Calcul économique et risque. Comment intégrer le risque dans le calcul économique?

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Calcul économique et risque. Comment intégrer le risque dans le calcul économique?"

Transcription

1 Calcul économique e risque Commen inégrer le risque dans le calcul économique? Chrisian Gollier Universié de Toulouse (IDEI e LERNA) Février 25 Résumé : Dans ce aricle, j explique pourquoi il es raisonnable d acualiser des coûs e bénéfices fuurs sans risque à 4% à cour erme e à 2% à long erme. La prise en compe du risque du proje d invesissemen doi se faire par l impuaion de primes de risque aux cashflows fuurs pluô que par une hausse arbiraire du aux d acualisaion. Il fau aussi enir compe des valeurs d opion de repor de l invesissemen. Ceci monre que la baisse du aux d acualisaion récemmen proposée par le Commissaria au Plan ne devrai pas augmener massivemen le nombre de projes d invesissemen public don la VAN es posiive, si la prise en compe du risque es convenablemen inégrée au calcul économique.. Inroducion En Janvier 25, le Commissaria Général au Plan remeai un rappor préconisan la baisse du aux (réel) d acualisaion de 8 à 4%, e même 2% pour des horizons emporels supérieurs à 3 ans. A cee occasion, une criique récurrene s éleva pour prédire une augmenaion massive des projes d invesissemens publics franchissan le es de la valeur acualisée nee (VAN) posiive, en pariculier pour les projes aux bénéfices s éalan sur le rès long erme (lue conre l effe de serre, biodiversié, gesion des déches). Or, l Ea français ne prévoi ni d augmener la pression fiscale, ni de creuser son défici pour faire face au financemen de ces invesissemens. Le risque serai donc de voir le poliique choisir arbirairemen ceux de ces projes qu il merai en œuvre ; un échec éviden du calcul économique. Le choix d un aux de 8% en 985 avai éé jusifié en parie par la nécessié d inégrer une prime de risque dans le calcul économique public. Evidemmen, cee méhode consisan à réduire les VAN de ous les projes en augmenan uniformémen le aux d acualisaion es criiquable à plus d un poin de vue. Elle ne peu êre jusifiée que si ous les projes d invesissemen publics en concurrence de financemen on des risques comparables auan en inensié qu en corrélaion avec le risque macroéconomique, e qu en éalemen dans le emps. Dans le cas conraire, le choix d un aux uniforme de 8% pénalise injusemen les projes les moins risqués, ou ceux don les inceriudes son les plus éloignées dans le emps. Ce son les raisons pour lesquelles le rappor de Janvier 25 rejee cee méhode e propose d inégrer le risque dans l évaluaion de cash-flows équivalen cerains pluô que dans le choix du aux d acualisaion, c es-à-dire qu il propose d inégrer le risque dans le numéraeur pluô que dans le dénominaeur de la VAN. Cee méhode a plusieurs avanages. Avan ou, elle rend au aux d acualisaion sa vraie foncion, celle d un aux de change enre consommaion fuure ceraine e consommaion immédiae. En conséquence, elle réaffirme la règle indispensable de l unicié du aux d acualisaion. Mais si le risque n es pas impué au aux d acualisaion, commen celui-ci doi-il êre inégré au calcul? Force es de consaer qu une faiblesse du rappor es de ne pas décrire avec précision la manière don ceci doi êre fai. Pouran, ou indique que cee quesion es - -

2 Calcul économique e risque criique dans le processus d évaluaion. Ainsi, le capial sans risque a éé rémunéré à un aux réel proche de zéro pourcen duran le vingième siècle, alors que, globalemen, le capial risqué a éé rémunéré à un aux bien supérieur duran la même période. Rappelons en effe que le rendemen d un panier représenaif des acions françaises a éé rémunéré à un aux réel annuel moyen de 4% duran le siècle écoulé, e que ce rendemen a aein 6,9% oure Alanique (Dimson e al., 2). Si on rajoue une elle prime de risque au nouveau aux d acualisaion sans risque du Plan, on rerouve globalemen le aux de 8%. Néanmoins, comme indiqué ci-dessus, ce calcul ne peu êre qu indicaif, pour le cas rès spécifique d un proje d invesissemen public don le risque dupliquerai le risque du marché des acions. Ceci nous donne malgré ou une informaion imporane : si le risque es convenablemen inégré au calcul économique dans le numéraeur, il ne fau pas s aendre a priori à une augmenaion massive des projes d invesissemen franchissan le es de la VAN posiive. Seuls les projes à faible risque don le aux de rendemen inerne es compris enre 4% e 8% franchissen mainenan ce es, alors qu ils ne les franchissaien pas avan la réforme. Ceci pose à nouveau le problème de l évaluaion du risque dans le calcul économique. Les objecifs de ce aricle consisen à rappeler les quelques règles simples de la héorie moderne de la finance qui régissen cee évaluaion. 2. Jusificaion de la VAN en inceriude On considère une économie «à la Lucas (978)» en emps discre, avec un agen représenaif éernel. L exisence d un agen représenaif dans une économie héérogène es démonrée par exemple par Consaninides (982). Gollier (2a) monre commen prendre en compe l inégalié des richesses dans le calcul économique. L espérance de vie infinie de l agen représenaif signifie impliciemen que les consommaeurs inègren les préférences de leurs descendans comme si c éaien les leurs. Ce agen représene les généraions présenes e fuures. Dans ce modèle, je ne cherche pas à expliquer la croissance économique. Elle prend la forme d un veceur exogène de variables aléaoires ( c, c, c 2,...) de dimension infinie, où c représene la consommaion par habian à la dae. On suppose connue la disribuion de probabilié de ce veceur, condiionnellemen à oues les informaions disponibles aujourd hui (=). Cee disribuion caracérise le risque macroéconomique e son évoluion dans le emps. Le bien-êre ineremporel de l agen représenaif es mesuré par la valeur acuelle de son flux d espérance d uilié fuure : δ V = e Eu( c ). = Le paramère de préférence pure pour le présen es noé δ. La foncion d uilié u es supposée croissane e concave. On considère un proje d invesissemen caracérisé par un veceur de cash-flows aléaoires ( X, X, X 2,...), où X es le bénéfice ne des coûs à la dae généré par l invesissemen. On suppose connue la disribuion de probabilié de ces cash-flows, ainsi que leur corrélaion avec le risque macroéconomique. Les bénéfices e les coûs du proje son équiablemen paragés par les consommaeurs. Soi ε la par des cash-flows nes perçus par chaque consommaeur. Si le - 2 -

3 Calcul économique e risque proje d invesissemen es réalisé, l agen représenaif obiendra un niveau de bien-êre égal à δ V = e Eu( c + ε X ). = Evidemmen, le proje es socialemen désirable si l agen représenaif voi son bien-êre ineremporel augmené grâce à la réalisaion de l invesissemen, c es-à-dire si V es supérieur à V. Comme on suppose une populaion de grande aille, la par ε es rès peie. En conséquence, V es supérieur à V si ou encore si e Eu( c + ε X ) >, ε δ = ε = = e δ EX u'( c ) >. Comme X e c son cerains, on peu réécrire cee condiion nécessaire e suffisane comme VAN = X r + e B >, () = avec e Eu '( c ) = e (2) u'( c ) δ r e B EX u '( c) =. (3) Eu '( c ) On voi que le proje d invesissemen es socialemen désirable si sa VAN exprimée par () es posiive. Le aux d acualisaion r défini par (2) es indépendan du proje considéré. Il es donc unique e universel, mais peu varier en foncion de la maurié du cash-flow. Par conre, le cash-flow équivalen cerain B dépend à la fois des inceriudes sur c e sur X. Ainsi, on voi que nous avons effecivemen séparé les problémaiques de choix de aux d acualisaion e de prise en compe du risque du proje. La formule () nous monre donc la procédure à suivre pour mener à bien l évaluaion des projes d invesissemen. Proposiion : Lorsque les cash-flows ( X, X,...) d un proje d invesissemen ainsi que les anicipaions de croissance économique ( c, c,...) son incerains, ce proje es socialemen efficace si sa valeur acualisée nee es posiive. Cee VAN es évaluée en deux éapes : Pour chaque maurié,. On calcule le bénéfice équivalen cerain B à parir de la formule (3) ; 2. On acualise ce bénéfice au aux r défini par la formule (2)

4 Calcul économique e risque Finalemen, la VAN es obenue en somman ces bénéfices équivalens cerains acualisés. 3. Choix du aux d acualisaion Le aux d acualisaion socialemen efficace dérivé de la formule (2) peu se réécrire comme r Eu '( c ) = δ ln. u'( c) (4) Cee formule se rerouve dans ous les livres de référence en finance, el Cochrane (2). Elle fonde la héorie moderne de la srucure par erme des aux d inérê iniiée par Vasicek (977) e Cox, Ingersoll e Ross (985). Elle es généralemen raduie dans un cas rès pariculier, qui combine deux hypohèses supplémenaires. La première suppose que l uilié marginale es une foncion puissance : u'( c) = c γ, où γ es l indice relaif d aversion au risque. La seconde hypohèse caracérise le processus de croissance exogène. Supposons pour l insan que le logarihme de la consommaion suive un mouvemen Brownien de endance connue µ e de volailié σ. Ceci implique que ln c es normalemen disribué d espérance ce µ e de varianceσ 2. En combinan ces deux spécificaions, on obien que ( ) Eu '( c ) 2 = Eexp( γ ( log c log )) = exp γ ( µ.5 γσ ). (5) u'( c ) Dans la seconde égalié, j ai uilisé la propriéé bien connue selon laquelle l approximaion d Arrow-Pra es exace dans le cas de risque normalemen disribué e foncion exponenielle. En combinan les équaions (4) e (5), on obien que r δ γµ γ σ = +. (6) Dans Gollier (22a) e Gollier (25), je donne une inuiion à cee formule qui perme de déduire le aux d acualisaion efficace à parir des anicipaions de croissance de l économie e des préférences des agens. En bref, le aux d acualisaion socialemen efficace a rois composanes, comme indiqué dans le membre de droie de l équaion (6). La première composane es le aux de préférence pure pour le présen, δ. La seconde composane es un effe richesse. Parce que l agen représenaif anicipe une hausse de sa consommaion (µ>), un euro supplémenaire à l avenir a un effe sur son uilié plus faible qu un euro supplémenaire immédia, puisque son uilié marginale es décroissane avec la consommaion (γ>). Ce effe richesse es posiif sur le aux d acualisaion, e incie à réduire nos effors pour améliorer nore avenir. Pourquoi faire des sacrifices pour un avenir de oue façon plus riche que le présen? Ce effe richesse es d auan plus élevé que les anicipaions de croissance son opimises, e que l uilié marginale décroî rapidemen. La roisième composane décri un effe de précauion. Comme l uilié marginale es convexe avec la consommaion, une augmenaion de l inceriude sur la consommaion fuure augmene la valeur d un euro supplémenaire en, elle que mesurée par l espérance de Voir par exemple Gollier (2b, page 57)

5 Calcul économique e risque l uilié marginale. L inceriude rédui donc le aux d acualisaion. Exacemen comme les ménages augmenen leur épargne lorsque leurs revenus fuurs deviennen plus aléaoires, au niveau collecif, il es efficace d accroîre les invesissemens en siuaion d inceriude macroéconomique. Ce effe précauion es croissan avec la volailié σ de la croissance du PIB par habian. Calibrons l équaion (6). Duran le vingième siècle, la croissance réelle du PIB par habian a éé en moyenne de µ 2% par an, 2 andis que sa volailié es esimée à σ 2 %. Pour des raisons d éhique inergénéraionnelle, fixons δ=. Finalemen, quelle valeur de γ reenir pour cee calibraion? Ce choix revê effecivemen une imporance considérable. Les éudes auan expérimenales qu économériques son rès nombreuses, mais apporen une réponse conrasée à cee quesion. Je ne chercherai pas ici à synhéiser ces ravaux. Je propose donc de faire une analyse par inrospecion. Supposons que vore richesse soi sujee à un risque de gain ou de pere de α%. Quel pourcenage π de vore richesse êes-vous prê à payer pour éliminer ce risque? Le ableau lie vore réponse π à cee quesion à vore indice relaif γ de vore aversion au risque. Au vu de ce ableau, il semble raisonnable de choisir une valeur de γ comprise enre e 4. Suivan Hall (988), je choisis γ=2. α=% α=3% γ=,5 π=,3% π=2,3% γ=, π=,5% π=4,6% γ=4, π=2,% π=6,% γ= π=4,4% π=24,4% γ=4 π=8,4% π=28,7% Tableau : Prime de risque π e aversion relaive au risque γ. Avec de elles anicipaions de croissance e de elles préférences ineremporelles, il es socialemen efficace de choisir un aux d acualisaion de 3,92%. L effe richesse γµ à lui seul condui à sélecionner un aux d acualisaion de 4%, andis que l effe précauion 2 2.5γ σ rédui ce aux de seulemen,8%. A cour erme, l inceriude es si faible qu elle n affece praiquemen pas le aux d acualisaion socialemen efficace. Penchons-nous mainenan sur une quesion cruciale pour la problémaique du développemen durable : fau-il choisir un aux d acualisaion plus faible pour acualiser des cash-flow plus éloignés dans le emps? D un poin de vue héorique, rien n inerdi a priori que ce aux r décroisse avec. Néanmoins, la formule (6) nous monre que, sous la spécificaion éudiée ci-dessus, le aux d acualisaion es indépendan de l horizon emporel. Il fau comprendre que les effes richesse e de précauion jouen en sens opposés lorsqu on modifie la maurié éudiée. Plus on s éloigne dans le emps, plus l espérance de c es grande, ce qui doi nous incier à choisir un aux d acualisaion croissan avec l horizon emporel. Par conre, plus on s éloigne dans le emps, plus l inceriude sur c es imporane, ce qui doi nous incier à choisir un aux d acualisaion décroissan avec l horizon emporel. Dans le cas où u'( c) = c γ e où la croissance du logarihme de la consommaion sui un Brownien consan, l équaion (6) monre que ces deux effes s annihilen l un l aure. 2 Il es nécessaire de rappeler ici que µ désigne l espérance de croissance du logarihme de la consommaion, qui es différen de l espérance ˆµ du aux de croissance de la consommaion. En fai, par le Lemme d Io, on a que 2 ˆ = +.5. Comme σ es pei, la différence es faible. µ µ σ - 5 -

6 Calcul économique e risque Gollier (22b) relâche l hypohèse u'( c) = c γ, andis que Weizman (24) e Gollier (24) relâchen l hypohèse de mouvemen Brownien consan. Deux jusificaions émergen qui peuven jusifier un aux d acualisaion décroissan. La première pore sur l hypohèse d un décrochage du rend de croissance µ d un niveau élevé duran les T premières périodes à un rend de croissance µ plus faible au-delà. Dans ce cas, les aux d acualisaion socialemen efficace de cour erme e de long erme correspondron à la formule (6) uilisée respecivemen avec µ e µ. La srucure par erme du aux d acualisaion es donc décroissane dans ce cas, exacemen comme la «yield curve» sur les marchés financiers peu êre inversée lorsque l on anicipe un reournemen conjoncurel en phase haue du cycle macroéconomique. La deuxième jusificaion d un aux d acualisaion décroissan es basée sur l exisence d une relaion convexe enre la variance de c e, alors qu elle éai linéaire dans le cas Brownien consan. Il s agi donc d une siuaion où le risque es relaivemen plus imporan à long erme qu à cour erme, ceci par rappor au cas Brownien consan. Dans une elle siuaion, l effe précauion va dominer à long erme, ce qui nous incie à choisir un aux d acualisaion plus pei à long erme qu à cour erme. Une elle siuaion se présene par exemple lorsqu il exise une inceriude sur le paramère µ du rend de croissance. Il semble en effe irréalise de supposer que l économie croîra pour oujours auour d un rend de 2%. Supposons alernaivemen que ce rend puisse prendre une valeur parmi n valeurs possibles µ i, i=,,n, respecivemen avec probabilié p,,p n. Dans ce cas, on obien aisémen une généralisaion de la formule (5) : i= ( γ ( µ 2 i γσ )) n Eu '( c ) = piexp.5 u'( c ) En uilisan la formule (4), on obien la proposiion suivane. Proposiion (Gollier (24)) : Lorsqu il exise une inceriude sur le rend de croissance µ du logarihme de la consommaion par habian, le aux d acualisaion r socialemen efficace s écri comme sui : n 2 2 r = δ.5γ σ ln piexp ( γµ i). (7) i= Conrairemen au cas Brownien consan décri par la formule (6), le aux d acualisaion es ici une foncion de l horizon emporel. On peu vérifier que cee foncion es décroissane en, avec un aux à rès cour erme égal à n 2 2 r = δ + γ piµ i γ σ, i= 2 e un aux à long erme qui end vers r = δ + γ µ γ σ min i i

7 Calcul économique e risque Ainsi, si on pense qu il y a auan de chance que le rend de croissance soi de % ou 3%, le aux d acualisaion socialemen efficace es égal à 3,92% à cour erme, mais es égal à seulemen,92% à long erme. En fai, dans une elle configuraion, il es facile de vérifier que l uilisaion de la formule (7) dans le calcul économique revien à calculer la VAN deux fois, une fois avec un aux consan de 5,92% e une fois avec un aux consan de,92%, e de prendre comme VAN effecive la moyenne de ces deux valeurs acualisées. Mahémaiquemen, ceci revien au même que de calculer la VAN une seule fois, mais avec le aux d acualisaion décroissan (7). La méhode basée sur la moyenne des VAN es évidemmen singulièremen plus facile à mere en œuvre. 4. Prise en compe du risque du proje Revenons à la formule () qui défini la VAN du proje, e inéressons-nous mainenan au risque du proje lui-même. On peu inerpréer B dans la formule () comme le «bénéfice équivalen cerain» à impuer au proje à la dae, e donc à acualiser au aux r. La formule (3) caracérise la manière don ce bénéfice équivalen cerain doi êre calculé. Le cas le plus simple correspond à la siuaion où le risque du proje es indépendan du risque macroéconomique, c es-à-dire lorsque X e c son deux variables indépendanes. Dans ces circonsances, on a que EX u (c ) es égal à EX Eu (c ), ce qui implique par (3) que B =EX. Ceci nous donne le résula de Arrow e Lind (97), que l on peu résumer de la façon suivane. Proposiion (Arrow e Lind (97)) : Lorsque le risque du proje es non corrélé au risque macroéconomique, l évaluaion de ce proje doi se faire en neuralié au risque, c es-à-dire que B =EX. Le problème es plus délica lorsque le risque du proje es corrélé au risque macroéconomique, ceci malgré l hypohèse de grande aille de la populaion. En fai, on peu réécrire la formule (3) comme u'( c ) B = EX + cov X,. Eu '( c ) (8) Il es uile de rappeler ici que l uilié marginale de la consommaion es décroissane. En conséquence, cee formule indique que le bénéfice équivalen cerain B es plus pei que le bénéfice espéré EX si les bénéfices du proje son posiivemen corrélés avec la croissance économique, comme on peu le supposer dans la plupar des cas. Proposiion (MEDAF) : Lorsque le risque du proje es posiivemen corrélé au risque macroéconomique, l évaluaion de ce proje doi inégrer une prime de risque qui rédui la valorisaion du bénéfice fuur à acualiser, ceci malgré la disséminaion du risque du proje dans une populaion rès large. On a l habiude d opéraionnaliser cee héorie en uilisan une approximaion de la formule (8). Soi C l espérance de c. L approximaion de Taylor du premier degré de u (c ) auour de C donne u (C )+(c -C )u (C ). Approximons par ailleurs Eu (c ) par u (C ). On peu donc approximer B par - 7 -

8 Calcul économique e risque B EX ( X c ) cov, γ (9) Ec où γ es le coefficien d aversion relaif pour le risque γ=-c u (C )/u (C ). Ainsi, la «prime de risque» es croissane en l aversion au risque du consommaeur représenaif e en la covariance enre le rendemen du proje e le PIB/hb, résula classique du Modèle d Evaluaion Des Acifs Financiers (MEDAF). Jusqu à mainenan, j ai supposé que la décision consisai soi à mere en œuvre le proje d invesissemen immédiaemen, soi à l abandonner définiivemen. En réalié, dans la plupar des cas, il es possible de ne pas invesir immédiaemen, mais de conserver l opion d invesir ulérieuremen. Or, reporer un invesissemen dans le emps, c es rendre possible l acquisiion d informaions supplémenaires sur sa renabilié sociale. Ainsi, même si un proje a une VAN posiive, il peu êre socialemen efficace de reporer ce invesissemen dans l aene de ces informaions. Pour illusrer, considérons un proje d invesissemen de coû iniial I irréversible supporé à la dae de mise en œuvre de l invesissemen, e qui génère un bénéfice unique R aléaoire à la dae suivan cee mise en œuvre. Supposons néanmoins que ce aléa soi indépendan du risque macroéconomique, de manière à ce que nous puissions uiliser une évaluaion neure au risque. Finalemen, on sai qu en dae =, une informaion s non corrélée avec le risque macroéconomique sera disponible, ce qui permera au planificaeur de réviser la disribuion du bénéfice R. Comparons deux sraégies. La première sraégie consise à invesir immédiaemen, ce qui génère une VAN égale à = +. r H I e ER La deuxième sraégie consise à reporer la décision d invesissemen à la dae =. Evidemmen, on uilise à cee dae l informaion s disponible, e on invesi que si r I + e E R s es posiif. En conséquence, la sraégie de repor génère en = une espérance de VAN égale à H = e E I + e E R s > r r max,. On voi qu il fau invesir immédiaemen non pas si la VAN espérée H es posiive, mais pluô si H es plus grand que H. H es la «valeur d opion» de repor. Dans ceraines applicaions, elle peu êre rès élevée. Son calcul nécessie souven la mise en œuvre de echniques d opimisaion dynamique sochasique relaivemen complexes. Elles son uilisées dans un cerain nombre de grandes enreprises privées, en pariculier dans le domaine de la producion minière e de la pharmacie, mais leur uilisaion rese embryonnaire dans le seceur public malgré leur imporance cruciale dans cerains domaines comme l énergie, les ranspors ou les élécommunicaions. De rès imporans développemens, à la fois héorique e empiriques, on éé réalisés dans ce domaine depuis les ravaux pionniers d Henry (974) e Arrow e Fischer (974). Les leceurs inéressés pourron se reporer sur le livre récen de Smi e Trigeorgis (24) pour de plus amples analyses. Devezeaux e Gollier (2) on - 8 -

9 Calcul économique e risque développé une applicaion dans le domaine de la valorisaion de la réversibilié du sie de sockage de déches nucléaires. 5. Conclusion Le risque inervien dans deux dimensions rès différenes du calcul économique. Il inervien dans le choix du aux d acualisaion, car l inceriude macroéconomique doi avoir un impac sur le niveau général de nos effors pour améliorer nore bien-êre fuur ainsi que celui des généraions qui nous succèderon. Le risque inervien aussi dans l évaluaion des bénéfices des invesissemens considérés. Seuls les invesissemens don les risques son indépendans du risque macroéconomique e sur lesquels on n anicipe pas d informaion nouvelle sur leur renabilié sociale escompée doiven êre évalué en supposan la neuralié au risque. Si leur renabilié sociale es corrélée posiivemen au risque macroéconomique, il es nécessaire de réduire les cash-flows à acualiser d une prime de risque, en uilisan les formules du MEDAF. Si des informaions nouvelles son anicipées à l avenir sur cee renabilié sociale, il fau inégrer dans la VAN du proje une valeur d opion de repor de ce invesissemen. L abandon de la règle consisan à imposer un aux d acualisaion élevé pour enir compe du risque a éé rendu nécessaire pour des raisons à la fois de ransparence e d efficacié, éan donné la diversié des inceriudes des différens projes d invesissemen public. Par conre, ce abandon complique singulièremen la âche des évaluaeurs. Il es mainenan nécessaire dans le calcul économique d esimer les relaions saisiques enre le rendemen social du proje e le risque macroéconomique. En oure, il peu êre nécessaire de modéliser la résoluion dans le emps de l inceriude sur ce rendemen. Face à cee complexié e aux enjeux du calcul économique public, il es probablemen nécessaire aujourd hui de réfléchir à la consiuion d une capacié d experise e de conre-experise dans ce domaine. Bibliographie Arrow, K.J., e R.C. Lind, (97), Uncerainy and he evaluaion of public invesmen decision, American Economic Review, 6, Arrow, K.J. and A.C. Fischer, 974, Environmenal preservaion, uncerainy and irreversibiliy, Quarerly Journal of Economics, 88, Cochrane, J., (2), Asse Pricing, Princeon Universiy Press. Consaninides, G. M. (982), Ineremporal asse pricing wih heerogenous consumers, and wihou demand aggregaion, Journal of Business, 55, Cox, J., J. Ingersoll and S. Ross, (985), A heory of he erm srucure of ineres raes, Economerica, 53, Devezeaux de Lavergne J.G., e C. Gollier, (2), Analyse quaniaive de la réversibilié du sockage des déches nucléaires: Valorisaion des déches, Economie e Prévision,

10 Calcul économique e risque Dimson, E., P. Marsh e M. Saunon, (2), The Millenium book : A cenury of invesmen reurns, ABN-AMRO, Londres, hp:// Gollier, C., (2a), Wealh inequaliy and asse pricing, The Review of Economic Sudies, 68, Gollier, C., (2b), The economics of risk and ime, MIT Press, Cambridge, MA. Gollier, C., (22a), Discouning an uncerain fuure, Journal of Public Economics, 85, Gollier, C., (22b), Time horizon and he discoun rae, Journal of Economic Theory, 7, Hall, R.E., (988), Ineremporal subsiuion of consumpion, Journal of Poliical Economy, 96, Henry, C., 974, Invesmen decisions under uncerainy: he irreversibiliy effec, American Economic Review, 64, 6-2. Lucas, R., (978), Asse prices in an exchange economy, Economerica, 46, Smi, H.T.J., e L. Trigeorgis, (24), Sraegic invesmen : Real opions and games, Princeon Universiy Press. Vasicek,., (977), An equilibrium characerizaion of he erm srucure, Journal of Financial Economics, 5, Weizman, M.L., (24), Saisical discouning of an uncerain disan fuure, mimeo, Harvard Universiy. - -

ECO434, Ecole polytechnique, 2e année PC 5 Flux de Capitaux Internationaux et Déséquilibres Mondiaux

ECO434, Ecole polytechnique, 2e année PC 5 Flux de Capitaux Internationaux et Déséquilibres Mondiaux ECO434, Ecole polyechnique, 2e année PC 5 Flux de Capiaux Inernaionaux e Déséquilibres Mondiaux Exercice 1 : Flux de capiaux dans le modèle de croissance néoclassique Le modèle es en emps coninu. On considère

Plus en détail

Page # $ %& +',- VAN = 30; F 2 = 50; F 3 = 140. = -200 ; F 1. Avec r = 3% => VAN = 4,38 > 0. Avec r = 5% => VAN = -5,14 < 0.

Page # $ %& +',- VAN = 30; F 2 = 50; F 3 = 140. = -200 ; F 1. Avec r = 3% => VAN = 4,38 > 0. Avec r = 5% => VAN = -5,14 < 0. # $ %& 1. La VAN. Les aures crières 3. Exemple. Choix d invesissemen à long erme 5. Exercices!" '* '( Un proje ne sera mis en œuvre que si sa valeur acuelle nee ou VAN, définie comme la somme acualisée

Plus en détail

DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE

DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE UNIVERSITE DE TUNIS Faculé des sciences économiques e de gesion de Tunis MODELE DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE Ezzeddine MBAREK 2010 1 INTRODUCTION Le modèle que je propose

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

1 Le hacheur série. 30 mars 2005

1 Le hacheur série. 30 mars 2005 e hacheur série A. Campo 30 mars 2005 1 e hacheur série 1.1 Généraliés e hacheur es un disposiif permean d obenir une ension coninue de valeur moyenne réglable à parir d

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

L inflation dans la zone euro et aux États-Unis est. Rue de la Banque. Le découplage des courbes de rendement en euro et en dollar

L inflation dans la zone euro et aux États-Unis est. Rue de la Banque. Le découplage des courbes de rendement en euro et en dollar Le découplage des courbes de rendemen en euro e en dollar Benoî MOJON Direceur des Éudes monéaires e financières Fulvio PEGORARO Direcion des Éudes monéaires e financières Cee lere présene le résula de

Plus en détail

Procédé thermocyclique de régulation de température

Procédé thermocyclique de régulation de température - 1 - Innovaion echnologique dans le domaine de la régulaion de empéraure, le procédé hermocyclique foncionne selon un principe unique en son genre qui n a rien en commun avec les régulaions par hermosa

Plus en détail

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1.

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1. Les premières consaaions sur l inapiude des produis indusriels à assurer les foncions qu ils éaien censés remplir pendan un emps suffisan remonen à la seconde guerre mondiale. En France cee prise de conscience

Plus en détail

ANNEXE 2 - REGLES DE CALCUL DU TAUX DE RENTABILITE DES EXTENSIONS DE RESEAU

ANNEXE 2 - REGLES DE CALCUL DU TAUX DE RENTABILITE DES EXTENSIONS DE RESEAU ANNEXE 2 - REGLES DE CALCUL DU TAUX DE RENTABILITE DES EXTENSIONS DE RESEAU SOMMAIRE ARTICLE 1 - Définiion du aux de renabilié ARTICLE 2 - Seuil minimum de renabilié ARTICLE 3 - Evaluaion de la recee acualisée

Plus en détail

de rentiers en cours de service

de rentiers en cours de service Les Allocaion normes d acifs IFRS d un en assurance régime de reniers en cours de service 27 e journée de séminaires acuariels ISFA Lyon e ISA-HEC Lausanne Frédéric PLANCHET Pierre THEROND 3 décembre 2004

Plus en détail

La population d une ville était de 150 000 habitants en 2000. Elle s est accrue chaque année de 20 000 habitants.

La population d une ville était de 150 000 habitants en 2000. Elle s est accrue chaque année de 20 000 habitants. Exercice 1 : évoluions e pourcenages La populaion d une ville éai de 150 000 habians en 2000. Elle s es accrue chaque année de 20 000 habians. Calculer l augmenaion en pourcenage de 2000 à 2001, de 2001

Plus en détail

Théorème de Cauchy-Lipschitz et applications. Lefeuvre thomas & Ginguené franck 30 mars 2012

Théorème de Cauchy-Lipschitz et applications. Lefeuvre thomas & Ginguené franck 30 mars 2012 Théorème de Cauchy-Lipschiz e applicaions Lefeuvre homas & Ginguené franck 30 mars 01 1 Table des maières 1 Théorème du poin fixe 3 1.1 Énoncé.......................................... 3 1. Démonsraion.....................................

Plus en détail

TRAITEMENT DU SIGNAL

TRAITEMENT DU SIGNAL Spé y -4 Devoir n TAITMNT D SIGNAL Parie I OMPOTMNT DYNAMIQ D N LAM D QATZ On considère une lame de quarz, cylindrique, de secion S consane, d axe Ox (de veceur uniaire r u X ), don les deux faces e en

Plus en détail

Économie internationale

Économie internationale ECOLE POLYTECHNIQUE Recueil Programme d approfondissemen Économie Économie inernaionale Texes de conrôles des connaissances proposés les années anérieures Déparemen d Économie Promoion 006 Année 3 Période

Plus en détail

df( t) P( t T t dt) ft ( ) lim

df( t) P( t T t dt) ft ( ) lim I APPROCHE DE LA FIABILITE PAR LES PROBABILITES : Définiion selon la NF X 6 5 : la fiabilié es la caracérisique d un disposiif exprimée par la probabilié que ce disposiif accomplisse une foncion requise

Plus en détail

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement Chapire 2 L invesissemen. Les principales caracérisiques de l invesissemen.. Définiion de l invesissemen Définiion générale : ensemble des B&S acheés par les agens économiques au cours d une période donnée

Plus en détail

«Savoir vendre les nouvelles classes d actifs financiers» Produits à capital garanti : méthode du coussin (CCPI) François Longin www.longin.

«Savoir vendre les nouvelles classes d actifs financiers» Produits à capital garanti : méthode du coussin (CCPI) François Longin www.longin. Formaion ESSEC Gesion de parimoine Séminaire i «Savoir vendre les nouvelles classes d acifs financiers» Produis à capial garani : méhode du coussin (CCPI) Origine de la méhode Descripion de la méhode Plan

Plus en détail

UN INDICE D ÉVOLUTION EN VOLUME DU STOCK DE RESSOURCES NATURELLES

UN INDICE D ÉVOLUTION EN VOLUME DU STOCK DE RESSOURCES NATURELLES UN INDICE D ÉVOLUTION EN VOLUME DU STOCK DE RESSOURCES NATURELLES 15e Colloque de l Associaion de Compabilié Naionale Novembre 2014 Pierre-Alain Pionnier OCDE Indicaeurs phares de l OCDE pour une croissance

Plus en détail

Université d été Solvabilité 2 Juillet 2011

Université d été Solvabilité 2 Juillet 2011 LES INDICATEURS OPERATIONNELLES LIÉS À L ORSA Version 1.0 Universié d éé Solvabilié 2 Juille 2011 Frédéric PLANCHET Acuaire Associé fplanche@winer-associes.fr Marc JUILLARD Acuaire mjuillard@winer-associes.fr

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce documen a éé mis en ligne par le Canopé de l académie de Bordeaux pour la Base Naionale des Sujes d Examens de l enseignemen professionnel. Base Naionale des Sujes d'examens de l'enseignemen professionnel

Plus en détail

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites Chapire 5 Modèles d Inensié Les deux approches dans la modélisaion de risque de crédi approche srucurel e approche d inensié ne son pas compaibles : dans les modèles d inensié, l exisence de l inensié

Plus en détail

Exercice du Gestion Financière à Court Terme «Cas FINEX Gestion du risque de taux d intérêt»

Exercice du Gestion Financière à Court Terme «Cas FINEX Gestion du risque de taux d intérêt» Exercice du Gesion Financière à Cour Terme «Cas FINEX Gesion du risque de aux d inérê» Ce cas raie des différens aspecs de la gesion du risque de aux d inérê liée à la dee d une enreprise : analyse d emprun,

Plus en détail

INSTRUMENTATION ELECTRIQUE OSCILLOSCOPE NUMERIQUE GENERATEUR BASSE FREQUENCE UTILISE EN SINUSOIDAL Etude théorique

INSTRUMENTATION ELECTRIQUE OSCILLOSCOPE NUMERIQUE GENERATEUR BASSE FREQUENCE UTILISE EN SINUSOIDAL Etude théorique 1 INSUMENAION ELEIQUE OSILLOSOPE NUMEIQUE GENEAEU BASSE FEQUENE UILISE EN SINUSOIDAL Eude héorique 1 Noions élémenaires 1.1 Masse e erre : Lorsqu on mesure une ension, on mesure en fai une différence de

Plus en détail

L évaluation immobilière. Michel Baroni 27/11/2009

L évaluation immobilière. Michel Baroni 27/11/2009 L évaluaion immobilière Michel Baroni 27/11/2009 Méhodes exisanes Méhodes des comparables Dépend de la base de données; méhode hédonique évenuellemen possible Méhodes de capialisaion Dépend de la base

Plus en détail

RELATIONS FONCTIONNELLES. I Généralités

RELATIONS FONCTIONNELLES. I Généralités Universié d'angers : LSEN relaions foncionnelles p. Parie A : Proporionnalié RELATIONS FONCTIONNELLES I Généraliés / Définiion : Soien deux suies de nombres réels : (x ;x ;x ;x 4 ) e (y ;y ;y ;y 4 ). Ces

Plus en détail

Solutions auto-similaires et espaces de données initiales. 2 ), l équation de Schrödinger. Introduction. Fabrice Planchon

Solutions auto-similaires et espaces de données initiales. 2 ), l équation de Schrödinger. Introduction. Fabrice Planchon Soluions auo-similaires e espaces de données iniiales pour l équaion de Schrödinger Fabrice Planchon Résumé. On démonre que pour des peies données iniiales dans Ḃ 1, (R3 ), l équaion de Schrödinger non

Plus en détail

Résumé. Mots clés : soutenabilité, politique budgétaire, dette publique, déficit Classification JEL : H62, E61, H63

Résumé. Mots clés : soutenabilité, politique budgétaire, dette publique, déficit Classification JEL : H62, E61, H63 La souenabilié de la poliique budgéaire dans la zone Uemoa (union économique e monéaire oues-africaine) : essai d évaluaion héorique e empirique. Felwine Sarr *, LEO, Universié d Orléans, janvier 2005

Plus en détail

Les outils de gestion

Les outils de gestion Les ouils de gesion Beida Mohammed Ferha aleb Amar Ingénieurs d éa en informaique Opion : Sysèmes d Informaion (SI) el: +3 (0) 76 7 36 69 Fax: +3 (0) 3 58 93 Email: mohamed@moolki.com bilal_ini@yahoo.fr

Plus en détail

DECISION N 2010-03 RELATIVE AUX CONDITIONS TARIFAIRES DE SENELEC POUR LA PERIODE 2010-2014

DECISION N 2010-03 RELATIVE AUX CONDITIONS TARIFAIRES DE SENELEC POUR LA PERIODE 2010-2014 REPUBLIQUE DU SENEGAL Un Peuple - Un Bu Une Foi Commission de Régulaion du Seceur de l Elecricié DECISION N 21-3 RELATIVE AUX CONDITIONS TARIFAIRES DE SENELEC POUR LA PERIODE 21-214 LA COMMISSION DE REGULATION

Plus en détail

ELECTRICITE. Chapitre 9 Valeur moyenne des signaux périodiques. Analyse des signaux et des circuits électriques. Michel Piou

ELECTRICITE. Chapitre 9 Valeur moyenne des signaux périodiques. Analyse des signaux et des circuits électriques. Michel Piou ELECRICIE Analyse des signaux e des circuis élecriques Michel Piou Chapire 9 Valeur moyenne des signaux périodiques. Ediion //24 able des maières POURQUOI E COMMEN?... 2 INERE DE LA NOION DE VALEUR MOYENNE....2

Plus en détail

Les liens énergie/environnement/croissance : enseignements des modèles théoriques, leçons de l histoire. ENPC, Cours n 2 Jean-Charles HOURCADE

Les liens énergie/environnement/croissance : enseignements des modèles théoriques, leçons de l histoire. ENPC, Cours n 2 Jean-Charles HOURCADE Les liens énergie/environnemen/croissance : enseignemens des modèles héoriques, leçons de l hisoire ENPC, Cours n 2 Jean-Charles HOURCADE Raisons d un déour par la macro-économie Quels mécanismes lien

Plus en détail

Bien que l investissement des entreprises françaises ait tardé à se redresser

Bien que l investissement des entreprises françaises ait tardé à se redresser Le prix du foncier n aurai pas d effe direc sur l invesissemen en acifs producifs Yaëlle Hauseux Berrand Marc Déparemen de la conjoncure David Audenaer Charles-Marie Chevalier Déparemen des éudes économiques

Plus en détail

LES HISTORIQUES DE COURS ET L ANALYSE TECHNIQUE

LES HISTORIQUES DE COURS ET L ANALYSE TECHNIQUE LES HISTORIQUES DE COURS ET L ANALYSE TECHNIQUE 1 Origines e principes de base de l analyse echnique 2 Les ouils de l analyse graphique radiionnelle 3 Les ouils de l analyse saisique A) LES ORIGINES ET

Plus en détail

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1.

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1. Pourcenages MATHEMATQUES 1ES 5. Lors de l acha d un aure aricle, je dois verser un acompe de 15%, e il me resera alors POURCENTAGES à débourser 1 700. CORRGES EXERCCES Prix de l aricle : 1 700 = 85% du

Plus en détail

Méthode d'analyse économique et financière ***

Méthode d'analyse économique et financière *** Méhode d'analyse économique e financière *** Noion d acualisaion e indicaeurs économiques uilisables pour l analyse de projes. Dr. François PINTA CIRAD-Forê UR Bois - Kourou CHRONOLOGIE D INTERVENTION

Plus en détail

Estimation composite par régression pour l Enquête sur la population active du Canada avec plan de sondage à renouvellement de panel

Estimation composite par régression pour l Enquête sur la population active du Canada avec plan de sondage à renouvellement de panel Techniques d enquêe, juin 00 35 Vol. 7, N o, pp. 35 48 Saisique Canada, N o 00 au caalogue Esimaion composie par régression pour l Enquêe sur la populaion acive du Canada avec plan de sondage à renouvellemen

Plus en détail

Modélisation et quantification de systèmes vieillissants pour l optimisation de la maintenance

Modélisation et quantification de systèmes vieillissants pour l optimisation de la maintenance ème édiion du congrès inernaional pluridisciplinaire Du au 20 mars 2009 Modélisaion e quanificaion de sysèmes vieillissans pour l opimisaion de la mainenance LAIR William,2, MERCIER Sophie, ROUSSIGNOL

Plus en détail

Délégation de la gestion de portefeuille : choix d investissement et des frais de gestion dans un cadre en temps continu

Délégation de la gestion de portefeuille : choix d investissement et des frais de gestion dans un cadre en temps continu HEC Monréal A liée à l Universié de Monréal Délégaion de la gesion de porefeuille : choix d invesissemen e des frais de gesion dans un cadre en emps coninu par Tarek Masmoudi Déparemen de Finance Thèse

Plus en détail

PHYSIQUE. Partie préliminaire

PHYSIQUE. Partie préliminaire PHYSIQUE Les différenes paries de ce problème son dans une large mesure indépendanes Seules les argumenaions précises e concises seron prises en compe en réponse aux quesions qualiaives Parie préliminaire

Plus en détail

4. "SEPO" - UNE MÉTHODE POUR L'AUTO- ÉVALUATION ET POUR LES PROJETS-PILOTE

4. SEPO - UNE MÉTHODE POUR L'AUTO- ÉVALUATION ET POUR LES PROJETS-PILOTE D/ Baobab: Cours de gesion des projes page 46 4. "" - UN MÉTHD UR L'AUT- ÉVALUATIN T UR L RJT-ILT 4.1 Inroducion (angl.:w) es un ouil pour l'auoévaluaion e pour les projes-piloe. Il a éé élaboré lors de

Plus en détail

MODELISATION ET ANALYSE DE LA SERIE CHRONOLOGIQUE DE PRODUCTION D EAU DE CONSOMMATION PAR LISSAGE EXPONENTIEL

MODELISATION ET ANALYSE DE LA SERIE CHRONOLOGIQUE DE PRODUCTION D EAU DE CONSOMMATION PAR LISSAGE EXPONENTIEL Courrier du Savoir N 18, Mars 2014, pp.09-14 MODELISATION ET ANALYSE DE LA SERIE CHRONOLOGIQUE DE PRODUCTION D EAU DE CONSOMMATION PAR LISSAGE EXPONENTIEL A. MESSAMEH, N. LOUDJANI, M. T.BOUZIANE Laboraoire

Plus en détail

Traitement du Signal Déterministe

Traitement du Signal Déterministe Cours e ravaux Dirigés de raiemen du Signal Déerminise Benoî Decoux (benoi.decoux@wanadoo.fr) - s - ère parie : "Noions de base e éudes emporelles" Bases du raiemen de signal Calculer l ampliude de la

Plus en détail

4.9 Calcul de la maçonnerie portante soumise à une charge verticale

4.9 Calcul de la maçonnerie portante soumise à une charge verticale La radioacivié évenuellemen émise dans les consrucions es due, principalemen, à la présence de Radium (Ra 226) e/ou Thorium (Th 232) dans le sous-sol e dans les maériaux uilisés. Parmi ceux-ci, le béon

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé y 2003-2004 Devoir n 5 CONVERSION DE PUISSANCE Parie I EUDE D UN CAPEUR DE POSIION ANGULAIRE A / ÉUDE D'UN CIRCUI MAGNÉIQUE Considérons le disposiif schémaisé sur la figure, composé de deux bobines

Plus en détail

`«`Xƒ`à`dG á`ä`«`g ádƒ æÿg º«d»Yɪ G áeé dg ácöûdg á«fé«h ábé H SICAV SG VALEURS

`«`Xƒ`à`dG á`ä`«`g ádƒ æÿg º«d»Yɪ G áeé dg ácöûdg á«fé«h ábé H SICAV SG VALEURS هيي ة التوظيف الجماعي للقيم المنقولة الشركة العامة بطاقة بيانية SICAV SG VALEURS OPCVM DE LA SOCIÉTÉ GÉNÉRALE OPCVM conforme aux normes GIPS (Global Invesmens Sandards) Fiche Signaléique SG VALEURS Averissemen

Plus en détail

Groupe Saint Joseph La Salle Centre de Formation

Groupe Saint Joseph La Salle Centre de Formation Groupe Sain Joseph La Salle Cenre de Formaion NOUVEAUTÉ renrée 2016 LICENCE COMMERCE, VENTE & MARKETING Formaion en alernance + d infos sur nore sie : www.sjodijon.com Groupe Scolaire Sain Joseph La Salle

Plus en détail

Romain Burgot & Tchim Silué. Synthèse de l article : Note sur l évaluation de l option de remboursement anticipé

Romain Burgot & Tchim Silué. Synthèse de l article : Note sur l évaluation de l option de remboursement anticipé ENSAE 3 eme année Romain Burgo & Tchim Silué Synhèse de l aricle : Noe sur l évaluaion de l opion de remboursemen anicipé Mémoire de gesion ALM Juin 2006 Résumé Depuis 1979, la loi offre à l empruneur

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple

Plus en détail

Académie de Poitiers TPE 2011-2012 3/8

Académie de Poitiers TPE 2011-2012 3/8 1 ère composane : émarche personnelle e invesissemen du candida au cours de l élaboraion du TPE (noe enière sur 8 poins) Iems officiels ompéences officielles Niveau d exigence 1. Recherche documenaire

Plus en détail

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»

Plus en détail

Un modèle intégré de la demande totale d énergie Application à la province de Québec RÉSUMÉ

Un modèle intégré de la demande totale d énergie Application à la province de Québec RÉSUMÉ Un modèle inégré de la demande oale d énergie Applicaion à la province de Québec par JeanThomas Bernard Tiulaire de la Chaire en économique de l'énergie élecrique Déparemen d'économique Universié Laval

Plus en détail

TD 20-21 : Modèles de marchés - Mouvement brownien

TD 20-21 : Modèles de marchés - Mouvement brownien Universié Paris VI Maser : Modèles sochasiques, applicaions à la finance (MM065) TD 20-2 : Modèles de marchés - Mouvemen brownien. Taux de change. Soi (Ω, P(Ω), P) un espace probabilisé fini non redondan

Plus en détail

Les déclencheurs électroniques STRE23SE se montent indifféremment sur les compacts NS 400 et NS 630 de type N, H ou L.

Les déclencheurs électroniques STRE23SE se montent indifféremment sur les compacts NS 400 et NS 630 de type N, H ou L. 14/1/6 Quesion : Commen régler correcemen le déclencheur élecronique STRE23SE? Réponse : Les déclencheurs élecroniques STRE23SE se monen indifféremmen sur les compacs NS 4 e NS 63 de ype N, H ou L. Le

Plus en détail

A la Recherche des Facteurs Déterminants de l Intégration Internationale des Marchés Boursiers : une Analyse sur Données de Panel

A la Recherche des Facteurs Déterminants de l Intégration Internationale des Marchés Boursiers : une Analyse sur Données de Panel A la Recherche des Faceurs Déerminans de l Inégraion Inernaionale des Marchés Boursiers : une Analyse sur Données de Panel AROURI Mohamed El Hedi EconomiX Universié Paris X Nanerre Bâ G, 200, av. de la

Plus en détail

Sous-évaluation des prix d options par le modèle de Black & Scholes.

Sous-évaluation des prix d options par le modèle de Black & Scholes. Sous-évaluaion des prix d opions par le modèle de Black & Scholes. Mise en évidence par une dynamique combinan mouvemen brownien e processus à saus. Marc Debersé ocobre 6 Résumé S il es bien connu que

Plus en détail

Pirsoul Cindy SESP 1200 Macroéconomie lolablue@swing.be SESP 1200. Pirsoul Cindy lolablue@swing.be

Pirsoul Cindy SESP 1200 Macroéconomie lolablue@swing.be SESP 1200. Pirsoul Cindy lolablue@swing.be Macroéconomie SESP 1200 Pirsoul Cindy lolablue@swing.be Microéconomie : comporemen d un individu pariculier (ravailleur, firme, ) Macroéconomie : descripion de l économie dans son ensemble (ineracions)

Plus en détail

EADI Association Européenne d Instituts de Développement

EADI Association Européenne d Instituts de Développement EADI Associaion Européenne d Insius de Développemen 11eme Conférence Générale Bonn, 21-24 sepembre 2005 GEMDEV Séances parallèles V Souenabilié de la dee exérieure e insabilié : le cas des pays à faible

Plus en détail

Amp Miser Bandes de transport à économies d énergie

Amp Miser Bandes de transport à économies d énergie bandes de ranspor e de process Bandes de ranspor à économies Calculez désormais en ligne vos économies www.ampmiser.com poenielles! Siegling oal beling soluions Bandes de ranspor à économies Opimiser la

Plus en détail

DOCUMENT DE TRAVAIL FLORENT FREMIGACCI YANNICK L HORTY N 51. novembre 2005

DOCUMENT DE TRAVAIL FLORENT FREMIGACCI YANNICK L HORTY N 51. novembre 2005 DOCUMENT DE TRAVAIL LA QUALITÉ DE L EMPLOI L EN FRANCE : TENDANCE ET CYCLE FLORENT FREMIGACCI YANNICK L HORTY N 51 novembre 2005 «LE DESCARTES I» 29, PROMENADE MICHEL SIMON 93166 NOISY-LE-GRAND CEDEX TÉL.

Plus en détail

VA(1+r) = C 1. VA = C 1 v 1

VA(1+r) = C 1. VA = C 1 v 1 Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)

Plus en détail

CHAPITRE 4 LA VAR MONTE CARLO... 2

CHAPITRE 4 LA VAR MONTE CARLO... 2 CHAPITRE 4 LA VAR MONTE CARLO... I. PRINCIPE... A. Quel modèle uiliser?... B. Algorihme de simulaion... 3 II. EXEMPLE D APPLICATION... 4 A. Travail préliminaire... 4 B. Simulaion des rajecoires... 6 Algorihme...

Plus en détail

Gestion Actif Passif et Solvabilité

Gestion Actif Passif et Solvabilité Gesion Acif Passif e Solvabilié Charles Descure & Crisiano Borean Generali France 7/9 Boulevard Haussmann 759 Paris Tel. : +33 58 38 86 84 +33 58 38 86 64 Fax. : +33 58 38 8 cdescure@generali.fr cborean@generali.fr

Plus en détail

Mémoire soutenu pour l Institut des Actuaires le 15 décembre David Sudries Introduction

Mémoire soutenu pour l Institut des Actuaires le 15 décembre David Sudries Introduction Modélisaion e exrapolaion de l évoluion de la moralié française à parir de modèles sochasiques Analyse des qualiés prédicives de ces modèles Applicaions praiques Mémoire souenu pour l Insiu des Acuaires

Plus en détail

GUIDE DES INDICES BOURSIERS

GUIDE DES INDICES BOURSIERS GUIDE DES INDICES BOURSIERS SOMMAIRE PRESENTATION DES INDICES... 2 LA GAMME D INDICES : L INDICE TUNINDEX ET LES INDICES SECTORIELS... 3 REGLE GENERALE RELATIVE A LA COMPOSITION DES INDICES... 3 REGLE

Plus en détail

RAPPORT SUR LA SITUATION DES FINANCES PUBLIQUES. par Paul CHAMPSAUR et Jean-Philippe COTIS

RAPPORT SUR LA SITUATION DES FINANCES PUBLIQUES. par Paul CHAMPSAUR et Jean-Philippe COTIS RAPPORT SUR LA SITUATION DES FINANCES PUBLIQUES par Paul CHAMPSAUR e Jean-Philippe COTIS - AVRIL 2010 Par leres de mission en dae du 15 février 2010, le Présiden de la République a demandé à M. Paul CHAMPSAUR,

Plus en détail

Temporisation et monostable Contrôleurs de rotation XSA-V

Temporisation et monostable Contrôleurs de rotation XSA-V Temporisaion e monosable Conrôleurs de roaion XSA-V Manuel didacique Version Française TE Sommaire Chapire Page Temporisaion - Lecure des hisogrammes 3. Définiion 3.2 Bu 3.3 Principe de foncionnemen 3.3.

Plus en détail

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t Annuiés I Définiion : On appelle annuiés des sommes payables à inervalles de emps déerminés e fixes. Les annuiés peuven servir à : - consiuer un capial ( annuiés de placemen ) - rembourser une dee ( annuiés

Plus en détail

Corrigé CNC MP 2003, Math 1

Corrigé CNC MP 2003, Math 1 Corrigé CNC MP 3, Mah Parie I. a La foncion e es coninue sur ], α] prolongeable par coninuié en, elle es donc inégrable sur ],α] b La foncion e e es coninue sur [,+ [ e. + donc elle es inégrable sur [,

Plus en détail

Les nouveautés d Excel 2016

Les nouveautés d Excel 2016 EXCEL 2016 Office 2016 - Excel, Word, PowerPoin e Oul ook Les nouveaués d Excel 2016 Uiliser la sélecion muliple dans les filres à segmen Les segmens, uilisés dans des ableaux de données ou des ableaux

Plus en détail

PREMIÈRE PARTIE : UNE APPROCHE MULTIDIMENSIONNELLE DE LA NOTION DE LIQUIDITÉ

PREMIÈRE PARTIE : UNE APPROCHE MULTIDIMENSIONNELLE DE LA NOTION DE LIQUIDITÉ PREMIÈRE PARTIE : UNE APPROCHE MULTIDIMENSIONNELLE DE LA NOTION DE LIQUIDITÉ INTRODUCTION À LA PREMIERE PARTIE «Because liquidiy, like pornography, is easily recognized bu no easily defined, we begin our

Plus en détail

Prénom et nom : Devoir-Maison, à rendre le mardi 28 avril 2014

Prénom et nom : Devoir-Maison, à rendre le mardi 28 avril 2014 Prénom e nom : Devoir-Maison, à rendre le mardi 28 avril 2014 Exercice n 1 Un ouvrier dispose de plaques de méal de 110 cm de longueur e de 88 cm de largeur. Il a reçu la consigne suivane : «Découpe dans

Plus en détail

Devoir de physique-chimie n 5. Nom:... Exercice 1 : Quand Sébastien Loeb rencontre Isaac Newton /5,0

Devoir de physique-chimie n 5. Nom:... Exercice 1 : Quand Sébastien Loeb rencontre Isaac Newton /5,0 TS avril 04 Devoir de physique-chimie n 5 LES EXERCICES SNT INDEPENDANTS CALCULATRICE AUTRISEE Eercice : Quand Sébasien Loeb renconre Isaac Newon /5,0 "( ) Sébasien Loeb e son copiloe Daniel Elena on brillammen

Plus en détail

LE MODELE DE MARCHE ALEATOIRE DANS L ECONOMIE FINANCIERE DE 1863 A 1976. Franck JOVANOVIC

LE MODELE DE MARCHE ALEATOIRE DANS L ECONOMIE FINANCIERE DE 1863 A 1976. Franck JOVANOVIC 1 LE MODELE DE MARCHE ALEATOIRE DANS L ECONOMIE FINANCIERE DE 1863 A 1976 Franck JOVANOVIC L objecif de ce aricle es de monrer commen l uilisaion du modèle de marche aléaoire pour représener les variaions

Plus en détail

Evolution de la valeur de l'entreprise

Evolution de la valeur de l'entreprise Correcion de l exercice 4 du cours Managemen Bancaire : «Eude du modèle de Meron» I) Valeur de l enreprise Quesion : dans quel cas (pariculier) es il possible d observer la valeur de l enreprise? Si l

Plus en détail

Mesure de l incertitude tendancielle sur la mortalité Application à un régime de rentes en cours de service

Mesure de l incertitude tendancielle sur la mortalité Application à un régime de rentes en cours de service Mesure de l inceriude endancielle sur la moralié Applicaion à un régime de renes en cours de service - Frédéric PLANCHET (Universié Lyon, Laboraoire SAF, Winer & Associés) - Marc JUILLARD (Winer & Associés)

Plus en détail

La conjugaison des endomorphismes de R n

La conjugaison des endomorphismes de R n La conjugaison des endomorphismes de R n TIPE 2006 Sous la direcion de Nicolas Tosel Plan 1 Inroducion 1 1.1 Posiion du problème......................... 1 1.2 Noaions............................... 1

Plus en détail

Panorama des méthodes de coûtenance

Panorama des méthodes de coûtenance Recherche en Managemen de Proje Panorama des méhodes de coûenance Pour réduire les coûs de vos projes e augmener vos marges, quelle méhode choisir? François GAGNÉ, FGF Consulan Les Renconres 2005 du Managemen

Plus en détail

TABLEAU DES REPONSES AU TEST DE MATH/PHYSIQUE :

TABLEAU DES REPONSES AU TEST DE MATH/PHYSIQUE : TABLEAU DES REPONSES AU TEST DE MATH/PHYSIQUE : Afin de vous noer : - si vous avez oues les bonnes réponses à un QCM, vous avez poin, - si vous avez une erreur par eeple, une réponse que vous n avez pas

Plus en détail

CAHIER DE RECHERCHE : 2008-02 E2. Relation entre notation sociale et structure financière des. entreprises : une étude empirique.

CAHIER DE RECHERCHE : 2008-02 E2. Relation entre notation sociale et structure financière des. entreprises : une étude empirique. CAHIER DE RECHERCHE : 2008-02 E2 Relaion enre noaion sociale e srucure financière des enreprises : une éude empirique. GIRERD-POTIN Isabelle, LOUVET Pascal, GARCES-JIMENEZ Sonia Unié Mixe de Recherche

Plus en détail

ESTIMATION DE COEFFICIENTS TECHNIQUES ROBUSTES POUR L ECONOIE SENEGALAISE

ESTIMATION DE COEFFICIENTS TECHNIQUES ROBUSTES POUR L ECONOIE SENEGALAISE REPUBLIQUE DU SENEGAL ------------------ MINISTERE DE L ECONOMIE ET DES FINANCES ------------------ AGENCE NATIONALE DE LA STATISTIQUE ET DE LA DEMOGRAPHIE Direcion des Saisiques Economiques e de la Compabilié

Plus en détail

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES IRM foncionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES Le principe général d'une éude IRMf consise à analyser le signal BOLD (Blood Oxygen Level Dependen) qui radui l'augmenaion d'afflux

Plus en détail

INTRODUCTION AUX SÉRIES CHRONOLOGIQUES

INTRODUCTION AUX SÉRIES CHRONOLOGIQUES INTRODUCTION AU SÉRIES CHRONOLOGIQUES AE MÉTHODES STATISTIQUES ET APPLICATIONS O. ROUSTANT Novembre 008 Table des maières TABLE DES MATIERES... INTRODUCTION... 3 QUELQUES TECHNIQUES DESCRIPTIVES... 4.

Plus en détail

CHAPITRE VII. Les Convertisseurs Analogiques Numériques

CHAPITRE VII. Les Convertisseurs Analogiques Numériques CHAPITRE VII Les Converisseurs Analogiques Numériques Olivier Français, 2 SOMMAIRE LES CONVERTISSEURS À INTÉGRATION... 3 I LE CONVERTISSEUR SIMPLE RAMPE... 3 I.1 PRINCIPE... 3 I.2 PHASES DE FONCTIONNEMENT...

Plus en détail

ELE-542 Systèmes ordinés en temps réels. Cours # 11 Configurer l OS et tampon circulaire

ELE-542 Systèmes ordinés en temps réels. Cours # 11 Configurer l OS et tampon circulaire ELE-542 Sysèmes ordinés en emps réels ours # 11 onfigurer l OS e ampon circulaire Jean-Marc Beaulieu e Bruno De Kelper Sie inerne: hp://www.ele.esml.ca/academique/ele542/ Sysèmes ordinés en emps réel ours

Plus en détail

COURS GESTION FINANCIERE A COURT TERME SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX

COURS GESTION FINANCIERE A COURT TERME SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX COURS GESTION FINANCIERE A COURT TERME SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX Obje de la séance 9: défini le risque de aux e présener

Plus en détail

Quelle structure de dépendance pour un générateur de scenarios économiques en assurance? Impact sur le besoin en capital

Quelle structure de dépendance pour un générateur de scenarios économiques en assurance? Impact sur le besoin en capital Quelle srucure e épenance pour un généraeur e scenarios économiques en assurance? Impac sur le besoin en capial - Kamal ARMEL (Telecom Breagne EURIA) - Aymric KAMEGA (Universié Lyon, Laboraoire SAF, Winer

Plus en détail

Diagnostics Prévisions et Analyses Économiques N 75 Juin 2005

Diagnostics Prévisions et Analyses Économiques N 75 Juin 2005 Diagnosics Prévisions e Analyses Économiques N 75 Juin 005 Les indicaeurs de la poliique monéaire 1 L orienaion de la poliique monéaire, c es-à-dire la quesion de savoir si l environnemen monéaire souien

Plus en détail

Insertion professionnelle et départ du domicile parental : une relation complexe

Insertion professionnelle et départ du domicile parental : une relation complexe Inserion professionnelle e dépar du domicile parenal : une relaion complexe Thomas Couppié, Céline Gasque * L'enrée dans la vie adule es un phénomène mulidimensionnel don la complexificaion es soulignée

Plus en détail

Les Notes de l Institut d émission

Les Notes de l Institut d émission Les Noes de l Insiu d émission Aoû 2012 Déerminans des échanges de biens e compéiivié dans une économie monoexporarice : 164 rue de Rivoli 75001 Paris 01 53 44 41 41 - élécopie 01 44 87 99 62 Sommaire

Plus en détail

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques Universié de Paris I Panhéon Sorbonne U.F.R. de Sciences Économiques Année 2011 Numéro aribué par la bibliohèque 2 0 1 1 P A 0 1 0 0 5 7 THÈSE Pour l obenion du grade de Doceur de l Universié de Paris

Plus en détail

Crédibilité et efficacité de la politique de ciblage d inflation en Turquie sur la période 2002-2006

Crédibilité et efficacité de la politique de ciblage d inflation en Turquie sur la période 2002-2006 Crédibilié e efficacié de la poliique de ciblage d inflaion en Turquie sur la période 2002-2006 Zehra Yesim Gürbüz Besek To cie his version: Zehra Yesim Gürbüz Besek. Crédibilié e efficacié de la poliique

Plus en détail

Concours du second degré Rapport de jury. Session 2010 TROISIÈME CONCOURS CAPES EXTERNE DE MATHÉMATIQUES

Concours du second degré Rapport de jury. Session 2010 TROISIÈME CONCOURS CAPES EXTERNE DE MATHÉMATIQUES minisère éducaion naionale Secréaria Général Direcion générale des ressources humaines Sous-direcion du recruemen MINISTÈRE DE L ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE Concours du second degré Rappor

Plus en détail

Rigidité des prix et politique de stockage Application au marché belge des engrais azotés

Rigidité des prix et politique de stockage Application au marché belge des engrais azotés Documen de ravail n 5 1999, LAME, Universié de Reims, mai 1999 Rigidié des prix e poliique de sockage Applicaion au marché belge des engrais azoés Arnaud Diemer * Lorsqu une firme maximise la valeur présene

Plus en détail

F 2 = - T p K 0. ... F T = - T p K 0 - K 0

F 2 = - T p K 0. ... F T = - T p K 0 - K 0 Correcion de l exercice 2 de l assisana pré-quiz final du cours Gesion financière : «chéancier e aux de renabilié inerne d empruns à long erme» Quesion : rappeler la formule donnan les flux à chaque échéance

Plus en détail

02 mars 2009 28 août 2009. Ingénieur Sup Galilée Spécialité Mathématiques Appliquées et Calcul Scientifique

02 mars 2009 28 août 2009. Ingénieur Sup Galilée Spécialité Mathématiques Appliquées et Calcul Scientifique Rappor de sage Equipe Coordinaion Reporing & erformances 02 mars 2009 28 aoû 2009 Ingénieur Sup Galilée Spécialié Mahémaiques Appliquées e Calcul Scienifique Maser 2, Universié aris 13 Modélisaion de l

Plus en détail

DIPLÔME SPECIAL EN MANAGEMENT. EVALUATION DES ACTIONS Analyse fondamentale. 22 Décembre 2005

DIPLÔME SPECIAL EN MANAGEMENT. EVALUATION DES ACTIONS Analyse fondamentale. 22 Décembre 2005 DIPLÔME SPECIAL EN MANAGEMENT EVALUATION DES ACTIONS Analyse fondamenale Décembre 005 Brigie CHANOINE Chargée de cours Déparemen Finance ICHEC Brigie.chanoine@ichec.be Drois réservés Diplôme Spécial en

Plus en détail

Introduction aux produits dérivés

Introduction aux produits dérivés Chapire 1 Inroducion aux produis dérivés de crédi Le risque de crédi signifie les risques financiers liés aux incapaciés d un agen (un pariculier, une enreprise ou un éa souverain) de payer un engagemen

Plus en détail

Viabilité budgétaire, investissement public et croissance dans les pays à faible revenu, riches en ressources naturelles: le cas du Cameroun

Viabilité budgétaire, investissement public et croissance dans les pays à faible revenu, riches en ressources naturelles: le cas du Cameroun WP/13/144 Viabilié budgéaire, invesissemen public e croissance dans les pays à faible revenu, riches en ressources naurelles: le cas du Cameroun Issouf Samake, Priscilla Muhoora e Bruno Versailles 2013

Plus en détail