE MESURE Jean-Luc BERTRAND-KRAJEWSKI Edton 7 Avertement Ce note de cour

Plus en détail

Ecole Polytechnique de Montréal C.P. 6079, succ. Centre-ville Montréal (QC), Canada H3C3A7 lucas.greze@polymtl.ca robert.pellerin@polymtl.

Ecole Polytechnique de Montréal C.P. 6079, succ. Centre-ville Montréal (QC), Canada H3C3A7 lucas.greze@polymtl.ca robert.pellerin@polymtl. CIGI 2011 Processus d accélératon de proets sous contrantes de ressources avec odes de chevaucheent LUCAS GREZE 1, ROBERT PELLERIN 1, PATRICE LECLAIRE 2 1 CHAIRE DE RECHERCHE JARISLOWSKY/SNC-LAVALIN EN

Plus en détail

CAP PRO E SCHEMA : LE MOTEUR

CAP PRO E SCHEMA : LE MOTEUR CAP PRO E SCHEMA : E MOTEUR folio folio folio folio folio folio folio 7 folio 8 folio 9 plque signlétique d un moteur puissnce sorée pr un moteur plque à ornes d un moteur triphsé e couplge étoile e couplge

Plus en détail

Theorie des mrches Dns ce chpitre, on etudie l'interction de l'ore et de l demnde sur un mrche d'un bien donne. On etudier, en prticulier, l'equilibre du mrche. Etnt donne qu'on s'interesse uniquement

Plus en détail