Equipe Business Intelligence!

Dimension: px
Commencer à balayer dès la page:

Download "Equipe Business Intelligence!"

Transcription

1 Equipe Business Intelligence!

2 Laboratoire MAS ü MAS : un laboratoire de recherche où les mathématiques et l informatique sont appliquées aux systèmes ü Analyse, modélisation, simulation et optimisation de systèmes complexes ü Investigations théoriques et recherches guidées par les applications ü Fortes connexions avec des partenaires académiques et industriels ü 21 membres permanents, 14 non permanents, 46 doctorants ü 6 équipes

3 Chaire Business Intelligence ü Créée en 2008 sous la forme d une chaire (SAP) ü Objectifs : Recherche amont sur le futur de la Business Intelligence Développer un curriculum à Centrale ü Recherche: Gestion intelligente de l information Modélisation, extraction et analyse de données structurées et non structurées Modèles: ontologies, graphes, treillis de Galois

4 Couche Requêtes Couche Sémantique Extraction Structuration en graphe

5 Chaire Business Intelligence ü Direction : Marie-Aude Aufaure Expérience industrielle (Alcatel, Sagem, Altran, DGA) Expérience académique (Lyon 1, Supelec, Centrale) Collaborateur extérieur INRIA depuis 2003 Expert auprès de la commission européenne (DG CONNECT) Membre de comités d évaluation ANR Expérience de management et de valorisation de la recherche Codirection de l Ecole d été européenne en Business Intelligence

6 KPI Chaire Business Intelligence ü Leçon inaugurale sur les enjeux de la Business Intelligence ü Master Erasmus Mundus IT4BI, accepté en juillet 2011 ü Enseignement des bases de données, entrepôts de données et fouille de données (2 ème et 3 ème années) ü Nombreux projets d élèves (enjeux, innovation, filière recherche) ü Brevets (5) ü Développement logiciel à SAP et dans l équipe ü Publications ü Ecole d été en Business Intelligence ü Projets collaboratifs (2 EU, 1 DGCIS, 1 DGA) ü Thèses CIFRE (3 dont un centralien)

7 Equipe BI : évolution Ingénieur de recherche 6 4 Chercheurs postdoc Doctorants sur projet Doctorants CIFRE

8 Projet CUBIST (EU FP7) ü Combining and Unifying Business Intelligence and Semantic Technologies (STREP Call 5)

9 Projet CUBIST (EU FP7) ü Rôle: Représentation et exploration innovante et userfriendly de l information basée sur l Analyse Formelle de Concepts Guider l utilisateur dans la découverte de relations inconnues Nouvelles méthodes de visualisation de l Analyse Formelle de Concepts pour la BI Passage à l échelle d algorithmes de construction de treillis (temps réel) Demo paper à ICDM Channel You Tube:

10 Projet CUBIST (EU FP7)

11 Projet ARSA ü ARSA : Analyse de réseaux sociaux pour les Administrations (appel Web 2.0, services innovants) Objectifs : promouvoir la transparence des administrations via des réseaux sociaux. En interne d abord, en explorant les réseaux sociaux de l administration. En externe ensuite, d une part en analysant les réseaux sociaux externes en relation avec la vie publique, d autre part en exposant une partie des réseaux internes aux citoyens Rôle : Extraire des graphes à partir de données structurées Définir un langage visuel de requêtes Analyser les réseaux sociaux externes (Twitter)

12 User level Aggregation Visualization Visual Query Language Nodes/Concepts selection Knowledge layer SPIDER- Graph Middelware for information search matching Enterprise ontology Extrac6on and Merging (Hadoop) Data layer Extrac6on DB1 DB2 DBn Textual content Open Linking data

13 Projet PARLANCE (EU FP7) ü Probabilistic Adaptive Real-Time Learning And Natural Conversational Engine (STREP) ü Objectif : construire des applications mobiles qui approchent les performances humaines dans l interaction lors de conversations ü Système incrémental

14

15 Rôle dans PARLANCE ü Enrichissement incrémental d ontologies modulaires Utilisation de bases de connaissances existantes Apprentissage d ontologies à partir du web Enrichissement de la base de connaissances basé sur les requêtes des utilisateurs ü Modèle utilisateur riche, dynamique et évolutif Information statique et contextuelle Information sociale Filtrage collaboratif

16 Autres travaux ü Projet MOCAS (innovation duale DGA) : Moteur Big Data pour le raisonnement à base de cas ü Réseaux sociaux : Détection d influence Détection de polarité ü Treillis de Galois: Méthode algébrique de construction de treillis ü Personnalisation: Intégration de préférences basées sur les critiques des utilisateurs

17 Collaborations en cours ü Université de Bologne Stefano Rizzi et Université de Blois Patrick Marcel Personnalisation dans les entrepôts de données ü Université d Alicante Juan Trujillo Business Intelligence sur les données structurées et non structurées ü UCSD Yannis Papakonstantinou Real-time visual analytics ü Yahoo Labs Peter Mika Recherche d information sociale ü Université Paris 1 Bénédicte Le Grand Réseaux sociaux analyse formelle de concepts ü ISEP Raja Chiky Thèse commune, démarrage en avril 2013 ü Collaborations avec l Université de Sheffield, SAP, des PMEs innovantes, l INRIA

18 Chaire ATOS ü Plusieurs partenaires académiques complémentaires Centrale-Supelec ISEP ü Thématique de recherche: Agrégation sémantique à partir de flux textuels et non textuels, des open data et du web Développement d une plateforme temps réel permettant de gérer des masses de données structurées ou non Ensemble de services du type watch system, dashboard personnalisé (Do It Yourself) ü Applications potentielles Smart cities, Santé, Réseaux sociaux ü Partenaires potentiels : Veolia, Viadeo, EDF R&D, Orange, IBM (fellowships), Space Apps (Bruxelles)

19 Retro-action Decision Monitoring, Alerts, Statistics, fault detection, etc. Ontologie s Quality Control Semantic data streams Semantic filtering and Continuous queries Interconnection Summarizing Load Shedding Heterogeneous and dynamic data streams Heterogeneous and static data sensors

20

Hervé Couturier EVP, SAP Technology Development

Hervé Couturier EVP, SAP Technology Development Hervé Couturier EVP, SAP Technology Development Hervé Biausser Directeur de l Ecole Centrale Paris Bernard Liautaud Fondateur de Business Objects Questions à: Hervé Couturier Hervé Biausser Bernard Liautaud

Plus en détail

Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France

Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France 2013 SAP AG. All rights reserved. Customer 1 Rôles et Attentes Instantanéité BIG DATA Users IT Real Time SAP HANA

Plus en détail

Accélérateur de votre RÉUSSITE

Accélérateur de votre RÉUSSITE Accélérateur de votre RÉUSSITE SAP Business Objects est une suite décisionnelle unifiée et complète qui connecte ses utilisateurs en éliminant les difficultés d accès à l information. Mobile Devices Browsers

Plus en détail

DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD

DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD BIGDATA PARIS LE 1/4/2014 VINCENT HEUSCHLING @VHE74! 1 NOUS 100% Bigdata Infrastructure IT + Data Trouver vos opportunités Implémenter les

Plus en détail

Big Data -Comment exploiter les données et les transformer en prise de décisions?

Big Data -Comment exploiter les données et les transformer en prise de décisions? IBM Global Industry Solution Center Nice-Paris Big Data -Comment exploiter les données et les transformer en prise de décisions? Apollonie Sbragia Architecte Senior & Responsable Centre D Excellence Assurance

Plus en détail

BIG DATA : une vraie révolution industrielle (1) Les fortes évolutions liées à la digitalisation

BIG DATA : une vraie révolution industrielle (1) Les fortes évolutions liées à la digitalisation BIG DATA : une vraie révolution industrielle (1) Les fortes évolutions liées à la digitalisation - définition - étapes - impacts La révolution en cours du big data - essai de définition - acteurs - priorités

Plus en détail

New Features. Developed by. BPM Conseil - SARL au capital de 70 000 euros - RCS LYON 479 400 129 9, rue Pierre Blanc - 69001 Lyon - France 1/20

New Features. Developed by. BPM Conseil - SARL au capital de 70 000 euros - RCS LYON 479 400 129 9, rue Pierre Blanc - 69001 Lyon - France 1/20 5 New Features Developed by 1/20 Sommaire 1 Introduction... 3 2 Evolutions des studios de développement et améliorations fonctionnelles... 5 3 Portail Vanilla... 6 3.1 Open Street Maps... 6 3.2 Gestion

Plus en détail

Le traitement du Big Data inclue la collecte, la curation, le stockage, l enrichissement, le croisement, la partage, l analyse et la visualisation.

Le traitement du Big Data inclue la collecte, la curation, le stockage, l enrichissement, le croisement, la partage, l analyse et la visualisation. Les infrastructure du Big Data Le «Big Data» vise à tirer un avantage concurrentiel au travers de méthodes de collecte, d analyse et d exploitation des données qu on ne pouvait utiliser jusqu à présent

Plus en détail

IODAA. de l 1nf0rmation à la Décision par l Analyse et l Apprentissage / 21

IODAA. de l 1nf0rmation à la Décision par l Analyse et l Apprentissage / 21 IODAA de l 1nf0rmation à la Décision par l Analyse et l Apprentissage IODAA Informations générales 2 Un monde nouveau Des données numériques partout en croissance prodigieuse Comment en extraire des connaissances

Plus en détail

UCOPIA Wi-Fi analytics & marketing. 30 septembre 2015

UCOPIA Wi-Fi analytics & marketing. 30 septembre 2015 UCOPIA Wi-Fi analytics & marketing 1 30 septembre 2015 AGENDA Introduction Etudes de cas Wi-Fi Analytics Business Intelligence Forfaits Wi-Fi Marketing Web Injection Forfaits Description Technique 2 Introduction

Plus en détail

Pentaho Business Analytics Intégrer > Explorer > Prévoir

Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho lie étroitement intégration de données et analytique. En effet, les services informatiques et les utilisateurs métiers peuvent accéder aux

Plus en détail

Il y a de l'ia dans les programmes de l'agence Nationale de la Recherche Bertrand Braunschweig Responsable de programmes Paris, 3 Novembre 2006

Il y a de l'ia dans les programmes de l'agence Nationale de la Recherche Bertrand Braunschweig Responsable de programmes Paris, 3 Novembre 2006 Il y a de l'ia dans les programmes de l'agence Nationale de la Recherche Bertrand Braunschweig Responsable de programmes Paris, 3 Novembre 2006 www.agence-nationale-recherche.fr Bref historique Un objectif

Plus en détail

Vous trouvez plus d information sur AREL. ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html

Vous trouvez plus d information sur AREL. ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html Option Deux thèmes : La recherche opérationnelle : Traiter des problèmes d optimisation, d aide à la décision et d évaluation de performances

Plus en détail

CENTAI : Big Data & Big Analytics Réunion DGPN / Thales Octobre 2013

CENTAI : Big Data & Big Analytics Réunion DGPN / Thales Octobre 2013 www.thalesgroup.com CENTAI : Big Data & Big Analytics Réunion DGPN / Thales Octobre 2013 2 / Sommaire CENTAI : Présentation du laboratoire Plate-forme OSINT LAB Détection de la fraude à la carte bancaire

Plus en détail

SONDY : une plateforme open-source d analyse et de fouille pour les réseaux sociaux en ligne

SONDY : une plateforme open-source d analyse et de fouille pour les réseaux sociaux en ligne SONDY : une plateforme open-source d analyse et de fouille pour les réseaux sociaux en ligne Adrien GUILLE, C. Favre, Djamel Abdelkader Zighed To cite this version: Adrien GUILLE, C. Favre, Djamel Abdelkader

Plus en détail

July 1, 2013. Stéphan Clémençon (Télécom ParisTech) Mastère Big Data July 1, 2013 1 / 15

July 1, 2013. Stéphan Clémençon (Télécom ParisTech) Mastère Big Data July 1, 2013 1 / 15 Mastère Spécialisé Big Data Stéphan Clémençon Télécom ParisTech July 1, 2013 Stéphan Clémençon (Télécom ParisTech) Mastère Big Data July 1, 2013 1 / 15 Agenda Contexte et Opportunité Les grandes lignes

Plus en détail

Dailymotion: La performance dans le cloud

Dailymotion: La performance dans le cloud Dailymotion: La performance dans le cloud CRiP Thématique Services IT dans le Cloud 06/11/14 Dailymotion en quelques chiffres? 130 millions visiteurs uniques par mois 3 milliards de vidéos vues par mois

Plus en détail

Accès au Contenu Informationnel pour les Masses de Données de Documents

Accès au Contenu Informationnel pour les Masses de Données de Documents Accès au Contenu Informationnel pour les Masses de Données de Documents Grappa LILLE 3 - UR Futurs INRIA MOSTRARE Laboratoire d Informatique de Paris 6 Laboratoire de Recherche en Informatique Orsay -

Plus en détail

UNIVERSITE D'EVRY VAL D'ESSONNE Référence GALAXIE : 4072

UNIVERSITE D'EVRY VAL D'ESSONNE Référence GALAXIE : 4072 UNIVERSITE D'EVRY VAL D'ESSONNE Référence GALAXIE : 4072 Numéro dans le SI local : Référence GESUP : Corps : Professeur des universités Article : 46-1 Chaire : Non Section 1 : 27-Informatique Section 2

Plus en détail

La rencontre du Big Data et du Cloud

La rencontre du Big Data et du Cloud La rencontre du Big Data et du Cloud Libérez le potentiel de toutes vos données Visualisez et exploitez plus rapidement les données de tous types, quelle que soit leur taille et indépendamment de leur

Plus en détail

1 Actuate Corporation 2012. + de données. + d analyses. + d utilisateurs.

1 Actuate Corporation 2012. + de données. + d analyses. + d utilisateurs. 1 + de données. + d analyses. + d utilisateurs. 2 Actuate et BIRT Actuate est l Editeur spécialiste de la Business Intelligence et le Reporting qui a créé le projet Open Source BIRT Fondée en 1993 en Californie

Plus en détail

Actuate, les Hommes à l Origine de BIRT

Actuate, les Hommes à l Origine de BIRT 1 Actuate, les Hommes à l Origine de BIRT BIRT est le projet Open Source qui a révolutionné le domaine de la Business Intelligence BIRT: Business Intelligence and Reporting Tools Une solution Open Source

Plus en détail

Administration, monitoring des services

Administration, monitoring des services IBM Software Group Administration, monitoring des services Véronique Kaçar, Consultant Tivoli, IBM France 2005 IBM Corporation Les Services : des ressources à gérer - Analyser et optimiser les services

Plus en détail

ATELIER. QUASAR OBILOG BI (Décisionnel) ATELIER > PROJET BI

ATELIER. QUASAR OBILOG BI (Décisionnel) ATELIER > PROJET BI ATELIER QUASAR OBILOG BI (Décisionnel) Sommaire Définitions Objectifs du projet Notre démarche Notre partenaire (TIBCO) Présentation indicateurs Production et Qualité Création indicateur (TRS) Disponibilité

Plus en détail

Formation BusinessObjects v.6.5. Contenu des Formations

Formation BusinessObjects v.6.5. Contenu des Formations Formation BusinessObjects v.6.5 des Formations TABLE DES MATIERES I. UTILISATEUR BO V.6.5 NIVEAU 1 & 2... 3 DESCRIPTION... 3 PREALABLE... 3 CONTENU... 3 II. INFOVIEW & WEBINTELLIGENCE V.6.5... 4 DESCRIPTION...

Plus en détail

IC2. Interaction, Cognition and Complexity Département INFRES. Talel Abdessalem. Institut Mines-Télécom

IC2. Interaction, Cognition and Complexity Département INFRES. Talel Abdessalem. Institut Mines-Télécom Talel Abdessalem Interaction, Cognition and Complexity Département INFRES Institut Mines-Télécom Composition de l équipe Permanents Janvier 2008 Juin 2013 9 EC + 1DR CNRS 8 EC + 1DR CNRS 4 départs, 3 recrutements

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Knowledge Enabled Real-Time Recommendation System

Knowledge Enabled Real-Time Recommendation System Knowledge Enabled Real-Time Recommendation System Syed Gillani, Jules Chevalier syed.gillani@univ-st-etienne.fr jules.chevalier@univ-st-etienne.fr Institut Henri Fayol, École des Mines de Saint-Étienne

Plus en détail

1 Actuate Corporation 2012. + de données. + d analyses. + d utilisateurs.

1 Actuate Corporation 2012. + de données. + d analyses. + d utilisateurs. 1 Actuate Corporation 2012 + de données. + d analyses. + d utilisateurs. Actuate et BIRT Actuate est l Editeur spécialiste de la Business Intelligence et le Reporting qui a créé le projet Open Source BIRT

Plus en détail

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la

Plus en détail

Présentation des. MicroStrategy 10.

Présentation des. MicroStrategy 10. Présentation des nouveautés de MicroStrategy 10. microstrategy.com/analytics 1 M MicroStrategy 10. Une véritable révolution. MicroStrategy 10 représente une étape majeure dans l évolution de la suite MicroStrategy

Plus en détail

Réseau Sociaux Plan. 1. Historique. 2. Définition et fonctionnalités. 3. Usages actuels. 4. Tendances. 5. Problématiques de recherche

Réseau Sociaux Plan. 1. Historique. 2. Définition et fonctionnalités. 3. Usages actuels. 4. Tendances. 5. Problématiques de recherche Réseaux Sociaux Révolution des usages sur Internet, et nouvelles problématiques de recherche Pierre Maret, Laboratoire Hubert Curien, St-Etienne Adrien Joly, Alcatel-Lucent Bell Labs France, Villarceaux

Plus en détail

Linagora Labs. Témoignage d'entreprise sur sa participation à des projets du 7ème PCRD

Linagora Labs. Témoignage d'entreprise sur sa participation à des projets du 7ème PCRD Linagora Labs Témoignage d'entreprise sur sa participation à des projets du 7ème PCRD Votre contact : Jean-Pierre LORRE Directeur R&D Tel : 06 88 34 63 85 Email : jplorre@linagora.com Jean-Pierre LORRE

Plus en détail

LA BUSINESS INVESTIGATION BI ++

LA BUSINESS INVESTIGATION BI ++ LA BUSINESS INVESTIGATION «labusiness investigation a pour but de répondre précisément (par des indicateurs pertinents de mesure de la performance ) à des objectifs posés par une direction» BI ++ LA BUSINESS

Plus en détail

Fiche de poste. UNIVERSITE DE BRETAGNE SUD (préciser si IUT) Poste n 0134. 02 97 87 66 30 02 97 87 66 35 e-mail : drh.ens@listes.univ-ubs.

Fiche de poste. UNIVERSITE DE BRETAGNE SUD (préciser si IUT) Poste n 0134. 02 97 87 66 30 02 97 87 66 35 e-mail : drh.ens@listes.univ-ubs. Fiche de poste UNIVERSITE DE BRETAGNE SUD (préciser si IUT) Poste n 0134 Corps : Sections : Profil : Localisation : Etat du poste : Maître de conférences 27 informatique IUT de Vannes Vacant Article de

Plus en détail

Des analyses logicielles dédiées et rentables

Des analyses logicielles dédiées et rentables Des analyses logicielles dédiées et rentables http://www.synectique.eu Un mot de présentation Depuis 1996 dans la maintenance et l évolution logicielle Auteur de Object-Oriented Reengineering Patterns

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Politique de transfert de l INRIA. Bruno Sportisse Directeur du transfert et de I innovation

Politique de transfert de l INRIA. Bruno Sportisse Directeur du transfert et de I innovation 1 Politique de transfert de l INRIA Bruno Sportisse Directeur du transfert et de I innovation Eléments factuels 2 Le transfert: une mission de l INRIA (double tutelle: recherche & industrie) Trois voies:

Plus en détail

Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group

Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group 1 Catherine Chochoy I/T Specialist, IBM Information Management on System z, Software Group Alain Maneville Executive I/T specialist, zchampion, IBM Systems and Technology Group 2 Le défi du Big Data (et

Plus en détail

BI = Business Intelligence Master Data-Science

BI = Business Intelligence Master Data-Science BI = Business Intelligence Master Data-Science UPMC 25 janvier 2015 Organisation Horaire Cours : Lundi de 13h30 à 15h30 TP : Vendredi de 13h30 à 17h45 Intervenants : Divers industriels (en cours de construction)

Plus en détail

LA 1 ÈRE PLACE DE MARCHÉ DE L UNIVERS DATA. Un événement. En tenue conjointe avec

LA 1 ÈRE PLACE DE MARCHÉ DE L UNIVERS DATA. Un événement. En tenue conjointe avec LA 1 ÈRE PLACE DE MARCHÉ DE L UNIVERS DATA Un événement En tenue conjointe avec LE DATA INTELLIGENCE EST LE NOUVEAU RENDEZ-VOUS DU MANAGEMENT DE LA DATA En 2013, avec la création des Data Intelligence

Plus en détail

Visualisation d information

Visualisation d information Master SIAD 1 année Visualisation d information Jean-Yves Antoine http://www.info.univ-tours.fr/~antoine/ Master SIAD 1 année Visualisation d information Chapitre 1.0 Introduction Quand voir, c est comprendre

Plus en détail

Jean-Daniel Fekete Directeur de Recherche, Resp. équipe-projet AVIZ INRIA

Jean-Daniel Fekete Directeur de Recherche, Resp. équipe-projet AVIZ INRIA La visualisation d information pour comprendre et interagir avec les données Jean-Daniel Fekete Directeur de Recherche, Resp. équipe-projet AVIZ INRIA Jean-Daniel.Fekete@inria.fr, www.aviz.fr, @jdfaviz

Plus en détail

Jean-Pascal Ancelin Directeur Commercial Information Builders. Conférence IDC Jeudi 11 juin 2009

Jean-Pascal Ancelin Directeur Commercial Information Builders. Conférence IDC Jeudi 11 juin 2009 Simplifier l accès et la mise à disposition de l information en temps réel dans l entreprise: Les exemples de Ford, NYC Dept. of Health, Police de la ville de Richmond Jean-Pascal Ancelin Directeur Commercial

Plus en détail

FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis

FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis Joseph Salmon Télécom ParisTech Jeudi 6 Février Joseph Salmon (Télécom ParisTech) Big Data Jeudi 6 Février 1 / 18 Agenda Contexte et opportunités

Plus en détail

Analytics Platform. MicroStrategy. Business Intelligence d entreprise. Self-service analytics. Big Data analytics.

Analytics Platform. MicroStrategy. Business Intelligence d entreprise. Self-service analytics. Big Data analytics. Business Intelligence d entreprise MicroStrategy Analytics Platform Self-service analytics Big Data analytics Mobile analytics Disponible en Cloud Donner l autonomie aux utilisateurs. Des tableaux de bord

Plus en détail

L Art d être Numérique. Thierry Pierre Directeur Business Development SAP France

L Art d être Numérique. Thierry Pierre Directeur Business Development SAP France L Art d être Numérique Thierry Pierre Directeur Business Development SAP France La Transformation Numérique «Plus largement, l impact potentiel des technologies numériques disruptives (cloud, impression

Plus en détail

CommentWatcher. plateforme Web open-source pour analyser les discussions sur des forums en ligne. Marian-Andrei RIZOIU

CommentWatcher. plateforme Web open-source pour analyser les discussions sur des forums en ligne. Marian-Andrei RIZOIU CommentWatcher plateforme Web open-source pour analyser les discussions sur des forums en ligne Marian-Andrei RIZOIU 2ème octobre 2013 BLEND 2013 Lyon, France Contexte Laboratoire ERIC Université Lumière

Plus en détail

Piloter vos activités métier avec le BAM. Jean-Marc Langé

Piloter vos activités métier avec le BAM. Jean-Marc Langé Piloter vos activités métier avec le BAM Jean-Marc Langé Qu est-ce que le BAM? Le BAM (Business Activity Monitoring) consiste à agréger, analyser et présenter en temps réel des informations sur les activités,

Plus en détail

WEB15 IBM Software for Business Process Management. un offre complète et modulaire. Alain DARMON consultant avant-vente BPM alain.darmon@fr.ibm.

WEB15 IBM Software for Business Process Management. un offre complète et modulaire. Alain DARMON consultant avant-vente BPM alain.darmon@fr.ibm. WEB15 IBM Software for Business Process Management un offre complète et modulaire Alain DARMON consultant avant-vente BPM alain.darmon@fr.ibm.com Claude Perrin ECM Client Technical Professional Manager

Plus en détail

Rendez-vous la liberté avec Rational Quality Manager

Rendez-vous la liberté avec Rational Quality Manager IBM Software Group RAT02 Rendez-vous la liberté avec Rational Quality Manager Bernard Dupré IBM Rational IT Specialist 2008 IBM Corporation Envisager une plateforme qui change la production de logiciels

Plus en détail

Orientations stratégiques IBM Software. Philippe Bournhonesque Stratégie Software France

Orientations stratégiques IBM Software. Philippe Bournhonesque Stratégie Software France Orientations stratégiques IBM Software Philippe Bournhonesque Stratégie Software France Des clients désireux de changer 98% des CEOs envisagent des changements de leurs business models 3X de la difficulté

Plus en détail

Les technologies du Big Data

Les technologies du Big Data Les technologies du Big Data PRÉSENTÉ AU 40 E CONGRÈS DE L ASSOCIATION DES ÉCONOMISTES QUÉBÉCOIS PAR TOM LANDRY, CONSEILLER SENIOR LE 20 MAI 2015 WWW.CRIM.CA TECHNOLOGIES: DES DONNÉES JUSQU'À L UTILISATEUR

Plus en détail

Séminaire DIXIT - Les nouvelles frontières de la «data intelligence» : content analytics, machine-learning, prédictif

Séminaire DIXIT - Les nouvelles frontières de la «data intelligence» : content analytics, machine-learning, prédictif Séminaire DIXIT - Les nouvelles frontières de la «data intelligence» : content analytics, machine-learning, prédictif 13 avril 2015 LES INNOVATIONS DANS LA SOCIAL MEDIA INTELLIGENCE Expérience informationnelle

Plus en détail

Lamia Oukid, Ounas Asfari, Fadila Bentayeb, Nadjia Benblidia, Omar Boussaid. 14 Juin 2013

Lamia Oukid, Ounas Asfari, Fadila Bentayeb, Nadjia Benblidia, Omar Boussaid. 14 Juin 2013 Cube de textes et opérateur d'agrégation basé sur un modèle vectoriel adapté Text Cube Model and aggregation operator based on an adapted vector space model Lamia Oukid, Ounas Asfari, Fadila Bentayeb,

Plus en détail

TITRE : DEMONSTRATEUR D UN WEB-SERVICE EN OPTIMISATION NUMERIQUE

TITRE : DEMONSTRATEUR D UN WEB-SERVICE EN OPTIMISATION NUMERIQUE TITRE : DEMONSTRATEUR D UN WEB-SERVICE EN OPTIMISATION NUMERIQUE KEYWORDS : SYSTEMX, WEBSERVICE, COLLABORATIVE FILTERING, MACHINE LEARNING, LANGAGE PROGRAMMATION, HPC, BASE OBJETS COMPLEXES CONTEXTE de

Plus en détail

Marc SALLIERES CEO ALTIC marc.sallieres@altic.org. www.altic.org

Marc SALLIERES CEO ALTIC marc.sallieres@altic.org. www.altic.org Marc SALLIERES CEO ALTIC marc.sallieres@altic.org www.altic.org Présentation ALTIC Les projets ALTIC BI Open Source véritable alternative Spécialiste BI Open Source Présentation ALTIC 2009 Club Finance

Plus en détail

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -Big Data par l'exemple -Julien DULOUT 20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà

Plus en détail

LabCom SMILK. Social Media Intelligence and Linked Knowledge. ISTE 2013 Keynote thumb wrestling

LabCom SMILK. Social Media Intelligence and Linked Knowledge. ISTE 2013 Keynote thumb wrestling LabCom SMILK Social Media Intelligence and Linked Knowledge ISTE 2013 Keynote thumb wrestling un lab quoi? un Laboratoire de recherche Commun (LabCom) entre un organisme de recherche et une entreprise

Plus en détail

X2BIRT : Mettez de l interactivité dans vos archives

X2BIRT : Mettez de l interactivité dans vos archives Présentation Produit Présentation Produit X2BIRT : Mettez de l interactivité dans vos archives L accès à l information est capital pour les affaires. X2BIRT, la dernière innovation d Actuate, prend le

Plus en détail

La Data Visualisation dans les organisations. Par Claude-Henri Meledo cmeledo@aldecis.com

La Data Visualisation dans les organisations. Par Claude-Henri Meledo cmeledo@aldecis.com La Data Visualisation dans les organisations Par Claude-Henri Meledo cmeledo@aldecis.com Claude-Henri Meledo Data visualisation Systèmes d information Mesure de la Performance Claude-Henri Meledo Data

Plus en détail

Projet de Chaire Machine-learning

Projet de Chaire Machine-learning Projet de Chaire Machine-learning Stéphan Clémençon Télécom ParisTech January 15, 2013 Stéphan Clémençon (Télécom ParisTech) Chaire Apprentissage January 15, 2013 1 / 1 Machine-learning: un bref tour d

Plus en détail

L'agilité appliquée à nous-mêmes. Philippe Krief, PhD Development Manager IBM France Lab

L'agilité appliquée à nous-mêmes. Philippe Krief, PhD Development Manager IBM France Lab L'agilité appliquée à nous-mêmes Philippe Krief, PhD Development Manager IBM France Lab Agenda Où en était l équipe RPP il y a 24 mois Réorganisation de l équipe et du projet autour de Scrum et de RTC

Plus en détail

En route vers le succès avec une solution de BI intuitive destinée aux entreprises de taille moyenne

En route vers le succès avec une solution de BI intuitive destinée aux entreprises de taille moyenne Présentation du produit SAP s SAP pour les PME SAP BusinessObjects Business Intelligence, édition Edge Objectifs En route vers le succès avec une solution de BI intuitive destinée aux entreprises de taille

Plus en détail

Analyse de données textuelles Panorama des fonctions, des méthodes et des usages

Analyse de données textuelles Panorama des fonctions, des méthodes et des usages Analyse de données textuelles Panorama des fonctions, des méthodes et des usages Sylvie Dalbin Assistance & Techniques Documentaires DocForum, Le 17 Novembre 2005 Déroulé de l'intervention (1) 1. Définition

Plus en détail

Programme TechDay Romandie

Programme TechDay Romandie Programme TechDay Romandie Esri & Geocom 13:00 ArcGIS: la plateforme cartographique pour votre organisation 13:30 Horizon ArcGIS: que nous réservent ArcGIS 10.3 et ArcGIS Pro? 14:15 City Engine: transformer

Plus en détail

Le Futur de la Visualisation d Information. Jean-Daniel Fekete Projet in situ INRIA Futurs

Le Futur de la Visualisation d Information. Jean-Daniel Fekete Projet in situ INRIA Futurs Le Futur de la Visualisation d Information Jean-Daniel Fekete Projet in situ INRIA Futurs La visualisation d information 1.Présentation 2.Bilan 3.Perspectives Visualisation : 3 domaines Visualisation scientifique

Plus en détail

Technologies de la Recherche et standards du Web: Quel impact sur l Innovation?

Technologies de la Recherche et standards du Web: Quel impact sur l Innovation? Technologies de la Recherche et standards du Web: Quel impact sur l Innovation? GFII - 6 Décembre 2013 Bernard Odier INRIA W3C Bureau France INRIA: à la pointe de l innovation numérique Création d INRIA

Plus en détail

RSA ADVANCED SECURITY OPERATIONS CENTER SOLUTION

RSA ADVANCED SECURITY OPERATIONS CENTER SOLUTION RSA ADVANCED SECURITY OPERATIONS CENTER SOLUTION Augmenter la visibilité et l analyse des événements de sécurité dans le système d information Jérôme Asseray Senior PreSales Engineer 1 Agenda Sécurité,

Plus en détail

IBM est reconnu par les plus grands analystes comme un leader dans la gestion de l'information

IBM est reconnu par les plus grands analystes comme un leader dans la gestion de l'information Facilité d'exécution IBM est reconnu par les plus grands analystes comme un leader dans la gestion de l'information Data Quality Data Integration MDM Product Data MDM Customer Data Data Masking Data monitoring

Plus en détail

Dis moi, ça apporte quoi Géolys? Tu sais, Géolys, c est avant tout une réponse à ces questions-là

Dis moi, ça apporte quoi Géolys? Tu sais, Géolys, c est avant tout une réponse à ces questions-là C est quoi? Dis moi, ça apporte quoi Géolys? Tu sais, Géolys, c est avant tout une réponse à ces questions-là Où pourrais-je aller pour m amuser et comment? Tu passes par quel chemin pour aller là-bas?

Plus en détail

Mo3: Big Data, Web & (Cyber)security. Laura WILBER Director of Strategy, Dassault Systèmes EXALEAD

Mo3: Big Data, Web & (Cyber)security. Laura WILBER Director of Strategy, Dassault Systèmes EXALEAD Mo3: Big Data, Web & (Cyber)security Laura WILBER Director of Strategy, Dassault Systèmes EXALEAD 23/04/2013 Dassault Systèmes EXALEAD «Information Intelligence» Search & Discovery Entreprise Web «ii»

Plus en détail

Anticiper et prédire les sinistres avec une approche Big Data

Anticiper et prédire les sinistres avec une approche Big Data Anticiper et prédire les sinistres avec une approche Big Data Julien Cabot Directeur Big Data Analytics OCTO jcabot@octo.com @julien_cabot OCTO 2013 50, avenue des Champs-Elysées 75008 Paris - FRANCE Tél

Plus en détail

Business Analytics pour le Big Data

Business Analytics pour le Big Data IBM Software Business Analytics Big Data Business Analytics pour le Big Data Libérer la valeur pour générer la performance 2 Business Analytics pour le Big Data Sommaire 2 Introduction 3 Extraction d éclairages

Plus en détail

«Les projets collaboratifs pour les nuls»

«Les projets collaboratifs pour les nuls» «Les projets collaboratifs pour les nuls» Les jeudis du numérique à Vannes 28/05/15 Sommaire 1) Le projet collaboratif 2) Les appels à projets 3) Le financement 4) Le rôle d Images & Réseaux Les questions

Plus en détail

LIVRE BLANC Décembre 2014

LIVRE BLANC Décembre 2014 PARSING MATCHING EQUALITY SEARCH LIVRE BLANC Décembre 2014 Introduction L analyse des tendances du marché de l emploi correspond à l évidence à une nécessité, surtout en période de tension comme depuis

Plus en détail

Intégration de données complexes pour une vision 360 du client. Chloé Clavel EDF R&D Département ICAME

Intégration de données complexes pour une vision 360 du client. Chloé Clavel EDF R&D Département ICAME Intégration de données complexes pour une vision 360 du client Chloé Clavel EDF R&D Département ICAME Contexte : projet R&D sur l intégration de données complexes pour la connaissance client Objectif :

Plus en détail

Transformez vos. données en. avantage concurrentiel. microstrategy.com/analytics 1

Transformez vos. données en. avantage concurrentiel. microstrategy.com/analytics 1 Transformez vos données en avantage concurrentiel. microstrategy.com/analytics 1 icrostr nalytics s enterp eady i s c MicroStrategy Analytics est conçue pour l entreprise 2 microstrategy.com/analytics

Plus en détail

L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence

L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence L offre décisionnel IBM Patrick COOLS Spécialiste Business Intelligence Le marché du Business Intelligence L enjeux actuel des entreprises : devenir plus «agiles» Elargir les marchés tout en maintenant

Plus en détail

Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data?

Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Dr Wolfgang Martin Analyste et adhérant du Boulder BI Brain Trust Les Big data Démystifier les Big data.

Plus en détail

David BEDOUET, WebSchool Orleans. Cosmina TRIFAN, WebSchool Orleans

David BEDOUET, WebSchool Orleans. Cosmina TRIFAN, WebSchool Orleans David BEDOUET, WebSchool Orleans Cosmina TRIFAN, WebSchool Orleans INTRODUCTION LE REFERENCEMENT NATUREL (SEO) La stratégie du referencement naturel L optimisation On page L optimisation Off Page LE REFERENCEMENT

Plus en détail

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be Groupe de Discussion Big Data Aperçu des technologies et applications Stéphane MOUTON stephane.mouton@cetic.be Recherche appliquée et transfert technologique q Agréé «Centre Collectif de Recherche» par

Plus en détail

De la data à l information De l information à la connaissance Visualisation. Big Data Analytics. Alykis 2015 www.alykis.com

De la data à l information De l information à la connaissance Visualisation. Big Data Analytics. Alykis 2015 www.alykis.com Big Data Analytics Alykis 2015 www.alykis.com De la data à l information De l information à la connaissance Visualisation Big Data Analytics : la Statistique en grande dimension Big Data Analytics : la

Plus en détail

Le MDM (Master Data Management) Pierre angulaire d'une bonne stratégie de management de l'information

Le MDM (Master Data Management) Pierre angulaire d'une bonne stratégie de management de l'information Darren Cooper Information Management Consultant, IBM Software Group 1st December, 2011 Le MDM (Master Data Management) Pierre angulaire d'une bonne stratégie de management de l'information Information

Plus en détail

Libérer le pouvoir des médias sociaux Passer du Like au Love

Libérer le pouvoir des médias sociaux Passer du Like au Love Libérer le pouvoir des médias sociaux Passer du Like au Love Pascal Hary Customer experience & Social Sales Development Director 1 Copyright 2013, Oracle and/or its affiliates. All rights reserved. pascal.hary@oracle.com

Plus en détail

Parcours Conception, Modélisation et Architecture des Systèmes Informatiques Complexes mention Informatique Paris-Saclay

Parcours Conception, Modélisation et Architecture des Systèmes Informatiques Complexes mention Informatique Paris-Saclay 1 Parcours Conception, Modélisation et Architecture des Systèmes Informatiques Complexes mention Informatique Paris-Saclay Eric Goubault, Sylvie Putot, Alexandre Chapoutot, Laurent Pautet Eric.Goubault@polytechnique.edu,

Plus en détail

Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc.

Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc. Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc.fr Plan Motivations Débouchés Formation UVs spécifiques UVs connexes Enseignants

Plus en détail

Présentation Société Actulligence Consulting

Présentation Société Actulligence Consulting Présentation Société Actulligence Consulting Conseil et Accompagnement Intelligence économique Veille stratégique e-réputation Actulligence Consulting : Présentation Frédéric Martinet, Consultant indépendant

Plus en détail

BIG DATA en Sciences et Industries de l Environnement

BIG DATA en Sciences et Industries de l Environnement BIG DATA en Sciences et Industries de l Environnement François Royer www.datasio.com 21 mars 2012 FR Big Data Congress, Paris 2012 1/23 Transport terrestre Traçabilité Océanographie Transport aérien Télémétrie

Plus en détail

De l Etudiant à SBA à l Enseignant Chercheur à l ENSMA

De l Etudiant à SBA à l Enseignant Chercheur à l ENSMA De l Etudiant à SBA à l Enseignant Chercheur à l ENSMA Ladjel BELLATRECHE bellatreche@ensma.fr http://www.lias lab.fr/members/bellatreche Les déterminants de la motivation selon Rolland Viau Perception

Plus en détail

SHAREPOINT 2013 : MON INTRANET PARTOUT AVEC MOI

SHAREPOINT 2013 : MON INTRANET PARTOUT AVEC MOI SHAREPOINT 2013 : MON INTRANET PARTOUT AVEC MOI DANIEL TIZON MICROSOFT PRACTICE MANAGER M +41 79 334 48 57 DTIZON@CROSS-SYSTEMS.CH 1 PRACTICE MICROSOFT NOS OFFRES DATA MANAGEMENT, BUSINESS INTELLIGENCE,

Plus en détail

Big Data: développement, rôle des ARS?? Laurent Tréluyer, ARS Ile de France Alain Livartowski Institut Curie Paris 01/12/2014

Big Data: développement, rôle des ARS?? Laurent Tréluyer, ARS Ile de France Alain Livartowski Institut Curie Paris 01/12/2014 Big Data: développement, rôle des ARS?? Laurent Tréluyer, ARS Ile de France Alain Livartowski Institut Curie Paris 01/12/2014 1 Classiquement, le Big Data se définit autour des 3 V : Volume, Variété et

Plus en détail

Fiche. Presse. Les données de la Cité intelligente ouvertes aux entreprises innovantes APPEL À IDÉES NATIONAL MERCREDI 7 JANVIER 2015

Fiche. Presse. Les données de la Cité intelligente ouvertes aux entreprises innovantes APPEL À IDÉES NATIONAL MERCREDI 7 JANVIER 2015 Fiche de Presse CABINET DU PRÉSIDENT SERVICE PRESSE MERCREDI 7 JANVIER 2015 FRENCH TECH MONTPELLIER LA SUNNY FRENCH TECH ATTITUDE APPEL À IDÉES NATIONAL Les données de la Cité intelligente ouvertes aux

Plus en détail

Panorama des outils de veille. Myriel Brouland I-Expo 17 Juin 2009

Panorama des outils de veille. Myriel Brouland I-Expo 17 Juin 2009 Panorama des outils de veille Myriel Brouland I-Expo 17 Juin 2009 1 La veille s est affirmée en tant que discipline : Elle s inscrit dans un démarche d optimisation du management de l information au sein

Plus en détail

ETL. Extract, Transform, Load

ETL. Extract, Transform, Load ETL Extract, Transform, Load Plan Introduction Extract, Transform, Load Démonstration Conclusion Plan Introduction Extract, Transform, Load Démonstration Conclusion Identification Problématique: Quoi?

Plus en détail

En route vers SAP BusinessObjects 4.0 Intervenant : Xavier OLIEL, Directeur Associé, Twin Solutions Moderateur : Thierry PIERRE, SAP

En route vers SAP BusinessObjects 4.0 Intervenant : Xavier OLIEL, Directeur Associé, Twin Solutions Moderateur : Thierry PIERRE, SAP En route vers SAP BusinessObjects 4.0 Intervenant : Xavier OLIEL, Directeur Associé, Twin Solutions Moderateur : Thierry PIERRE, SAP Sources d information Quelles sont les sources d information de cette

Plus en détail

SEMINAIRE SAS VISUAL ANALYTICS LAUSANNE, MARCH 18 : JÉRÔME BERTHIER VALERIE AMEEL

SEMINAIRE SAS VISUAL ANALYTICS LAUSANNE, MARCH 18 : JÉRÔME BERTHIER VALERIE AMEEL SEMINAIRE SAS VISUAL ANALYTICS LAUSANNE, MARCH 18 : JÉRÔME BERTHIER VALERIE AMEEL AGENDA 14:15-14:30 Bienvenue & Introduction Jérôme Berthier et Manuel Fucinos 14:30-14:45 Le concept de la Data Viz et

Plus en détail

Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015

Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015 Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015 Jean-David Benassouli Managing Director, Responsable France de la practice Digital Data management +33 6 79 45 11 51

Plus en détail