Corps remorqué dans l eau

Dimension: px
Commencer à balayer dès la page:

Download "Corps remorqué dans l eau"

Transcription

1 ACCUEIL Corps remorqué dans l eau Frédéric Elie, août 2007 La reproduction des articles, images ou graphiques de ce site, pour usage collectif, y compris dans le cadre des études scolaires et supérieures, est INTERDITE. Seuls sont autorisés les extraits, pour exemple ou illustration, à la seule condition de mentionner clairement l auteur et la référence de l article. Dans bien des domaines techniques, civiles comme militaires (océanographie, activités sous-marines, pêche, sauvetage en mer, activités contre la pollution, etc.) on est amené à réaliser le remorquage d un corps sous-marin par un bateau. Modéliser et prédire les comportements d un tel corps, de nature et de forme très diverses, sont très complexes et nécessitent des codes de calculs élaborés de mécanique des fluide. Dans cet article on s intéresse à la modélisation très simplifiée du comportement d un corps remorqué dans l eau par un bateau. En particulier, on étudie la relation qui peut exister entre la vitesse du remorqueur et l immersion du corps remorqué. De prime abord, l intuition permet de s attendre à ce que l immersion diminue lorsque la vitesse augmente : en effet l augmentation de la vitesse entraîne une augmentation de la force de tension au niveau du câble de remorquage (supposé rigide) et donc une situation où le poids du corps est de moins en moins compensé par la poussée d Archimède, puisque à celle-ci vient s ajouter ce surcroît de tension, par suite le corps remonte. C est ce que confirme le calcul, comme on le verra : la courbe immersion-vitesse est régulièrement décroissante (ou croissante si on prend les valeurs négatives pour l immersion). Ce résultat général est toutefois contredit dans certains cas comme l ont montré des expériences et des observations en situations réelles : pour certaines plages de vitesse, on observe un plateau, ou un comportement localement inverse, pour l immersion. Il n est pas évident, dans l approche simplifiée proposée ici, d expliquer cette «anomalie» : quelques tentatives d «affinement» ne suffisent pas. Par contre, elle pourrait s expliquer par le fait que le câble de traction n est pas infiniment rigide : en effet, prenant en compte une certaine élasticité du câble, toujours dans le modèle simplifié, chose qui conduit à une situation calculatoire assez inextricable, je crois arriver à certaines conditions pour lesquelles la courbe cesse d être monotone et présente un point d inflexion. Mais mon approche peut être sujet à caution, vos remarques sont les bienvenues. Modèle simplifié : câble de traction infiniment rigide Frédéric Élie, août page 1/11

2 Voir figure ci-après : Hypothèses : - le remorquage se fait au centre d inertie G du corps remorqué, le point d attache du câble sur le bateau est P et est fixe - le câble de traction est infiniment rigide : par conséquent la vitesse du bateau remorqueur, V, est égale à celle du centre d inertie du corps G (dans le texte, les grandeurs vectorielles sont notées en gras), et la longueur du câble L est constante - le câble est supposé complètement tendu : GP est un segment de droite - la masse et le volume du câble sont négligés - les mouvements propres du corps remorqué autour de G sont négligés - la forme du corps remorqué, et la nature de sa coque, n interviennent pas autrement que via le coefficient de la force de traînée ; son volume V n intervient que pour la poussée d Archimède qui s exerce sur lui - la force de traînée suivant la verticale Oy est négligée : seule intervient la force de traînée suivant l horizontale Ox La longueur du câble étant constante, on a : GP = L GH = X = L cos α y = - L sin α Bilan des forces s exerçant sur le corps remorqué en G : - gravité :

3 - poussée d Archimède :, ρ masse volumique de l eau - tension du câble : - force de traînée (résistance de la part de l eau à l avancement du corps) : Écrivons les équations de la dynamique en G :, où l on néglige la résistance suivant Oy ; S est le maître-couple du corps remorqué que l on projette sur les axes Ox et Oy : (1) Ces équations vont nous permettre d établir la loi d évolution de l immersion (-y) en fonction de la vitesse d avancement dans l eau V x. (2) Le câble étant infiniment rigide, les inconnues (-y) et α sont reliées par : que l on remplace dans (2) : (3) Frédéric Élie, août page 3/11

4 En supposant que le remorquage s effectue à vitesse constante (dv x /dt = 0), l équation (1) donne une relation sur la tension de traction T: à (3 bis) Or : cos² α = 1 sin² α = 1 (y / L)², que l on remplace dans (3), compte tenu de la relation sur T : Recherchant la solution pour des immersions constantes, une fois fixée la vitesse, l équation précédente donne la relation entre l immersion et la vitesse : à Examinant la relation précédente, on voit que l évolution de l immersion avec la vitesse nécessite un déséquilibre entre le poids du corps et la poussée d Archimède : m > ρv puisque y < 0 en immersion : le corps doit être suffisamment pesant pour ne pas remonter à la surface. Cherchant plutôt à exprimer y = f (V x ), on inverse la relation précédente, ce qui donne : On voit que : si V x = 0 (bateau immobile), alors y = - L (puisque B < 0) : le corps G «pend» dans l eau à la verticale du point P). Si V x = (vitesse du bateau «infinie», en tous cas très grande), alors y = 0 : le corps est tracté à la surface de l eau (comme dans le ski nautique). Par ailleurs, l étude du sens de variation de la relation (4) va nous renseigner sur le rôle du paramètre B : (4) < 0 si B > 0, ce qui n a pas de sens physique ici > 0 si B < 0 (m > ρv) qui est la condition requise, on l a vue L immersion (en valeur absolue) décroît donc quand la vitesse de traction augmente, et cette

5 décroissance est d autant plus marquée que B est grand (en valeur absolue) et/ou que la longueur L du câble est grande. Or B est grand lorsque la masse du corps est élevée (m grande) et/ou qu il est effilé (S faible), et/ou que son coefficient de traînée est faible (le corps avance plus facilement dans l eau). La tangente est horizontale (dy /dv x = 0) en V x = 0. L allure de la courbe donnée par (4) est donnée ci-après. J y ai également superposé celle de l «anomalie» dont je parlais en introduction : modèle simplifié : prise en compte de la composante verticale de la résistance de l eau Loi immersion-vitesse : On admet maintenant que la résistance de l eau s effectue aussi suivant la verticale Oy, bien que la composante verticale de la vitesse, V y, soit très faible dans la configuration de traction adoptée. Alors : L équation (2) devient donc :, où K et S sont le coefficient hydrodynamique et le maître-couple suivant Oy Frédéric Élie, août page 5/11

6 ce qui donne, puisqu on a V y = dy/dt et toujours T donnée par (3 bis), l équation du mouvement suivant Oy : L équation (5) est non linéaire et est compliquée à résoudre, même en fixant V x = constante. (5) Faisant l approximation V y = constante, l équation (5) donne une loi immersion-vitesse de même forme que (4), paramétrée par B : avec cette fois : (6) (6 bis) La loi d immersion n a de sens physique que si B < 0, de la même manière que pour (4). Oscillations du corps remorqué : Revenant au cas général où V y n est plus constante, la présence de cette composante verticale de la vitesse entraîne l apparition d un moment dynamique par rapport au point P : avec et la résultante des forces en G : On veut établir l équation du mouvement angulaire en appliquant le théorème du moment dynamique. Pour cela nous avons besoin du moment cinétique de G en P : Le moment dynamique se projette sur l axe Ok, orthogonal aux axes Ox et Oy, en : Et d après le théorème du moment dynamique : dσ P (G)/dt = M P (G), l égalisation de la quantité précédente avec dσ P (G)/dt = -ml² d²α/dt² fournit l équation de mouvement angulaire :

7 Comme T = KSV x 2 / cos α, l équation précédente se réécrit : Remarque : en remplaçant sin α = - y/l et cos α = (1 (y/l)²) 1/2, et en supposant que α soit constant, l équation (7) redonne la loi immersion-vitesse (6). Considérons l équation (7) dans le cas approché où α reste faible (câble très long et/ou corps près de la surface), on pose donc : sin α α et cos α 1 sous ces conditions, on peut aussi négliger V y devant V x. L équation (7) se simplifie alors en : (7) avec: (8) (8 bis) L équation (8) est celle d un oscillateur harmonique d amplitude angulaire α, oscillant avec une fréquence égale à Ω/2π. Cela signifie que le corps remorqué est animé d un mouvement oscillatoire de faible amplitude autour du point d attache P lors de sa traction dans l eau. On remarquera que la fréquence d oscillation est indépendante de l accélération de la pesanteur g, contrairement au pendule simple, mais est d autant plus faible (mouvements lents) que le câble est long et/ou que la masse du corps est élevée. Elle est faible aussi pour des vitesses de traction petites et pour de faibles résistances de l eau. La solution de (8) est obtenue comme suit : Par le changement de variable : β = Ω² α + (m - ρv)g/ml, (8) devient : de solution : β = A cos Ωt + B sin Ωt, soit : α = (1/Ω²) [A cos Ωt + B sin Ωt (m - ρv)g/ml ] Les amplitudes A et B sont déterminées à partir des conditions initiales sur la position et la vitesse : t = 0 : α = π/2 (le corps est la verticale de P, en immersion maximale), alors : Frédéric Élie, août page 7/11

8 t = 0 : dα/dt = 0 (la vitesse angulaire initiale est nulle), alors : B = 0 Remarque : en faisant la moyenne temporelle de (9), puisque < cos Ωt > = 0 et que α sin α = - y/l, on trouve comme loi immersion-vitesse : (9) laquelle correspond aux lois (6) ou (4) lorsque V y est négligé et B ou B sont faibles. Dans ces conditions, la relation (10) permet de constater que si le corps flotte au départ, m = ρv (B = 0), alors on a tout le temps y = 0 (surface) quelle que soit V x : la traction du corps ne permet pas une mise en immersion du corps. (10) modèle simplifié : prise en compte de l élasticité du câble Loi allongement-vitesse : Revenons au cas où seule la vitesse horizontale V x est à prendre en compte et est supposée constante. On veut cette fois examiner ce que devient la loi (4) si le câble présente une élasticité. Dans ce cas, la tension du câble T n est plus constante mais vérifie, en première approximation, une loi de type ressort parfait : (11) (pas de signe «moins» car orienté G à P) Considérons les équations du mouvement (1) et (2), toujours en supposant la vitesse de traction constante en première approximation. Alors : (12) (13) avec encore : et (14) même si L est variable Essayons, dans ces conditions très restrictives, de formuler une loi de variation allongementvitesse et immersion-vitesse. Pour cela, éliminons y ou α dans les relations (11), (12), (13) pour faire apparaître la dépendance L = L (V x ) : (12) à

9 Puis (2) à d'où la tension du câble: où B est encore donné par : (11) à loi allongement-vitesse : (15) Remarque : pour V x = 0, (15) donne Autrement dit, (16) montre que, en l absence de vitesse, le corps pend dans l eau à la verticale du point P et que, sous l effet de la force correspondant à la différence du poids et de la poussée d Archimède, le câble s allonge d une quantité égale à cette force divisée par le coefficient d élasticité k. Ceci est conforme à ce qui est physiquement attendu. D autre part, le câble finit par atteindre une longueur limite L max, atteinte pour une vitesse limite V x max, à partir de laquelle il ne s allonge plus et est considéré comme infiniment rigide. A partir de (15) on détermine cette vitesse limite : (16) Loi immersion-vitesse : Pour établir cette loi, on divise membre à membre (13) par (12) : (16) que l on écrit encore : compte tenu de (14) qui est de la même forme que (4) (B < 0) mais où L est cette fois donnée par (15). En la Frédéric Élie, août page 9/11

10 remplaçant dans l expression ci-dessus, on trouve la loi immersion-vitesse : Pour V x = 0, l immersion initiale est : (17) autrement dit : (18), où L(0) est donnée par (16) Ainsi, comme on s y attendait, en l absence de vitesse, l immersion initiale est égale à la longueur initiale du câble dans l eau lorsque le corps pend à la verticale. Il est alors plus judicieux de réécrire (17) en normalisant l immersion par y(0) plutôt que L 0 : et on a bien y/ y(0) = -1 pour V x = 0. (17 bis) D autre part, quelle est l immersion du corps, y max, lorsque le câble est à son allongement maximal L max, et donc lorsque la vitesse a atteint V max donnée par (16)? Remplaçant (16) dans (17) on obtient : Tentative d une explication de l «anomalie» de la loi immersion-vitesse : Tant que le câble peut encore s allonger sous l effet de la vitesse de traction, donc tant que V x < V x max, l immersion diminue (en valeur absolue) selon la loi (17 bis) lorsque la vitesse croît. Lorsqu elle atteint la valeur limite y max donnée par (19), le câble peut être considéré comme rigide et l évolution de l immersion suit désormais une loi de type (4). Mais dans cette évolution, la nouvelle immersion initiale est y max et non la longueur du câble à vide L 0 contrairement au modèle où le câble est toujours supposé rigide. Il s ensuit que la variation globale de l immersion avec la vitesse de traction est décrite par la juxtaposition de deux courbes, l une correspondant au régime «câble élastique», l autre correspondant au régime «câble rigide» atteint lorsque la vitesse dépasse la valeur limite V max. La jonction de ces deux courbes, autrement dit la transition entre ces deux régimes, correspond à une zone où l allure de l évolution présente un «accident» local, situé aux environs du point de coordonnées (V max, y max ), puisque à cet endroit les tangentes aux (19)

11 courbes sont différentes. C est que le graphique suivant illustre de manière qualitative. Frédéric Élie, août page 11/11

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

CHAPITRE III : Travail et énergie

CHAPITRE III : Travail et énergie CHPITRE III : Travail et énergie III. 1 En principe, les lois de Newton permettent de résoudre tous les problèmes de la mécanique classique. Si on connaît les positions et les vitesses initiales des particules

Plus en détail

L oscillateur OSCILLATEUR HARMONIQUE. Chapitre 1. I. Introduction, définitions. I.1. Exemple. I.2. Caractérisation du mouvement

L oscillateur OSCILLATEUR HARMONIQUE. Chapitre 1. I. Introduction, définitions. I.1. Exemple. I.2. Caractérisation du mouvement Chapitre 1 OSCILLATEUR HARMONIQUE harmonique étudié dans ce chapitre est un oscillateur mécanique constitué d un ressort et d une masse. Cet exemple simple permettra L oscillateur d introduire le concept

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

harmonique CHAPITRE 1 Oscillateur Introduction Plan du chapitre1

harmonique CHAPITRE 1 Oscillateur Introduction Plan du chapitre1 CHAPITRE 1 Oscillateur harmonique Introduction L oscillateur harmonique est un concept important en physique car il permet notamment de décrire le comportement autour d une position d équilibre de nombreux

Plus en détail

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES RAPPELS DE MATHEMATIQUES ORTHOPHONIE Première année 27 28 Dr MF DAURES 1 RAPPELS DE MATHEMATIQUES I - LES FONCTIONS A - Caractéristiques générales des fonctions B - La fonction dérivée C - La fonction

Plus en détail

pendule pesant pendule élastique liquide dans un tube en U

pendule pesant pendule élastique liquide dans un tube en U Chapitre 2 Oscillateurs 2.1 Systèmes oscillants 2.1.1 Exemples d oscillateurs Les systèmes oscillants sont d une variété impressionnante et rares sont les domaines de la physique dans lesquels ils ne jouent

Plus en détail

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2 BTS Mécanique et Automatismes Industriels Équations différentielles d ordre, Année scolaire 005 006 . Définition Notation Dans tout ce paragraphe, y désigne une fonction de la variable réelle x. On suppose

Plus en détail

La perte d équilibre d un cube

La perte d équilibre d un cube La perte d équilibre d un cube P. Coullet et M. Monticelli 20 mars 2003 Introduction Un parallélépipède homogène de section carré est posé sur un plan que l on peut incliner (voir figure ). Les revêtements

Plus en détail

6 Les forces mettent les objets en mouvement.

6 Les forces mettent les objets en mouvement. 6 Les forces mettent les objets en mouvement. Tu dois devenir capable de : Savoir expliquer la proportion directe entre la force et l accélération à l aide d un exemple ; expliquer la proportion inverse

Plus en détail

TP 7 : oscillateur de torsion

TP 7 : oscillateur de torsion TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

EXAMEN #1. ONDES ET PHYSIQUE MODERNE 25 % de la note finale

EXAMEN #1. ONDES ET PHYSIQUE MODERNE 25 % de la note finale EXAMEN #1 ONDES ET PHYSIQUE MODERNE 25 % de la note finale Automne 2014 Nom : Chaque question à choix multiples vaut 3 points 1. Pendant qu une onde se propage sur une corde, on quadruple la tension de

Plus en détail

LA FORCE CENTRIFUGE. En effet, cette force tend à expulser les voitures en dehors d un virage serré.

LA FORCE CENTRIFUGE. En effet, cette force tend à expulser les voitures en dehors d un virage serré. LA ORCE CENTRIUGE Introduction La force centrifuge est assez connue du public, elle fait d ailleurs l objet d une question pouvant être posée pour l obtention du permis de conduire. En effet, cette force

Plus en détail

Utilisation de python pour le calcul numérique

Utilisation de python pour le calcul numérique Utilisation de python pour le calcul numérique Résumé L objectif de ce TP est de découvrir quelques possibilités de python pour le calcul numérique. Il pourra également vous servir de référence si vous

Plus en détail

Savoir son cours. COMP.9 Energie mécanique exercices. Quel frimeur! Comparer voiture et camion : Julie sur sa balançoire : Le bon choix :

Savoir son cours. COMP.9 Energie mécanique exercices. Quel frimeur! Comparer voiture et camion : Julie sur sa balançoire : Le bon choix : COMP.9 Energie mécanique exercices Savoir son cours Quel frimeur! Quelle est leur masse? E c = ½ m v m = E c/v Attention! La vitesse doit être en m/s! v = 45 km/h = 45/ 3,6 m/s = 1,5 m/s. Ainsi, m = 18

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique Sommaire I) Théorie de l induction électromagnétique..2 A. Introduction 2 B. Notion de force électromotrice 3 C. Loi de Faraday..5 D. Quelques applications.7 Spire circulaire

Plus en détail

Professeur Eva PEBAY-PEYROULA

Professeur Eva PEBAY-PEYROULA UE3-1 : Physique Chapitre 4 : Les ondes Professeur Eva PEBAY-PEYROULA Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. IV- Les ondes Finalité du chapitre Pour

Plus en détail

Concours CASTing 2011

Concours CASTing 2011 Concours CASTing 2011 Épreuve de mécanique Durée 1h30 Sans calculatrice Le candidat traitera deux exercices parmi les trois proposés dans le sujet. Dans le cas où les trois exercices seraient traités partiellement,

Plus en détail

Notes du Cours de Mécanique 1 er semestre, année 2011/2012

Notes du Cours de Mécanique 1 er semestre, année 2011/2012 Ecole Polytechnique de l Université de Nice - Sophia Antipolis CiP1 Notes du Cours de Mécanique 1 er semestre, année 2011/2012 Patrizia Vignolo Jean-Michel Chauveau Thibault Gayral Sommaire : Introduction

Plus en détail

Étude statique du tire bouchon

Étude statique du tire bouchon Méthodologie MP1 Étude statique Tire-bouchon Étude statique du tire bouchon On s intéresse à l aspect statique du mécanisme représenté en projection orthogonale sur la figure 1. Le tire bouchon réel est

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Modèle d une automobile.

Modèle d une automobile. Modèle d une automobile. On modélise une automobile par deux disques homogènes identiques de masse m de rayon a, de moment d inertie J = (1/) m a par rapport à leurs axes respectifs, de centre C, en contact

Plus en détail

Premier principe : bilans d énergie

Premier principe : bilans d énergie MPSI - Thermodynamique - Premier principe : bilans d énergie page 1/5 Premier principe : bilans d énergie Table des matières 1 De la mécanique à la thermodynamique : formes d énergie et échanges d énergie

Plus en détail

Sujet. calculatrice: autorisée durée: 2 heures (10h-12h)

Sujet. calculatrice: autorisée durée: 2 heures (10h-12h) DS SCIENCES PHYSIQUES MATHSPÉ CONCOURS BLANC calculatrice: autorisée durée: 2 heures (10h-12h) Sujet Vaisseau spatial... 2 I.Vaisseau spatial dans un champ newtonien... 2 II.Vitesse de libération...3 A.Option

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Devoir de Physique en autocorrection n 5 pour le 15 avril 2014

Devoir de Physique en autocorrection n 5 pour le 15 avril 2014 DA 5 pour le 15 avril 2014 Devoir de Physique en autocorrection n 5 pour le 15 avril 2014 Problème : Essuie-vitre à détecteur de pluie Si, au cours de l épreuve, un candidat repère ce qui lui semble être

Plus en détail

TP force centrifuge. Ce TP est évalué à l'aide d'un questionnaire moodle.

TP force centrifuge. Ce TP est évalué à l'aide d'un questionnaire moodle. TP force centrifuge Ce TP est évalué à l'aide d'un questionnaire moodle. Objectif : Étudier la force centrifuge dans le cas d un objet ponctuel en rotation uniforme autour d un axe fixe. 1 Présentation

Plus en détail

Conversion électronique statique

Conversion électronique statique Conversion électronique statique Sommaire I) Généralités.2 A. Intérêts de la conversion électronique de puissance 2 B. Sources idéales.3 C. Composants électroniques..5 II) III) Hacheurs..7 A. Hacheur série

Plus en détail

Oscillateurs et mesure du temps

Oscillateurs et mesure du temps Oscillateurs et mesure du temps Qu est-ce que le temps? «Qui pourra le définir [le temps]? et pourquoi l'entreprendre, puisque tous les hommes conçoivent ce qu'on veut dire en parlant du temps sans qu'on

Plus en détail

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques

Plus en détail

TD : Oscillateur harmonique

TD : Oscillateur harmonique TD : Oscillateur harmonique Observation du chromosome X par microscopie à force atomique. À gauche : nanoparticules observées par microscopie à force atomique (AFM, SP1-P2). Image du Dr. K. Raghuraman

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

Un petit rien... qui peut tout changer! Octobre 2014

Un petit rien... qui peut tout changer! Octobre 2014 Un petit rien... qui peut tout changer! Octobre 2014 Présentation de l outil Présentation de l outil Vous êtes : 1 enseignant au collège. 2 enseignant au lycée. 3 les deux. 4 aucune des réponses précédentes.

Plus en détail

TABLE DES MATIERES #! #! # $ #!!

TABLE DES MATIERES #! #! # $ #!! MECANIQUE 1 2 TABLE DES MATIERES! "!! $!! 3 ! $!!!!! "! 4 $% % & ' % % %! $ %!! 5 $ ' $ $ %! % $!!! " ( "! ( $ ) " 6 $ $* $ $ " " % 7 8 UTILISATION DU COURS Il est conseillé aux utilisateurs de ce cours

Plus en détail

PY401os (2011-2012) Vous pouvez prévisualiser ce test, mais s'il s'agit d'une tentative réelle, vous serez bloqué en raison de : Navigation du test

PY401os (2011-2012) Vous pouvez prévisualiser ce test, mais s'il s'agit d'une tentative réelle, vous serez bloqué en raison de : Navigation du test Navigation PY401os (2011-2012) Collège École de Commerce PER Université Impressum Connecté sous le nom «Bernard Vuilleumier» (Déconnexion) Réglages Outils de travail Outils de travail Accueil Cours Collège

Plus en détail

DS n o 5 TS1 2012 Chutes des boulets (8 points, 1h45)

DS n o 5 TS1 2012 Chutes des boulets (8 points, 1h45) DS n o 5 TS1 2012 Chutes des boulets (8 points, 1h45) Exercice 1 Galilée à Pise (5,5 points) O i Selon la légende, Galilée (1564-1642) aurait étudié la chute des corps en lâchant divers objets du sommet

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Exercice 1. Exercice n 1 : Déséquilibre mécanique Exercice 1 1. a) Un mobile peut-il avoir une accélération non nulle à un instant où sa vitesse est nulle? donner un exemple illustrant la réponse. b) Un mobile peut-il avoir une accélération de direction

Plus en détail

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g. PHYSQ 130: Hooke 1 LOI DE HOOKE: CAS DU RESSORT 1 Introduction La loi de Hooke est fondamentale dans l étude du mouvement oscillatoire. Elle est utilisée, entre autres, dans les théories décrivant les

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

TP Méthodes Numériques

TP Méthodes Numériques ENSIMAG 1ère année, 2007-2008 TP Méthodes Numériques Objectifs Les objectifs de ce TP sont : de revenir sur les méthodes de résolution des équations différentielles vues en cours de MN ; d utiliser un

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

Propagation des ondes électromagnétiques dans le vide

Propagation des ondes électromagnétiques dans le vide Chapitre 5 Propagation des ondes électromagnétiques dans le vide 5.1 Equations de propagation pour E et B Dans le vide, au voisinage de tout point où les charges et les courants sont nuls, les équations

Plus en détail

EPREUVE OPTIONNELLE de SCIENCES INDUSTRIELLES

EPREUVE OPTIONNELLE de SCIENCES INDUSTRIELLES EPREUVE OPTIONNELLE de SCIENCES INDUSTRIELLES FERME-PORTE (ou «groom») Un «groom» est un système hydro-mécanique de fermeture automatique de porte. Description du fonctionnement La figure montre le dispositif

Plus en détail

COMPOSITION DE PHYSIQUE ET SCIENCES DE L INGÉNIEUR (X) Quelques aspects de la mesure du temps

COMPOSITION DE PHYSIQUE ET SCIENCES DE L INGÉNIEUR (X) Quelques aspects de la mesure du temps X Physique et Sciences de l ingénieur MP 2011 Énoncé 1/14 ÉCOLE POLYTECHNIQUE CONCOURS D ADMISSION 2011 FILIÈRE MP COMPOSITION DE PHYSIQUE ET SCIENCES DE L INGÉNIEUR (X) (Durée : 4 heures) L utilisation

Plus en détail

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe.

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe. Chapitre I INTRODUCTION ATHÉATIQUE I.A. I.A.1. Calcul vectoriel Produit vectoriel Plaçons-nous dans un espace vectoriel euclidien à trois dimensions. En faisant subir des rotations identiques aux trois

Plus en détail

Géométrie en trois dimensions

Géométrie en trois dimensions 1 Géométrie en trois dimensions Il s agit de visualiser des objets en trois dimensions sur un plan, pour nous l écran de l ordinateur. Pour ce faire, nous allons simplifier les choses au maximum. Nous

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Chap 8 - TEMPS & RELATIVITE RESTREINTE

Chap 8 - TEMPS & RELATIVITE RESTREINTE Chap 8 - TEMPS & RELATIVITE RESTREINTE Exercice 0 page 9 On considère deux évènements E et E Référentiel propre, R : la Terre. Dans ce référentiel, les deux évènements ont lieu au même endroit. La durée

Plus en détail

COMPOSITION DE PHYSIQUE. Quelques aspects de la fusion contrôlée par confinement magnétique

COMPOSITION DE PHYSIQUE. Quelques aspects de la fusion contrôlée par confinement magnétique ÉCOLE POLYTECHNIQUE FILIÈRE MP CONCOURS D ADMISSION 2007 COMPOSITION DE PHYSIQUE (Durée : 4 heures) L utilisation des calculatrices est autorisée pour cette épreuve. Quelques aspects de la fusion contrôlée

Plus en détail

Mesure de la dépense énergétique

Mesure de la dépense énergétique Mesure de la dépense énergétique Bioénergétique L énergie existe sous différentes formes : calorifique, mécanique, électrique, chimique, rayonnante, nucléaire. La bioénergétique est la branche de la biologie

Plus en détail

CHAPITRE II : STATIQUE

CHAPITRE II : STATIQUE CHPITRE II : STTIQUE - Généralités : I. NTIN DE RCE : En mécanique, les forces sont utilisées pour modéliser des actions mécaniques diverses (actions de contact, poids, attraction magnétique, effort ).

Plus en détail

Physique. De la Terre à la Lune : Programme Apollo, 15 ans d aventure spatiale

Physique. De la Terre à la Lune : Programme Apollo, 15 ans d aventure spatiale Physique TSI 4 heures Calculatrices autorisées De la Terre à la Lune : Programme Apollo, 15 ans d aventure spatiale 2012 Ce problème aborde quelques aspects du Programme Apollo, qui permit à l Homme de

Plus en détail

Voyez la réponse à cette question dans ce chapitre. www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof

Voyez la réponse à cette question dans ce chapitre. www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof Une échelle est appuyée sur un mur. S il n y a que la friction statique avec le sol, quel est l angle minimum possible entre le sol et l échelle pour que l échelle ne glisse pas et tombe au sol? www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof

Plus en détail

ONDES : LA PROPAGATION DES SIGNAUX

ONDES : LA PROPAGATION DES SIGNAUX ONDES MECANIQUE : PROPAGATION R.DUPERRAY Lycée F.BUISSON PTSI ONDES : LA PROPAGATION DES SIGNAUX «J'allai au bord de la rivière, j'ai toujours aimé l'eau et le doux mouvement des vagues qui se poussent;

Plus en détail

La détermination de l accélération d une sphère métallique à l aide de 21 mesures pendant un parcours dans le plan incliné enregistré par le MOTU 828

La détermination de l accélération d une sphère métallique à l aide de 21 mesures pendant un parcours dans le plan incliné enregistré par le MOTU 828 La détermination de l accélération d une sphère métallique à l aide de 21 mesures pendant un parcours dans le plan incliné enregistré par le MOTU 828 de Dr Franz Raemy septembre 2010 Introduction de l

Plus en détail

MPSI FORMULAIRE LIONEL PORCHERON DANIEL PORCHERON MAGALI DÉCOMBE VASSET. Le Formulaire MPSI

MPSI FORMULAIRE LIONEL PORCHERON DANIEL PORCHERON MAGALI DÉCOMBE VASSET. Le Formulaire MPSI MPSI FORMULAIRE LIONEL PORCHERON DANIEL PORCHERON MAGALI DÉCOMBE VASSET Le Formulaire MPSI Conception et création de couverture : Atelier 3+ Collaboration technique : Thomas Fredon, ingénieur Télécom Bretagne

Plus en détail

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU) 0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

ARISTOTE, GALILÉE ET NEWTON (6 points)

ARISTOTE, GALILÉE ET NEWTON (6 points) ARISTOTE, GALILÉE ET NEWTON (6 points) Pour cet exercice, l'utilisation de la calculatrice est autorisée Trois siècles avant notre ère, le célèbre savant grec Aristote affirmait qu "une masse d or, de

Plus en détail

Chapitre 1 Cinématique du point matériel

Chapitre 1 Cinématique du point matériel Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la

Plus en détail

Analyse dimensionnelle

Analyse dimensionnelle Analyse dimensionnelle O. Louisnard 21 septembre 2012 1 Introduction La physique manipule des grandeurs s exprimant toutes en fonction de grandeurs de base, qui sont au nombre de 7 : Masse M kg Longueur

Plus en détail

Terminale ES-L Chapitre IV Convexité.

Terminale ES-L Chapitre IV Convexité. Terminale ES-L Chapitre IV Convexité. I- Définition. Rappel : On appelle corde d'une courbe tout segment reliant deux de ses points. Illustration ci-dessous : on a tracé la courbe représentative d'une

Plus en détail

S 4 F. I) Définitions : 1) En statique et en dynamique :

S 4 F. I) Définitions : 1) En statique et en dynamique : Chapitre 1 : NOTION DE FORCE S 4 F I) Définitions : 1) En statique et en dynamique : Une force, ou action mécanique, peut être définie comme : - toute cause capable de déformer un objet (statique). Exemple

Plus en détail

1 Mise en application

1 Mise en application Université Paris 7 - Denis Diderot 2013-2014 TD : Corrigé TD1 - partie 2 1 Mise en application Exercice 1 corrigé Exercice 2 corrigé - Vibration d une goutte La fréquence de vibration d une goutte d eau

Plus en détail

Filtrage - Intégration - Redressement - Lissage

Filtrage - Intégration - Redressement - Lissage PCSI - Stanislas - Electrocinétique - TP N 3 - Filtrage - Intégration - Redressement - Lissage Filtrage - Intégration - Redressement - Lissage Prenez en note tout élément pouvant figurer dans un compte-rendu

Plus en détail

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté 010-011 CHAPITE IV Oscillations libres des systèmes à plusieurs derés de liberté Introduction : Dans ce chapitre, nous examinons

Plus en détail

- cas d une charge isolée en mouvement et par extension d un ensemble de

- cas d une charge isolée en mouvement et par extension d un ensemble de Notion de courant de particule ; conservation du courant = expression du courant de particules chargées ; charges; j = q k k - cas d une charge isolée en mouvement et par extension d un ensemble de v k

Plus en détail

ELASTICITE. l'isotropie du corps considéré: les propriétés élastiques sont les mêmes dans toutes les directions de l'espace;

ELASTICITE. l'isotropie du corps considéré: les propriétés élastiques sont les mêmes dans toutes les directions de l'espace; 7 M1 EASTICITE I.- INTRODUCTION orsqu'un corps est soumis à des contraintes externes, celui-ci subit des déformations qui dépendent de l'intensité de ces contraintes. Si ces dernières sont faibles, on

Plus en détail

Epreuve de physique chimie tronc commun : (Durée 3h30)

Epreuve de physique chimie tronc commun : (Durée 3h30) Bac blanc Avril 2012 Lycée de la Côtière Epreuve de physique chimie tronc commun : (Durée 3h30) L usage de la calculatrice n est pas autorisé. Pour faciliter le travail des correcteurs, rédiger chaque

Plus en détail

TRANSISTOR BIPOLAIRE

TRANSISTOR BIPOLAIRE I Introduction I.1 Constitution Le transistor bipolaire est réalisé dans un monocristal comportant trois zones de dopage différentes. n p n collecteur base émetteur n C On reconnaît deux jonctions PN p

Plus en détail

Chapitre 5: Oscillations d un pendule élastique horizontal

Chapitre 5: Oscillations d un pendule élastique horizontal 1 re B et C 5 Oscillations d'un pendule élastique horizontal 40 Chapitre 5: Oscillations d un pendule élastique horizontal 1. Définitions a) Oscillateur écanique * Un systèe écanique qui effectue un ouveent

Plus en détail

CH 06 UTILISATION DE L OSCILLOSCOPE

CH 06 UTILISATION DE L OSCILLOSCOPE CH 06 UTILISATION DE L OSCILLOSCOPE Pendant tout le TP vous utiliserez la Fiche méthode de l oscilloscope OX 71 Livre Bordas, Collection ESPACE, 2008, p 183 I- FONCTIONNEMENT Mettre l appareil sous tension.

Plus en détail

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble.. 1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé

Plus en détail

ELECTROSTATIQUE - 2. 1. Rappels. 2. Outils mathématiques. 3. Distribution de charges. 4. Exemples de calculs de champ électrique

ELECTROSTATIQUE - 2. 1. Rappels. 2. Outils mathématiques. 3. Distribution de charges. 4. Exemples de calculs de champ électrique ELECTROTATIQUE - 2 1. Rappels 2. Outils mathématiques 2.1. ystèmes classiques de coordonnées 2.2. Volume élémentaire dans chaque système de coordonnées 2.3. Intégrales des fonctions de points 2.4. Circulation

Plus en détail

S2I 1. Récupération de l énergie de la houle marine : Système SEAREV (Système Électrique Autonome de Récupération de l Énergie des Vagues)

S2I 1. Récupération de l énergie de la houle marine : Système SEAREV (Système Électrique Autonome de Récupération de l Énergie des Vagues) TSI 4 heures Calculatrices autorisées 2011 S2I 1 Récupération de l énergie de la houle marine : Système SEAREV (Système Électrique Autonome de Récupération de l Énergie des Vagues) Les ressources en énergie

Plus en détail

DS SCIENCES PHYSIQUES MATHSPÉ

DS SCIENCES PHYSIQUES MATHSPÉ DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Jouets...2 I.Voiture avec volant d'inertie réservoir d'énergie cinétique...2 A.Préliminaire...3 B.Phase 1...3 C.Phase 2...4 D.Phase

Plus en détail

Les états de collision inévitables, un outil pour la sûreté des systèmes robotiques

Les états de collision inévitables, un outil pour la sûreté des systèmes robotiques Les états de collision inévitables, un outil pour la sûreté des systèmes robotiques Antoine Durand-Gasselin, encadré par Thierry Fraichard, equipe emotion, laboratoire Inrialpes Contexte : La navigation

Plus en détail

Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites

Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites I- Les trois lois de Kepler : Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites Les lois de Kepler s'applique aussi bien pour une planète en mouvement

Plus en détail

MESURE ET PRECISION. Il est clair que si le voltmètre mesure bien la tension U aux bornes de R, l ampèremètre, lui, mesure. R mes. mes. .

MESURE ET PRECISION. Il est clair que si le voltmètre mesure bien la tension U aux bornes de R, l ampèremètre, lui, mesure. R mes. mes. . MESURE ET PRECISIO La détermination de la valeur d une grandeur G à partir des mesures expérimentales de grandeurs a et b dont elle dépend n a vraiment de sens que si elle est accompagnée de la précision

Plus en détail

GRANDEURS PHYSIQUES et EQUATIONS AUX DIMENSIONS

GRANDEURS PHYSIQUES et EQUATIONS AUX DIMENSIONS GRANDEURS PHYSIQUES et EQUATIONS AUX DIMENSIONS Par Silicium 628 La physique décrit la matière et l espace, leurs propriétés et leurs comportements. Les propriétés mesurables sont nommées GRANDEURS PHYSIQUES.

Plus en détail

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2 Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

TP oscilloscope et GBF

TP oscilloscope et GBF TP oscilloscope et GBF Ce TP est évalué à l'aide d'un questionnaire moodle. Objectif : ce travail a pour buts de manipuler l oscilloscope et le GBF. A l issu de celui-ci, toutes les fonctions essentielles

Plus en détail

Tension d alimentation : V CC. i C R C R B

Tension d alimentation : V CC. i C R C R B Chapitre 4 Polarisation du transistor bipolaire à jonction 4.1 Le problème de la polarisation 4.1.1 Introduction Dans le chapitre 3, nous avons analysé un premier exemple de circuit d amplification de

Plus en détail

Michel Henry Nicolas Delorme

Michel Henry Nicolas Delorme Michel Henry Nicolas Delorme Mécanique du point Cours + Exos Michel Henry Maître de conférences à l IUFM des Pays de Loire (Le Mans) Agrégé de physique Nicolas Delorme Maître de conférences à l université

Plus en détail

Introduction aux vibrations

Introduction aux vibrations Introduction aux vibrations Human Induced Vibration of Steel Structures 11/4/28 RFS2-CT-27-33 Vue d ensemble Vue d ensemble Les bases Equation du mouvement Fréquence propre Masse modale Amortissement Vibrations

Plus en détail

Centrale-TSI Physique 2012 page 1/7

Centrale-TSI Physique 2012 page 1/7 Centrale-TSI Physique 0 page /7 Centrale TSI physique 0 : "De la Terre à la Lune" I - De la Terre A - Décollage Choix du référentiel : a) Le référentiel géocentrique est le référentiel en translation par

Plus en détail

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation 4 6 8 2 4 8 22 26 3 34 38 42 46 5 54 58 62 66 7 74 78 83 89 96 8 44 Bertin Morgan Compte rendu de LA37 B, TP numéro. Les essais effectués par le laboratoire des ponts et chaussés nous ont fournis la température

Plus en détail

TD 8 Dynamique. 1 Nacelle à flèche téléscopique H21 TX 1. Compétences travaillées :

TD 8 Dynamique. 1 Nacelle à flèche téléscopique H21 TX 1. Compétences travaillées : Compétences travaillées : Déterminer tout ou partie du torseur cinétique d un solide par rapport à un autre. Déterminer tout ou partie du torseur dynamique d un solide par rapport à un autre. Déterminer

Plus en détail

Phénomènes de dispersion

Phénomènes de dispersion PSI Moissan 1 Phénomènes de dispersion Février 13 Phénomènes de dispersion I Propagation dans un pavillon eponentiel I.1 Description et modélisation du problème On étudie la propagation d une onde acoustique

Plus en détail

TD de Physique n o 1 : Mécanique du point

TD de Physique n o 1 : Mécanique du point E.N.S. de Cachan Département E.E.A. M FE 3 e année Phsique appliquée 011-01 TD de Phsique n o 1 : Mécanique du point Exercice n o 1 : Trajectoire d un ballon-sonde Un ballon-sonde M, lâché au niveau du

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

5.2 Théorème/Transformée de Fourier a) Théorème

5.2 Théorème/Transformée de Fourier a) Théorème . Théorème de Fourier et Transformée de Fourier Fourier, Joseph (788). Théorème/Transformée de Fourier a) Théorème Théorème «de Fourier»: N importe quelle courbe peut être décomposée en une superposition

Plus en détail

Chapitre 7 Leschangementsde référentiels

Chapitre 7 Leschangementsde référentiels Chapitre 7 Leschangementsde référentiels 59 7.1. Introduction 7.1.1. Position du problème L étude des trajectoires di ère selon le référentiel dans lequel on se place. Par exemple, observons la valve d

Plus en détail

A. Chauffage d une maison en hiver

A. Chauffage d une maison en hiver Banque Agro - Véto A - 0711 PHYSIQUE Durée : 3 heures 30 minutes L usage d une calculatrice est interdit pour cette épreuve. Si, au cours de l épreuve, un candidat repère ce qui lui semble être une erreur

Plus en détail