Corps remorqué dans l eau

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Corps remorqué dans l eau"

Transcription

1 ACCUEIL Corps remorqué dans l eau Frédéric Elie, août 2007 La reproduction des articles, images ou graphiques de ce site, pour usage collectif, y compris dans le cadre des études scolaires et supérieures, est INTERDITE. Seuls sont autorisés les extraits, pour exemple ou illustration, à la seule condition de mentionner clairement l auteur et la référence de l article. Dans bien des domaines techniques, civiles comme militaires (océanographie, activités sous-marines, pêche, sauvetage en mer, activités contre la pollution, etc.) on est amené à réaliser le remorquage d un corps sous-marin par un bateau. Modéliser et prédire les comportements d un tel corps, de nature et de forme très diverses, sont très complexes et nécessitent des codes de calculs élaborés de mécanique des fluide. Dans cet article on s intéresse à la modélisation très simplifiée du comportement d un corps remorqué dans l eau par un bateau. En particulier, on étudie la relation qui peut exister entre la vitesse du remorqueur et l immersion du corps remorqué. De prime abord, l intuition permet de s attendre à ce que l immersion diminue lorsque la vitesse augmente : en effet l augmentation de la vitesse entraîne une augmentation de la force de tension au niveau du câble de remorquage (supposé rigide) et donc une situation où le poids du corps est de moins en moins compensé par la poussée d Archimède, puisque à celle-ci vient s ajouter ce surcroît de tension, par suite le corps remonte. C est ce que confirme le calcul, comme on le verra : la courbe immersion-vitesse est régulièrement décroissante (ou croissante si on prend les valeurs négatives pour l immersion). Ce résultat général est toutefois contredit dans certains cas comme l ont montré des expériences et des observations en situations réelles : pour certaines plages de vitesse, on observe un plateau, ou un comportement localement inverse, pour l immersion. Il n est pas évident, dans l approche simplifiée proposée ici, d expliquer cette «anomalie» : quelques tentatives d «affinement» ne suffisent pas. Par contre, elle pourrait s expliquer par le fait que le câble de traction n est pas infiniment rigide : en effet, prenant en compte une certaine élasticité du câble, toujours dans le modèle simplifié, chose qui conduit à une situation calculatoire assez inextricable, je crois arriver à certaines conditions pour lesquelles la courbe cesse d être monotone et présente un point d inflexion. Mais mon approche peut être sujet à caution, vos remarques sont les bienvenues. Modèle simplifié : câble de traction infiniment rigide Frédéric Élie, août page 1/11

2 Voir figure ci-après : Hypothèses : - le remorquage se fait au centre d inertie G du corps remorqué, le point d attache du câble sur le bateau est P et est fixe - le câble de traction est infiniment rigide : par conséquent la vitesse du bateau remorqueur, V, est égale à celle du centre d inertie du corps G (dans le texte, les grandeurs vectorielles sont notées en gras), et la longueur du câble L est constante - le câble est supposé complètement tendu : GP est un segment de droite - la masse et le volume du câble sont négligés - les mouvements propres du corps remorqué autour de G sont négligés - la forme du corps remorqué, et la nature de sa coque, n interviennent pas autrement que via le coefficient de la force de traînée ; son volume V n intervient que pour la poussée d Archimède qui s exerce sur lui - la force de traînée suivant la verticale Oy est négligée : seule intervient la force de traînée suivant l horizontale Ox La longueur du câble étant constante, on a : GP = L GH = X = L cos α y = - L sin α Bilan des forces s exerçant sur le corps remorqué en G : - gravité :

3 - poussée d Archimède :, ρ masse volumique de l eau - tension du câble : - force de traînée (résistance de la part de l eau à l avancement du corps) : Écrivons les équations de la dynamique en G :, où l on néglige la résistance suivant Oy ; S est le maître-couple du corps remorqué que l on projette sur les axes Ox et Oy : (1) Ces équations vont nous permettre d établir la loi d évolution de l immersion (-y) en fonction de la vitesse d avancement dans l eau V x. (2) Le câble étant infiniment rigide, les inconnues (-y) et α sont reliées par : que l on remplace dans (2) : (3) Frédéric Élie, août page 3/11

4 En supposant que le remorquage s effectue à vitesse constante (dv x /dt = 0), l équation (1) donne une relation sur la tension de traction T: à (3 bis) Or : cos² α = 1 sin² α = 1 (y / L)², que l on remplace dans (3), compte tenu de la relation sur T : Recherchant la solution pour des immersions constantes, une fois fixée la vitesse, l équation précédente donne la relation entre l immersion et la vitesse : à Examinant la relation précédente, on voit que l évolution de l immersion avec la vitesse nécessite un déséquilibre entre le poids du corps et la poussée d Archimède : m > ρv puisque y < 0 en immersion : le corps doit être suffisamment pesant pour ne pas remonter à la surface. Cherchant plutôt à exprimer y = f (V x ), on inverse la relation précédente, ce qui donne : On voit que : si V x = 0 (bateau immobile), alors y = - L (puisque B < 0) : le corps G «pend» dans l eau à la verticale du point P). Si V x = (vitesse du bateau «infinie», en tous cas très grande), alors y = 0 : le corps est tracté à la surface de l eau (comme dans le ski nautique). Par ailleurs, l étude du sens de variation de la relation (4) va nous renseigner sur le rôle du paramètre B : (4) < 0 si B > 0, ce qui n a pas de sens physique ici > 0 si B < 0 (m > ρv) qui est la condition requise, on l a vue L immersion (en valeur absolue) décroît donc quand la vitesse de traction augmente, et cette

5 décroissance est d autant plus marquée que B est grand (en valeur absolue) et/ou que la longueur L du câble est grande. Or B est grand lorsque la masse du corps est élevée (m grande) et/ou qu il est effilé (S faible), et/ou que son coefficient de traînée est faible (le corps avance plus facilement dans l eau). La tangente est horizontale (dy /dv x = 0) en V x = 0. L allure de la courbe donnée par (4) est donnée ci-après. J y ai également superposé celle de l «anomalie» dont je parlais en introduction : modèle simplifié : prise en compte de la composante verticale de la résistance de l eau Loi immersion-vitesse : On admet maintenant que la résistance de l eau s effectue aussi suivant la verticale Oy, bien que la composante verticale de la vitesse, V y, soit très faible dans la configuration de traction adoptée. Alors : L équation (2) devient donc :, où K et S sont le coefficient hydrodynamique et le maître-couple suivant Oy Frédéric Élie, août page 5/11

6 ce qui donne, puisqu on a V y = dy/dt et toujours T donnée par (3 bis), l équation du mouvement suivant Oy : L équation (5) est non linéaire et est compliquée à résoudre, même en fixant V x = constante. (5) Faisant l approximation V y = constante, l équation (5) donne une loi immersion-vitesse de même forme que (4), paramétrée par B : avec cette fois : (6) (6 bis) La loi d immersion n a de sens physique que si B < 0, de la même manière que pour (4). Oscillations du corps remorqué : Revenant au cas général où V y n est plus constante, la présence de cette composante verticale de la vitesse entraîne l apparition d un moment dynamique par rapport au point P : avec et la résultante des forces en G : On veut établir l équation du mouvement angulaire en appliquant le théorème du moment dynamique. Pour cela nous avons besoin du moment cinétique de G en P : Le moment dynamique se projette sur l axe Ok, orthogonal aux axes Ox et Oy, en : Et d après le théorème du moment dynamique : dσ P (G)/dt = M P (G), l égalisation de la quantité précédente avec dσ P (G)/dt = -ml² d²α/dt² fournit l équation de mouvement angulaire :

7 Comme T = KSV x 2 / cos α, l équation précédente se réécrit : Remarque : en remplaçant sin α = - y/l et cos α = (1 (y/l)²) 1/2, et en supposant que α soit constant, l équation (7) redonne la loi immersion-vitesse (6). Considérons l équation (7) dans le cas approché où α reste faible (câble très long et/ou corps près de la surface), on pose donc : sin α α et cos α 1 sous ces conditions, on peut aussi négliger V y devant V x. L équation (7) se simplifie alors en : (7) avec: (8) (8 bis) L équation (8) est celle d un oscillateur harmonique d amplitude angulaire α, oscillant avec une fréquence égale à Ω/2π. Cela signifie que le corps remorqué est animé d un mouvement oscillatoire de faible amplitude autour du point d attache P lors de sa traction dans l eau. On remarquera que la fréquence d oscillation est indépendante de l accélération de la pesanteur g, contrairement au pendule simple, mais est d autant plus faible (mouvements lents) que le câble est long et/ou que la masse du corps est élevée. Elle est faible aussi pour des vitesses de traction petites et pour de faibles résistances de l eau. La solution de (8) est obtenue comme suit : Par le changement de variable : β = Ω² α + (m - ρv)g/ml, (8) devient : de solution : β = A cos Ωt + B sin Ωt, soit : α = (1/Ω²) [A cos Ωt + B sin Ωt (m - ρv)g/ml ] Les amplitudes A et B sont déterminées à partir des conditions initiales sur la position et la vitesse : t = 0 : α = π/2 (le corps est la verticale de P, en immersion maximale), alors : Frédéric Élie, août page 7/11

8 t = 0 : dα/dt = 0 (la vitesse angulaire initiale est nulle), alors : B = 0 Remarque : en faisant la moyenne temporelle de (9), puisque < cos Ωt > = 0 et que α sin α = - y/l, on trouve comme loi immersion-vitesse : (9) laquelle correspond aux lois (6) ou (4) lorsque V y est négligé et B ou B sont faibles. Dans ces conditions, la relation (10) permet de constater que si le corps flotte au départ, m = ρv (B = 0), alors on a tout le temps y = 0 (surface) quelle que soit V x : la traction du corps ne permet pas une mise en immersion du corps. (10) modèle simplifié : prise en compte de l élasticité du câble Loi allongement-vitesse : Revenons au cas où seule la vitesse horizontale V x est à prendre en compte et est supposée constante. On veut cette fois examiner ce que devient la loi (4) si le câble présente une élasticité. Dans ce cas, la tension du câble T n est plus constante mais vérifie, en première approximation, une loi de type ressort parfait : (11) (pas de signe «moins» car orienté G à P) Considérons les équations du mouvement (1) et (2), toujours en supposant la vitesse de traction constante en première approximation. Alors : (12) (13) avec encore : et (14) même si L est variable Essayons, dans ces conditions très restrictives, de formuler une loi de variation allongementvitesse et immersion-vitesse. Pour cela, éliminons y ou α dans les relations (11), (12), (13) pour faire apparaître la dépendance L = L (V x ) : (12) à

9 Puis (2) à d'où la tension du câble: où B est encore donné par : (11) à loi allongement-vitesse : (15) Remarque : pour V x = 0, (15) donne Autrement dit, (16) montre que, en l absence de vitesse, le corps pend dans l eau à la verticale du point P et que, sous l effet de la force correspondant à la différence du poids et de la poussée d Archimède, le câble s allonge d une quantité égale à cette force divisée par le coefficient d élasticité k. Ceci est conforme à ce qui est physiquement attendu. D autre part, le câble finit par atteindre une longueur limite L max, atteinte pour une vitesse limite V x max, à partir de laquelle il ne s allonge plus et est considéré comme infiniment rigide. A partir de (15) on détermine cette vitesse limite : (16) Loi immersion-vitesse : Pour établir cette loi, on divise membre à membre (13) par (12) : (16) que l on écrit encore : compte tenu de (14) qui est de la même forme que (4) (B < 0) mais où L est cette fois donnée par (15). En la Frédéric Élie, août page 9/11

10 remplaçant dans l expression ci-dessus, on trouve la loi immersion-vitesse : Pour V x = 0, l immersion initiale est : (17) autrement dit : (18), où L(0) est donnée par (16) Ainsi, comme on s y attendait, en l absence de vitesse, l immersion initiale est égale à la longueur initiale du câble dans l eau lorsque le corps pend à la verticale. Il est alors plus judicieux de réécrire (17) en normalisant l immersion par y(0) plutôt que L 0 : et on a bien y/ y(0) = -1 pour V x = 0. (17 bis) D autre part, quelle est l immersion du corps, y max, lorsque le câble est à son allongement maximal L max, et donc lorsque la vitesse a atteint V max donnée par (16)? Remplaçant (16) dans (17) on obtient : Tentative d une explication de l «anomalie» de la loi immersion-vitesse : Tant que le câble peut encore s allonger sous l effet de la vitesse de traction, donc tant que V x < V x max, l immersion diminue (en valeur absolue) selon la loi (17 bis) lorsque la vitesse croît. Lorsqu elle atteint la valeur limite y max donnée par (19), le câble peut être considéré comme rigide et l évolution de l immersion suit désormais une loi de type (4). Mais dans cette évolution, la nouvelle immersion initiale est y max et non la longueur du câble à vide L 0 contrairement au modèle où le câble est toujours supposé rigide. Il s ensuit que la variation globale de l immersion avec la vitesse de traction est décrite par la juxtaposition de deux courbes, l une correspondant au régime «câble élastique», l autre correspondant au régime «câble rigide» atteint lorsque la vitesse dépasse la valeur limite V max. La jonction de ces deux courbes, autrement dit la transition entre ces deux régimes, correspond à une zone où l allure de l évolution présente un «accident» local, situé aux environs du point de coordonnées (V max, y max ), puisque à cet endroit les tangentes aux (19)

11 courbes sont différentes. C est que le graphique suivant illustre de manière qualitative. Frédéric Élie, août page 11/11

Cours de mécanique M14-travail-énergies

Cours de mécanique M14-travail-énergies Cours de mécanique M14-travail-énergies 1 Introduction L objectif de ce chapitre est de présenter les outils énergétiques utilisés en mécanique pour résoudre des problèmes. En effet, parfois le principe

Plus en détail

ETUDE DES E VI V B I RATIO I N O S

ETUDE DES E VI V B I RATIO I N O S ETUDE DES VIBRATIONS 1 Chapitre I - Présentation et définitions 2 Les objectifs à atteindre: 1) Savoir décrire le modèle de l'oscillateur harmonique et savoir l'appliquer à l'étude des systèmes physiques

Plus en détail

La dynamique du système est donnée par (1)

La dynamique du système est donnée par (1) Master d Ingénierie Mathématique Contrôle des systèmes non-linéaires Examen, durée 3h Sujet donné par Pierre Rouchon, tous les documents sont autorisés. Comme le montre la figure ci-contre, ce robot marcheur

Plus en détail

Équations différentielles en physique

Équations différentielles en physique Fiche Mathématiques pour la Physique - Équations différentielles en physique - MPSI 1 Lycée Chaptal - 2012 Équations différentielles en physique On ne considère en physique en prépa (quasiment) que des

Plus en détail

Corrigé des exercices «Principe fondamental de la dynamique»

Corrigé des exercices «Principe fondamental de la dynamique» «Principe fondamental de la dynamique» Exercice 1 a. Un véhicule parcourt 72 km en 50 minutes. Calculer sa vitesse moyenne et donner le résultat en km/h puis en m/s. La vitesse v est donnée en fonction

Plus en détail

Volume et température d un gaz

Volume et température d un gaz Volume et température d un gaz Par Pascal Rebetez Janvier 7 Introduction Après avoir étudié expérimentalement la relation entre le volume et la température d un gaz (de l air), nous comparons les données

Plus en détail

PHYSIQUE - MATHÉMATIQUES

PHYSIQUE - MATHÉMATIQUES SESSION 2013 SECOND CONCOURS ÉCOLE NORMALE SUPÉRIEURE PHYSIQUE - MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche à alimentation autonome, sans imprimante et sans document d accompagnement

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1. Durée : 4 heures

EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1. Durée : 4 heures SESSION 2013 PCP1003 EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1 Durée : 4 heures N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si

Plus en détail

Devoir Surveillé n 2

Devoir Surveillé n 2 Devoir Surveillé n 2 Les candidat(e)s veilleront à exposer leurs réponses avec clarté et rigueur, rédiger avec soin dans un français correct et reporter dans la marge les numéros des questions traitées.

Plus en détail

TD Thermodynamique. Diffusion de particules

TD Thermodynamique. Diffusion de particules TPC2 TD Thermodynamique Diffusion de particules Exercice n o 1 : Diffusion du CO 2 On observe la diffusion du CO 2 dans l air, en régime stationnaire, à l intérieur d un tube de longueur L = 0, 25 m et

Plus en détail

1 Présentation du moulin. 2 Modélisation mathématique. 2.1 Modélisation statique. Don Quichotte de l Atlantique

1 Présentation du moulin. 2 Modélisation mathématique. 2.1 Modélisation statique. Don Quichotte de l Atlantique 1 Présentation du moulin Il s agit d une roue tournant autour d un axe. Sur l extérieur de la roue sont fixées des tiges et sur les tiges sont accrochés des récipients. Ces récipients sont ouverts en haut

Plus en détail

Concours AVENIR 8 mai 2011 EPREUVE DE PHYSIQUE. DUREE : 1h30mn Coefficient 5 CONSIGNES SPECIFIQUES

Concours AVENIR 8 mai 2011 EPREUVE DE PHYSIQUE. DUREE : 1h30mn Coefficient 5 CONSIGNES SPECIFIQUES NOM :. PRENOM : NUMERO DE CANDIDAT :... EPREUVE DE PHYSIQUE DUREE : 1h30mn Coefficient 5 CONSIGNES SPECIFIQUES Lire attentivement les consignes afin de vous placer dans les meilleures conditions de réussite

Plus en détail

MECA0003-2 - MÉCANIQUE RATIONNELLE

MECA0003-2 - MÉCANIQUE RATIONNELLE L G L G Octobre 015 MEA0003- - MÉANIQUE RATIONNELLE Prof. Éric J.M.DELHEZ Un constructeur de jouets souhaitant mettre au point un nouveau système de propulsion de petites voitures pour son circuit miniature

Plus en détail

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE ÉPREUVE DE SCIENCES DE L INGÉNIEUR Session 2014 Page 1 sur 14 Nacelle gyrostabilisée pour prise de vue aérienne par multicoptère CORRECTION Page 2 sur 14 1. Analyse

Plus en détail

Théorème de Rolle et égalité des accroissements finis. Applications

Théorème de Rolle et égalité des accroissements finis. Applications 0 Théorème de Rolle et égalité des accroissements finis. Applications 0. Le théorème de Rolle sur un espace vectoriel normé Pour ce paragraphe, on se donne un espace vectoriel normé (E, ). Le théorème

Plus en détail

Les calculatrices sont interdites.

Les calculatrices sont interdites. Les calculatrices sont interdites. NB. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui

Plus en détail

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin.

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin. Exo7 Développements ités Corrections d Arnaud Bodin. Calculs Exercice Donner le développement ité en 0 des fonctions :. cosx expx à l ordre 2. ln + x)) 2 à l ordre 4 shx x. x à l ordre 6 4. exp sinx) )

Plus en détail

Systèmes dynamiques. Chapitre 1

Systèmes dynamiques. Chapitre 1 Chapitre 1 Systèmes dynamiques 1) Placement financier On dépose une quantité d argent u 0 à la banque à l instant t 0 = 0 et on place cet argent à un taux r > 0. On sait qu en vertu de la loi des intérêts

Plus en détail

Introduction au cours de physique (1)

Introduction au cours de physique (1) Introduction au cours de physique () Exercices : Petites variations, valeurs moyennes Calculs de petites variations Méthode De manière générale : il est souvent plus simple de faire une différentiation

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties

Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties L'objet de cette ressource est l'étude des systèmes physiques, de type mécanique, électrique ou microscopique, se comportant

Plus en détail

Etude de la période d un pendule simple

Etude de la période d un pendule simple Etude de la période d un pendule simple Préparation à l Agrégation de Physique ENS Cachan June 3, Figure 1: Photographie du dispositif expérimental pour étudier la variation de la période d un pendule

Plus en détail

Devoir de Sciences Physiques n 1 pour le 09-09-2015

Devoir de Sciences Physiques n 1 pour le 09-09-2015 1 DM1 Sciences Physiques MP 20152016 Devoir de Sciences Physiques n 1 pour le 09092015 Problème n o 1 Capteurs de proximité E3A PSI 2013 Les capteurs de proximité sont caractérisés par l absence de liaison

Plus en détail

Comment distinguer l or d un métal jaune identique? Cette question. Est-ce bien de l or? À la découverte de la «balance de la sagesse»

Comment distinguer l or d un métal jaune identique? Cette question. Est-ce bien de l or? À la découverte de la «balance de la sagesse» CCYCLE 3 YCLE 3 Est-ce bien de l or? À la découverte de la «balance de la sagesse» Cécile de Hosson Éditions Le Pommier, 2009 Objectifs Chaque matériau possède sa propre masse volumique (rapport de la

Plus en détail

Fonctions Nombre Dérivé Fonction dérivée

Fonctions Nombre Dérivé Fonction dérivée Fonctions Nombre Dérivé Fonction dérivée Ce chapitre est le chapitre central de la classe de Terminale STG. Il permet (en partie) de clore ce qui avait été entamé dés le collège avec les fonctions affines

Plus en détail

TD Dérivation n 2 : étude des variations de fonctions

TD Dérivation n 2 : étude des variations de fonctions 1) f (x) = 7x+3 TD Dérivation n : étude des variations de fonctions Étude de variations f est une fonction affine, de coefficient directeur négatif, on sait donc qu elle est décroissante surê. Le calcul

Plus en détail

Chapitre 5 Les lois de la mécanique et ses outils

Chapitre 5 Les lois de la mécanique et ses outils DERNIÈRE IMPRESSION LE 1 er août 2013 à 12:49 Chapitre 5 Les lois de la écanique et ses outils Table des atières 1 Les référentiels et repères 2 2 Les grandeurs de l évolution 2 2.1 Le vecteur de position..........................

Plus en détail

Nom :... Prénom :... Section :... No :... Exercice 1 (6 points) EPFL, Physique Générale I SIE & SMX, 2010-2011 Examen 14.01.2011

Nom :... Prénom :... Section :... No :... Exercice 1 (6 points) EPFL, Physique Générale I SIE & SMX, 2010-2011 Examen 14.01.2011 EPFL, Physique Générale I SIE & SMX, 200-20 Examen 4.0.20 Nom :... Prénom :... Section :... No :... Les seuls objets autorisés sont: Le formulaire "résumé mécanique" disponible sur le moodle une feuille

Plus en détail

Dérivées et applications. Equation

Dérivées et applications. Equation Dérivées et applications. Equation I) Dérivée d une fonction strictement monotone 1) Exemples graphiques Soit une fonction dérivable sur un intervalle I. Pour tout I, (x) est le coefficient directeur de

Plus en détail

CH12 : Solide en mouvement de translation

CH12 : Solide en mouvement de translation BTS électrotechnique 1 ère année - Sciences physiques appliquées CH12 : Solide en mouvement de translation Motorisation des systèmes Enjeu : Problématique : En tant que technicien supérieur, il vous revient

Plus en détail

Feuille d'exercices : Diusion thermique

Feuille d'exercices : Diusion thermique Feuille d'exercices : Diusion thermique P Colin 2014/2015 1 Diusion thermique dans une barre * On considère une barre cylindrique de longueur l et de section S constituée d un matériau de conductivité

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

Epreuve de Physique I-B Durée 4 h

Epreuve de Physique I-B Durée 4 h * Banque filière PT * BANQUE PT - EPREUVE I-B. Epreuve de Physique I-B Durée 4 h Etude d'une micropompe électrostatique Indications générales : On donnera tous les résultats avec leur unité. Les candidats

Plus en détail

PROBLÈME 1 : Étude de l'eau en physique

PROBLÈME 1 : Étude de l'eau en physique Banque «Agro» A - 0304 PHYSIQUE Durée : 3 h 30 L usage d une calculatrice est autorisé pour cette épreuve L usage d abaques et de tables est interdit pour cette épreuve Les trois problèmes sont indépendants

Plus en détail

Devoir Surveillé n 3

Devoir Surveillé n 3 Devoir Surveillé n 3 Les candidat(e)s veilleront à exposer leurs réponses avec clarté et rigueur, rédiger avec soin dans un français correct et reporter dans la marge les numéros des questions traitées.

Plus en détail

DS SCIENCES PHYSIQUES MATHSPÉ

DS SCIENCES PHYSIQUES MATHSPÉ DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Mécanique...2 I.Mise en équations...2 II.Résolution...4 III.Vérifications...4 IV.Aspects énergétiques...4 Optique...5 I.Interférences

Plus en détail

Un modèle simple de formation d étoiles

Un modèle simple de formation d étoiles Un modèle simple de formation d étoiles [Exercice classique] Un modèle simple d étoile consiste à supposer que celle-ci est constituée d une masse M d atomes d hydrogène, adoptant une configuration sphérique

Plus en détail

COMPOSITION DE PHYSIQUE (XULCR) (Durée : 4 heures)

COMPOSITION DE PHYSIQUE (XULCR) (Durée : 4 heures) ÉCOLE POLYTECHNIQUE ÉCOLES NORMALES SUPÉRIEURES CONCOURS D ADMISSION 2014 FILIÈRE MP COMPOSITION DE PHYSIQUE (XULCR) (Durée : 4 heures) L utilisation des calculatrices n est pas autorisée pour cette épreuve.

Plus en détail

Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 24 : Travail d une force-energies

Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 24 : Travail d une force-energies 1 Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 24 : Travail d une force-energies I. Les forces travaillent. 1. Effets d une force. Les forces appliquées à un système peut : - Déformer

Plus en détail

Thermodynamique de l atmosphère

Thermodynamique de l atmosphère Thermodynamique de l atmosphère 1 Introduction Notion de parcelle d air L atmosphère est composée d un ensemble de molécules. Pour la description de la plupart des phénomènes étudiés, le suivi des comportements

Plus en détail

Le modèle du gaz parfait

Le modèle du gaz parfait Table des matières 1 : énergie interne, équation d état 1.1 Hypothèses........................................... 1. Énergie interne d un GPM................................... 1.3 Équation d état du GPM....................................

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

Le second degré. Table des matières

Le second degré. Table des matières Le second degré Table des matières 1 La forme canonique du trinôme 1.1 Le trinôme du second degré......................... 1. Quelques exemples de formes canoniques................. 1.3 Forme canonique

Plus en détail

Analyse coût-effacité : Aide au dimensionnement d un service lit-porte ou d un pool d infirmières

Analyse coût-effacité : Aide au dimensionnement d un service lit-porte ou d un pool d infirmières efficience Analyse coût-effacité : Aide au dimensionnement d un service lit-porte ou d un pool d infirmières L activité hospitalière présente la particularité d être à la fois non stockable et de répondre

Plus en détail

point d application F r intensité: 4 unités

point d application F r intensité: 4 unités A. MÉCANIQUE A1. Forces I) appels 1) Effets d une force: définition Une force est une grandeur physique qui se manifeste par ses effets a) effet dynamique : Une force est une cause capable de produire

Plus en détail

Chapitre 5.2 La pression d un gaz

Chapitre 5.2 La pression d un gaz Chapitre 5.2 La pression d un La pression d un Lorsqu on emprisonne un dans un ballon, le applique une force sur la du ballon, car celle-ci se déforme à mesure que le entre dans le ballon. Ainsi, un comprimé

Plus en détail

GÉNÉRALITÉS SUR LES FONCTIONS

GÉNÉRALITÉS SUR LES FONCTIONS . Qu'est-ce qu'une fonction? Vocabulaire GÉNÉRALITÉS SUR LES FONCTIONS Définition Notion de fonction À chaque fois que l'on associe à une quantité une (autre) quantité, on dit que que l'on définit une

Plus en détail

2 Ascension d une bulle de gaz dans un liquide.

2 Ascension d une bulle de gaz dans un liquide. Examen de mécanique des fluides 125ème promotion 18 février 2008 : 9h15-12h Traiter les trois parties. Ces trois parties sont complètement indépendantes. Lire attentivement l intégralité des énoncés. Les

Plus en détail

Devoir commun de Mathématiques 18 janvier 2014. Problème 1

Devoir commun de Mathématiques 18 janvier 2014. Problème 1 Lycée Jean Bart MPSI & PCSI Année 213-214 Devoir commun de Mathématiques 18 janvier 214 La clarté des raisonnements, la précision de la rédaction et la présentation entreront pour une part non négligeable

Plus en détail

TP N 2 UTILISATION DE L OSCILLOSCOPE

TP N 2 UTILISATION DE L OSCILLOSCOPE TP N 2 UTILISATION DE L OSCILLOSCOPE OBJECTIF Se familiariser avec l oscilloscope, et pratiquer ses multiples utilisations. CRITERES D'EVALUATION Câblage correct. Méthode de travail de l'étudiant. Exactitude

Plus en détail

Marwan Brouche Ecole Supérieure d Ingénieurs de Beyrouth, LIBAN 2010-2011. Force centrifuge

Marwan Brouche Ecole Supérieure d Ingénieurs de Beyrouth, LIBAN 2010-2011. Force centrifuge Force centrifuge I- Introduction Dans ce TP, nous étudions la force centrifuge exerçant sur un corps, résultant de la rotation autour d un axe défini. Dans un premier temps, l étude de la force en fonction

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

Synthèse d analyse Avril 2011

Synthèse d analyse Avril 2011 Snthèse d analse Avril 20 Cette snthèse d analse a été rédigée suite à une suggestion de M le Professeur E Delhez Elle est destinée à aider les étudiants à préparer l eamen d admission au études d ingénieur

Plus en détail

M5 Oscillateur harmonique et régime forcé

M5 Oscillateur harmonique et régime forcé M5 Oscillateur harmonique et régime forcé Rappels des épisodes précédents... Au cours de la première période, nous avons rencontré le modèle de l Oscillateur Harmonique Amorti Cf Cours M4). Nous allons

Plus en détail

TD de Physique n o 10 : Interférences et cohérences

TD de Physique n o 10 : Interférences et cohérences E.N.S. de Cachan Département E.E.A. M2 FE 3 e année Physique appliquée 2011-2012 TD de Physique n o 10 : Interférences et cohérences Exercice n o 1 : Interférences à deux ondes, conditions de cohérence

Plus en détail

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I ÉLÉMENTS D OPTIMISATION Complément au cours et au livre de MTH 1101 - CALCUL I CHARLES AUDET DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Hiver 2011 1 Introduction

Plus en détail

concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP)

concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP) SESSION DE 2005 concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP) section : mathématiques deuxième composition de mathématiques (épreuve de remplacement)

Plus en détail

3e degré professionnel MINISTÈRE DE LA COMMUNAUTE FRANÇAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE

3e degré professionnel MINISTÈRE DE LA COMMUNAUTE FRANÇAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE 3e degré professionnel MINISTÈRE DE LA COMMUNAUTE FRANÇAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE Administration Générale de l Enseignement et de la Recherche Scientifique Service général des Affaires

Plus en détail

Nombre dérivé, interprétations géométrique et cinématique

Nombre dérivé, interprétations géométrique et cinématique CHAPITRE 4 DÉRIVATION ET PRIMITIVATION Nombre dérivé, interprétations géométrique et cinématique 08. Nombre dérivé Soit f une fonction numérique, définie sur un intervalle ou une réunion d intervalles,

Plus en détail

Théorème d Ampère et applications

Théorème d Ampère et applications 6 Théorème d Ampère et applications 1 Théorème d Ampère Equivalent du théorème de Gauss pour l électrostatique. Permet de calculer des champs simplement en utilisant la symétrie des courants. Mais il faut

Plus en détail

Superposition de signaux sinusoïdaux

Superposition de signaux sinusoïdaux Superposition de signaux sinusoïdaux I TP interférences obtenues par la superposition de deux ondes ultrasonores...3 1 Modélisation d une courbe sous Regressi...3 2 Mesure de l amplitude de l onde résultant

Plus en détail

E c (t 0 ) = ½ m v 0. E pp (t 0 ) = mgh. Séance n 12 Conservation de l énergie. E c (t 0 ) = 30,1 J. E pp (t 0 ) = 1,4 J.

E c (t 0 ) = ½ m v 0. E pp (t 0 ) = mgh. Séance n 12 Conservation de l énergie. E c (t 0 ) = 30,1 J. E pp (t 0 ) = 1,4 J. Séance n 12 Conservation de l énergie Exercice n 1 Au service Au service, un joueur de tennis frappe, à l instant de date t 0 = 0 s, une balle de masse m = 58,0 g à une hauteur h = 2,4 m au dessus du sol

Plus en détail

Groupe : (h, k) ( 5, 12)

Groupe : (h, k) ( 5, 12) Fiche de soutien Les propriétés de la fonction racine carrée PROPRIÉTÉ FONCTION SOUS FORME CANONIQUE f(x) = a + k (ou f(x) = a 1 + k et a 1 = a ) EXEMPLE f(x) = 2 12 (ou f(x) = 6 12) Coordonnées du sommet

Plus en détail

4) On suppose que l on utilise une lentille biconvexe faite d un verre d indice n, dont les deux faces (1) et (2) ont le R

4) On suppose que l on utilise une lentille biconvexe faite d un verre d indice n, dont les deux faces (1) et (2) ont le R Optique géométrique ) appeler le principe de la mesure de la distance focale d une lentille mince convergente par la méthode d autocollimation. Vérifier une des propriétés de cette méthode à l aide du

Plus en détail

DEVOIR DE SYNTHESE N 2. Les solutions tampons

DEVOIR DE SYNTHESE N 2. Les solutions tampons MINESTERE DE L EDUCATION DIRECTION REGIONALE DE NABEUL LYCÉE TAIEB MEHIRI MENZEL TEMIME PROPOSÉ PAR : MOHAMED CHERIF, AHMED RAIES, SALWA RJEB. EPREUVE : SCIENCES PHYSIQUES NIVEAU: 4 EME SECTION : SC.EXPERIMENTALES

Plus en détail

ESTIMER UNE PENTE. Groupe MPS, IREM de Grenoble. Figure 1 Le skieur peut-il traverser cette pente neigeuse? Comment estimer son inclinaison?

ESTIMER UNE PENTE. Groupe MPS, IREM de Grenoble. Figure 1 Le skieur peut-il traverser cette pente neigeuse? Comment estimer son inclinaison? ESTIMER UNE PENTE Groupe MPS, IREM de Grenoble Ce document est à mettre en relation avec le thème des Avalanches proposé dans le diaporama. Il est destiné aux professeur(e)s. Il contient des propositions

Plus en détail

1 Cinématique du solide

1 Cinématique du solide TBLE DES MTIÈRES 1 Cinématique du solide 1 1.1 Coordonnées d un point dans l espace......................... 1 1.1.1 Repère et référentiel................................ 1 1.1.2 Sens trigonométrique...............................

Plus en détail

Principe de fonctionnement d un véhicule à roues

Principe de fonctionnement d un véhicule à roues Mécanique «Chapitre» 4 Principe de fonctionnement d un véhicule à roues Parties du programme de PCSI à revoir Notions et contenus Lois de Coulomb du frottement de glissement dans le seul cas d un solide

Plus en détail

a. Les éléments de base rectangle : représente un élément ou un groupe d éléments du système et son action associée

a. Les éléments de base rectangle : représente un élément ou un groupe d éléments du système et son action associée REGULATION 1/9 I. Présentation 1. Structure d'un système asservi L'objectif d'un système automatisé étant de remplacer l'homme dans une tâche, nous allons pour établir la structure d'un système automatisé

Plus en détail

Problème 1. Problème 2 OPTIQUE MÉCANIQUE CHIMIE. DM 3 pour le 14 novembre

Problème 1. Problème 2 OPTIQUE MÉCANIQUE CHIMIE. DM 3 pour le 14 novembre DM 3 pour le novembre OPTIQUE MÉCANIQUE CHIMIE Problème On considère un œil modélisé par une lentille convergente (le cristallin et un écran (la rétine tel que la distance lentille-écran soit égale à 5

Plus en détail

Concours d entrée - mai 2012. A remplir par le candidat : Nom :.. Prénom :.. Centre de passage de l examen : N de place :.

Concours d entrée - mai 2012. A remplir par le candidat : Nom :.. Prénom :.. Centre de passage de l examen : N de place :. A remplir par le candidat : Nom : Prénom :.. Centre de passage de l examen : N de place :. Note : Concours filière Technicien Supérieur et er cycle filière Ingénieur Concours nd cycle filière Ingénieur

Plus en détail

Pour stocker davantage d'informations sur un disque, les scientifiques travaillent sur la mise au point d'un laser ultra violet.

Pour stocker davantage d'informations sur un disque, les scientifiques travaillent sur la mise au point d'un laser ultra violet. nom : TS 6 CONTRÔLE DE SCIENCES PHYSIQUES 14/11/11 Lors de la correction il sera tenu compte de la présentation et de la rédaction de la copie Les réponses seront justifiées et données sous forme littérale

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES Série S ÉPREUVE DU JEUDI 19 JUIN 2014 Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont

Plus en détail

4. Equation de Schröninger

4. Equation de Schröninger 4. Equation de Schröninger Introduction Particule libre Paquets d ondes Particule libre localisée Puits de potentiel de profondeur infinie Puits de potentiel de profondeur finie Barrière de potentiel Microscope

Plus en détail

2 Fonctions affines : définitions et propriétés fondamentales

2 Fonctions affines : définitions et propriétés fondamentales Chapitre 3 : Fonctions affines Dans tout ce chapitre, le plan est muni d un repère. 1 Rappels sur les équations de droite Une droite qui n est pas verticale a une unique équation du type y = ax + b, qu

Plus en détail

1 Réflexion et réfraction

1 Réflexion et réfraction 1 Réflexion et réfraction 1.1 Rappel sur la propagation dans les milieux linéaires isotropes Equations de Maxwell dans les milieux Dans un milieu diélectrique sans charges libres (ni courants libres) les

Plus en détail

1.1 Conception de verres progressifs (lunettes)

1.1 Conception de verres progressifs (lunettes) 1.1 Conception de verres progressifs (lunettes) Le problème Au fur et à mesure des années, le cristallin de l œil humain devient de moins en moins souple, et, à partir d un certain âge (souvent entre 45

Plus en détail

EXAMEN #1. ONDES ET PHYSIQUE MODERNE 25 % de la note finale

EXAMEN #1. ONDES ET PHYSIQUE MODERNE 25 % de la note finale EXAMEN #1 ONDES ET PHYSIQUE MODERNE 25 % de la note finale Automne 2014 Nom : Chaque question à choix multiples vaut 3 points 1. Pendant qu une onde se propage sur une corde, on quadruple la tension de

Plus en détail

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde partie 1/3 partie 2/3 partie 3/3 Sommaire 1 Ensemble

Plus en détail

Lois de l électrocinétique

Lois de l électrocinétique Retour au menu! Lois de l électrocinétique 1 Courant électrique 1.1 Notion de courant n conducteur est un matériau contenant des charges libres capables de se déplacer. Dans les électrolytes les charges

Plus en détail

Etude d un afficheur à cristaux liquides (LCD : Liquid Crystal Display)

Etude d un afficheur à cristaux liquides (LCD : Liquid Crystal Display) Etude d un afficheur à cristaux liquides (LCD : Liquid Crystal Display) La partie A décrit la structure et le fonctionnement d une cellule LCD. La partie B décrit le dispositif d étude et les observations

Plus en détail

Master MES - Modélisation et simulation Thème : Modèles de trafic routier

Master MES - Modélisation et simulation Thème : Modèles de trafic routier Master MES - Modélisation et simulation Thème : Modèles de trafic routier Emmanuel Maitre Page web de l UE http://www-ljk.imag.fr/membres/emmanuel.maitre/doku.php?id=mes 1 Le problème à étudier 1.1 Introduction

Plus en détail

Travail d une force Correction

Travail d une force Correction Travail d une force Exercice 1 : Deux jumeaux de même masse m=75,0 kg montent au 5ème étage d'un immeuble en partant du rez-de-chaussée. Le jumeau A emprunte l'ascenseur et le jumeau B l'escalier. La distance

Plus en détail

La fonction racine carrée. Document B. Table des matières

La fonction racine carrée. Document B. Table des matières 1 La fonction racine carrée Document B Table des matières - Résolution algébriques d équations avec racine carrée, p.2 à 8; - Règles sous la forme canonique avec b 1 et b = 1, p.9-10; - Équation axe de

Plus en détail

La diode. Retour au menu. 1 La diode : un dipôle non linéaire. 1.1 Diode idéale. 1.2 Diode réelle à semi-conducteur. 1.3 Association de diodes

La diode. Retour au menu. 1 La diode : un dipôle non linéaire. 1.1 Diode idéale. 1.2 Diode réelle à semi-conducteur. 1.3 Association de diodes etour au menu La diode 1 La diode : un dipôle non linéaire 1.1 Diode idéale 1.2 Diode réelle à semi-conducteur C est un dipôle électrique unidirectionnel dont les bornes sont l anode (A) et la cathode

Plus en détail

Code_Aster. Indicateurs de décharge et de perte de proportionnalité du chargement en élastoplasticité

Code_Aster. Indicateurs de décharge et de perte de proportionnalité du chargement en élastoplasticité Titre : Indicateurs de décharge et de perte de proportionn[...] Date : 21/07/2009 Page : 1/7 Indicateurs de décharge et de perte de proportionnalité du chargement en élastoplasticité Résumé On présente

Plus en détail

Second degré. Christophe ROSSIGNOL. Année scolaire 2008/2009

Second degré. Christophe ROSSIGNOL. Année scolaire 2008/2009 Second degré Christophe ROSSIGNOL Année scolaire 008/009 Table des matières 1 Polynômes du second degré 1.1 Définition................................................. 1. Forme canonique.............................................

Plus en détail

SCIENCES PHYSIQUES. Les tables et calculatrices réglementaires sont autorisées.

SCIENCES PHYSIQUES. Les tables et calculatrices réglementaires sont autorisées. UNIVERSITÉ CHEIKH NT DIOP DE DKR /5 6 G 8 Durée : heures OFFICE DU BCCLURET Séries : S-S3 Coef. 8 Téléfax () 8 65 8 - Tél. : 8 95 9-8 65 8 Epreuve du er groupe SCIENCES PHYSIQUES Les tables et calculatrices

Plus en détail

Angle de champ. Définition et méthodes de calcul

Angle de champ. Définition et méthodes de calcul Angle de champ Définition et méthodes de calcul Angle de champ Les techniques de photographie panoramique et haute définition consistent à assembler un grand nombre de photos afin de couvrir une plus grande

Plus en détail

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année Programme de Mathématique Préparation Maths-Physique Analyse et Géométrie Différentielle Première Année I NOMBRES REELS ET COMPLEXES, SUITES ET FONCTIONS 1 Nombres réels et complexes 2 Suites de nombres

Plus en détail

RAYONNEMENT THERMIQUE DU CORPS NOIR PARTIE THEORIQUE

RAYONNEMENT THERMIQUE DU CORPS NOIR PARTIE THEORIQUE RAYONNEMENT THERMIQUE DU CORPS NOIR PARTIE THEORIQUE 1 Définitions Considérons un corps porté à une température T. Ce corps émet de l'énergie par sa surface sous forme de rayonnement thermique, c estàdire

Plus en détail

Les transistors bipolaires

Les transistors bipolaires Les transistors bipolaires I. Introduction: Définitions: Le transistor bipolaire est un composant à 3 électrodes comportant 2 jonctions PN. C est un cristal de semi-conducteur dans lequel on peut distinguer

Plus en détail

6 Les forces mettent les objets en mouvement.

6 Les forces mettent les objets en mouvement. 6 Les forces mettent les objets en mouvement. Tu dois devenir capable de : Savoir expliquer la proportion directe entre la force et l accélération à l aide d un exemple ; expliquer la proportion inverse

Plus en détail

Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur. Yves Chiricota, professeur DIM, UQAC Cours 8TRD147

Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur. Yves Chiricota, professeur DIM, UQAC Cours 8TRD147 Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur Yves Chiricota, professeur DIM, UQAC Cours 8TRD147 14 Janvier 2015 2 Il est impossible d envisager l étude des méthodes

Plus en détail

Récupération d énergie

Récupération d énergie Récupération d énergie Le sujet propose d étudier deux dispositifs de récupération d énergie soit thermique (problème 1) soit mécanique (problème 2) afin de produire une énergie électrique. Chaque problème

Plus en détail

Agrégation externe de mathématiques, session 2005 Épreuve de modélisation, option Probabilités et Statistiques

Agrégation externe de mathématiques, session 2005 Épreuve de modélisation, option Probabilités et Statistiques Agrégation externe de mathématiques, session 2005 Épreuve de modélisation, option Probabilités et Statistiques (605) GESTION DE STOCK À DEMANDE ALÉATOIRE Résumé : Chaque mois, le gérant d un magasin doit

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

INITIATION A L AERONAUTIQUE. CH 02-01: Equilibre V05 23/10/2014. Helmi TOUEL, Edition 2014. Savoir une chose sur chaque chose!

INITIATION A L AERONAUTIQUE. CH 02-01: Equilibre V05 23/10/2014. Helmi TOUEL, Edition 2014. Savoir une chose sur chaque chose! INITIATION A L AERONAUTIQUE CH 02-01: Equilibre V05 23/10/2014 Helmi TOUEL, Edition 2014 Savoir une chose sur chaque chose! 1. Introduction Sommaire 2. Stabilo 3. AOA, Pente 4. Calage Introduction Stabilo

Plus en détail

Elements de dimensionnement d un échangeur air/sol, dit «puits canadien»

Elements de dimensionnement d un échangeur air/sol, dit «puits canadien» Elements de dimensionnement d un échangeur air/sol, dit «puits canadien» David Amitrano Université J. Fourier, Grenoble Introduction L utilisation d un échangeur air/sol, système appelé communément «puits

Plus en détail