Corrrigé du sujet de Baccalaurat S. Pondichery Spécialité

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Corrrigé du sujet de Baccalaurat S. Pondichery 2015. Spécialité"

Transcription

1 Corrrigé du sujet de Baccalaurat S Pondichery 2015 Spécialité EXERCICE 1 (4 points) commun à tous les candidats Partie A Soit f la fonction définie sur R par f(x) et la droite d équation et la droite d équation y 3. 1) Démontrer que la fonction f est strictement croissante sur R. Calcul de la dérivée de f(x) : La fonction f est définie sur R, car son numérateur est non nul, et elle est dérivable. La fonction f est de la forme f(x) 3. ; sa dérivée sera de la forme f (x) 3. avec u et u -2. Donc f (x) 3.. On a donc f (x) Signe de la dérivée f (x) : La fonction exponentielle est strictement positive sur R, donc la dérivée étant le quotient de deux fonctions positives, elle est strictement positive sur R. On en déduit que la fonction f est donc strictement croissante sur R. 2) Justifier que la droite est asymptote à la courbe C. Détermination de la limite en : 0 Puis, par addition : 1 Et par quotient : 3 On a donc 0 On en conclut que la droite d équation y 3 est asymptote à la courbe C 3) Démontrer que l équation f(x) 2,999 admet une unique solution α sur R. Déterminer un encadrement de α d amplitude Détermination de la limite en : Puis, par addition : Et par quotient : 0 On a donc 0 Par composition, 0 Par composition,

2 Tableau de variation de f : On a donc : x α f'(x) f(x) 0 2,999 3 La fonction f étant dérivable sur R, elle est continue et strictement croissante sur R. D après l étude des limites et le tableau de variations, l image de R par f est l intervalle ]0 ; 3[. Or λ 2,999 appartient à l intervalle ] 0 ; 3[. Donc, d après le théorème des valeurs intermédiaires, f(x) λ 2,999 admet une solution unique α sur R. Encadrement de α : A la calculatrice, en remarquant que f(4) 2,99899 f(4,01) 2,99901 Alors 4 < α < 4,01 Partie B Soit h la fonction définie sur R par h(x) 3 f(x). 1) Justifier que la fonction h est positive sur R. Dans la partie A, nous avons démontré que l image de R par f est l intervalle ]0 ; 3[. Donc x R, 0 < f(x) < 3-3 < - f(x) < 0 0 < 3 - f(x) < 3 Donc 0 < h(x) < 3 Donc la fonction h est positive sur R. 2) Démontrer que H(x) ln(1 e -2x ) est une primitive de h(x). H est dérivable sur R, car les fonctions qui la composent le sont. H(x) est de la forme ln(u(x)), avec u(x) 1 e -2x, et u (x) -2e -2x. H (x) est de la forme.. Donc H (x) x H (x) Or h(x) 3 -. Donc H (x) h(x). Donc H est bien une primitive de h sur R.

3 3) Soit a un réel positif. a) Donner une interprétation graphique de l intégrale la fonction h est continue sur R, donc intégrable sur l intervalle [0 ; a] (a>0) fonction h est positive sur R, donc en particulier sur [0 ; a] (question B. 1) On a h(x) Donc l intégrale représente l aire, en unité d aire, délimitée par : - les droites d équation x 0 et x a ; - la droite d équation y - la courbe C représente l aire hachurée sur la figure. b) Démontrer que Donc H(a)- H(0) ( ) 2 ; or c) On note D l ensemble des points M(x ;y) du plan défini par x f(x) 3 Déterminer l aire, en unité d aire de D. On travaille ici sur le demi-plan d équation x. L aire recherchée est l aire du domaine compris entre : La droite d équation y3 La courbe C f Et le demi-plan d équation x On a donc A D Or 0 1, Donc 2, et par composition et produit : Donc l aire recherchée est A D.

4 EXERCICE 2 (4 points) commun à tous les candidats Partie A Soit (u n ) la suite définie par son premier terme u 0 et, pour tout entier nature n, par la relation u n 1 au n b (a et b réels non nuls tels que a 1). On pose pour tout entier naturel n, v n u n - 1) Démontrer que la suite (v n ) est géométrique de raison a. v n 1 u n 1 - au n b - a a a. v n On en conclut que (v n ) est géométrique de raison a et de 1 er terme v 0 u 0-2) En déduire que, si a appartient à l intervalle]-1 ; 1[, alors la suite (u n ) a pour limite. De la question 1) on peut écrire v n en fonction de n : v n v 0. a n or v n u n - On en déduit : u n v n u n v 0. a n Etude de la limite : Or si -1 < a < 1, alors a n 0 Donc (v 0. a n ) 0 Conclusion : u n. La suite u n converge vers Partie B En mars 2015, Max achète une plante verte mesurant 80 cm. On lui conseille de la tailler tous les ans, au mois de mars, en coupant un quart de sa hauteur. La plante poussera alors de 30 cm au cours des douze mois suivants. 1) Quelle sera la hauteur de la plante en mars 2016 avant que Max ne la taille? Dès qu il est rentré chez lui, Max a taillé sa plante, à laquelle il n est resté que ¾ de sa hauteur. Sa plante a donc poussé de 30 cm dans l année, et mesure donc en mars 2016 : 80

5 2) Pour tout entier naturel n, on note h n la hauteur de la plante, avant sa taille, en mars de l année (2015+ n). a) Justifier que, pour tout entier naturel n, h n+1 = 0,75 h n. Soit h n la taille de la plante l année ( n). Puisque Max coupe ¼ de sa hauteur, il reste ¾ de h n, c està-dire 0,75 h n, puis la plante gagne 30 cm. On a donc h n 0,75 h n. b) Conjecturer à l aide de la calculatrice le sens de variations de la suite (h n ). Démontrer cette conjecture (on pourra utiliser un raisonnement par récurrence). En faisant tourner un programme qui calcule h n en fonction de n, on peut conjecturer que la suite est strictement croissante. démonstration par récurrence que h n+1 > h n : - initialisation : h 0 80, et h 1 90, donc h 1 > h 0. La conjecture est vraie au rang 0 - hérédité : On suppose la conjecture est vraie au rang n, et que h n+1 > h n. Donc on a : 0,75 h n+1 > 0,75 h n, C est-à-dire : h n+2 > h n+1. La conjecture est donc vraie au rang n+1. La conjecture est vraie au rang 0 et est héréditaire. On en conclut que la suite (h n ) est croissante. h n+1 > h n. c) La suite (h n ) est-elle convergente? Justifier la réponse En faisant tourner le programme de la question b), on observe que la suite semble être majorée par 120. Dans la partie A, nous avons étudié la suite (u n ) définie par son premier terme u 0 et, pour tout entier nature n, par la relation : u n 1 au n b (a et b réels non nuls tels que a 1). Posons u n h n ; a 0,75 ; b 30 et u 0 h Dans la question A. 2), nous avons démontré que la suite u n (donc h n ) converge vers Donc (h n ) converge vers 120. EXERCICE 3 (6 points) Commun à tous les candidats Partie A : Étude de la durée de vie d un appareil électroménager Des études statistiques ont permis de modéliser la durée de vie, en mois, d un type de lave-vaisselle par une variable aléatoire X suivant une loi normale N(μ, σ²) de moyenne μ = 84 et d écart-type σ. De plus, on a P(X 64) = 0,16. La représentation graphique de la fonction densité de probabilité de X est donnée ci-dessous.

6 1) a) En exploitant le graphique, déterminer P(64 X 104). En remarquant que 64 = μ 20 et 104 = μ 20, on en déduit que P(X 64) = P(X 104) = 0,16. On a : P(X 64) P(64 X 104) P(X 104) = 1, Donc : P(64 X 104) =1-2 P(X 64) =1-2 P(64 X 104) =0,68 b) Quelle valeur approchée entière de s peut-on proposer? D après la propriété des «intervalles 1,2,3 sigma», on peut écrire que : P(μ σ X μ σ) =0, 683. Or nous venons de calculer P(64 X 104) =0,68, avec 64 = μ 20 et 104 = μ 20. Donc on peut en conclure qu une valeur approchée de σ est σ= 20 2) On note Z la variable aléatoire définie par Z = a) Quelle est la loi de probabilité suivie par Z? Z = σ, avec μ = 84. La variable X suit une loi normale N(μ, σ²) de moyenne μ = 84 et d écart-type σ. On a donc «centré et réduit» la variable X. On en conclut que La variable Z suit une loi normale centrée réduite N(0 ; 1) b) Justifier que P(X 64) = P( Z ). On a : X 64, donc X Et étant positif, Donc Z. On en conclut que P(X 64) = P( Z ). c) En déduire la valeur de σ, arrondie à Sur la Casio 35, par exemple, on peut déterminer = - 0,99445 (menu STAT DIST NORM INVN : area = 0,16 ; = 1 et μ = 0) Donc = 3) Dans cette question, on considère que σ = 20,1. Les probabilités demandées seront arrondies à a) Calculer la probabilité que la durée de vie du lave-vaisselle soit comprise entre 2 et 5 ans. 2 ans et 5 ans On cherche donc P(24 60) A l aide de la Casio 35, par exemple, on obtient : P(24 60) 0,115 (0,11481) (menu STAT DIST NORM Ncd lower = 24 ; Upper = ; = 20,1 et μ = 84) b) Calculer la probabilité que le lave-vaisselle ait une durée de vie supérieure à 10 ans. 2 ans. On cherche donc P( 120) Or P( 120) = 1 - P( 120) = 1 0,963 = 0,037 Partie B : Étude de l extension de garantie d El Ectro Le lave-vaisselle est garanti gratuitement pendant les deux premières années. L entreprise El Ectro propose à ses clients une extension de garantie de 3 ans supplémentaires. Des études statistiques menées sur les clients qui prennent l extension de garantie montrent que 11,5% d entre eux font jouer l extension de garantie.

7 1) On choisit au hasard 12 clients parmi ceux ayant pris l extension de garantie (on peut assimiler ce choix à un tirage au hasard avec remise vu le grand nombre de clients). a) Quelle est la probabilité qu exactement 3 de ces clients fassent jouer cette extension de garantie? Détailler la démarche en précisant la loi de probabilité utilisée. Arrondir à 10-3 Il s agit d un schéma de Bernoulli : on renouvelle 12 fois de manière indépendante une expérience à deux issues consistant à savoir si un client a pris une extension de garantie ou pas. La probabilité qu il ait pris une extension de garantie est de 0,115. On appelle X la variable aléatoire donnant le nombre de clients ayant pris une extension de garantie à l issue des 12 tirages. X suit une loi binomiale de paramètres (12 ; 0,115). 3 9 On cherche P(X = 3) = A l aide de la Casio 35, par exemple, on obtient : P(X = 3) =0,111 (0,11143) (menu STAT DIST BINM Bpd Var - X = 3 ; Numtrial = 12 ; p = 0,115) b) Quelle est la probabilité qu au moins 6 de ces clients fassent jouer cette extension de garantie? Arrondir à On cherche P(X 6) = 1 - P(X 5) = 1 0,99884 = 0,00116 (menu STAT DIST BINM Bcd Var - X = 5 ; Numtrial = 12 ; p = 0,115) 2) L offre d extension de garantie est la suivante : pour 65 euros supplémentaires, El Ectro remboursera au client la valeur initiale du lave-vaisselle, soit 399 euros, si une panne irréparable survient entre le début de la troisième année et la fin de la cinquième année. Le client ne peut pas faire jouer cette extension de garantie si la panne est réparable. On choisit au hasard un client parmi les clients ayant souscrit l extension de garantie, et on note Y la variable aléatoire qui représente le gain algébrique en euros réalisé sur ce client par l entreprise El Ectro, grâce à l extension de garantie. a) Justifier que Y prend les valeurs 65 et 334 puis donner la loi de probabilité de Y. Il y a deux possibilités : - Soit le client fait jouer la garantie et l entreprise El Ectro perd = Soit le client ne fait jouer pas la garantie et l entreprise El Ectro gagne 65. La variable aléatoire Y correspond au gain algébrique en euros réalisé par l entreprise sur un client donc Y prend bien les deux valeurs 65 et 334. De plus, on sait qu il y a 11,5% de chances que le client fasse jouer la garantie. On obtient donc le tableau de probabilité suivant : k P(X= k) P(X= -334) = 0,115 P(X= 65) =1-0,115 = 0,885 b) Cette offre d extension de garantie est-elle financièrement avantageuse pour l entreprise? Justifier. L espérance de gain pour l entreprise est : E(X) = 0,115 (-334) 0, = 19,115. Cette espérance étant positive (environ 19,12 ), l offre d extension est financièrement avantageuse pour l entreprise.

8 EXERCICE 4 (5 points) Candidat ayant suivi l enseignement de spécialité Les nombres de la forme 2 n 1 où n est un entier naturel non nul sont appelés nombres de Mersenne. 1) On désigne par a, b et c trois entiers naturels non nuls tels que PGCD (b, c) = 1. Prouver, à l aide du théorème de Gauss, que : Si b divise a et c divise a alors le produit bc divise a. On a d après les données, pour k et k entiers : «b divise a» : donc il existe un entier k tel que a = kb ; «c divise a» : donc il existe un entier k tel que a = k c ; D après le théorème de Gauss : Soient a,b,c des entiers : alors a divise c Puisque kb = k c = a et que b est premier avec c, d après le théorème de Gauss, c divise k. Donc il existe un entier q tel que : k = qc. On peut donc écrire : a = qcb = q (bc). Donc le produit bc divise a. Conclusion : Si b divise a et c divise a alors le produit bc divise a. 2) On considère le nombre de Mersenne Un élève utilise sa calculatrice et obtient les résultats ci-dessous. Il affirme que 3 divise et 4 divise et 12 ne divise pas a) En quoi cette affirmation contredit-elle le résultat démontré à la question 1. Ici, l élève affirme que : 3 (b) divise (a) 4 (c) divise (a). Or PGCD (3 ; 4) = 1 car 3 et 4 sont premiers entre eux. Donc d après le théorème de Gauss et la question 1, cela signifie que 3 4= 12 divise (a). La réponse de l élève contredit donc le démontré à la question 1. b) Justifier que, en réalité, 4 ne divise pas = = , donc 4 divise si 4 divisait (2 33 1) il diviserait également 1. Ce qui est faux. On en conclut que 4 ne divise pas c) En remarquant que 2-1 [3], montrer que, en réalité, 3 ne divise pas [3], or (-1) 33 = -1. Donc [3], donc [3], donc [3] On en conclut que n est pas divisible par 3. d) Calculer la somme S = (2 3 ) 2 + (2 3 ) (2 3 ) 10. En posant u 0 = 1 et q = 2 3, on observe que la somme recherchée est la somme des 11 premiers termes d une suite géométrique u n de raison 2 3 et de premier terme 1.

9 D après une formule du cours, on peut donc écrire que la somme des n premiers termes d une suite géométrique est : S = u 0 Donc ici : S = 1 = = e) En déduire que 7 divise La somme S est un entier (c est la somme de 11 entiers), ce qui signifie que On en conclut que 7 divise est un nombre entier. 3) On considère le nombre de Mersenne Est-il premier? Justifier. On peut calculer : = 127. Or 11,27. Cherchons s il est divisible par les nombres premiers inférieurs à sa racine carrée : 127 n est pas divisible par : 2, 3 ; 5 ; 7 ; 11. Donc 127 est premier. On en conclut que le nombre de Mersenne est premier 4) On donne l algorithme suivant où MOD (N,k) représente le reste de la division euclidienne de N par k. Variables : n entier naturel supérieur ou égal à 3 k entier naturel supérieur ou égal à 2 Initialisation : Demander à l utilisateur la valeur de n. Affecter à k la valeur 2. Traitement : Tant que MOD ( 2 n 1, k ) 0 et k Affecter à k la valeur k + 1 Fin de Tant que. Sortie : Afficher k. Si k Afficher «CAS 1» Sinon Afficher «CAS 2» Fin de Si a) Qu affiche cet algorithme si on saisit n = 33? Et si on saisit n = 7? n 33 7 Affichage de k 7 12 Affichage du cas CAS 2 CAS 1 b) Que représente le CAS 2 pour le nombre de Mersenne étudié? Que représente alors le nombre affiché pour le nombre de Mersenne étudié? Lorsque n = 33, on obtient k = 7. En effet, on a vu précédemment que k = 7 est le premier diviseur premier de Le «CAS 2» signifie donc que le nombre de Mersenne testé (2 n 1) pour n donné n est pas premier. c) Que représente le CAS 1 pour le nombre de Mersenne étudié? Lorsque n = 7, on obtient k = 12. En effet, on a vu précédemment que 11,27, et donc que le premier entier supérieur à. Le «CAS 1» signifie donc que le nombre de Mersenne testé (2 n 1) pour n donné est premier.

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 Durée : 3h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Baccalauréat Série S Métropole, juin 2014

Baccalauréat Série S Métropole, juin 2014 Baccalauréat Série S Métropole, juin 4 Sujet et Corrigé Stéphane PASQUET Disponible sur http://www.mathweb.fr juin 4 Exercice (5 points) - Commun à tous les candidats Partie A Dans le plan muni d un repère

Plus en détail

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités Sujet Métropole 01 EXERIE 1. [4 pts] Probabilités Une jardinerie vend de jeunes plants d arbres qui proviennent de trois horticulteurs : 5% des plants proviennent de l horticulteur H 1, 5% de l horticulteur

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES Série S ÉPREUVE DU JEUDI 19 JUIN 2014 Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont

Plus en détail

Lycée Marlioz - Aix les Bains. Bac Blanc 2012. Mathématiques - Terminale ES. 16 mai 2012

Lycée Marlioz - Aix les Bains. Bac Blanc 2012. Mathématiques - Terminale ES. 16 mai 2012 Lycée Marlioz - Aix les Bains Bac Blanc 2012 Mathématiques - Terminale E Candidats n ayant pas choisi la spécialité maths 16 mai 2012 Pour cette épreuve, la rédaction, la clarté et la précision des explications

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé)

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) EXERCICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chacune des questions posées, une seule des quatre réponses

Plus en détail

Baccalauréat ES Pondichéry 21 avril 2016

Baccalauréat ES Pondichéry 21 avril 2016 Exercice 1 Commun à tous les candidats Baccalauréat ES Pondichéry 21 avril 216 4 points Cet exercice est un QCM (questionnaire à choix multiples). Pour chacune des quatre questions posées, une seule des

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé Baccalauréat ES/L Amérique du Sud 2 novembre 2 Corrigé A. P. M. E. P. EXERCICE Commun à tous les candidats 5 points. Diminuer le budget de 6 % sur un an revient à multiplier par 6 =,94. Diminuer le budget

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES/spé TL Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la rédaction

Plus en détail

Baccalauréat Blanc 10 février 2015 Corrigé

Baccalauréat Blanc 10 février 2015 Corrigé Exercice Commun à tous les candidats Baccalauréat Blanc février 25 Corrigé. Réponse d. : e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e 5,4. 2. Réponse b. : positif

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES BACCALAURÉAT TECHNOLOGIQUE Session 2015 Jeudi 18 juin 2015 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DE LABORATOIRE Spécialité : BIOTECHNOLOGIES Durée de l épreuve : 4 heures Coefficient : 4 Calculatrice

Plus en détail

Corrigé du baccalauréat ES Pondichéry 16 avril 2015

Corrigé du baccalauréat ES Pondichéry 16 avril 2015 Corrigé du baccalauréat ES Pondichéry 16 avril 2015 Exercice 1 Commun à tous les candidats 5 points Partie A On appelle B l événement «la batterie est défectueuse» ; l événement «le disque dur est défectueux».

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

Amérique du Sud, novembre 2006

Amérique du Sud, novembre 2006 Exercice 1 ( 5 points) Commun à tous les candidats Un hôpital est composé de trois services : service de soins A, service de soins B, service de soins C. On s intéresse aux prises de sang effectuées dans

Plus en détail

Baccalauréat S Centres étrangers 12 juin 2014

Baccalauréat S Centres étrangers 12 juin 2014 Durée : 4 heures Baccalauréat S Centres étrangers juin 04 A. P. M. E. P. Dans l ensemble du sujet, et pour chaque question, toute trace de recherche même incomplète, ou d initiative même non fructueuse,

Plus en détail

Inde, avril 2014, exercice 1

Inde, avril 2014, exercice 1 Sujet 1 Inde, avril 2014, exercice 1 4 points Dans cet exercice, sauf indication contraire, les résultats seront arrondis au centième. 1 La durée de vie, exprimée en années, d un moteur pour automatiser

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

Contrôle commun : 4 heures

Contrôle commun : 4 heures Exercice 1 (5 points) Contrôle commun : 4 heures PARTIE A On considère la fonction f définie sur l intervalle ]0 ; + [ par f(x) = ln x + x. 1. Déterminer les limites de la fonction f en 0 et en +.. Étudier

Plus en détail

Problèmes à propos des nombres entiers naturels

Problèmes à propos des nombres entiers naturels Problèmes à propos des nombres entiers naturels 1. On dispose d une grande feuille de papier, on la découpe en 4 morceaux, puis on déchire certains morceaux (au choix) en 4 et ainsi de suite. Peut-on obtenir

Plus en détail

TRINÔME DU SECOND DEGRÉ

TRINÔME DU SECOND DEGRÉ TRINÔME DU SECOND DEGRÉ Définition On appelle fonction trinôme du second degré, toute fonction f définie sur IR qui, à x associe f(x) = ax 2 + bx + c, a, b et c étant trois réels avec a 0. Exemple Les

Plus en détail

TES-sujets de révisions BAC Amérique du sud nov. 2009

TES-sujets de révisions BAC Amérique du sud nov. 2009 TES-sujets de révisions BAC Amérique du sud nov. 009 Exercice 3 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question, une seule des trois réponses est exacte. Indiquer

Plus en détail

Exos corrigés darithmétique...classe : TS-Spé. Prof. MOWGLI Ahmed. Année scolaire 2015-2016

Exos corrigés darithmétique...classe : TS-Spé. Prof. MOWGLI Ahmed. Année scolaire 2015-2016 Exos corrigés darithmétique...classe : TS-Spé Prof. MOWGLI Ahmed Année scolaire 2015-2016 1 Pour des cours particuliers par petits groupes de 3 ou 4 élèves en maths et/ou physique-chimie, veuillez me contacter.

Plus en détail

Baccalauréat S Pondichéry 17 avril 2015

Baccalauréat S Pondichéry 17 avril 2015 Baccalauréat S Pondichéry 17 avril 2015 EXERCICE 1 Commun à tous les candidats Partie A 4 points Soit f la fonction définie sur R par f x)= 3 1+e 2x Sur le graphique ci-après, on a tracé, dans un repère

Plus en détail

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale MT8 A 0 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale. Fonction de répartition.. Variable aléatoire à valeurs réelles Définition : Soit un ensemble fondamental

Plus en détail

C k A C. x 5 4 + Signe de f (x) + 0 0 + x 4 2 2 + Variations

C k A C. x 5 4 + Signe de f (x) + 0 0 + x 4 2 2 + Variations nde Eléments de correction du DNS 1 Lectures graphiques Soient f et g deux fonctions définies sur IR. Leurs représentations graphiques, notées respectivement C f et C g, sont tracées dans le repère ci-dessous.

Plus en détail

Sujet de Bac 2010 Maths ES Obligatoire & Spécialité Amérique du Nord

Sujet de Bac 2010 Maths ES Obligatoire & Spécialité Amérique du Nord Sujet de Bac 2010 Maths ES Obligatoire & Spécialité Amérique du Nord EXERCICE 1 : 5 points Commun à tous les candidats On sait que la courbe C passe par les points A( 2; 0,5), B(0; 2), C(2; 4,5), D(4,5;

Plus en détail

[ Baccalauréat S Nouvelle-Calédonie \ 19 novembre 2015

[ Baccalauréat S Nouvelle-Calédonie \ 19 novembre 2015 Durée : 4 heures [ Baccalauréat S Nouvelle-Calédonie \ 19 novembre 015 A. P. M. E. P. EXERCICE 1 7 points Une usine produit de l eau minérale en bouteilles. Lorsque le taux de calcium dans une bouteille

Plus en détail

Baccalauréat STL Biotechnologies juin 2014 Polynésie Correction

Baccalauréat STL Biotechnologies juin 2014 Polynésie Correction Baccalauréat STL Biotechnologies juin 014 Polynésie Correction EXERCICE 1 Les trois parties de cet exercice peuvent être traitées de manière indépendante. Les résultats seront arrondis, si nécessaire,

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

OLYMPIADES FRANÇAISES DE MATHÉMATIQUES

OLYMPIADES FRANÇAISES DE MATHÉMATIQUES OLYMPIADES FRANÇAISES DE MATHÉMATIQUES OLYMPIADES OFM FRANÇAISES MATHÉMATIQUES ENVOI NO. 3 CORRIGÉ 1 Exercices du groupe B Exercice 1. Soit n 1 un entier tel que le quotient de 2 n par n est une puissance

Plus en détail

Baccalauréat STMG Polynésie 12 septembre 2014 Correction

Baccalauréat STMG Polynésie 12 septembre 2014 Correction Baccalauréat STMG Polynésie 1 septembre 014 Correction Durée : 3 heures EXERCICE 1 6 points Pour une nouvelle mine de plomb, les experts d une entreprise modélisent le chiffre d affaires (en milliers d

Plus en détail

2 nde CORRIGE : DEVOIR COMMUN DE

2 nde CORRIGE : DEVOIR COMMUN DE 2 nde CORRIGE : DEVOIR COMMUN DE MATHEMATIQUES Exercice 1 : (4 points) 1. Compléter le tableau à double entrée ci-dessous. Elèves vaccinés Elèves non vaccinés Total Elèves ayant eu la grippe 14 133 147

Plus en détail

Baccalauréat ES Amérique du Nord 4 juin 2009

Baccalauréat ES Amérique du Nord 4 juin 2009 Baccalauréat ES Amérique du Nord 4 juin 009 EXERCICE 4 points Commun à tous les candidats Cet exercice constitue un questionnaire à choix multiples. Les questions sont indépendantes les unes des autres.

Plus en détail

Couper en deux, encore et encore : la dichotomie

Couper en deux, encore et encore : la dichotomie Couper en deux, encore et encore : la dichotomie I : Jeu du nombre inconnu Un élève volontaire choisit un nombre entier compris entre 0 et 56. Un autre élève cherche à deviner ce nombre, en adoptant la

Plus en détail

Correction Bac blanc mai 2013

Correction Bac blanc mai 2013 Correction Bac blanc mai 2013 Exercice 1 Commun à tous les candidats. 4 points (1 point par bonne réponse) 1. La fonction F définie sur R par F (x) = e x2 est une primitive de la fonction f définie par

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2011 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures. COEFFICIENT : 5 Ce sujet comporte 5 pages numérotées de 1 à 5. Du papier millimétré est mis à la disposition des

Plus en détail

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Corrigé du baccalauréat ES Asie 19 juin 2014

Corrigé du baccalauréat ES Asie 19 juin 2014 Corrigé du baccalauréat ES Asie 9 juin 4 EXERCICE 4 points Commun à tous les candidats Proposition : fausse f (4) est le coefficient directeur de la tangente à la courbe au point C ; cette droite passe

Plus en détail

Mesures et analyses statistiques de données - Probabilités. Novembre 2012 - Contrôle Continu, Semestre 1 CORRECTION

Mesures et analyses statistiques de données - Probabilités. Novembre 2012 - Contrôle Continu, Semestre 1 CORRECTION MASTER 1 GSI- Mentions ACCIE et RIM La Citadelle - ULCO Mesures et analyses statistiques de données - Probabilités Novembre 2012 - Contrôle Continu, Semestre 1 CORRECTION Exercice 1 Partie I 12pts 1 Étude

Plus en détail

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année.

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année. MATHÉMATIQUES TERMINALE ES A. YALLOUZ Ce polcopié conforme au programme 00, regroupe les documents distribués au élèves en cours d année. Année 0-0 Année 0-0 T le ES A. YALLOUZ (MATH@ES) TABLE DES MATIÈRES

Plus en détail

Agrégation interne de Sciences économiques et sociales - Session 2008 Épreuve de Mathématiques - sujet A

Agrégation interne de Sciences économiques et sociales - Session 2008 Épreuve de Mathématiques - sujet A Épreuve de Mathématiques - sujet A Exercice Une société de location de voitures possède trois agences, une à Rennes, une à Lyon, une à Marseille. Lorsqu un client loue une voiture, un jour donné, dans

Plus en détail

mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques SÉRIE ES ANNALES D EXERCICES REGROUPÉS PAR THÈME

mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques SÉRIE ES ANNALES D EXERCICES REGROUPÉS PAR THÈME mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes

Plus en détail

FRANCE METROPOLITAINE (juin 2003)

FRANCE METROPOLITAINE (juin 2003) FRANCE METROPOLITAINE (juin 200) Eercice 1 : (4 points)(correction) Commun à tous les candidats Les guichets d une agence bancaire d une petite ville sont ouverts au public cinq jours par semaine : les

Plus en détail

Exercice 1 Aux quatre coins d une feuille de papier format A4, on découpe des carrés pour fabriquer une boîte : x

Exercice 1 Aux quatre coins d une feuille de papier format A4, on découpe des carrés pour fabriquer une boîte : x Exercice Aux quatre coins d une feuille de papier format A4, on découpe des carrés pour fabriquer une boîte : x A B E F H G D Le fond de la boîte est le rectangle EFGH. La feuille est au format A4, donc

Plus en détail

I) Deux propriétés importantes Propriété 1 Si A est multiple de B et B est un multiple de n, alors A est un multiple de n.

I) Deux propriétés importantes Propriété 1 Si A est multiple de B et B est un multiple de n, alors A est un multiple de n. Extrait de cours de maths de 5e Chapitre 1 : Arithmétique Définition 1. Multiples et diviseurs Si, dans une division de D par d, le reste est nul, alors on dit que D est un multiple de d, que d est un

Plus en détail

Feuille 1. L3 Maths Appliquées lagache@biologie.ens.fr 27 Janvier 2009. A le chambre des députés d un pays composé de 100 départements, chaque

Feuille 1. L3 Maths Appliquées lagache@biologie.ens.fr 27 Janvier 2009. A le chambre des députés d un pays composé de 100 départements, chaque Feuille 1 L3 Maths Appliquées lagache@biologie.ens.fr 27 Janvier 2009 1 Combinatoire 1.1 Exercice 1 A le chambre des députés d un pays composé de 100 départements, chaque département est représenté par

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Chapitre 5 Fonctions affines et équations du 1 er degré. Table des matières

Chapitre 5 Fonctions affines et équations du 1 er degré. Table des matières Chapitre 4 Fonctions affines et équations du 1 er degré. TABLE DES MATIÈRES page -1 Chapitre 5 Fonctions affines et équations du 1 er degré. Table des matières I Exercices I-1 1................................................

Plus en détail

Baccalauréat ES Amérique du Sud 16 novembre 2011

Baccalauréat ES Amérique du Sud 16 novembre 2011 Baccalauréat ES Amérique du Sud 16 novembre 2011 L utilisation d une calculatrice est autorisée. EXERCICE 1 Commun à tous les candidats 4 points Soit u une fonction définie et dérivable sur l intervalle

Plus en détail

Sujets HEC B/L 2013-36-

Sujets HEC B/L 2013-36- -36- -37- Sujet HEC 2012 B/L Exercice principal B/L1 1. Question de cours : Définition et propriétés de la fonction de répartition d une variable aléatoire à densité. Soit f la fonction définie par : f(x)

Plus en détail

Informatique 1ère Année 2012-2013

Informatique 1ère Année 2012-2013 SERIE D EXERCICES N 1 INTRODUCTION, STRUCTURE CONDITIONNELLE : IF..ELSE Exercice 1 Ecrire le programme qui lit deux entiers saisis et affiche leur produit. Modifier ensuite ce programme pour saisir des

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2010 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures. COEFFICIENT : 5 Ce sujet comporte 7 pages numérotées de 1 à 7 dont une page en annexe à rendre avec la copie. L

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Série ST2S

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Série ST2S BACCALAURÉAT TECHNOLOGIQUE SESSION 2015 MATHÉMATIQUES Série ST2S Durée de l épreuve : 2 heures Coefficient : 3 Une feuille de papier millimétré est fournie au candidat Les calculatrices électroniques de

Plus en détail

T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013

T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013 T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Baccalauréat ES Antilles Guyane juin 2009

Baccalauréat ES Antilles Guyane juin 2009 Baccalauréat ES Antilles uyane juin 2009 EXERCICE PARTIE A : aucune justification n est demandée 4 points Cette partie est un questionnaire à choix multiples. Pour chacune des questions, trois réponses

Plus en détail

1 Variable aléatoire discrète... 1. 1.1 Rappels... 1. 1.2 Exemple... 2 2 Couples de variables aléatoires... 3. 2.1 Définition... 3

1 Variable aléatoire discrète... 1. 1.1 Rappels... 1. 1.2 Exemple... 2 2 Couples de variables aléatoires... 3. 2.1 Définition... 3 CHAPITRE : LOIS DISCRÈTES Sommaire Variable aléatoire discrète................................... Rappels........................................... Exemple......................................... Couples

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde partie 1/3 partie 2/3 partie 3/3 Sommaire 1 Ensemble

Plus en détail

Sujet n 1. Sujet n 2

Sujet n 1. Sujet n 2 Exercices d oraux Consignes : L oral comporte deux questions dont une de spécialité pour le candidats concernés. L épreuve est constituée d une préparation d une vingtaine de minutes suivie d un entretien

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Corrigé du baccalauréat ST2S Antilles-Guyane septembre 2015

Corrigé du baccalauréat ST2S Antilles-Guyane septembre 2015 Corrigé du baccalauréat ST2S Antilles-Guyane septembre 2015 Durée : 2 heures EXERCICE 1 Les parties 1 et 2 sont indépendantes. 8 points Le tableau ci-dessous indique les dépenses de santé des soins hospitaliers

Plus en détail

Chapitre 4. Fonction exponentielle. 4.1 Activité. Sommaire

Chapitre 4. Fonction exponentielle. 4.1 Activité. Sommaire Chapitre 4 Fonction exponentielle Sommaire 4.1 Activité............................................. 37 4. Fonctions exponentielles de base q (q > 0)........................ 39 4..1 Définition.........................................

Plus en détail

MATHEMATIQUES BTS1 2013-2014 Corrigés des devoirs

MATHEMATIQUES BTS1 2013-2014 Corrigés des devoirs MATHEMATIQUES BTS1 2013-201 Corrigés des devoirs CC 23 /09/2013 page2 CC 18/10/2013 page DV 25/11/2013 page 6 BTS Blanc 13/12/2013 page 8 CC 07/01/201 page 12 CC 0/02/201 page 1 BTS Blanc 27/02/201 page

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Dénombrement et probabilités Version du juillet 05 Enoncés Exercice - YouTube Sur YouTube, les vidéos sont identifiées à l aide d une chaîne

Plus en détail

Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve...

Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve... Sommaire Descriptif de l épreuve............................................. Conseils pour l épreuve............................................ Les pourcentages FICHES Pages 1 Pourcentage Proportions....................................7

Plus en détail

Bac ES La Réunion juin 2009

Bac ES La Réunion juin 2009 Bac ES La Réunion juin 2009 Exercice 1 (4 points) Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Pour chaque question, trois réponses sont proposées. Une seule de ces

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

BACCALAURÉAT BLANC 2013

BACCALAURÉAT BLANC 2013 BACCALAURÉAT BLANC 203 Série S Corrigé Exercice. a) On traduit les données de l énoncé et on représente la situation par un arbre pondéré. PF ) = 2, PF 2) = 3, P F ) = 5 00 = 20, P F 2 ) =,5 00 = 3 3,5,

Plus en détail

Centres étrangers 2014. Enseignement spécifique

Centres étrangers 2014. Enseignement spécifique Centres étrangers 214. Enseignement spécifique EXERCICE 3 (7 points) (commun à tous les candidats) Les parties A et B sont indépendantes Une image numérique en noir et blanc est composée de petits carrés

Plus en détail

La fonction logarithme népérien

La fonction logarithme népérien La fonction logarithme népérien Christophe ROSSIGNOL Année scolaire 204/205 Table des matières La fonction logarithme népérien 2. Définition Courbe représentative................................... 2.2

Plus en détail

Bac Blanc de Mathématiques Correction Durée : 3 heures

Bac Blanc de Mathématiques Correction Durée : 3 heures Terminale STG Mercatique Jeudi 1 avril 2010 Bac Blanc de Mathématiques Correction Durée : 3 heures L usage de la calculatrice est autorisé. Le sujet comporte 6 pages. EXERCICE 1 3 points Cet eercice est

Plus en détail

Baccalauréat S Amérique du Nord 2 juin 2015

Baccalauréat S Amérique du Nord 2 juin 2015 Durée : 4 heures Baccalauréat S Amérique du Nord 2 juin 2015 Exercice 1 Commun à tous les candidats 5 points Dans l espace, on considère ( une pyramide SABCE à base carrée ABCE de centre O. Soit D le point

Plus en détail

Baccalauréat blanc nº1 - ES - décembre 2011

Baccalauréat blanc nº1 - ES - décembre 2011 Sujet obligatoire - durée : 3 heures - calculatrice autorisée - coefficient 5 - le sujet comporte 5 pages. Baccalauréat blanc nº - ES - décembre 0 EXERCICE 4points On considère une fonction f définie et

Plus en détail

Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015

Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Calculatrice autorisée conformément à la circulaire n o 99-186 du 16 novembre 1999. Le candidat doit traiter les quatre exercices. Il

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Probabilités conditionelles

Probabilités conditionelles Probabilités conditionelles Exercice 1 Cet exercice est un questionnaire à choix multiples constitué de six questions ; chacune comporte trois réponses, une seule est exacte On notera sur la copie uniquement

Plus en détail

Mathématiques et Philosophie en classe de seconde

Mathématiques et Philosophie en classe de seconde Mathématiques et Philosophie en classe de seconde Intervention du Professeur de mathématiques. Effectif de la classe : 34 élèves. Intervention : quinze heures en alternance avec le cours de Philosophie.

Plus en détail

MATHÉMATIQUES - SPÉCIALITÉ. Table des matières

MATHÉMATIQUES - SPÉCIALITÉ. Table des matières MATHÉMATIQUES - SPÉCIALITÉ F.HUMBERT Table des matières Chapitre A - Congruences 2 Chapitre B - PGCD 5 Chapitre C - Nombres premiers 11 Chapitre D - Matrices et évolution de processus 14 Chapitre E - Matrices

Plus en détail

Chapitre 1. Rappels sur les fonctions Continuité. 1.1 Rappels sur les fonctions. Sommaire. 1.1.1 Fonctions de référence. 1.1.

Chapitre 1. Rappels sur les fonctions Continuité. 1.1 Rappels sur les fonctions. Sommaire. 1.1.1 Fonctions de référence. 1.1. Chapitre 1 Rappels sur les fonctions Continuité Sommaire 1.1 Rappels sur les fonctions.... 1 1.1.1 Fonctions de référence.... 1 1.1. Fonction trinôme....... 1 1. Continuité............. 4 1..1 Activités............

Plus en détail

BTS OPTICIEN LUNETIER

BTS OPTICIEN LUNETIER BTS OPTICIEN LUNETIER MATHEMATIQUES Session février 2015 Examen blanc - Classes de deuxième année Durée : 2 heures Coefficient : 2 Matériel autorisé : Toutes les calculatrices de poche, y compris les calculatrices

Plus en détail

Espérances et variances

Espérances et variances [http://mp.cpgedupuydelome.fr] édité le 29 décembre 201 Enoncés 1 Espérances et variances Exercice 1 [ 04018 ] [Correction] Soit X une variable aléatoire discrète à valeurs dans [a ; b]. a Montrer que

Plus en détail

Fonctions de référence

Fonctions de référence CLASSE : 2nde Durée approximative : 1 H DS 2N3 Correction Fonctions de référence EXERCICE 1 : / 4 points Difficulté : L'alcoolémie est le taux d'alcool présent dans le sang. Elle se mesure généralement

Plus en détail

Brevet de technicien supérieur Comptabilité et gestion des organisations

Brevet de technicien supérieur Comptabilité et gestion des organisations Comptabilité et gestion des organisations Lycée Cassini Exercice 1 11 points A. Étude d une fonction Soit f la fonction définie sur l intervalle [1 ; 14] par x+ 1 ln x f (x)=. x 1. a. Démontrer que. pour

Plus en détail

Correction du baccalauréat STMG Centres étrangers 17 juin 2014

Correction du baccalauréat STMG Centres étrangers 17 juin 2014 orrection du baccalauréat STMG entres étrangers 17 juin 2014 EXERIE 1 4 points On considère une fonction f définie sur l intervalle [ 5 ; 3] dont la représentation graphique f est donnée ci-dessous. Soit

Plus en détail

Expérimentation 2007

Expérimentation 2007 Mathématiques série S Épreuve pratique au baccalauréat Expérimentation 2007 - Banque de sujets - Ce document peut être utilisé librement dans le cadre des activités de l'enseignement scolaire, de la formation

Plus en détail

Baccalauréat ES Polynésie 10 juin 2016

Baccalauréat ES Polynésie 10 juin 2016 Baccalauréat ES Polynésie 0 juin 06 EXERCICE Les parties A et B sont indépendantes On s intéresse à l ensemble des demandes de prêts immobiliers auprès de trois grandes banques. Une étude montre que %

Plus en détail

TOPOLOGIE DE LA DROITE REELLE

TOPOLOGIE DE LA DROITE REELLE TOPOLOGIE DE LA DROITE REELLE P. Pansu 16 mai 2005 1 Qu est-ce que la topologie? C est l étude des propriétés des objets qui sont conservées par déformation continue. Belle phrase, mais qui nécessite d

Plus en détail

Baccalauréat ES Polynésie juin 2008

Baccalauréat ES Polynésie juin 2008 Baccalauréat ES Polynésie juin 2008 Exercice 1 4 points Le plan est muni d un repère orthonormal. Soient f une fonction définie et dérivable sur l ensemble R des nombres réels et C sa courbe tracée ci-contre.

Plus en détail

(a) Déterminer la probabilité que le chocolat choisi soit blanc et garni de praliné.

(a) Déterminer la probabilité que le chocolat choisi soit blanc et garni de praliné. Eercice / 5 points Une boîte de chocolats contient 50 % de chocolats au lait, 30 % de chocolats noirs et 0 % de chocolats blancs. Tous les chocolats de la boîte sont de même forme et d emballage identique.

Plus en détail

Soit une suite. On dit qu elle est géométrique si, partant du

Soit une suite. On dit qu elle est géométrique si, partant du Suites géométriques I) Définition Soit est un nombre entier naturel. Soit une suite. On dit qu elle est géométrique si, partant du TERME INITIAL, pour passer d un terme au suivant, on MULTIPLIE toujours

Plus en détail

Le sujet est composé de 6 pages dont une annexe à rendre avec la copie. Formulaire

Le sujet est composé de 6 pages dont une annexe à rendre avec la copie. Formulaire Année universitaire 2013-2014 Diplôme de D.A.E.U Option A 1 ère session Juin 2014 Intitulé de la matière : Nom de l enseignant : Mathématiques Mme Baulon Date de l épreuve : Mercredi 11 juin 2014 13.30-16.30

Plus en détail

Statistiques et estimation

Statistiques et estimation DERNIÈRE IMPRESSION LE 23 juillet 2014 à 16:35 Statistiques et estimation Table des matières 1 Intervalle de fluctuation 2 1.1 Simulation................................. 2 1.2 Définition.................................

Plus en détail

Cours de mathématiques pour la Terminale S. Savoir-Faire par chapitre avec corrigé

Cours de mathématiques pour la Terminale S. Savoir-Faire par chapitre avec corrigé Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre avec corrigé Florent Girod Année scolaire 205 / 206. Eternat Notre Dame - Grenoble Table des matières I Savoir-Faire 2 ) Suites numériques.................................

Plus en détail

Lois de probabilité. a ; avec a < b, toute fonction f vérifiant

Lois de probabilité. a ; avec a < b, toute fonction f vérifiant Lois de probabilité A) Lois à densité Loi continue Approche : Jusqu ici, les variables aléatoires étudiées prenaient un nombre fini de valeurs Or les issues d un grand nombre d expériences aléatoires prennent

Plus en détail

Mathématiques pour. l informatique

Mathématiques pour. l informatique Xavier Chanet Patrick Vert Mathématiques pour l informatique Pour le BTS SIO Toutes les marques citées dans cet ouvrage sont des marques déposées par leurs propriétaires respectifs. Illustration de couverture

Plus en détail

5) Une équation de la tangente à la courbe représentative de la fonction exponentielle au point d abscisse 0 est de la forme ( )( ) ( )

5) Une équation de la tangente à la courbe représentative de la fonction exponentielle au point d abscisse 0 est de la forme ( )( ) ( ) Amérique du Nord Eercice ) Le coeicient multiplicateur associé à une hausse de % est égal à + =, Le coeicient multiplicateur associé à une hausse de % est égal à + =, Donc le coeicient multiplicateur associé

Plus en détail

p. 1 Commun à tous les candidats. Les parties A et B sont indépendantes Partie A.

p. 1 Commun à tous les candidats. Les parties A et B sont indépendantes Partie A. Eercice 1 Commun à tous les candidats Les parties et B sont indépendantes Partie Un site de jeu vidéo en ligne possédait, en 21, milliers d abonnés dans le monde Un administrateur remarque que, chaque

Plus en détail

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Les trois parties A, B et C sont indépendantes Une fabrique de desserts glacés

Plus en détail

Épreuve de Mathématiques 8

Épreuve de Mathématiques 8 Lycée La Prat s Vendredi 10 avril 2015 Classe de PT Épreuve de Mathématiques 8 Durée 4 h L usage des calculatrices est interdit. La présentation, la lisibilité, l orthographe, la qualité de la rédaction

Plus en détail