Construire une image médicale

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Construire une image médicale"

Transcription

1

2 Vol. 10 hive pintemps Autefois, on passait des adiogaphies. Maintenant, on va aussi passe un examen pa scanne : la technique s appelle la tomodensitométie axiale. Dans les deux cas, ce sont des ayons X qui tavesent le cops du patient. Quelle est la difféence ente les deux? Et pouquoi le scanne a-t-il évolutionné l imageie médicale? Chistiane Rousseau Univesité de Montéal DossieLumièe Les ayons X font patie de la gande famille des ayonnements électomagnétiques, au même tite que la lumièe ou les ondes adio. Ils sont constitués, comme la lumièe, de photons. Ce qui les en distingue c est leu tès coute longueu d onde, laquelle vaie ente 0,01 et 10 nanomètes pou les ayons X, alos que les longueus d onde de la lumièe visible vaient ente 390 nanomètes pou le violet, et 780 nanomètes pou le ouge, et que les longueus d onde des ondes adio sont beaucoup plus longues. La découvete des ayons X pa Wilhelm Rüntgen lui valut le pix Nobel de physique en Il tie quate gandes conclusions, dont deux sont essentielles en imageie médicale : - Les ayons X sont absobés pa la matièe selon la masse atomique des atomes. - Les ayons X impessionnent une plaque photogaphique. Constuie une image médicale Les ayons X Wilhelm Rüntgen Losque les ayons X tavesent le cops humain, ils pedent de leu intensité. Pou une adiogaphie classique, les ayons X sotant du cops du patient impessionnent une plaque photogaphique : le ton de gis de la photo dépend de l énegie du ayon qui est absobée pa le cops. Voici maintenant un scanne. La égion du cops à inspecte est enfilée dans l anneau. L appaeil poduit des images de coupes tansvesales du patient. Comment? Visiblement il n y a pas de plaque photogaphique paallèle à la coupe Considéons une coupe tansvesale dans un plan : les ayons X ont tavesé le cops dans toutes les diections de ce plan. Une patie de l énegie de chaque ayon a été absobée los de sa tavesée du cops. C est cette pete d énegie que mesue l appaeil : il obtient toute une séie de nombes : un nombe pou chaque ayon. Roy Scott/Ikon Images/Cobis

3 Constuie une image médicale Chistiane Rousseau Univesité de Montéal A 1 B 1 C 1 Regadons l exemple A 1. On voit une tache plus dense et un ayon. De l énegie a été absobée losque ce ayon a tavesé la fome associée à cette tache. Dans l exemple B 1, la densité est unifome et deux fois moins gande que dans la tache de l exemple pécédent. La même quantité d énegie a été absobée le long de ce même ayon. C est aussi la même quantité d énegie qui a été absobée le long du ayon dans l exemple C 1 à gauche! Et même en ajoutant des ayons passant pa le cente comme en C 2, on ne éussiait pas à distingue ces tois exemples: les mesues enegistées seaient identiques Mais pemettons maintenant dans nos tois exemples des ayons hoizontaux ne passant pas pa le cente. Maintenant, on voit que la densité n est pas distibuée de la même façon dans les tois exemples. En effet, on voit qu aucune énegie n est absobée pou les ayons extêmes du pemie et du toisième exemple (soit A 2 et C 3 ). Aussi, dans C 3, moins d énegie est absobée le long des ayons passant pa le cente que pou cetains ayons décentés, comme le ayon bleu. Mais ces ayons ne pemettent pas de distingue l exemple de la densité unifome, soit B 2, de note nouvel exemple D 1 ici à doite. Pa conte des ayons veticaux du côté doit les distingueaient. Vous pouiez continue à étudie d autes exemples plus compliqués et vous convaince que : Plus on utilise de ayons, plus on obtient d infomation su la densité intene. C est le mathématicien autichien, Johann Radon qui a monté en 1917 que, si on utilise tous les ayons possibles, alos il n y a pas de pete d infomation et on peut econstuie la distibution de la densité en chaque point. À l époque il ne s intéessait pas à l imageie médicale et taitait un poblème puement mathématique, soit celui de econstuie une fonction à l aide de l ensemble des pojections su toutes les doites du plan. A 2 B 2 C 3 D 1 Vol. 10 hive pintemps C 2 Johann Radon ( )

4 DossieLumièe Vol. 10 hive pintemps Son tavail est un exemple du fait qu on ne sait pas d avance, en généal, quels poblèmes mathématiques théoiques pemettont une pecée technologique impotante. Bien sû, si l on voulait considée tous les ayons possibles, il y en auait un nombe infini. On se contente donc en patique de egade un nombe fini de ayons, tous situés dans un même plan et fomant un éseau assez dense, comme su la figue ci-conte. Pou chacun de ces ayons, on mesue l énegie absobée losque le ayon tavese le cops. Les données ecueillies pa le scanne Considéons un ayon D paamété pa s. En chaque point epésenté pa s la quantité d énegie I absobée est popotionnelle au coefficient d atténuation A(s), I = A(s) I(s) s. Faisons tende s ves 0. On obtient une équation difféentielle à vaiables sépaables : di = Asds (). Is () Appelons I e l intensité du ayon à son entée dans le cops, et I s son intensité à la sotie. Intégons des deux côtés On obtient Is I e di = Is () D Asds (). lni + ln I = Asds (). s e D Le défi est de econstuie une image à pati de tous ces nombes Mais une image de quoi? L énegie absobée en un point du cops est popotionnelle à l intensité du ayon et au coefficient d atténuation en ce point (voi l encadé «Les données ecueillies pa le scanne» ci-conte). Ce qu on catogaphie est ce coefficient d atténuation. Su nos dessins, un ton de gis plus élevé coespondait à une densité plus gande. Dans les images médicales obtenues pa scanne, c est le contaie : plus le coefficient d atténuation est élevé, plus le ton de gis associé est pâle. Le coefficient d atténuation augmente avec la densité des tissus. On peut l augmente atificiellement dans cetains oganes en faisant absobe au patient des liquides adioactifs : on amélioe alos la qualité de l image obtenue. Les mathématiques du pocessus de écupéation du coefficient d atténuation sont avancées. Nous les décivons bièvement dans l encadé «De la tansfomée de Radon à la tansfomée de Fouie». Pa conte, la modélisation elle-même est plus accessible, et nous penons le temps de la décie en détails. Mette l infomation sous fome de fonction. Nous allons egade le cas d une image coespondant à une coupe dans le plan. Nous voulons écupée, à pati des données founies pa le scanne, le coefficient d atténuation en chaque point : ceci est une fonction, f (x, y), inconnue. Quelle infomation nous donne le scanne? Il nous donne, pou chaque doite D du plan, la quantité d énegie absobée pa le cops los du passage d un ayon X le long de cette doite. À chaque doite D nous associons donc un nombe. Nous econnaissons le concept de fonction... On voit donc que si on connaît I e et que l on mesue I s, alos l appaeil peut calcule Asds (). D

5 Constuie une image médicale Chistiane Rousseau Univesité de Montéal Pa conte le domaine de la fonction est insolite C est l ensemble des doites du plan. En fait, pas toutes les doites, seulement celles, qui coupent le disque de l image, mais il suffit de die que la fonction vaut 0 pou les autes doites. On sait manipule des fonctions de plusieus vaiables. On va donc décide de code l ensemble des doites d un plan pa des vaiables. Regadons la doite ouge su la figue. v θ A-t-on avancé? On cheche une fonction inconnue, la fonction d atténuation, f (x, y). On connaît la fonction F (, q), où F (, q) epésente la «somme» de f (x, y) le long du ayon paamété pa et q. Pou mieux compende la stuctue de toutes ces vaiables et infomations, on va pousse un peu plus loin l abstaction. Ce qu on a constuit, c est une fonction R. f F = R(f ), dont le domaine et l image sont des ensembles de fonctions! Cette fonction R pote un nom : c est la tansfomée de Radon, du nom de Johann Radon qui l a intoduite en La tansfomée de Radon Vol. 10 hive pintemps 2015 Elle est uniquement déteminée pa le vecteu bleu, v, joignant l oigine à sa pojection su la doite. Donc, on a une bijection ente l ensemble des doites et l ensemble des vecteus issus de l oigine! Et on sait comment paaméte de tels vecteus : il suffit d utilise les coodonnées de l extémité du vecteu. Dans le contexte de la tomodensitométie axiale, on choisit d utilise les coodonnées polaies et q pou paaméte le vecteu v. Ce que l appaeil mesue, ce sont les valeus d une fonction F (, q). Appelons D, q la doite paamétée pa (, q). La doite passe pa le point ( cos q, sin q) et un vecteu diecteu est donné pa ( sin q,cos q). La doite est donc l ensemble des points {( cos θ ssin θ, sinθ+ scos θ), s R}. v θ 9 Le scanneu mesue la tansfomée de Radon, soit D, θ F (, θ= ) fxyds (, ) c est-à-die f (cos θ ssin θ, sinθ+ scos θ) ds.

6 DossieLumièe Vol. 10 hive pintemps e v Supposons que la fonction R soit invesible, et appelons R 1 son invese. Pou écupée f de F, il suffit de calcule R 1 (F). Effectivement, un invese de la tansfomée de Radon existea. Essayons une idée. On doit écupée le coefficient d atténuation, f (x, y) au point (x, y). Ce point a contibué aux valeus de F (, q) pou toutes les doites paamétées pa et q et passant pa le point (x, y). Quelles sont ces doites? Regadons la figue. Si une doite passant pa (x, y) est paamétée pa le vecteu v, alos le poduit scalaie du vecteu (x, y) avec le vecteu unitaie e = (cos q,sin q ) dans la diection du vecteu v vaut pécisément! (Voi Section poblèmes). Donc, l ensemble de ces doites coespond à l ensemble des solutions (, q) de x cos q + y sin q=. θ (x, y) On connaît maintenant toutes les valeus de F(, q) auxquelles f(x, y) a contibué. On pouait essaye de faie la moyenne de ces valeus pou écupée f (x, y). L idée n est pas mauvaise mais un peu top naïve. Revenons su deux de nos exemples et intéessons-nous A 1 à f (0, 0). Toutes les doites passant pa (0, 0) ont pou vecteu associé un vecteu v de longueu = 0. Dans le pemie, A 1, on a un disque unifome de ayon 1/2. Donc, tout ayon qui passe pa l oigine a C tavesé une zone 1 dense su un segment de longueu 1. On a donc F (0, q) =1. Dans l illustation C 1, la fome de l image est un anneau de ayon intéieu 1/4 et de ayon extéieu 3/4. Ici encoe, tout ayon qui passe pa l oigine a tavesé une zone dense su un segment de longueu 1. On a donc encoe F (0, q) =1. On voit donc qu on ne peut espée écupée f (0, 0) à pati de la seule connaissance des F (0, q) =1.

7 Constuie une image médicale Chistiane Rousseau Univesité de Montéal Pouquoi? On n a pas assez mélangé les difféents f (x, y) losqu on a calculé F (, q) Il va falloi les mélange encoe plus pou obteni une fonction G(X, Y), définie su le plan, dont la valeu en (X, Y) est une moyenne pondéée de tous les f(x, y). La pondéation dépend de (X, Y) (voi encadé «De la tansfomée de Radon à la tansfomée de Fouie»). La tansfomation f F = R(f ) G = F(f ), sea invesible. Elle est connue des mathématiciens : c est la tansfomée de Fouie en 2 vaiables. En appliquant F 1 à la fonction G, on écupéea la fonction de dépat f, et on poua génée note image. Cette patie devient top technique, et nous ne enteons pas dans les détails. Même si une fomule existe pou invese la tansfomée de Radon, il este des défis mathématiques. En voici deux. Le scanne utilise seulement un échantillon fini de doites : quel est le meilleu choix, compte tenu des containtes technologiques de fonctionnement de l appaeil? Du point de vue mathématique, comment faie pou que cetaines petites eeus d appoximation ne poduisent pas de gosses eeus los de la econstuction mathématique de l image? On décide souvent d applique un filte avant de econstuie l image pou obteni une image plus nette et plus fidèle (voi fin de l encadé «De la tansfomée de Radon à la tansfomée de Fouie»). De la tansfomée de Radon à la tansfomée de Fouie Au coefficient d atténuation, f, qui est une fonction de (x, y), on a fait coesponde sa tansfomée de Radon, F, qui est une fonction de (, q). On fait coesponde à F deux fonctions G 1 et G 2 définies pa G( ρθ=, ) F(, θ)sinρd 1 et G ( ρθ=, ) F(, θ)cos ρd. 2 Pou une diection q donnée, on peut avoi des oscillations en. Ces fonctions viennent mesue l amplitude de l oscillation de péiode 2π/. Elles nous disent en effet que F (, q) contient une composante 1 ( G1( ρθ, )sin ρ+ G2( ρθ, )cos ρ). 2π La «somme» de toutes ces composantes pou toutes les valeus de (donnée pa une intégale) nous donne F (, q). Les eeus d appoximation dans les composantes pou gand conduisent souvent à beaucoup de flou dans l image. On peut choisi d applique un filte qui annule ces composantes pou obteni une image plus nette, pa exemple en posant G 1 (, q) = 0 et G 2 (, q) = 0 losque dépasse un cetain seuil. Vol. 10 hive pintemps

Cours d électromagnétisme EM15-Champ magnétique

Cours d électromagnétisme EM15-Champ magnétique Cous d électomagnétisme EM15-Champ magnétique Table des matièes 1 Intoduction 2 2 Action d un champ électomagnétique su une paticule chagée 2 2.1 Foce de Loentz.................................. 2 2.2

Plus en détail

Spé 2008-2009 Devoir n 8 OPTIQUE

Spé 2008-2009 Devoir n 8 OPTIQUE Spé 8-9 Devoi n 8 OPTIQUE ETRALE PSI 8 A Pou que deux ondes poduisent des inteféences, il faut qu elles soient cohéentes, c est-à-die igoueusement synchones Pou obteni expéimentalement cette condition

Plus en détail

Chapitre 3 LE MOMENT CINÉTIQUE : UN EXEMPLE DE SYSTÈME QUANTIQUE

Chapitre 3 LE MOMENT CINÉTIQUE : UN EXEMPLE DE SYSTÈME QUANTIQUE Chapite 3 LE MOMENT CINÉTIQUE : UN EXEMPLE DE SYSTÈME QUANTIQUE Se epote à la bibliogaphie pou le détail des démonstations et la desciption de l expéience de Sten et Gelach. 3.1 Définitions a- Considéons

Plus en détail

Exercices : 19 - Champ électrostatique

Exercices : 19 - Champ électrostatique 1 Execices : 19 - Champ électostatique Sciences Physiques MP 2015-2016 Execices : 19 - Champ électostatique A. Calculs de champ et de potentiel 1. Théoème de supeposition Une sphèe de ayon b pote une chage

Plus en détail

L3 PAPP Physique Quantique et applications UE A302 Chapitre VII PLAN Moment cinétique de spin Addition de moments cinétiques

L3 PAPP Physique Quantique et applications UE A302 Chapitre VII PLAN Moment cinétique de spin Addition de moments cinétiques L3 PAPP Physique Quantique et applications UE A3 Chapite VII PLAN Moment cinétique de spin Addition de moments cinétiques I) Expéience de ten et Gelach (9) ) L expéience ) Valeus numéiques 3) Matices de

Plus en détail

où «p» représente le nombre de paramètres estimés de la loi de distribution testée sous H 0.

où «p» représente le nombre de paramètres estimés de la loi de distribution testée sous H 0. 7- Tests d austement, d indépendance et de coélation - Chapite 7 : Tests d austements, d indépendance et de coélation 7. Test d austement du Khi-deux... 7. Test d austement de Kolmogoov-Sminov... 7.. Test

Plus en détail

CIRCUITS COUPLES PAR MUTUELLE INDUCTANCE

CIRCUITS COUPLES PAR MUTUELLE INDUCTANCE CIRCUITS COUPLES PAR UTUELLE INDUCTANCE Philippe ROUX 4 CIRCUITS RLC COUPLES PAR UTUELLE INDUCTANCE PARTIE : PRESENTATION DES CIRCUITS COUPLES ) LES FLUX DES CHAPS AGNETIQUES DANS DEUX BOBINAGES COUPLES

Plus en détail

ELECTRICITE. 1. Electrostatique. Electricité

ELECTRICITE. 1. Electrostatique. Electricité ELECTRICITE 1. Electostatique 1.1 Chage électique La matièe est globalement neute, mais si l'on fotte un bâton de vee avec une peau de chat ou un bâton de bakélite avec de la soie - deux pami beaucoup

Plus en détail

ONDES. Partie I. , on négligera les effets de bord. L espace entre les conducteurs sera assimilé au vide sauf explicitation contraire.

ONDES. Partie I. , on négligera les effets de bord. L espace entre les conducteurs sera assimilé au vide sauf explicitation contraire. Spé ψ 1-13 Devoi n 6 ONDES Des données et un fomulaie sont donnés à la fin du sujet Les câbles coaxiaux sont utilisés comme moyen de tansmission d infomations. Ils sont conçus pou tansmette des signaux

Plus en détail

LPHY 1113 B & D, Physique générale 1 - Leçon 4 (Mécanique, Eric Deleersnijder, www.ericd.be) L4.1. Leçon 4: Frottement

LPHY 1113 B & D, Physique générale 1 - Leçon 4 (Mécanique, Eric Deleersnijder, www.ericd.be) L4.1. Leçon 4: Frottement LPHY 1113 B & D, Physique généale 1 - Leçon 4 (Mécanique, Eic Deleesnijde, www.eicd.be) L4.1 1. Intoduction (Benson 6.1) Leçon 4: Fottement On pose su une table hoizontale un objet de masse m. Si l'objet

Plus en détail

Une approche neuronale modulaire pour l estimation de l orientation de l effecteur d un robot 4 axes

Une approche neuronale modulaire pour l estimation de l orientation de l effecteur d un robot 4 axes Une appoche neuonale modulaie pou l estimation de l oientation de l effecteu d un obot 4 axes Gilles HRMANN, Patice WIRA, Jean-Luc BUSSLR, Jean-Philippe URBAN Laboatoie MIPS Univesité de Haute-Alsace 4

Plus en détail

Actionneurs Electriques

Actionneurs Electriques Plan Actionneus éluctants Actionneus électodynamiques Actionneus électomagnétique Actionneus hybides ou éluctants polaisés Actionneus classiques 1 Actionneus éluctants ou machine à éluctance vaiable Pas

Plus en détail

Chapitre VIII Ondes électromagnétiques et fibres optiques

Chapitre VIII Ondes électromagnétiques et fibres optiques Chapite VIII Ondes électomagnétiques et fibes optiques I Les Ondes Electomagnétiques II Les lois de l optique géométique III La fibe optique : un guide de lumièe I Les Ondes Electomagnétiques I.1 Le champ

Plus en détail

Equation de la Chaleur en Axisymétrique & en 3D

Equation de la Chaleur en Axisymétrique & en 3D P.-Y. Lagée, Equation de la Chaleu en Axi & en 3D Equation de la Chaleu en Axisymétique & en 3D Dans ce chapite nous faisons un bilan d énegie pou établi l équation de la chaleu en axisymétique. On pouait

Plus en détail

Chapitre 4 : Le potentiel électrique

Chapitre 4 : Le potentiel électrique Chapite 4 : Le potentiel électique Execices E1. On donne q =30Cet V =10 8 V. (a) Dans cet execice, oute la éféence à l éclai, on ne founit aucun détail su la façon de déplace la chage ente le nuage et

Plus en détail

Masse de Jupiter. 2) On a répertorié dans un tableau les périodes T et les rayons r de trois satellites de Jupiter :

Masse de Jupiter. 2) On a répertorié dans un tableau les périodes T et les rayons r de trois satellites de Jupiter : Masse de upite Execice : Cet execice a pou but de détemine la masse de upite en étudiant le mouement de cetains de ses satellites que son Euope, Ganymède et Callisto. On donne G = 6,67 10-11 N.m.kg -.

Plus en détail

INITIATION A LA MESURE ----

INITIATION A LA MESURE ---- INITIATION A LA MSUR ---- Le but de ce TP est : - de mesue la foce électomotice et la ésistance intene d'une pile, - d'évalue, en tenant compte des incetitudes de mesue et des caactéistiques de l'appaeil

Plus en détail

Chapitre 6: Moment cinétique

Chapitre 6: Moment cinétique Chapite 6: oment cinétique Intoduction http://www.youtube.com/watch?v=vefd0bltgya consevation du moment cinétique 1 - angula momentum consevation 1 - Collège éici_(360p).mp4 http://www.youtube.com/watch?v=w6qaxdppjae

Plus en détail

PROBLEME DE PHYSIQUE

PROBLEME DE PHYSIQUE SESSION 211 PSIP28 C O N C O U R S C O M M U N S P O LY T E C H N I Q U E S EPREUVE SPECIFIQUE - FILIERE PSI PHYSIQUE 2 Duée : 4 heues NB : Le candidat attachea la plus gande impotance à la claté, à la

Plus en détail

Exemples d antennes (9)

Exemples d antennes (9) Exemples d antennes (9) II. Le pincipe des images : Pemet de considée le cas de souces placées au dessus d un sol qui peut ête assimilé à un conducteu pafait (en BF : σ >> ωε ). a) Cas d une antenne filaie

Plus en détail

ANTENNES INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE TOULOUSE CORRECTIONS DES TRAVAUX DIRIGES. 4 ème Année Informatique et Réseau

ANTENNES INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE TOULOUSE CORRECTIONS DES TRAVAUX DIRIGES. 4 ème Année Informatique et Réseau INSTITUT NATIONAL DS SCINCS APPLIQUS D TOULOUS 4 ème Année Infomatique et Réseau ANTNNS CORRCTIONS DS TRAVAUX DIRIGS Alexande Boye alexande.boye@insa-toulouse.f http://www.alexande-boye.f Antennes Octobe.

Plus en détail

FINANCE Mathématiques Financières

FINANCE Mathématiques Financières INSTITUT D ETUDES POLITIQUES 4ème Année, Economie et Entepises 2005/2006 C.M. : M. Godlewski Intéêts Simples Définitions et concepts FINANCE Mathématiques Financièes L intéêt est la émunéation d un pêt.

Plus en détail

E S UE3 A C. Physique et biophysique. Toute la physique en 1 volume. Dounia Drahy

E S UE3 A C. Physique et biophysique. Toute la physique en 1 volume. Dounia Drahy P MÉDECINE PHARMACIE DENTAIRE SAGE-FEMME UE3 A C Physique et biophysique Dounia Dahy E S Toute la physique en 1 volume Rappels de cous + de 300 QCM et execices Tous les coigés détaillés Table des matièes

Plus en détail

CHAPITRE 1 L ÉLECTROSTATIQUE

CHAPITRE 1 L ÉLECTROSTATIQUE L électostatique Chapite 1 CHAPITE 1 L ÉLECTOSTATIQUE 1.1 Intoduction La chage est une popiété de la matièe qui lui fait poduie et subi des effets électiques et magnétiques. On distingue : - l'électostatique

Plus en détail

11.5 Le moment de force τ (tau) : Production d une accélération angulaire

11.5 Le moment de force τ (tau) : Production d une accélération angulaire 11.5 Le moment de foce τ (tau) : Poduction d une accéléation angulaie La tige suivante est soumise à deux foces égales et en sens contaie: elle est en équilibe N La tige suivante est soumise à deux foces

Plus en détail

Leçon Force normale. L applet Force normale simule les forces qui s exercent sur un bloc qui se déplace verticalement. Préalables

Leçon Force normale. L applet Force normale simule les forces qui s exercent sur un bloc qui se déplace verticalement. Préalables Leçon Foce nomale L applet Foce nomale simule les foces qui s execent su un bloc qui se déplace veticalement. Péalables L élève devait connaîte les concepts d accéléation et de foce, et le lien qui existe

Plus en détail

Lycée Clemenceau. PCSI 1 - Physique. PCSI 1 (O.Granier) Lycée. Clemenceau. Le champ magnétique. Le théorème d Ampère.

Lycée Clemenceau. PCSI 1 - Physique. PCSI 1 (O.Granier) Lycée. Clemenceau. Le champ magnétique. Le théorème d Ampère. Lcée lemenceau S 1 - hsique Lcée lemenceau S 1 O.Ganie Le champ magnétique Le théoème d Ampèe Olivie GRANER Lcée lemenceau S 1 - hsique Énoncé du théoème d Ampèe Le théoème d Ampèe est «l équivalent» du

Plus en détail

Les Rencontres. Grands témoins. r Louis-Marie Pasquier :

Les Rencontres. Grands témoins. r Louis-Marie Pasquier : Gands témoins Louis-Maie Pasquie : L entepise a aujoud hui 40 ans (céation en 1974). 21% de son CA se fait à l intenational. Elle est divisée en 4 secteus d activité : Bioches, Pâtisseies, Biscottes, Intenational.

Plus en détail

SUR L INTRODUCTION DU CONCEPT D ENERGIE EN CLASSE DE PREMIERE SCIENTIFIQUE

SUR L INTRODUCTION DU CONCEPT D ENERGIE EN CLASSE DE PREMIERE SCIENTIFIQUE SUR L INTRODUCTION DU CONCEPT D ENERIE EN CLASSE DE PREMIERE SCIENTIFIQUE Quelques emaques elatives à l énegie Bien que le mot énegie fasse patie du langage couant, le concept scientifique d énegie est

Plus en détail

Démarche)Qualité)pour)Améliorer)la)Communication) Pluridisciplinaire)entre)les)Jeunes)Chercheurs)

Démarche)Qualité)pour)Améliorer)la)Communication) Pluridisciplinaire)entre)les)Jeunes)Chercheurs) Démache)Qualité)pou)mélioe)la)Communication) Pluidisciplinaie)ente)les)s)Checheus) Sommaie)! Intoction!...!1! 1.!Desciption!de!la!poblématique!...!1! 1.1.#Contexte#de#la#communication#ente#les#jeunes#s#...#1#

Plus en détail

CHAPITRE 1 SUITES. 1. On dit plus simplement suite réelle si K = R et complexe si K = C.

CHAPITRE 1 SUITES. 1. On dit plus simplement suite réelle si K = R et complexe si K = C. CHAPITRE 1 SUITES Les suites sont un objet fondamental à la fois en mathématiques et dans l application des mathématiques aux autes sciences. Nous veons dans ce cous et les tavaux diigés dives exemples

Plus en détail

ns n I. Champ tournant, rotation synchrone, rotation asynchrone TGC LE MOTEUR ASYNCHRONE (MAS) 1/9

ns n I. Champ tournant, rotation synchrone, rotation asynchrone TGC LE MOTEUR ASYNCHRONE (MAS) 1/9 TGC LE MOTEUR ASYNCHRONE (MAS) 1/9 I. Champ tounant, otatioynchone, otation asynchone On appelle champ tounant un champ magnétique animé d'un mouvement de otation. On peut en cée un en faisant toune un

Plus en détail

M F. F O Unité: [m. N] La norme du moment de force peut se calculer en introduit le bras de levier d

M F. F O Unité: [m. N] La norme du moment de force peut se calculer en introduit le bras de levier d Chapite 2: But: connaîte les lois auxquelles doit obéi un cops solide en équilibe. Ceci pemet de décie la station debout ainsi que les conditions nécessaies pou teni une tasse dans la main, souleve une

Plus en détail

La mécanique des fluides est l étude du comportement des fluides (liquides et gaz) et des forces internes associées.

La mécanique des fluides est l étude du comportement des fluides (liquides et gaz) et des forces internes associées. I- PREAMBULE : La mécanique des fluides est l étude du compotement des fluides (liquides et gaz) et des foces intenes associées. Elle se divise en statique des fluides, l étude des fluides au epos, qui

Plus en détail

Photographie. r r r r r r ) * ) *

Photographie. r r r r r r ) * ) * Photogaphie TYPE DE RÉMUNÉRATION ) ) * * è è _ ) ) * * Conditions généales de vente (CGV) de «l Association de Gestion du Cna Alsace», association loi 1908, dont le siège social est situé 15-17, ue

Plus en détail

Exercices de Mécanique

Exercices de Mécanique Eecices de écanique Cinéatique : epèes, bases, tajectoies et ouveents éthode 1. Une base locale (coe la base clindique) est définie : - en un point de l espace («localeent», donc!) - pa appot à tois diections

Plus en détail

Quantité de mouvement Les systèmes de masse variable

Quantité de mouvement Les systèmes de masse variable 3 ème os DYNAMIQUE Théoie Quantité de mouvement Les systèmes de masse vaiable Intoduction À pati du Moyen Âge, on s'est endu compte que la vitesse ne suffisait pas à explique toutes les caactéistiques

Plus en détail

L'atome et la mécanique de Newton : Ouverture au monde quantique

L'atome et la mécanique de Newton : Ouverture au monde quantique L'atome et la mécanique de Newton : Ouvetue au monde quantique Lod Kelvin affime en 1892 que "tous les concepts de la physique sont déteminés, et qu'il n'y a plus qu'à touve quelques décimales supplémentaies

Plus en détail

COMPRESSEUR DE CLIMATISATION AUTOMOBILE SANDEN 508

COMPRESSEUR DE CLIMATISATION AUTOMOBILE SANDEN 508 TSI Sciences Industielles GM DL N 1 COMPRESSEUR DE CLIMATISATION AUTOMOBILE SANDEN 508 1.MISE EN SITUATION : L étude ci-apès pote su un compesseu de climatisation de véhicule automobile de maque SANDEN.

Plus en détail

Monnaie et finance 1 : Les marchés financiers. Sommaire. 1.1. L équilibre financier. Chapitre 1 : Le système financier

Monnaie et finance 1 : Les marchés financiers. Sommaire. 1.1. L équilibre financier. Chapitre 1 : Le système financier Monnaie et finance 1 : Les machés financies Sommaie hapite 1 : Le système financie hapite 2 : Le maché des actions hapite 3 : Le maché obligataie hapite 4 : Le maché des poduits déivés Bibliogaphie : 1.

Plus en détail

ARBRES BINAIRES DE RECHERCHE

ARBRES BINAIRES DE RECHERCHE ARBRES BINAIRES DE RECHERCHE Table de smbole Recheche : opéation fondamentale données : éléments avec clés Tpe abstait d une table de smboles (smbol table) ou dictionnaie Objets : ensembles d objets avec

Plus en détail

Matériel utilisée en plongée 10/08/2003 Niveau 2 Club de la Plaine Philippe Jugla. Le Matériel Niveau 2-1/ 1 -

Matériel utilisée en plongée 10/08/2003 Niveau 2 Club de la Plaine Philippe Jugla. Le Matériel Niveau 2-1/ 1 - Le Matéiel Niveau 2-1/ 1 - 1 MATEIEL NECESSAIE EN AUTONOMIE... 3 1.1 NIVEAU 2... 3 1.2 NIVEAU 3... 3 1.3 APPLICATION TIQUE... 3 1.4 MATEIEL INDISPENSABLE... 3 2 LES BOUTEILLES... 4 2.1 LE MAQUAGE DES BLOCS...

Plus en détail

SYSTEME DE CONTROLE DYNAMIQUE D UNE INSTALLATION DE CLIMATISATION ECONOMIQUE. Yézouma Coulibaly 1 Oumarou Sié 2 Joseph Bathiébo 2

SYSTEME DE CONTROLE DYNAMIQUE D UNE INSTALLATION DE CLIMATISATION ECONOMIQUE. Yézouma Coulibaly 1 Oumarou Sié 2 Joseph Bathiébo 2 SYSTEME DE CONTROLE DYNAMIQUE D UNE INSTALLATION DE CLIMATISATION ECONOMIQUE Eic S. Taoé 1 eic.seydou.taoe@2ie-edu.og Yézouma Coulibaly 1 Oumaou Sié 2 Joseph Bathiébo 2 1 Institut intenational d Ingénieie

Plus en détail

Les fibres optiques :

Les fibres optiques : Les fibes optiques : Supplément d électomagnétisme appliqué Pa Piee-Andé Bélange Univesité Laval, Canada Table des matièes Anatomie d une fibe optique Un matéiau fot complexe...3 La fabication d une fibe

Plus en détail

Chapitre 2. Prospection sismique. 2.1 Sismique-réflexion

Chapitre 2. Prospection sismique. 2.1 Sismique-réflexion Chapitre 2 Prospection sismique La prospection sismique est basée sur la propagation des ondes élastiques dans le sous-sol. Nous avons indiqué dans la section précédente que l on s intéressait essentiellement

Plus en détail

σ 2 p ALLOCATION ENTRE DEUX PORTEFEUILLES D ACTIFS RISQUÉS

σ 2 p ALLOCATION ENTRE DEUX PORTEFEUILLES D ACTIFS RISQUÉS 53496 GSTION PORTFUILL Théoie modene de oteeuille I. VRSION U RISQU T FONCTION UTILITÉ U [, ] Fonction d'utilité généalement utilisée dans la littéatue : U vesion au isque de l investisseu; mesue de son

Plus en détail

F O R C E C E N T R A L E C O N S E R V A T I V E. A P P L I CA T I O N A U X O R B I T E S C I R C U L A I R E S

F O R C E C E N T R A L E C O N S E R V A T I V E. A P P L I CA T I O N A U X O R B I T E S C I R C U L A I R E S MECA NI QUE L yc ée F.B UISS N PTS I MUVEMENT D UNE PARTICULE SUMISE A UNE F R C E C E N T R A L E C N S E R V A T I V E. A P P L I CA T I N A U X R B I T E S C I R C U L A I R E S PRELUDE Dans ce chapite,

Plus en détail

VAUDON Patrick Master Recherche Télécommunications Hautes Fréquences et Optiques 1 IRCOM Université de Limoges

VAUDON Patrick Master Recherche Télécommunications Hautes Fréquences et Optiques 1 IRCOM Université de Limoges VAUDON Patick Mast Rchch Télécommunications Hauts Féquncs t Optiqus IRCOM Univsité d Limogs XI : Résaux d antnns ******************* L antnn st l élémnt incontounabl d tout dispositif pmttant d tansmtt

Plus en détail

R.D.M. Résistance des Matériaux

R.D.M. Résistance des Matériaux R.D.. Réitance de atéiau 1 UT DE L R.d.. La éitance de matéiau et la mécanique de olide défomable. Elle pemet de : Caactéie le matéiau ; Dimenionne une pièce à pati de effot qu elle uppote ; Détemine la

Plus en détail

Statique, postures d équilibre, forces et moments aux articulations

Statique, postures d équilibre, forces et moments aux articulations Statique, postues d équilibe, foces et moments aux aticulations Chapite 1 L objet de toutes études biomécaniques est d analyse au taves d un double système de foces (foces intenes et extenes) les postues

Plus en détail

STATIQUE. Actions mécaniques extérieures = Actions Mécaniques de contact + Actions Mécaniques à distance

STATIQUE. Actions mécaniques extérieures = Actions Mécaniques de contact + Actions Mécaniques à distance STTIQUE 1.- Quel est l objectif de la statique? Pou étudie les conditions d équilibe des solides indéfomables. Remaques : - Un solide est considéé indéfomable tant que les défomations estent faibles. -

Plus en détail

Pôle Représentation Fédération Nationale des Etudiants en Kinésithérapie. Le Coût de la Rentrée : Du côté des Etudiants Kinés

Pôle Représentation Fédération Nationale des Etudiants en Kinésithérapie. Le Coût de la Rentrée : Du côté des Etudiants Kinés Le Coût de la Rentée : Du côté des Etudiants Kinés www.fnek.og Membe de la PROPOS LIMINAIRES En cette entée 2009, la Fédéation Nationale des Etudiants en Kinésithéapie, membe de la FAGE et epésentative

Plus en détail

Performances d'un système frigorifique domestique avec stockage par chaleur latente

Performances d'un système frigorifique domestique avec stockage par chaleur latente Pefomances d'un système figoifique domestique avec stockage pa chaleu latente Kamel AZZOUZ 1*, Denis LEDUCQ 1, Jacques GUILPART 1, Dominique GOBIN 2 1 CEMAGREF Unité de Recheche Génie des Pocédés Figoifiques,

Plus en détail

akènes formations Pour rendre plus efficientes vos approches marketing, innovation et communication, travaillez en co-construisant.

akènes formations Pour rendre plus efficientes vos approches marketing, innovation et communication, travaillez en co-construisant. akènes fomations Optis vote potentiel pa la co-conuction. Pogamme 2014 Pou ende plus efficientes vos aoches maketing, innovation et communication, tavaillez en co-conuisant. POURQUOI akènes fomations?

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

III Enonce du principe fondamental de la statique (ou P.F.S)

III Enonce du principe fondamental de la statique (ou P.F.S) Rèf : st Pincipe fondamental de la statique STI G.E. I Hypothèse de la statique En statique, les solides sont supposés géométiquement pafaits, indéfomables, homogènes et isotopes. Géométie : les aspéités,

Plus en détail

Droits d auteur, licence et restrictions. 2 Notes Catherine Brison Projections Orthogonales v.01.1

Droits d auteur, licence et restrictions. 2 Notes Catherine Brison Projections Orthogonales v.01.1 Péace - v.01.1 e live est un manuel scolaie qui epend toute la matièe ayant tait aux pojections otogonales suivant la métode de Monge. En pincipe, cela epend la matièe des 4 ème, 5 ème et 6 ème années

Plus en détail

IMPRIMANTE A TICKETS

IMPRIMANTE A TICKETS CPGE / Sciences Industielles pou l Ingénieu DS2 IMPRIMANTE A TICKETS Un hoodateu est un appaeil automatisé qui délive un ticket autoisant le stationnement, pou une duée limitée, à un client ayant payé

Plus en détail

CONSTANTES DIELECTRIQUES

CONSTANTES DIELECTRIQUES 9 E7 CONTANTE DIELECTRIQUE I. INTRODUCTION Dans cette expéience, nous étuieons es conensateus et nous éiveons les popiétés e iélectiques tels que l'ai et le plexiglas. II. THEORIE A) Conensateus et iélectiques

Plus en détail

La troisième loi de Newton

La troisième loi de Newton 6 CHAPITRE La toisième loi de Newton CORRIGÉ DES EXERCICES Execices SECTION 6. La loi de l action et de la éaction 6.. Pou se déplace los de leus soties dans l espace, les astonautes se sevent de populseus

Plus en détail

Chapitre 5 Les condensateurs 1. Définitions

Chapitre 5 Les condensateurs 1. Définitions hapite 5 Les condensateus. Définitions a. ondensateu. Si on elie chacune des bones + et - d une pile (ou aute souce de difféence de potentiel) à un conducteu, on obtient un condensateu. Les deux conducteus

Plus en détail

Visseuse de bloc-moteur. Résistance des Matériaux

Visseuse de bloc-moteur. Résistance des Matériaux Visseuse de bloc-moteu ésistance des Matéiaux Analyse extene A qui, à quoi end-il sevice? Su qui, su quoi agit-il? Véhicule Bloc-moteu Visseuse Dans quel but? Assemble un bloc-moteu su le châssis du véhicule

Plus en détail

GESTION DES STOCKS. Plan du cours. 1. Le rôle des stocks en gestion de production. 2. Le problème de Wagner-Whitin

GESTION DES STOCKS. Plan du cours. 1. Le rôle des stocks en gestion de production. 2. Le problème de Wagner-Whitin Cous ADP-CGP2 GESTION DES STOCKS Plan du cous 1. Le ôle des stocs en gestion de poduction 2. Le poblème de Wagne-Witin 3. La quantité économique optimale et les politiques déivées 4. Modèle de gestion

Plus en détail

les têtes sans faire mal

les têtes sans faire mal L art de couper les têtes sans faire mal Erwan Le Pennec, chargé de recherche Inria à l Université Paris-Sud Le principe du scanner implique de savoir retrouver un objet à partir d une collection de radiographies

Plus en détail

CHAMP MAGNÉTIQUE EN RÉGIME STATIONNAIRE

CHAMP MAGNÉTIQUE EN RÉGIME STATIONNAIRE CAMP MAGNÉTIQUE EN ÉGIME STATIONNAIE Mgnétoésistnce En 7 Albet Fet et Pete Günbeg se sont vus décene le pix Nobel de Physique pou l mgnétoésistnce génte (GM) Ils ont monté qu une fine couche d un mtéiu

Plus en détail

Le fabricant qui rend la piscine accessible à tous. ans. d ec en n a. is e. a n. i n e. piscines

Le fabricant qui rend la piscine accessible à tous. ans. d ec en n a. is e. a n. i n e. piscines Le fabicant qui end la piscine accessible à tous. ga antie 10 ans e d ec en n a l f fab ication a ç is e u di ect s i n e piscines w w w. p i s c i n e s - o p l u s. c o m DES PRODUITS INNOVANTS piscines

Plus en détail

CHAPITRE II MAGNETOSTATIQUE

CHAPITRE II MAGNETOSTATIQUE Chapite : Magnétostatique CAPTRE MAGNETOTATQUE Une chage électique immobile cée un champ électique seulement; Une chage en mouvement (un couant) cée un champ électique et un champ magnétique. Définition

Plus en détail

Leçon n 7 Les vecteurs Opérations de base

Leçon n 7 Les vecteurs Opérations de base Leçon n 7 Les vecteus Opéations de base Il est tès impotant de bien tavaille cette notion ca cet outil est tès utilisé en Mathématiques et en Physique. Il faut bien compende d où vient la notion de vecteu

Plus en détail

OPTIQUE ONDULATOIRE. 1. Les équations de propagation de E r et B r en vide: r r. r E (1) t 1

OPTIQUE ONDULATOIRE. 1. Les équations de propagation de E r et B r en vide: r r. r E (1) t 1 OPTIQUE ONDULATOIRE Le caactèe ondulatoie de la luièe a été énoncé pou la peièe fois pa C. Huygens (678). Il a été ensuite lageent développé pa A. Fesnel (8) et elié plus tad, en 876, à l électoagnétise

Plus en détail

Equipement Electrique

Equipement Electrique Equipement Electique TEEM 1 èe Année Equipement Electique, TEEM 1 ee année, uno FRAÇO 1 ntoduction 2 Le pogamme * Champ magnétique, flux, induction électomagnétique, chages électiques et foces * La machine

Plus en détail

α Epaisseur tôle : e = 0,05m (considéré négligeable devant R) Masse volumique porte : ρ = 7800 km/m 3 R α = π/3

α Epaisseur tôle : e = 0,05m (considéré négligeable devant R) Masse volumique porte : ρ = 7800 km/m 3 R α = π/3 Cous 7 - éoéte des Masses ycée Bellevue Toulouse - CE M éoéte des Masses ( a asse éléentae d( est défne en foncton de la natue de la odélsaton du systèe atéel étudé : Modélsaton voluque (cas généal : d(

Plus en détail

1 Présentation du moulin. 2 Modélisation mathématique. 2.1 Modélisation statique. Don Quichotte de l Atlantique

1 Présentation du moulin. 2 Modélisation mathématique. 2.1 Modélisation statique. Don Quichotte de l Atlantique 1 Présentation du moulin Il s agit d une roue tournant autour d un axe. Sur l extérieur de la roue sont fixées des tiges et sur les tiges sont accrochés des récipients. Ces récipients sont ouverts en haut

Plus en détail

Choc élastique en 2 dimensions

Choc élastique en 2 dimensions Choc élastique en dimensions Pa Pascal Rebetez Juillet 008. Intoduction Nous étudions le choc élastique ente deux disques glissant sans fottement su un plan hoizontal. Cette étude est menée dans le cade

Plus en détail

1. Description. 2. Dessin technique en coupe du mélangeur. La pièce 2 est une sphère.

1. Description. 2. Dessin technique en coupe du mélangeur. La pièce 2 est une sphère. Sciences Industielles TD - Enoncé Cinématique chaînes femées. Desciption MELNGEUR Le mécanisme dont le schéma cinématique est donné ci-dessous epésente un mélangeu. Un moto-éducteu non epésenté entaîne

Plus en détail

²Chapitre-2 Ondes lumineuses

²Chapitre-2 Ondes lumineuses ²Chapite- Ondes luineuses Les ondes luineuses sont des ondes életoagnétiques, est à die les gandeus qui se popagent sont un hap életique E et un hap agnétique B. Le aatèe ondulatoie de la luièe a été énoné

Plus en détail

Chimie MP lycée Jean BART abécédaire de cristallographie - 1 -

Chimie MP lycée Jean BART abécédaire de cristallographie - 1 - Chimie MP lycée Jean BART abécédaie de cistallogaphie - 1 - A Atome : Le nombe d atomes dans une maille coespond à la somme des atomes ou patie d atome appatenant à la maille. Exemples cubique faces centées

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé y 2004-2005 Devoi n 6 CONVERSION DE PUISSANCE Une alimentation de d odinateu de bueau est assez paticulièe, elle doit founi des tensions de +5, +12, 5 et 12 volts avec une puissance moyenne de quelques

Plus en détail

9. Émettre des ondes électromagnétiques

9. Émettre des ondes électromagnétiques 9. Émette des ondes électomagnétiques Le dipôle oscillant est la souce d ondes électomagnétiques la plus simple. Son étude détaillée nous pemetta d abode les caactéistiques essentielles des antennes. Los

Plus en détail

Système d ouverture de porte de TGV

Système d ouverture de porte de TGV Le sujet se compose de : TD MP-PSI REVISION CINEMATIQUE Système d ouvetue de pote de TGV 6 pages dactylogaphiées ; 2 pages d annexe ; 2 pages de document éponse Objet de l étude Le tanspot feoviaie, concuencé

Plus en détail

Ecole des Ponts Paris Tech

Ecole des Ponts Paris Tech ECONOMIE GENERALE INITIATION Année scolaie 0-06 CORRIGE DU CONTROLE INTERMEDIAIRE DES CONNAISSANCES Duée : h0 9 novembe 0 Ecole des Ponts Pais Tech Stéhane Gallon - - NOTE TOTALE /0 EXERCICE - Fonction

Plus en détail

puits artésien ou en nappe captive (TD1, exercice 1)

puits artésien ou en nappe captive (TD1, exercice 1) Hydogéologie_mise à jou/mp-es / Pilippe Belleudy octobe 4 puits atésien ou en nappe captive (TD, execice ) Détemine le débit d'un puits en nappe captive compte tenu des infomations suivantes : fonctionnement

Plus en détail

NOMBRES COMPLEXES Cours

NOMBRES COMPLEXES Cours NOMBRES COMPLEXES Cous I. DEFINITIONS D UN NOMBRE COMPLEXE. Fome algébique. Repésetatio gaphique. Fome polaie 4. Fome tigoométique 5. Relatios fodametales ete les difféetes défiitios 6. Exemples II. PROPRIETES

Plus en détail

Problème 1 LUNETTE ASTRONOMIQUE ACHROMATIQUE La vergence V dune lentille mince est donnée par la relation algébrique suivante

Problème 1 LUNETTE ASTRONOMIQUE ACHROMATIQUE La vergence V dune lentille mince est donnée par la relation algébrique suivante DM 7 pou le avil 01 OPTIQUE MÉCANIQUE Poblème 1 LUNETTE ASTRONOMIQUE ACHROMATIQUE La vegence V dune lentille mince est donnée pa la elation algébique suivante : 1 V = n 1) 1 ) R 1 R où n est l indice de

Plus en détail

L exercice proposé au candidat

L exercice proposé au candidat «Oral» du Capes Externe de Mathématiques (6 Juin 5 Énoncé Thème : Intégration Cet énoncé est tiré de l exercice-jury proposé aux candidat(es le 6 Juin 5, lors de la deuxième épreuve orale (épreuve sur

Plus en détail

Chaînes énergétiques

Chaînes énergétiques Chapite 7 Chaînes énegétiques Découvi Activité expéimentale n 1 Comment fonctionne une voitue utilisant une pile à combustible? Expéience n 1 Au niveau des ésevois, on obseve la fomation de bulles : des

Plus en détail

Systèmes dynamiques. Chapitre 1

Systèmes dynamiques. Chapitre 1 Chapitre 1 Systèmes dynamiques 1) Placement financier On dépose une quantité d argent u 0 à la banque à l instant t 0 = 0 et on place cet argent à un taux r > 0. On sait qu en vertu de la loi des intérêts

Plus en détail

Préparation aux épreuves écrites du CAPES Conseils de rédaction

Préparation aux épreuves écrites du CAPES Conseils de rédaction Préparation aux épreuves écrites du CAPES Conseils de rédaction Claire Debord Le texte qui suit est une libre compilation de plusieurs textes sur le même thème, notamment ceux de Christophe Champetier

Plus en détail

TABLEAUX DES MÉDICAMENTS PAR GROUPE D ÂGE (CANADA) Options de traitement médical pour les enfants

TABLEAUX DES MÉDICAMENTS PAR GROUPE D ÂGE (CANADA) Options de traitement médical pour les enfants DOCUMENTS DE SUPPORT 7A TABLEAUX DES MÉDICAMENTS PAR GROUPE D ÂGE (CANADA) Options de taitement médical pou les enfants Tableau 1. TRAITEMENT PHARMACOLOGIQUE DU TDAH NON COMPLIQUÉ CHEZ L ENFANT Liste des

Plus en détail

SCIENCE DES MATERIAUX DE L ELECTROTECHNIQUE

SCIENCE DES MATERIAUX DE L ELECTROTECHNIQUE Floin CIUPRINA Petu V. NOŢINGHER SCIENCE DES MATERIAUX DE L ELECTROTECHNIQUE TRAVAUX PRATIQUES ET EXERCICES UNIVERSITATEA POLITEHNICA BUCUREŞTI Facultatea de Electotehnică Floin CIUPRINA Petu NOŢINGHER

Plus en détail

Exercices du chapitre VI avec corrigé succinct

Exercices du chapitre VI avec corrigé succinct Exercices du chapitre VI avec corrigé succinct Exercice VI. Ch6-Exercice Montrer par récurrence que En déduire que puis que k =,,..., n, d k dx k xn = n(n ) (n + k)x n k, d n dx n xn = n! d k dx k xn =

Plus en détail

Pour repérer la position d'un objet, on choisit une origine et on mesure la distance x de l'objet à cette origine x en fonction du temps t.

Pour repérer la position d'un objet, on choisit une origine et on mesure la distance x de l'objet à cette origine x en fonction du temps t. MECANIQUE 1. Cinématique La cinématique est la desciption géométique du mouvement mais ne taite pas de ses causes. La cinématique à une dimension pemet de taite tous les poblèmes dans lesquels le mouvement

Plus en détail

Partie A : DETECTION. Donc Δλ <0, c est donc le spectre III où Δλ= λ - λo <0 car λo >λ Cela correspond à l instant A où Vr est négative

Partie A : DETECTION. Donc Δλ <0, c est donc le spectre III où Δλ= λ - λo <0 car λo >λ Cela correspond à l instant A où Vr est négative Patie A : DETECTION 1-Faie coesponde les instants A, B et C avec les 3 configuations 1, 2 et 3 et avec les 3 décalages spectaux I, II et III. Justifie pou un seul des 3 cas. instants configuation décalage

Plus en détail

Microéconomie B Interrogation du Mercredi 24 Novembre 2010 Durée : 1h30

Microéconomie B Interrogation du Mercredi 24 Novembre 2010 Durée : 1h30 Univesité Pais Ouest Nantee La Défense Année univesitaie 010-011 UFR SEGMI L Economie-Gestion Micoéconomie B Inteogation du Mecedi 4 Novembe 010 Duée : 1h30 Aucun document n est autoisé et les calculatices

Plus en détail

ARBRES BINAIRES DE RECHERCHE

ARBRES BINAIRES DE RECHERCHE ARBRES BINAIRES DE RECHERCHE Table de smboles Recheche : opéation fondamentale données : éléments avec clés Tpe abstait d une table de smboles (smbol table) ou dictionnaie Objets : ensembles d objets avec

Plus en détail

Propriétés thermoélastiques des gaz parfaits

Propriétés thermoélastiques des gaz parfaits Themodynamque - Chapte opétés themoélastques des gaz pafats opétés themoélastques des gaz pafats LES CONNAISSANCES - Gaz pafat à l échelle macoscopque Défnton : Le gaz pafat assocé à un gaz éel est le

Plus en détail

Chapitre 9. Le champ magnétique

Chapitre 9. Le champ magnétique Chapite 9 Le champ magnétique Objectif intemédiaie 4.1 Connaîte la notion de champ magnétique, puis l'employe pou calcule la foce magnétique su une paticule ou un couant continu et le moment de foce magnétique

Plus en détail

Séance de TP n 2 du jeudi 10 décembre 2009. Manipulation Pré-requis Montages liés. Electrocinétique, modulation d amplitude diagramme de bode

Séance de TP n 2 du jeudi 10 décembre 2009. Manipulation Pré-requis Montages liés. Electrocinétique, modulation d amplitude diagramme de bode Tavaux Patiques Pépaation à l agégation intene de Sciences Physiques 009-010 Séance de TP n du jeudi 10 décembe 009 Manipulation Pé-equis Montages liés Etude d un cicuit passif passe bas application à

Plus en détail

IUT Génie Civil 1 ère année. TP de RdM. Flambement Flambage DeltaLab

IUT Génie Civil 1 ère année. TP de RdM. Flambement Flambage DeltaLab IUT Génie Civil 1 èe année N 2 Page: 1 Flambement Flambage DeltaLab Goupe: Noms / Pénoms: Date: Note / Remaques: Objectifs du TP Losqu une pièce en fome de poute ectiligne subit un effot axial coissant,

Plus en détail

Problèmes de dynamique du point, avec énergie

Problèmes de dynamique du point, avec énergie Polèmes de dynamique du point, aec énegie I 5 Dans le plan hoiontal ( Oy) d'un éféentiel galiléen, un moile modélisé pa un point matéiel P de masse m est asteint à se déplace su le cecle de cente O et

Plus en détail

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin.

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin. Exo7 Développements ités Corrections d Arnaud Bodin. Calculs Exercice Donner le développement ité en 0 des fonctions :. cosx expx à l ordre 2. ln + x)) 2 à l ordre 4 shx x. x à l ordre 6 4. exp sinx) )

Plus en détail