Lorsqu un mobile se déplace avec une vitesse constante v, on dit que son mouvement est uniforme. (Attention aux unités!)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Lorsqu un mobile se déplace avec une vitesse constante v, on dit que son mouvement est uniforme. (Attention aux unités!)"

Transcription

1 Mouvemen uniforme (gleichmäβige Bewegung) 1 Définiion Lorsqu un mobile se déplce vec une viesse consne v, on di que son mouvemen es uniforme. Exemple: ) Cyclise rouln vec une viesse consne de 5 km/h. b) Trin rouln vec une viesse consne de 100 km/h Formule relin l viesse v, l disnce d e le emps (mouvemen uniforme) d m d km v( m/ s) ou v( km/ h) s h (Aenion ux uniés!) Dns le mouvemen uniforme, l disnce prcourue d e le emps de prcours son des grndeurs proporionnelles, cr leur rppor d es consn e vu v. Pour résoudre des problèmes fisn inervenir le mouvemen uniforme, on uilise donc oues les echniques de clcul pour résoudre des problèmes de proporionnlié. (Règle de rois, proporions (rppors égux), bleux de proporionnlié) Exemple Un cyclise roule vec une viesse consne de km/h. L disnce prcourue pr le cyclise (en km) e le emps (en h) son des grndeurs proporionnelles, cr si l disnce prcourue devien,,,... fois plus grnde, lors le emps devien ussi,,,... fois plus disnce km grnd. D'près ce qui précède, le rppor es consn e vu km/h. emps () h Le rppor consn dns ce exemple es l viesse du cyclise. Tbleu disnce (km) emps (h) 0 1 disnce ( km) viesse ( km/h) emps () h Disnce prcourue près 5 min: 5 5 d d 5 5 min h ; v d 0km 5 60 Temps pour prcourir 5 km: d v h 15min h Viesse d un deuxième cyclise (rouln à viesse consne!) qui prcour 6 km en min: 6 d 6 5 min h ; v 6 0 km/ h

2 Mouvemen uniforme (gleichmäβige Bewegung) Exercice résolu Un cyclise pr à 1h d'un poin A e roule vec une viesse consne de km/h. ) Clculer l disnce prcourue (en km) près min. b) Clculer le emps nécessire (en h e min) pour prcourir 5 km. c) Un deuxième cyclise se lnce à l poursuie du premier à l viesse de 0 km/h. Qund e où à prir du poin A es-ce qu'il v rrper le premier cyclise, schn qu'il pr du même endroi à 1hmin? d) Avec quelle viesse doi-il rouler s'il veu rrper le premier à 15h0min? (Donner le résul exc e une vleur pprochée à 0,01 près) e) Un roisième cyclise qui roule vec une viesse consne de 6 km/h pr à 1 h d'un poin B siué à 6 km du dépr du premier. Qund e où à prir du poin A es-ce que le roisième cyclise reconre le premier? (Donner les résuls excs) Réponse: ) 1h 60 min disnce ( km) Le rppor viesse (km/h) km / h km / min es consn. emps min 60 Soi d l disnce prcourue près min, lors : d 60 d d d 8,8 km b) Soi le emps (en min) nécessire pour prcourir 5 km, lors: min h15 min 60 c) Disnce prcourue pr le premier cyclise en min : d 60d d d 9,6 km A 1h, les deux cyclises son disns de 9,6 km. En 1 h, le deuxième cyclise rrpe 6 km sur le premier cr s viesse dépsse de 6 km/h celle du premier. L "disnce rrpée" e le emps son des grndeurs proporionnelles; "disnce rrpée" ( km) le rppor es consn. emps min Temps (en h e min) nécessire pour rrper le premier cyclise (pour rrper 9,6 km) : 6 9,6 60 9, ,6 96 min 1 h6min 60 6 Disnce prcourue pr le deuxième cyclise près 1h6min disnce prcourue pr le premier cyclise près min + 1h6min soi h : 8km L renconre lieu à 16h00 à 8 km du poin A.

3 Mouvemen uniforme (gleichmäβige Bewegung) d) 15 h 0 min - 1h 1h 0 min 90 min Disnce d (en km) prcourue pr le premier cyclise près 90 min : d d d d 6 km h 0 min - 1h min 1h 6 min 66 min Viesse v du deuxième cyclise s'il veu rrper le premier à 15h 0 min : d v km/ min 60 km/ h km/ h, km/ h e) En 1 h le premier e le roisième cyclises se rpprochen de km L "disnce rpprochée" e le emps son des grndeurs proporionnelles; le rppor "disnce rpprochée" ( km) es consn. emps min Temps (en h e min) nécessire pour se rpprocher de 50 km (pour se renconrer) : min 6,8 min 1 h16 min 8s Endroi de l renconre à prir du poin A disnce du premier cyclise prcourue près 8 min : 5 d d d 0, km L renconre lieu à 15h16min8s à 0, km du poin A. Exercice résolu Un cyclise pr à 1 h d'un poin A e roule vec une viesse consne de 0 km/h pendn 5 minues. Figué, il rleni e coninue vec une viesse consne de km/h pendn 1h 10 min. ) Clculer s viesse moyenne (Durchschnisgeschwindigkei). b) A quelle viesse doi-il rouler pendn les 0 dernières minues s'il veu minenir une viesse moyenne de 8 km/h pendn l durée ole (soi 105 minues) de son effor? c) Pendn combien de emps, peu-il rouler à km/h à prir de 1h5 s'il veu grder une viesse moyenne égle à 5 km/h. Un deuxième cyclise se lnce à l poursuie du premier à 1h10 en prn du poin A vec une viesse consne de km/h. Le premier roule à 0km/h jusqu'à 1h5, puis il coninue à km/h. d) Qund e à quelle disnce du poin A es-ce qu'il v rrper le premier cyclise? e) A quelle viesse doi-il rouler s'il veu rrper le premier cyclise à 15h00?

4 Mouvemen uniforme (gleichmäβige Bewegung) Réponse: ) Posons : v 1 0 km/ h; min h h; v km/ h; 1h10min h h Disnce ole prcourue pendn les 105 minues : 91 d v1 1+ v 0 + 5,5 km Temps ol en h : 1+ + h d Viesse moyenne en km/h : v 6 km/h b) Viesse v pendn les 0 dernières minues s'il veu une viesse moyenne de 8 km/h pendn l durée 0 + v v1 1+ v 1 6 ole (soi 105 minues) de son effor 8 8 v km/h 1+ c) Temps pendn lequel il peu rouler à km/h à prir de 1h5 s'il veu grder une viesse moyenne égle à 5 km/h : 0 + v + v h h 60min h55min d) Siuion à 1h10: premier cyclise : d v1 0 5 km A 1h10 le premier cyclise se rouve à 5 km du poin A e le deuxième u poin A. Siuion à 1h5: premier cyclise : d v1 0 1,5 km deuxième cyclise : d v 11, 5 km A 1h5 le premier cyclise se rouve à 5 km du poin A e le deuxième à 5 Disnce qui sépre les deux cyclises à 1h5 : , 5 km km du poin A. A prir de 1h5, le deuxième cyclise rrpe km sur le premier en 1h. Temps qu'il fu u deuxième cyclise pour rrper le premier à prir de 1h5 : h h 60min h5min 1 1 1

5 Mouvemen uniforme (gleichmäβige Bewegung) 5 Le deuxième cyclise rrpe le premier à 16h 0 min. Disnce prcourue pr le premier cyclise à 16h 0 min disnce prcourue pr le deuxième cyclise à 16h 0 min ,5 km L renconre à lieu à 6,5 km du poin A e) Disnce prcourue pr le premier à 15h00 : km 60 Viesse moyenne du deuxième cyclise s'il veu rrper le premier à 15h00 : 55 d v km/h 50 60

6 Mouvemen uniforme (gleichmäβige Bewegung) 6 Exercices pour s enrîner 1) Un vion vole à l viesse de 00 km/h pr rppor à l ir. Pendn son voyge ller, il de fce un ven de 0 km/h ; u reour, il le même ven dns le dos. Quelle es s viesse moyenne sur l ensemble du rje? ) Le ryon de l erre à l équeur es d environ 600 km. Un vion en fi un our à une viesse de 800 km/h (pr rppor à l erre). Si l liude de s rjecoire u dessus de l équeur es négligeble, quelle es l durée du vol (rrondir à 1 près). ) Un uomobilise se rend de Bruxelles à Pris. A l moiié du chemin, il rélise que s viesse moyenne es excemen 10 km/h. Si s viesse moyenne, sur l ensemble du rje, éé de 96 km/h, quelle éé, en kilomères pr heure, s viesse moyenne sur l seconde moiié du rje? ) Au cours d un mrhon dispué pr cinq coureurs, Mrc es 5 m derrière Séphne. Celui-ci es 55 m devn Prick, qui es 150 m derrière Chrles. Enfin, celui-ci sui Jen à 55 m. En mères, quelle disnce sépre le premier du dernier? 5) Séphne fi son jogging. Pour l insn, il lui rese à prcourir l moiié de ce qu il déjà couru ; un kilomère plus ô, il lui resi à courir le double de ce qu il vi déjà couru. Quelle es, en kilomères, l longueur de son enrînemen? 6) Le mobile 1 prcour 50 km en heures e rene minues ; le mobile prcour 00 mères en 0 secondes ; le mobile prcour 00 mères en 1 minue ; le mobile prcour 1000 mères en minues. Quels son les deux mobiles qui on l même viesse moyenne? ) Michël e Gilles pricipen à une course de 10 km, consisn à grimper une côe de 5 km puis à revenir depuis son somme jusqu u poin de dépr pr le même chemin. Michël pr 10 minues plus ô que Gilles, qui grimpe à l viesse de 15 km/h e descend à 0 km/h. Gilles grimpe à 16 km/h e descend à km/h. A quelle disnce du somme se croisen-ils?

7 Mouvemen uniforme (gleichmäβige Bewegung) Réponses 1) Viesse de l vion à l ller : km / h Temps pour l ller : Disnce prourue à l ller : d d d D où l équion : De même : Viesse de l vion u reour : km / h Temps pour le reour : r Disnce prourue u reour : d d d D où l équion : 0 r r 0 Viesse moyenne du l ensemble du rje : d d d 60 0 v d 96 km/ h d d 0d 60d + + r + 800d Remrque: Cs générl : Soien v l viesse à l ller e v l viesse u reour, lors: d d vv r vv r v+ vr v d d d dvr + dv + d( v + vr) v + vr v vr vv r v + vr es l moyenne rihméique des nombres v e vr. vv r es l moyenne hrmonique des nombres v e vr. v + v Si Si r v v v, lors v r r v + vr v v vvr v v v + v ( v vr) v r, lors v + vr vvr v + vr vvr... > 0 > v + v v + v v + v r r r Si v vr l viesse moyenne sur l ensemble du rje es inférieure à l moyenne des viesses à l ller e u reour! r ) Durée du vol : d π 600 π 600 v π 50, h 800 ) Soien v1 l viesse moyenne sur l première moiié du chemin, v l viesse moyenne sur l deuxième moiié du chemin e v l viesse moyenne sur l ensemble du rje, lors: vv 1 10 v v ( 10 + v) 0 v... v 80 km/ h v + v 10 + v 1

8 Mouvemen uniforme (gleichmäβige Bewegung) 8 ) Schém: Disnce qui sépre le premier du dernier : 5 m 5) 1 ) Choix de l inconnue longueur de l enrînemen de Séphne en km : x ) Mise en équion 1 1 x x 1 x 1 x disnce prcourue à l'insn disnce prcourue 1km plus ô ) Soluion longueur de l enrînemen de Séphne en km : 6) Viesse moyenne du mobile 1 en m/s : Viesse moyenne du mobile en m/s : Viesse moyenne du mobile en m/s : Viesse moyenne du mobile en m/s : Les mobiles 1 e on l même viesse moyenne. ) Siuion u dépr de Gilles (10 min près le dépr de Michël) : 10 Disnce prcourue pr Michël en 10 min : 15 16,5 km Siuion lorsque Michël ein le somme (0 min près le dépr de Michël) : 10 8 Disnce prcourue pr Gilles en 10 min : 16 km 60 8 Disnce qui sépre Gilles e Michël : 5 km Les deux se rpprochen minenn à l viesse de km / h Pour se renconrer (se rpprocher de km) il leur fu : d h v Lieu de l renconre: Lieu de l renconre (à prir du somme) disnce prcourue pr Michël en 108 h : 5 d v 0 1,0km Michël à l descene uremen: Lieu de l renconre (à prir du somme) 5 - disnce prcourue pr Gilles en 10min+ h : d 5 + v ,0 Gilles à l monée + km

Planche 2. z ), où γ = 1 µ/σ2 ; ou encore :

Planche 2. z ), où γ = 1 µ/σ2 ; ou encore : Plnche Exercice 1 On considère un mrché nncier de ux d'inérê r e une cion de dynmique risque neure ds = S µd + σdw, S = x Soi une brrière hue ; on considère une opion brrière Up In qui délivre l'cion S

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

ANNEXES. André de Palma et Cédric Fontan. Thema Transport & Réseaux. Le 26 octobre 2000

ANNEXES. André de Palma et Cédric Fontan. Thema Transport & Réseaux. Le 26 octobre 2000 Enquêe MADDIF : Mulimoif Adpée à l Dynmique des comporemens de Déplcemen en Ile-de-Frnce ANNEXES André de Plm e Cédric Fonn Them Trnspor & Réseux Le 26 ocobre 2000 Lere de commnde N 99MT20 DRAST Minisère

Plus en détail

LASTO Appuis élastomère

LASTO Appuis élastomère LASTO Appuis élsomère LASTO BLOCK F Appuis de déformion non-rmés Swizerlnd www.mgeb.ch Chmps d pplicion e specs imporns Chmps d pplicion LASTO BLOCK F es un ppui de déformion non-rmé en élsomère qui es

Plus en détail

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers.

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers. CHAP: 8 Objecifs de ce chpire : Clculer comme se cosiuer u cpile ; Clculer comme rembourser ue dee e effecu des versemes réguliers. RAPPELS : Qu'es-ce qu'ue vleur cquise? Qu'es-ce qu'ue vleur cuelle? Le

Plus en détail

UNITÉ 1: LA CINÉMATIQUE

UNITÉ 1: LA CINÉMATIQUE UNITÉ 1: L CINÉMTIQUE Cinémaique: es la branche e la physique qui raie e la escripion u mouemen objes sans référence aux forces ni aux causes régissan ce mouemen. 1.1 L VITESSE ET L VITESSE VECTORIELLE

Plus en détail

Systèmes séquentiels - Fonction Mémoire

Systèmes séquentiels - Fonction Mémoire Cours - ysèes séqueniels - Foncion Méoire Pge /8 ysèes séqueniels - Foncion Méoire ) EPEENTATION PA UN CONOGAMME...3 2) OBTENTION D UN EFFET MEMOIE PA AUTO-MAINTIEN....3 2) CAIE DE CAGE DE DIFFEENTE MEMOIE...

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté»

Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté» Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer MD 8-9 Chre IV es oscllons coulées «es oscllons lbres d un ssèe à luseurs degrés de lberé» Dns ce chre, nous llons coencer r éuder les oscllons lbres

Plus en détail

Solutions AUTOMATISMES. L essentiel

Solutions AUTOMATISMES. L essentiel AUTOMATISMES Freinage élecronique des Les variaeurs de viesse on beaucoup évolué ces dernières années, an en ermes de performance echnique que de coû. Cela leur a permis de conquérir de nouvelles posiions,

Plus en détail

5½ À partir de 1475$ /MOIS

5½ À partir de 1475$ /MOIS 5½ 1475$ TYPE A : 1500 pi 2 TYPE B : 1250 pi 2 4½ 1350$ TYPE C : 1230 pi 2 4½ 1350$ TYPE D : 1200 pi 2 4½ 1350$ TYPE E : 1500 pi 2 5½ 1475$ 3½ 1100$ TYPE F : 800 pi 2 3½ 1100$ TYPE G : 850 pi 2 TYPE H

Plus en détail

TP Mesures de la vitesse du son

TP Mesures de la vitesse du son TP Mesures de la viesse du son Bu du TP. Lors de cee séance de ravaux praiques, l éudian es amené à mesurer la viesse de propagaion du son dans l air e dans l eau. 1 Inroducion Qu es-ce qu un son? Un son

Plus en détail

Des extraits de cette norme seront présentés pour la compréhension de la démarche.

Des extraits de cette norme seront présentés pour la compréhension de la démarche. Estimtion de l incertitude de l mesure : Appliction à l incertitude sur le clcul de l concentrtion d EDTA lors de l détermintion de l dureté d une eu nturelle Pour cette démrche, nous nous ppuierons sur

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

Electronique numérique

Electronique numérique Lycée Louis ARMAND : 45 4 8 8 73 Bd de Srsourg : 48 73 63 5 Elecronique numérique Éude, dpion e concepion De circuis de commnde en echnologie numérique câlée Ojecif Réliser un circui de commnde en echnologie

Plus en détail

FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd 1-3 22/08/2012 15:12

FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd 1-3 22/08/2012 15:12 1 2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 26 28 30

Plus en détail

fnstallationétectrique W

fnstallationétectrique W Sommire du chpire fnsllionéecrique W Vous rouverez dns ce chpire des indicions concernn l'insllion élecrique de vore crvne. Les indicions concernen en priculier:. l sécurié. l'explicion de ermes echniques

Plus en détail

Cf. Document : Les différents modes de financement des entreprises

Cf. Document : Les différents modes de financement des entreprises / 7 3 e rtie : Les modes de finncement (à moyen et long terme) Cf. Document : Les différents modes de finncement des entrerises Cf. Fiche conseil.37 : Les modes de finncement des investissements - L utofinncement

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Intégration de la valeur actuelle nette (VAN), de la valeur économique ajoutée (VÉA) et des flux monétaires libérés (FML)

Intégration de la valeur actuelle nette (VAN), de la valeur économique ajoutée (VÉA) et des flux monétaires libérés (FML) Inégion de l vleu cuelle nee (VAN, de l vleu économique jouée (VÉA e des flux monéies libéés ( D Jcques Sin-iee Dieceu ofesseu iulie Dépemen de Finnce e Assunce Fculé des sciences de l dminision villon

Plus en détail

Devoir de physique-chimie n 4bis (2H)

Devoir de physique-chimie n 4bis (2H) TS jn 2014 Devoir de physique-chimie n 4bis (2H) Nom:...... LES EXERIES SNT INDEPENDANTS ALULATRIE AUTRISEE PHYSIQUE : ETILE BINAIRE /20 1. Le télescope 8 Les 3 prties sont indépendntes. Document 1 : L

Plus en détail

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little.

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little. Cours de Tronc Commun Scienifique Recherche Opéraionnelle Les files d aene () Les files d aene () Frédéric Sur École des Mines de Nancy www.loria.fr/ sur/enseignemen/ro/ 5 /8 /8 Exemples de files d aene

Plus en détail

Analyse de la mortalité infantile

Analyse de la mortalité infantile Cours «Anlyse e modèles démogrphiues» pr A.Avdeev 6/2/22 Universié Pris Pnhéon Sorbonne, Insiu de démogrphie I U P Cours d nlyse démogrphiuepr Alexndre Avdeev, niveu : Mser de démogrphie Chpire 3 Anlyse

Plus en détail

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3 Chapire Eercices de snhèse 6 CHAPITRE EXERCICES..a), ±,55 b) 97,75 ±,455 c) 95,5 ±,475.±,6π cm.a) 44,, erreur absolue de,5 e erreur relaive de, % b) 5,56, erreur absolue de,5 e erreur relaive de,9 % 4.a)

Plus en détail

ÉCONOMIQUE ET MÉCANIQUE LÉON WALRAS

ÉCONOMIQUE ET MÉCANIQUE LÉON WALRAS ÉCONOMIQUE ET MÉCANIQUE LÉON WALRAS (1909) Bullein de l Sociéé Vudoise de Sciences Nurelles Vol. 45 p.313-325. [Noe on Elecronic Ediion: This is n elecronic version of Léon Wlrs's ricle "Économique e Mécnique"

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

TB 352 TB 352. Entrée 1. Entrée 2

TB 352 TB 352. Entrée 1. Entrée 2 enrées série TB logiciel d applicaion 2 enrées à émission périodique famille : Inpu ype : Binary inpu, 2-fold TB 352 Environnemen Bouon-poussoir TB 352 Enrée 1 sories 230 V Inerrupeur Enrée 2 Câblage sur

Plus en détail

Calibration absolue par la mesure du faisceau direct

Calibration absolue par la mesure du faisceau direct DNPA Clibrtion 16-01-04 1 Clibrtion bsolue pr l mesure du fisceu direct 1- Introduction Les différentes méthodes permettnt de fire des mesures bsolues en diffusion de neutrons ux petits ngles (DNPA) sont

Plus en détail

ETUDE DES DIFFERENTES COMMANDES DU SYSTEME. 1 - Commande manuelle par BP "marche-arrêt" (2 sens de marche)

ETUDE DES DIFFERENTES COMMANDES DU SYSTEME. 1 - Commande manuelle par BP marche-arrêt (2 sens de marche) BS Mainenance Indusrielle Elecroechnique Eude d un mone charge Moeur asynchrone deux sens de roaion e 2 viesses enroulemens séparés Rappels emporisaions Présenaion es manuenions dans un grand magasin son

Plus en détail

TD 20-21 : Modèles de marchés - Mouvement brownien

TD 20-21 : Modèles de marchés - Mouvement brownien Universié Paris VI Maser : Modèles sochasiques, applicaions à la finance (MM065) TD 20-2 : Modèles de marchés - Mouvemen brownien. Taux de change. Soi (Ω, P(Ω), P) un espace probabilisé fini non redondan

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot I - PRECISION DES SYSTEMES ASSERVIS A. Poton du roblème 1. Préentton On vu que le rôle d un ytème erv et de fre uvre à l orte (t) une

Plus en détail

Chapitre 15 c Circuits RL et RC

Chapitre 15 c Circuits RL et RC Chapire 15 c Circuis L e C en régime impulsionnel Sommaire Circuis en régime impulsionnel Signal impulsionnel Mesure d'un circui C en régime impulsionnel Applicaion praique Eude du circui C en régime impulsionnel

Plus en détail

Sciences Industrielles pour l Ingénieur

Sciences Industrielles pour l Ingénieur Sciences Indusrielles pour l Ingénieur Cenre d Inérê 6 : CONVERTIR l'énergie Compéences : MODELISER, RESOUDRE CONVERSION ELECTROMECANIQUE - Machine à couran coninu en régime dynamique Procédés de piloage

Plus en détail

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 28 novembre 2013 Lien vers l dernière mise à jour de ce document Lien vers les exercices de ce chpitre Chpitre 20 Intégrtion Sommire 20.1 Continuité uniforme.................................

Plus en détail

Savoir-faire expérimentaux.

Savoir-faire expérimentaux. LYCEE LOUIS DE CORMONTAIGNE. 12 Plce Cormontigne BP 70624. 57010 METZ Cedex 1 Tél.: 03 87 31 85 31 Fx : 03 87 31 85 36 Sciences Appliquées. Svoir-fire expérimentux.. Référentiel.. :. S5 Sciences. Appliquées......

Plus en détail

Toyota Assurances Toujours la meilleure solution

Toyota Assurances Toujours la meilleure solution Toyot Assurnces Toujours l meilleure solution De quelle ssurnce vez-vous besoin? Vous roulez déjà en Toyot ou vous ttendez s livrison. Votre voiture est neuve ou d occsion. Vous vlez les kilomètres ou

Plus en détail

P hotographies aériennes. Photographies aériennes actuelles. La BD ORTHO de l IGN. Les photographies «satellitales»

P hotographies aériennes. Photographies aériennes actuelles. La BD ORTHO de l IGN. Les photographies «satellitales» P hotogrphies ériennes Pr rpport ux crtes, les photogrphies ériennes pportent deux vntges mjeurs : leur mise à jour est eucoup plus fréquente ; leur possiilité d nlyse est ien supérieure : on distingue

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

Préparation à l'examen écrit de maturité Mathématiques 2013

Préparation à l'examen écrit de maturité Mathématiques 2013 Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir

Plus en détail

VA(1+r) = C 1. VA = C 1 v 1

VA(1+r) = C 1. VA = C 1 v 1 Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)

Plus en détail

STI2D Logique binaire SIN. L' Algèbre de BOOLE

STI2D Logique binaire SIN. L' Algèbre de BOOLE L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.

Plus en détail

Méthode d'analyse économique et financière ***

Méthode d'analyse économique et financière *** Méhode d'analyse économique e financière *** Noion d acualisaion e indicaeurs économiques uilisables pour l analyse de projes. Dr. François PINTA CIRAD-Forê UR Bois - Kourou CHRONOLOGIE D INTERVENTION

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

Chimie Avancement d une réaction chimique Chap.8

Chimie Avancement d une réaction chimique Chap.8 ère S Thème : Couleurs et imges TP n 6 Chimie Avncement d une réction chimique Chp.8 Notions et contenus Réction chimique réctif limitnt stœchiométrie notion d vncement Compétences eigiles Identifier le

Plus en détail

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie VARIABLES ALÉATOIRES déo oco de réro vrble léore dscrèe moyee - vrce - écr ye esérce mhémque vrble léore coue oco d ue vrble léore : rsormo combso lére de vrbles léores Déo E : eérece léore S : esce échllol

Plus en détail

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement Chapire 2 L invesissemen. Les principales caracérisiques de l invesissemen.. Définiion de l invesissemen Définiion générale : ensemble des B&S acheés par les agens économiques au cours d une période donnée

Plus en détail

Intégrales généralisées

Intégrales généralisées 3 Iégrles géérlisées Pour ce chpire, les focios cosidérées so priori défiies sur u iervlle réel I o rédui à u poi, à vleurs réelles ou complees e coiues pr morceu. L défiiio e les propriéés de l iégrle

Plus en détail

Présentation groupe de travail

Présentation groupe de travail Présenaion groupe de ravail Sofiane Saadane jeudi 23 mai 2013 Résumé L aricle sur lequel on ravaille [LP09] présene un problème de bandi à deux bras comporan une pénalié. Nous commencerons par présener

Plus en détail

Chapitre 2 Les automates finis

Chapitre 2 Les automates finis Chpitre 2 Les utomtes finis 28 2.1 Introduction Automtes finis : première modélistion de l notion de procédure effective.(ont ussi d utres pplictions). Dérivtion de l notion d utomte fini de celle de progrmme

Plus en détail

2.1 L'automate minimal

2.1 L'automate minimal CH.2 Minimistion 2.1 L'utomte miniml 2.2 L'lgorithme de minimistion Automtes ch2 1 2.1 L'utomte miniml Le lngge L définit sur Σ* l reltion d'équivlence R L : x R L y ssi ( z, xz L yz L). L'AFD M définit

Plus en détail

Mécanique: chapitre 2. Forces; Moments

Mécanique: chapitre 2. Forces; Moments écnique: chpitre orces; oents INTRDUCTIN Toute ction écnique s'eerçnt sur un objet pour eet soit: de odiier son ouveent ou de le ettre en ouveent, de le intenir en équilibre, de le déorer. Toute ction

Plus en détail

TOUT SUR LE TRIANGLE

TOUT SUR LE TRIANGLE PROBLEME de niveu sup rédigé pr R. Ferreol ferreol@mthcurve.com TOUT SUR LE TRIANGLE. DONNÉES ET NOTATIONS 3 points A, B, C non lignés d un pln ffine euclidien P orienté de fçon à ce que (AB, AC ) soit

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

Chapitre VI Contraintes holonomiques

Chapitre VI Contraintes holonomiques 55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce

Plus en détail

VISUALISATION DES SIGNAUX ELECTRIQUES OSCILLOSCOPE CATHODIQUE ANALOGIQUE

VISUALISATION DES SIGNAUX ELECTRIQUES OSCILLOSCOPE CATHODIQUE ANALOGIQUE VISUALISATION DES SIGNAUX ELECTRIQUES OSCILLOSCOPE CATHODIQUE ANALOGIQUE INTRODUCTION L'oscilloscope es le plus polyvalen des appareils de mesures élecroniques. Il peu permere simulanémen de visualiser

Plus en détail

distance parcourue temps mis pour la parcourir

distance parcourue temps mis pour la parcourir CH IV VITESSE - DEBIT - MASSE VOLUMIQUE - DENSITE RAPPELS DE COURS QUESTION 26 Conversion de m/s en km/h : il fut à l fois onvertir les mètres en kilomètres et les seondes en heures. On : 1 m = 0, 001

Plus en détail

Table des matières Dénombrer et sommer Événements et Probabilités

Table des matières Dénombrer et sommer Événements et Probabilités Tble des mtières 1 Dénombrer et sommer 5 1.1 Rppels ensemblistes............................. 5 1.1.1 Opértions ensemblistes....................... 5 1.1.2 Bijections............................... 7 1.2

Plus en détail

Séquence 7. Intégration. Sommaire

Séquence 7. Intégration. Sommaire Séquence 7 Intégrtion Sommire. Prérequis. Aire et intégrle d une fonction continue et positive sur [ ; ]. Primitives 4. Primitives et intégrles d une fonction continue 5. Synthèse de l séquence Dns ce

Plus en détail

Solvency II, IFRS : l impact des modèles d actifs retenus

Solvency II, IFRS : l impact des modèles d actifs retenus Les normes IFRS en assurance Solvency II, IFRS : l impac des modèles d acifs reenus 31 e journée de séminaires acuariels ISA-HEC Lausanne e ISFA Lyon Pierre THÉROND pherond@winer-associes.fr 18 novembre

Plus en détail

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................

Plus en détail

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1 Grenoble INP Pgor 1ère nnée Exercices corrigés Anlyse numérique NB : Les exercices corrigés ici sont les exercices proposés durnt les sénces de cours. Les corrections données sont des corrections plus

Plus en détail

Site web de réservations de voyages mettant en relation des clients voyageurs, des prestataires de services leur gestionnaire de

Site web de réservations de voyages mettant en relation des clients voyageurs, des prestataires de services leur gestionnaire de Usger Gérer session utilisteur Client Système comptble Client fidélisé Gérer Suivi Rés Administrteur site de réservtion Gestionnire fidélité Gérer Fidélité Gestionnire Hotels Gérer Hotels Site web de réservtions

Plus en détail

Electromagne tisme 2 : Induction

Electromagne tisme 2 : Induction Electromgne tisme : Induction Induction de Neumnn Eercice 1 : Clcul d une force électromotrice induite n dispose d'un cdre crré fie de côté comportnt N spires d'un fil conducteur d'etrémités A et C dns

Plus en détail

Réseau de coachs. Vous êtes formés dans les métiers du sport et/ou de la préparation physique (Brevet d état, Licence, Master STAPS)

Réseau de coachs. Vous êtes formés dans les métiers du sport et/ou de la préparation physique (Brevet d état, Licence, Master STAPS) Réseau de coachs Vous êes formés dans les méiers du spor e/ou de la préparaion physique (Breve d éa, Licence, Maser STAPS) Vous connaissez la course à pied Vous souhaiez créer e/ou animer des acions de

Plus en détail

Lycée Viette TSI 1. T.P. cours 04 oscilloscope G.B.F. multimètres. P DV P DH écran fluorescent

Lycée Viette TSI 1. T.P. cours 04 oscilloscope G.B.F. multimètres. P DV P DH écran fluorescent Lycée Viee TSI 1 T.P. cours 04 oscilloscope G.B.F. mulimères I. Principe de foncionnemen de l oscilloscope à ube cahodique 1. Descripion F C W A 1 A 2 vide spo P DV P DH écran fluorescen F filamen C cahode

Plus en détail

gfaubert septembre 2010 1

gfaubert septembre 2010 1 Notes de cours Pour l e secondire Compiltion et/ou crétion Guyline Fuert Septemre 00 gfuert septemre 00 Géométrie------------------------------------------------------------------------------------------------------------------------

Plus en détail

Chromatographie en Phase Gazeuse CPG.

Chromatographie en Phase Gazeuse CPG. TEISSIER Thomas MADET Nicolas Licence IUP SIAL Universié de Créeil-Paris XII COMPTE-RENDU DE TP DE CHROMATOGRAPHIE: Chromaographie en Phase Gazeuse CPG. Année universiaire 23/24 Sommaire. I OBJECTIF...3

Plus en détail

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1 Documenaion Technique de Référence Chapire 8 Trames ypes Aricle 8.14-1 Trame de Rappor de conrôle de conformié des performances d une insallaion de producion Documen valide pour la période du 18 novembre

Plus en détail

Stabilisation des systèmes bilinéaires fractionnaires

Stabilisation des systèmes bilinéaires fractionnaires Sbilision des sysèmes bilinéires frcionnires Ibrhim N Doye,, Michel Zsdzinski, Nour-Eddine Rdhy, Mohmed Drouch Cenre de Recherche en Auomique de Nncy, UMR 739 Nncy-Universié, CNRS IUT de Longwy, 86 rue

Plus en détail

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES IRM foncionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES Le principe général d'une éude IRMf consise à analyser le signal BOLD (Blood Oxygen Level Dependen) qui radui l'augmenaion d'afflux

Plus en détail

Unité F : Variations et formules. Demi-cours VI Guide de l'élève

Unité F : Variations et formules. Demi-cours VI Guide de l'élève Unié F : Variaions e formules Demi-cours VI Guide de l'élève Leçon 1 : Variaion direce Plus ô, nous avons examiné les relaions enre des variables comme les suivanes : I. Variable dépendane = consane x

Plus en détail

S il ne peut être déterminé en raison d'excavations et de remblais antérieurs, la référence est le terrain naturel environnant.

S il ne peut être déterminé en raison d'excavations et de remblais antérieurs, la référence est le terrain naturel environnant. Annexe A MESSAGE TYPE 8. COMMENTAIRES DES DEFINITIONS DE L ANNEXE NOTIONS ET METHODES DE MESURE 1. TERRAIN DE RÉFÉRENCE 1.1 Terrin de référence Le terrin de référence équivut u terrin nturel. S il ne peut

Plus en détail

Chapitre 9: Primitives et intégrales

Chapitre 9: Primitives et intégrales PRIMITIVES ET INTEGRALES 7 Chpitre 9: Primitives et intégrles Prérequis: Limites, dérivées Requis pour: Emen de mturité 9. «À quoi ç sert?» Un peu d histoire Isc Newton (64-77) Les clculs d ire de figures

Plus en détail

CEM : ETUDE DES DIFFERENTS MODES DE COUPLAGE

CEM : ETUDE DES DIFFERENTS MODES DE COUPLAGE ECOE SUPEIEUE e PASTUGIE TP CEM CEM : ETUDE DES DIFFEENTS MODES DE COUPAGE I ) Introuction DES PETUBATIONS EECTOMAGNETIQUES e but e ce TP consiste à mettre en évience les ifférents moes e couplge es perturbtions

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

Etude des micros de guitare électrique.

Etude des micros de guitare électrique. Emmuel Serié Chrisophe Combe Eude des micros de guire élecrique. Sge rélisé du 3 jui u 2 juille u Lboroire d'acousique Musicle (L.A.M.: UMR 764 du CNRS) UFR N 39 de l'uiversié Pris 6 rue de Lourmel 755

Plus en détail

Calcul de la rugosité surfacique

Calcul de la rugosité surfacique VI èmes Journées d Etudes Techniques 200 The Interntionl congress for pplied mechnics L mécnique et les mtériux, moteurs du développement durble du 05 u 07 mi 200, Mrrkech Mroc Clcul de l rugosité surfcique

Plus en détail

!"#$% 201, 301, 401, 501, 601, 701

!#$% 201, 301, 401, 501, 601, 701 201, 301, 401, 501, 601, 701 UNITÉ 635 pi 2 BALCON 100 pi 2 TOTALE 735 pi 2 (TERRASSE 201: 190 pi 2 ) 202, 302, 402, 502, 602, 702 2 UNITÉ 925 pi BALCON pi 2 TOTALE 925 pi 2 203, 303, 403, 503, 603, 703

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états. ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie

Plus en détail

Exercices de baccalauréat série S sur la loi exponentielle

Exercices de baccalauréat série S sur la loi exponentielle Eercices de baccalauréa série S sur la loi eponenielle (page de l énoncé/page du corrigé) La compagnie d'auocars (Bac série S, cenres érangers, 23) (2/) Durée de vie d'un composan élecronique (Bac série

Plus en détail

Etude et Conception Assistée par Ordinateur d un Système de Réfrigération par Voie Solaire

Etude et Conception Assistée par Ordinateur d un Système de Réfrigération par Voie Solaire Rev. Energ. Ren. : Journées de hermue (200) 25-30 Eude e Concepon sssée pr Ordneur d un Sysème de Réfrgéron pr Voe Solre M. Belrb, F. Benyrou e B. Benyoucef Lborore des Méru e Energes Renouvelbles, Fculé

Plus en détail

Modèles de dimensionnement et de planification dans un centre d appels

Modèles de dimensionnement et de planification dans un centre d appels Modèles de dimensionnemen e de plnificion dns un cenre d ppels Rbie Ni-Abdllh To cie his version: Rbie Ni-Abdllh. Modèles de dimensionnemen e de plnificion dns un cenre d ppels. Engineering Sciences. Ecole

Plus en détail

ÉTUDE D UN SYSTÈME PLURITECHNIQUE

ÉTUDE D UN SYSTÈME PLURITECHNIQUE DM SSI: AQUISITION DE l INFORMATION ÉTUDE D UN SYSTÈME PLURITECHNIQUE Pores Laérales Coulissanes de monospace PRÉSENTATION DE L ÉTUDE Mise en siuaion Les fabricans d'auomobiles, face à une concurrence

Plus en détail

Détermination des épaisseurs Formule générale

Détermination des épaisseurs Formule générale Formule générle Hors le cs des vitrges pour le bâtiment, trité pr l NF DTU 39 P4, on peut clculer à l ide des formules de Timoshenko : - l épisseur minimle à donner ux vitrges plns monolithiques soumis

Plus en détail

x et y sont proportionnels si, et seulement si, les poins de coordonnées (x ; y) sont alignés avec l origine du repère. y 4 n

x et y sont proportionnels si, et seulement si, les poins de coordonnées (x ; y) sont alignés avec l origine du repère. y 4 n CHAPITRE 11 PROPORTIONNALITE I. GENERALITES A. NOTION DE GRANDEURS PROPORTIONNELLES Deux grandeurs x et y sont proportionnelles si, lorsque l une varie, l autre varie dans les mêmes proportions : si x

Plus en détail

Séquence 8. Probabilité : lois à densité. Sommaire

Séquence 8. Probabilité : lois à densité. Sommaire Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit

Plus en détail

Résumé du cours d analyse de maths spé MP

Résumé du cours d analyse de maths spé MP 1 TOPOLOGE Résumé du cours d nlyse de mths spé MP 1 Topologie 1) Normes, normes équivlentes Une norme sur l espce vectoriel E est une ppliction N de E dns R vérifint : x E, N(x). x E, (N(x) = x = ) (xiome

Plus en détail

Sommaire de la séquence 12

Sommaire de la séquence 12 Sommaire de la séquence 12 Séance 1........................................................................................................ Je prends un bon dépar.......................................................................................

Plus en détail

Simulation : application au système bonus-malus en responsabilité civile automobile

Simulation : application au système bonus-malus en responsabilité civile automobile 4/5/98 Simulaion : applicaion au sysème bonus-malus Simulaion Simulaion : applicaion au sysème bonus-malus en responsabilié civile auomobile 4/5/98 Simulaion : applicaion au sysème bonus-malus Programme

Plus en détail

BULLETIN TECHNIQUE ACTIVITÉS ATHLÉTIQUES N 16 bis

BULLETIN TECHNIQUE ACTIVITÉS ATHLÉTIQUES N 16 bis BULLETIN TECHNIQUE ACTIVITÉS ATHLÉTIQUES N 16 bis Élaboré au cours du stage de l USEP 74 du 22 mars au 3 avril 2004. Ont participé en particulier à sa conception : Isabelle Grégoire, Stéphane Ravel, Nicolas

Plus en détail

Cours d Analyse IV Suites et Séries de fonctions

Cours d Analyse IV Suites et Séries de fonctions Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet pujo@mth.univ-lyon1.fr Cours d

Plus en détail

CH.1 Automates finis

CH.1 Automates finis CH.1 Automtes finis 1.1 Les utomtes finis déterministes 1.2 Les utomtes finis non déterministes 1. Les utomtes vec -trnsitions 1.4 Les expressions régulières 1.5 L'équivlence des modèles Automtes ch1 1

Plus en détail

CHAPITRE. Le mouvement en une dimension CORRIGÉ DES EXERCICES

CHAPITRE. Le mouvement en une dimension CORRIGÉ DES EXERCICES CHAPITRE Le mouvement en une dimension CORRIGÉ DES EXERCICES Exercices. Le mouvement rectiligne uniforme SECTION. 5. Le graphique suivant représente la vitesse d une cycliste en fonction du temps. Quelle

Plus en détail