Theme 4 - Lois usuelles discrètes

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Theme 4 - Lois usuelles discrètes"

Transcription

1 L2 AES TD de statistique 2008/2009 Cours de Mme Mériot M.-A. Jambu & S.Turolla Theme 4 - Lois usuelles discrètes Exercice 1 (Loi binomiale) A et B sont deux avions ayant respectivement 4 et 2 moteurs. Les moteurs sont supposés indépendants les uns des autres, et ils ont une probabilité p de tomber en panne. Chaque avion arrive à destination si moins de la moitié de ses moteurs tombe en panne. Quel avion choisissez-vous? (on discutera en fonction de p). Loi binomiale : Si on effectue n épreuves successives indépendantes où on note à chque fois la réalisation ou non d un certain événement A, on obtient une suite de la forme AAAA... AAA. A cet événement élémentaire w on associe le nombre X (w) de ralisations de A. On définit ainsi une v.a. X qui suit une loi binomiale de paramètres n et p = P (A)., caractérisée par X (Ω) = {0, 1,..., n} et pour k X (Ω) : P (X = k) = Cnp k k (1 p) n k E (X) = np et V (X) = npq On définit par X la variable aléatoire associée au nombre de moteurs qui tombent en panne pour l avion A et par Y la variabe aléatoire associée au nombre de moteurs qui tombent en panne pour l avion B. D après l énoncé, X (Ω) = {0, 1, 2, 3, 4} et Y (Ω) = {0, 1, 2}. Ainsi l événement l avion A arrive à destination est réalisé si [(X = 0) (X = 1)] et l événement l avion B arrive à destination est réalisé si [(Y = 0)]. D après l énoncé, on en déduit que X suit une loi binomiale de paramètres X B (4, p) et Y suit une loi binomiale de paramètres Y B (2, p). Ainsi, P (X = 0) = C 0 4p 0 (1 p) 4 = (1 p) 4 et P (X = 1) = C 1 4p 1 (1 p) 3 = 4p (1 p) 3 De plus P (Y = 0) = C 0 2p 0 (1 p) 2 = (1 p) 2 De ce fait, nous choisirons de voyager dans l avion A si P (X = 0) + P (X = 1) > P (Y = 0), ou 1

2 inversement. D après les calculs précédents, nous en déduisons (1 p) 4 + 4p (1 p) 4 > (1 p) 2 (1 p) 4 + 4p (1 p) 4 (1 p) 2 > 0 p (1 p) 2 (2 3p) > 0 avec (A B) 4 = ( A 4 + B 4 4A 3 B + 6A 2 B 2 4AB 3). Par conséquent, si 0 < p < 2/3 on choisira l avion A, si p = 2/3 ou p = 0 ou p = 1 on est indifférent entre les deux avions et si 2/3 < p < 1 on choisira l avion B. Exercice 2 (Loi binomiale) Un concessionnaire de voitures vend le même jour 7 véhicules identiques à des particuliers. Sachant que la probabilité pour que ce type de voiture soit en état de rouler deux ans après est de 0.9, calculez la probabilité : 1. Que les 7 voitures soient en service deux ans plus tard; On dénome par X la variable aléatoire associée au nombre de voitures en état de rouler deux ans après leur achat. D après l énoncé, X (Ω) = {0, 1, 2, 3, 4, 5, 6, 7} et cette variable aléatoire suit une loi binomiale de paramètres X B (7, 0.9). Ainsi, la probabilité que 7 voitures soient en service deux ans plus tard est P (X = 7) = C (1 0.9) 0 = Que les 7 voitures soient hors de service deux ans plus tard; La probabilité que 7 voitures soient hors service deux ans plus tard est P (X = 0) = C (1 0.9) 7 = Que 4 voitures soient hors de service; La probabilité que 4 voitures soient hors service deux ans plus tard est P (X = 3) = C (1 0.9) 4 = Que 3 voitures au plus soient hors de service. 2

3 La probabilité que 3 voitures au plus soient hors service deux ans plus tard est P (X 4) = P (X = 4) + P (X = 5) + P (X = 6) + P (X = 7). Il nous faut donc calculer P (X = 4) = C (1 0.9) 3 = et P (X = 5) = C (1 0.9) 2 = et P (X = 6) = C (1 0.9) 1 = Ainsi, la probabilité de cet événement est P (X 4) = P (X = 4) + P (X = 5) + P (X = 6) + P (X = 7) = = Exercice 3 (Loi hypergéométrique) Une urne est constituée de 10 boules blanches et 8 boules noires. On tire au hasard, et sans remise, 5 boules dans l urne. Soit la variable aléatoire X = { nombres de boules noires }. 1. Quelle est la loi de probabilité de X? Loi hypergéométrique : On effectue n tirages sans remise dans une urne contenant N objets dont N A objets A. On note X (w) le nombre d objets A tirés à l issue de l événement élémentaire w. Dans le schéma hypergéométrique ici, ces n tirages sans remise sont équivalents à un seul tirage de n objets et il y a donc équiprobabilité de chacun des C n N échantillons possibles. POur calculer la probabilité d obtenir k objets A il faut donc dénombrer tous les échantillons qui contiennent exactement k des N A objets A, il y en a CN k A chacun d eux contenant simultanément n k objets A, il y en a C n k N N A. Ainsi, pour tout entier k tel que 0 k n : P (X = k) = Ck N A C n k N N A CN n E (X) = np et V (X) npq Dans cette expérience, la variable aléatoire X suit une loi hypergéométrique. 3

4 Par conséquent, la probabilité que k boules noires soient tirées s écrit : La loi de probabilité de X s écrit alors P (X = x i ) = Cx 8 C5 x 18 8 C 5 18 x i P (X = x i ) Calculer son espérance et sa variance. L espérance de la variable aléatoire s écrit E (X) = E ( i=8 ) i=8 x i = E (x i ) i=1 i=1 = = 2.22 La variance de la variable aléatoire s écrit Exercice 4 (Loi de Poisson) V (X) = V ( i=8 ) i=8 x i = V (x i ) i=1 i=1 = = 1.23 Le nombre de micro-ordinateurs vendus chaque jour dans le magasin X suit une loi de Poisson de paramètre (λ = 5). 1. Calculer la probabilité que dans une journée : (a) On ne vend aucun micro-ordinateur; Loi de Poisson : Une v.a. X suit une loi de Poisson de paramètre λ > 0 si c ets une variable à valeurs entières, X (Ω) = N, donc avec une infinité de valeurs possibles, de probabilité λ λk P (X = k) = e k! k N E (X) = V (X) = λ On définit par X la variable aléatoire associée au nombre de micro-ordinateurs vendus chaque jour dans le magasin. La probabilité associée à la vente d aucun micro-ordinateur 4

5 se détermine par : (b) On vend 5 micro-ordinateurs; λ λk P (X = k) = e k! 5 50 P (X = 0) = e 0! = La probabilité associée à la vente de 5 micro-ordinateurs se détermine par : (c) On vend au moins 2 micro-ordinateurs; 5 55 P (X = 5) = e 5! = La probabilité associée à la vente d au moins 2micro-ordinateurs se détermine par : P (X 2) = 1 P (X < 2) = 1 [P (X = 0) + P (X = 1)] ] = 1 [ e = ! (d) Le nombre de micro-ordinateurs vendus soit compris dans [2, 6]. La probabilité associée à la vente d un nombre de micro-ordinateurs compris entre 2 et 6 se détermine par : P (2 X 6) = P (X 6) P (X < 2) [ ] = P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) + P (X = 4) +P (X = 5) + P (X = 6) P (X < 2) = [ ] e ! 1! 2! 3! 4! ( ) 5! +e ! ! = [ ] = Déterminer l espérance et la variance de la variable aléatoire associée au nombre de micro-ordinateurs vendus chaque jour dans le magasin. La variable aléatoire X suivant une loi de Poisson, on sait par définition que E (X) = V (X) = λ = 5 5

6 Exercice 5 (Binomiale qui tend vers une Poisson) Lors d un sondage portant sur un grand nombre d individus, 2% des personnes interrogées acceptent de ne pas rester anonymes. Sachant que l un des sondeurs a interrogé 250 personnes, calculez la probabilité que : 1. Ces 250 personnes souhaitent rester anonymes; On définit par X la variable aléatoire associée au nombre de personnes désireuses de ne pas rester anonymes. Cette variable aléatoire suit donc une loi binomiale de paramètres X B (250, 0.02). Néanmoins, on sait que lorsque n > 50 et p < 0.1, alors la loi binomiale converge vers une loi de Poisson. Ainsi, la probabilité que les 250 personnes souhaitent rester anonymes se détermine de la facon suivante : P (X = 0) = C (1 0.02) 250 = ou 5 50 P (X = 0) = e 0! = personnes acceptent de ne pas rester anonymes; La probabilité que 3 personnes acceptent de ne pas rester anonymes se détermine de la facon suivante : P (X = 3) = C (1 0.02) 247 = ou 5 53 P (X = 3) = e 3! = Plus de 10 personnes acceptent de ne pas rester anonymes. La probabilité que plus de103 personnes acceptent de ne pas rester anonymes se détermine de la facon suivante : P (X > 10) = 1 P (X 10) =

7 Exercice 6 (Loi binomiale négative) On lance un dé à six faces équilibrées successivement et de façon indépendante. On associe la variable aléatoire X au nombre de face 1 obtenue. 1. Calculer le nombre de lancers nécessaires à l obtention de 6 faces 1. Loi binomiale négative : On effectue des épreuves successives indépendates jusqu à ce que n événements A soient réalisés et on note Y le nombre (aléatoire) d épreuves effectuées. On en déduit la probabilité P (Y = y) = C n 1 y 1 pn (1 p) y n, y n E (Y ) = n p et V (Y ) = nq p 2 On est ici en présence d une loi binômiale négative. Ainsi, le nombre de lancers nécessaires l obtention de six faces 1 se détermine par à P (X = x) = C n 1 x 1 pn (1 p) x n où n correspond au nombre de réalisations que l on souhaite (ici n = 6). A l aide d Excel, on peut déterminer la loi de probabilité de la variable aléatoire X et observer que la probabilité la plus grande est associée de façon égale à 30 ou 31 lancers. 2. Calculer l espérance et la variance de X. Par définition E (X) = n p = = Exercice 7 (Loi de Poisson) V (X) = nq p 2 = = Un chef d entreprise, pour éviter l attente des camions venant livrer, envisage de construire de nouveau poste de déchargement. Actuellement, 5 postes sont en activité. Pour simplifier l étude, on considère qu il faut une journée entière pour décharger un camion. mesurant le nombre de camions venant livrer chaque jour. On désigne par X la variable aléatoire 1. Une enquête statistique préalable à montré qu on pouvait assimiler la loi de X à une loi de Poisson de paramètre λ = 4. (a) Quelle est, à 10 3 près, la probabilité de n avoir aucun camion en attente? 7

8 La probabilité qu à un poste aucun camion n attende revient à calculer la probabilité qu il y au plus un camion par jour, soit P (X 6) = 1 P (X < 6) = P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) + P (X = 4) + P (X = 5) 4 40 = e 0! = e 4 + e 4 + e 4 + e 4 + e 4 1! 2! 3! 4! 5! (b) Combien faudrait-il de postes de déchargement pour porter cette probabilité à 0,95? Il faudrait 7 postes de déchargement car P (X 8) = 1 P (X < 8) = P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) +P (X = 4) + P (X = 5) + P (X = 6) + P (X = 7) 4 40 = e 0! = e 4 + e 4 + e 4 + e 4 + e 4 1! 2! 3! 4! 5! e 4 e 4 6! 7! 2. On prévoit à l avenir de doubler la fréquence de livraison, ce qui porterait le paramètre λ de la loi de Poisson de la variable aléatoire X à λ = 8. Combien faudrait-il alors de postes de déchargement pour que la probabilité de n avoir aucun camion en attente soit supérieure à 0,95? A l aide d Excel, on peu trépondre à cette question facilement. On trouve ainsi qu il faudrait 13 postes de déchargements. 8

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale MT8 A 0 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale. Fonction de répartition.. Variable aléatoire à valeurs réelles Définition : Soit un ensemble fondamental

Plus en détail

Mesures et analyses statistiques de données - Probabilités. Novembre 2012 - Contrôle Continu, Semestre 1 CORRECTION

Mesures et analyses statistiques de données - Probabilités. Novembre 2012 - Contrôle Continu, Semestre 1 CORRECTION MASTER 1 GSI- Mentions ACCIE et RIM La Citadelle - ULCO Mesures et analyses statistiques de données - Probabilités Novembre 2012 - Contrôle Continu, Semestre 1 CORRECTION Exercice 1 Partie I 12pts 1 Étude

Plus en détail

1 Variable aléatoire discrète... 1. 1.1 Rappels... 1. 1.2 Exemple... 2 2 Couples de variables aléatoires... 3. 2.1 Définition... 3

1 Variable aléatoire discrète... 1. 1.1 Rappels... 1. 1.2 Exemple... 2 2 Couples de variables aléatoires... 3. 2.1 Définition... 3 CHAPITRE : LOIS DISCRÈTES Sommaire Variable aléatoire discrète................................... Rappels........................................... Exemple......................................... Couples

Plus en détail

Exercices chapitre 8. Probabilités.

Exercices chapitre 8. Probabilités. Lycée Descartes PC 2014-15 M. Besbes Exercices chapitre 8. Probabilités. Exercice 1. Soit (Ω, B, P ) un espace probabilisé. Montrer que l ensemble : A = {A B; P (A) = 0 ou P (A) = 1} est une tribu. Exercice

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

5. Quelques lois discrètes

5. Quelques lois discrètes 5. Quelques lois discrètes MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: Lois discrètes 1/46 Plan 1. Loi de Bernoulli 2. Loi binomiale 3. Loi géométrique 4. Loi hypergéométrique

Plus en détail

Lois de probabilité (2/3) Anita Burgun

Lois de probabilité (2/3) Anita Burgun Lois de probabilité (2/3) Anita Burgun Contenu des cours Loi binomiale Loi de Poisson Loi hypergéométrique Loi normale Loi du chi2 Loi de Student Loi hypergéométrique La loi du tirage exhaustif Puce à

Plus en détail

Exercices de probabilités et statistique

Exercices de probabilités et statistique Exercices de probabilités et statistique Université Paris 1 Panthéon-Sorbonne Cours de deuxième année de licence de sciences économiques Fabrice Rossi & Fabrice Le Lec Cette œuvre est mise à disposition

Plus en détail

Fiche méthodologique Les pièges dans les dénombrements

Fiche méthodologique Les pièges dans les dénombrements Fiche méthodologique Les pièges dans les dénombrements BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Dans cette fiche, on résume quelques points techniques sur les dénombrements et la théorie des probabilités.

Plus en détail

Probabilités TD1. Axiomes des probabilités.

Probabilités TD1. Axiomes des probabilités. TD1. Axiomes des probabilités. 1. Une boîte contient 3 jetons, un rouge, un vert et un bleu. On considère l expérience consistant à tirer au hasard un jetons dans la boîte, à l y remetre puis à en tirer

Plus en détail

II. Eléments des probabilités

II. Eléments des probabilités II. Eléments des probabilités Exercice II.1 Définir en extension l ensemble fondamental Ω des résultats associé à chacune des expériences aléatoires suivantes: 1. jeter une pièce de monnaie et observer

Plus en détail

Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007. Introduction aux probabilités

Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007. Introduction aux probabilités Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007 Introduction aux probabilités Série n 3 Exercice 1 Une urne contient neuf boules. Quatre de ces boules portent le numéro

Plus en détail

Exercices supplémentaires

Exercices supplémentaires Exercices supplémentaires Christophe Lalanne Emmanuel Chemla Exercices Exercice 1 Un grand magasin a n portes d entrée ; r personnes arrivent à des instants divers et choisissent au hasard une entrée indépendamment

Plus en détail

1. Probabilités élémentaires

1. Probabilités élémentaires 1. Probabilités élémentaires MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: probabilités 1/48 Plan 1. Expériences aléatoires et événements 2. Probabilités 3. Analyse combinatoire

Plus en détail

Initiation aux probabilités.

Initiation aux probabilités. Initiation aux probabilités. On place dans une boite trois boules identiques à l exception de leur couleur : une boule est noire, une est blanche, la troisième est grise. On tire une des boules sans regarder,

Plus en détail

Sujets HEC B/L 2013-36-

Sujets HEC B/L 2013-36- -36- -37- Sujet HEC 2012 B/L Exercice principal B/L1 1. Question de cours : Définition et propriétés de la fonction de répartition d une variable aléatoire à densité. Soit f la fonction définie par : f(x)

Plus en détail

Extraits de Concours

Extraits de Concours Pierre-Louis CAYREL 2008-2009 Prépa HEC 2 disponible sur www.cayrel.net Lycée Lavoisier Feuille d extraits de concours Extraits de Concours 1 HEC Exercice 1 (via HEC - Oral 1997) Écrire un programme qui

Plus en détail

b) Exprimer B à l aide des événements A n et en déduire la probabilité de B Exercice 1.4. Inégalité de Bonferroni.

b) Exprimer B à l aide des événements A n et en déduire la probabilité de B Exercice 1.4. Inégalité de Bonferroni. MP 205/6 Feuille d exercices - Probabilités généralités). Univers, généralités Exercice.. Langage des probabilités. Soit Ω, A) un espace probabilisable. Soit A n ) n N une famille d événements et A, B,

Plus en détail

UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités

UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités Chapitre II : Espaces probabilisés 1 Notions d événements 1.1 Expérience

Plus en détail

Dénombrement, opérations sur les ensembles.

Dénombrement, opérations sur les ensembles. Université Pierre et Marie Curie 2013-2014 Probabilités et statistiques - LM345 Feuille 1 (du 16 au 20 septembre 2013) Dénombrement, opérations sur les ensembles 1 Combien de façons y a-t-il de classer

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES/spé TL Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la rédaction

Plus en détail

Chapitre 8: Inférence, échantillonnage et estimation

Chapitre 8: Inférence, échantillonnage et estimation Chapitre 8: Inférence, échantillonnage et estimation 1. Echantillonnage aléatoire simple 2. Inférence statistique 3. Estimation 4. Evaluation graphique de l adéquation d un modèle de distribution 1 L inférence

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Contrôle de statistiques Sujet 2 Corrigé

Contrôle de statistiques Sujet 2 Corrigé Contrôle de statistiques Sujet 2 Corrigé L2 d économie - Université Paris 1 Panthéon-Sorbonne Nom : Prénom : Les exercices sont indépendants. Le barème est indicatif. L utilisation de documents, calculatrices,

Plus en détail

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6 Probabilités et Statistiques Raphaël KRIKORIAN Université Paris 6 Année 2005-2006 2 Table des matières 1 Rappels de théorie des ensembles 5 1.1 Opérations sur les ensembles................... 5 1.2 Applications

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Dénombrement et probabilités Version du juillet 05 Enoncés Exercice - YouTube Sur YouTube, les vidéos sont identifiées à l aide d une chaîne

Plus en détail

Probabilités et statistique

Probabilités et statistique Probabilités et statistique Université Paris 1 Panthéon-Sorbonne Cours de deuxième année de licence de sciences économiques Fabrice Rossi Cette œuvre est mise à disposition selon les termes de la licence

Plus en détail

Exercices sur les lois de probabilités continues

Exercices sur les lois de probabilités continues Terminale S Exercices sur les lois de probabilités continues Exercice n 1 : X est la variable aléatoire de la loi continue et uniforme sur [0 ; 1]. Donner la probabilité des événements suivants : a. b.

Plus en détail

Probabilités conditionnelles

Probabilités conditionnelles 22 Probabilités conditionnelles Ω, B, P est un espace probabilisé. 22. Définition et propriétés des probabilités conditionnelles Considérons l expérience aléatoire qui consiste à lancer deux fois un dé

Plus en détail

Échantillonnage et estimation

Échantillonnage et estimation Échantillonnage et estimation Dans ce chapitre, on s intéresse à un caractère dans une population donnée dont la proportion est notée. Cette proportion sera dans quelques cas connue (échantillonnage),

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

«Cours Statistique et logiciel R»

«Cours Statistique et logiciel R» «Cours Statistique et logiciel R» Rémy Drouilhet (1), Adeline Leclercq-Samson (1), Frédérique Letué (1), Laurence Viry (2) (1) Laboratoire Jean Kuntzmann, Dép. Probabilites et Statistique, (2) Laboratoire

Plus en détail

ECHANTILLONNAGE. I. Notion d échantillon. Intervalle de fluctuation

ECHANTILLONNAGE. I. Notion d échantillon. Intervalle de fluctuation sur 7 ECHANTILLONNAGE Le principe : On considère par exemple l'expérience suivante consistant à lancer plusieurs fois un dé et à noter si la face supérieure affichée est un 4 ou un autre nombre. La valeur

Plus en détail

Espérances et variances

Espérances et variances [http://mp.cpgedupuydelome.fr] édité le 29 décembre 201 Enoncés 1 Espérances et variances Exercice 1 [ 04018 ] [Correction] Soit X une variable aléatoire discrète à valeurs dans [a ; b]. a Montrer que

Plus en détail

CHAPITRE II NOTIONS DE PROBABILITES

CHAPITRE II NOTIONS DE PROBABILITES CHAPITRE II NOTIONS DE PROBABILITES II.1. Un exemple : le poker Distribuer une main de poker (5 cartes sur 52) revient à tirer au hasard 5 cartes parmi 52. On appelle expérience aléatoire une telle expérience

Plus en détail

1 Introduction aux Probabilités

1 Introduction aux Probabilités Probabilités Mathématiques 218 1 Introduction aux Probabilités 1.1 Généralités Le hasard est le fait d évènements qu on ne peut pas prévoir et qui font partie de notre quotidien. Les exemples sont nombreux

Plus en détail

IUT d Orléans - Département d Informatique TD de Probabilités

IUT d Orléans - Département d Informatique TD de Probabilités IUT d Orléans - Département d Informatique TD de Probabilités Fiche 1 Dénombrement DENOMBREMENT : arrangements et combinaisons Le but de cette première partie est d introduire la fonction factorielle,

Plus en détail

Espaces de probabilités.

Espaces de probabilités. Université Pierre et Marie Curie 2010-2011 Probabilités et statistiques - LM345 Feuille 2 Espaces de probabilités. 1. Donner un exemple d'une famille de parties d'un ensemble qui ne soit pas une tribu.

Plus en détail

Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations

Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations Exercice 1 11 points Une entreprise fabrique un certain type d articles. Sa capacité maximale de production

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

2. Formalisation ... Or les variables sont indépendantes. Donc si

2. Formalisation ... Or les variables sont indépendantes. Donc si L'estimation 1. Concrètement... Dernièrement un quotidien affichait en première page : en 30 ans les françaises ont grandi de... je ne sais plus exactement, disons 7,1 cm. C'est peut-être un peu moins

Plus en détail

PROBABILITÉS Variable aléatoire

PROBABILITÉS Variable aléatoire PROBABILITÉS Variable aléatoire I Langage des événements Lors d'un oral de mathématiques, quatre questions sont proposées : une question de probabilités (P) ; une question de statistiques (S) ; une question

Plus en détail

Feuille d exercice n 22 : Probabilités

Feuille d exercice n 22 : Probabilités Lycée La Martinière Monplaisir Année 2015/2016 MPSI - Mathématiques Second Semestre Feuille d exercice n 22 : Probabilités Exercice 1 On se donne N N. Deux joueurs lancent tour à tour un dé. Le premier

Plus en détail

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50 10. Estimation MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: estimation 1/50 Plan 1. Introduction 2. Estimation ponctuelle 3. Estimation par intervalles de confiance 4. Autres

Plus en détail

0.1 Espace de probabilité

0.1 Espace de probabilité 0.1. ESPACE DE PROBABILITÉ 1 0.1 Espace de probabilité Exercice 1 La population d une ville compte 48% d hommes et 52% de femmes. Le 1er Janvier 2002 5% des hommes et 1% des femmes avaient la grippe. a)

Plus en détail

Au menu. Cours 7: Classes Probabilistes. Application : Calcul de la médiane. Sous menu. Retours sur quelques algorithmes.

Au menu. Cours 7: Classes Probabilistes. Application : Calcul de la médiane. Sous menu. Retours sur quelques algorithmes. Au menu Cours 7: Classes Probabilistes Olivier Bournez bournez@lix.polytechnique.fr LIX, Ecole Polytechnique Retours sur quelques algorithmes Quelques résultats INF561 Algorithmes et Complexité 1 2 Sous

Plus en détail

Chapitre 3 : Combinatoire, Probabilités

Chapitre 3 : Combinatoire, Probabilités STAT03 : probabilités COURS Décembre 2000 Chapitre 3 : Combinatoire, Probabilités 1 Dénombrement 1.1 Introduction L étude statistique nous conduit à étudier une population finie et parfaitement déterminée

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR SOUS ÉPREUVE : MATHÉMATIQUES. Le GROUPEMENT Agencement de l environnement architectural de 2001 à 2011

BREVET DE TECHNICIEN SUPÉRIEUR SOUS ÉPREUVE : MATHÉMATIQUES. Le GROUPEMENT Agencement de l environnement architectural de 2001 à 2011 BREVET DE TECHNICIEN SUPÉRIEUR A. P. M. E. P. SOUS ÉPREUVE : MATHÉMATIQUES Le GROUPEMENT Agencement de l environnement architectural de 2001 à 2011 Métropole 2001..........................................

Plus en détail

Schéma de Bernoulli Loi binomiale

Schéma de Bernoulli Loi binomiale Schéma de Bernoulli Loi binomiale I) Epreuve et loi de Bernoulli 1) Définition On appelle épreuve de Bernoulli de paramètre, toute expérience aléatoire admettant deux issues exactement : L une appelée

Plus en détail

Agrégation interne de Sciences économiques et sociales - Session 2008 Épreuve de Mathématiques - sujet A

Agrégation interne de Sciences économiques et sociales - Session 2008 Épreuve de Mathématiques - sujet A Épreuve de Mathématiques - sujet A Exercice Une société de location de voitures possède trois agences, une à Rennes, une à Lyon, une à Marseille. Lorsqu un client loue une voiture, un jour donné, dans

Plus en détail

Support du cours de Probabilités et Statistiques. IUT d Orléans, Département Informatique

Support du cours de Probabilités et Statistiques. IUT d Orléans, Département Informatique Support du cours de Probabilités et Statistiques IUT d Orléans, Département informatique Pierre Andreoletti IUT d Orléans, Département Informatique Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences)

Plus en détail

Exercices de Mathématiques BTS CGO 2

Exercices de Mathématiques BTS CGO 2 Exercices de Mathématiques BTS CGO 2 Page 1 sur 18 20002/2003 Page 2 sur 18 20002/2003 Exercices de probabilités Exercice 1 Un lot de pièces fabriquées comporte 5% de pièces défectueuses. Un contrôleur

Plus en détail

Fiche de révision sur les lois continues

Fiche de révision sur les lois continues Exercice 1 Voir la correction Le laboratoire de physique d un lycée dispose d un parc d oscilloscopes identiques. La durée de vie en années d un oscilloscope est une variable aléatoire notée X qui suit

Plus en détail

Statistiques. IUT Biotechnologie 2ème année. Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008

Statistiques. IUT Biotechnologie 2ème année. Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008 Statistiques IUT Biotechnologie 2ème année Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008 version du 04 octobre 2008 Table des matières 1 Lois de probabilité usuelles 1 1.1 Dénombrement................................

Plus en détail

Statistiques et estimation

Statistiques et estimation DERNIÈRE IMPRESSION LE 23 juillet 2014 à 16:35 Statistiques et estimation Table des matières 1 Intervalle de fluctuation 2 1.1 Simulation................................. 2 1.2 Définition.................................

Plus en détail

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006 ESSEC M B A CONCOURS D ADMISSION Option économique MATHEMATIQUES III Année 2006 La présentation, la lisibilité, l orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé Baccalauréat ES/L Amérique du Sud 2 novembre 2 Corrigé A. P. M. E. P. EXERCICE Commun à tous les candidats 5 points. Diminuer le budget de 6 % sur un an revient à multiplier par 6 =,94. Diminuer le budget

Plus en détail

TOPOLOGIE DE LA DROITE REELLE

TOPOLOGIE DE LA DROITE REELLE TOPOLOGIE DE LA DROITE REELLE P. Pansu 16 mai 2005 1 Qu est-ce que la topologie? C est l étude des propriétés des objets qui sont conservées par déformation continue. Belle phrase, mais qui nécessite d

Plus en détail

Probabilité mathématique et distributions théoriques

Probabilité mathématique et distributions théoriques Probabilité mathématique et distributions théoriques 3 3.1 Notion de probabilité 3.1.1 classique de la probabilité s Une expérience ou une épreuve est dite aléatoire lorsqu on ne peut en prévoir exactement

Plus en détail

Lois de probabilité. a ; avec a < b, toute fonction f vérifiant

Lois de probabilité. a ; avec a < b, toute fonction f vérifiant Lois de probabilité A) Lois à densité Loi continue Approche : Jusqu ici, les variables aléatoires étudiées prenaient un nombre fini de valeurs Or les issues d un grand nombre d expériences aléatoires prennent

Plus en détail

1 Analyse Combinatoire

1 Analyse Combinatoire Licence Economie-Gestion, 2ème Année Fiche de TD de Probabilités. Année universitaire : 2014-2015. Ce recueil d exercices est plus que largement inspiré des exercices produits par Brice de Lavarène, du

Plus en détail

Problèmes à propos des nombres entiers naturels

Problèmes à propos des nombres entiers naturels Problèmes à propos des nombres entiers naturels 1. On dispose d une grande feuille de papier, on la découpe en 4 morceaux, puis on déchire certains morceaux (au choix) en 4 et ainsi de suite. Peut-on obtenir

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

Estimation. Anita Burgun

Estimation. Anita Burgun Estimation Anita Burgun Estimation Anita Burgun Contenu du cours Sondages Mesures statistiques sur un échantillon Estimateurs Problème posé Le problème posé en statistique: On s intéresse à une population

Plus en détail

Corrrigé du sujet de Baccalaurat S. Pondichery 2015. Spécialité

Corrrigé du sujet de Baccalaurat S. Pondichery 2015. Spécialité Corrrigé du sujet de Baccalaurat S Pondichery 2015 Spécialité EXERCICE 1 (4 points) commun à tous les candidats Partie A Soit f la fonction définie sur R par f(x) et la droite d équation et la droite d

Plus en détail

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq»

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Guy Perrière Pôle Rhône-Alpes de Bioinformatique 14 novembre 2012 Guy Perrière (PRABI) Tests statistiques 14 novembre 2012 1 / 40 Plan

Plus en détail

Cours de DEUG Probabilités et Statistiques. Avner Bar-Hen

Cours de DEUG Probabilités et Statistiques. Avner Bar-Hen Cours de DEUG Probabilités et Statistiques Avner Bar-Hen Université Aix-Marseille III 3 Table des matières Table des matières i Analyse combinatoire 1 1 Arrangements................................ 1 1.1

Plus en détail

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités Sujet Métropole 01 EXERIE 1. [4 pts] Probabilités Une jardinerie vend de jeunes plants d arbres qui proviennent de trois horticulteurs : 5% des plants proviennent de l horticulteur H 1, 5% de l horticulteur

Plus en détail

I. Qu est-ce qu une probabilité?

I. Qu est-ce qu une probabilité? I. Qu est-ce qu une probabilité? 1. Première approche : Une probabilité en mathématique est un chiffre compris entre 0 et 1. Ce chiffre représente une évaluation du caractère probable d un événement. Si

Plus en détail

I. Cas de l équiprobabilité

I. Cas de l équiprobabilité I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Mathématiques pour. l informatique

Mathématiques pour. l informatique Xavier Chanet Patrick Vert Mathématiques pour l informatique Pour le BTS SIO Toutes les marques citées dans cet ouvrage sont des marques déposées par leurs propriétaires respectifs. Illustration de couverture

Plus en détail

Probabilités et statistiques dans le traitement de données expérimentales

Probabilités et statistiques dans le traitement de données expérimentales Probabilités et statistiques dans le traitement de données expérimentales S. LESECQ, B. RAISON IUT1, GEII 1 Module MC-M1 2009-2010 1 Contenu de l enseignement Analyse combinatoire Probabilités Variables

Plus en détail

Correction des exemples. Mathieu EMILY

Correction des exemples. Mathieu EMILY Correction des exemples Mathieu EMILY Novembre 2005 Table des Matières Exemple_Exercice 1 Page 2 Exemple_Exercice 2 Page 3 Exemple_Exercice 3 Page 5 Exemple_Exercice 4 Page 6 Exemple_Exercice 5 Page 7

Plus en détail

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J.

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J. Année 2013-2014 UNIVERSIÉ DE CERGY LICENCE d ÉCONOMIE et FINANCE LICENCE de GESION Seconde année - Semestre 3 PROBABILIÉS Cours de M. J. Stéphan ravaux Dirigés de Mme M. Barrié, M. J-M. Chauvet et M. J.

Plus en détail

Soit une suite. On dit qu elle est géométrique si, partant du

Soit une suite. On dit qu elle est géométrique si, partant du Suites géométriques I) Définition Soit est un nombre entier naturel. Soit une suite. On dit qu elle est géométrique si, partant du TERME INITIAL, pour passer d un terme au suivant, on MULTIPLIE toujours

Plus en détail

Baccalauréat ES Pondichéry 21 avril 2016

Baccalauréat ES Pondichéry 21 avril 2016 Exercice 1 Commun à tous les candidats Baccalauréat ES Pondichéry 21 avril 216 4 points Cet exercice est un QCM (questionnaire à choix multiples). Pour chacune des quatre questions posées, une seule des

Plus en détail

Variables aléatoires continues

Variables aléatoires continues IUT Aix-en-Provence Année 204-205 DUT Informatique TD Probabilités feuille n 6 Variables aléatoires continues Exercice (La station-service) Dans une station-service, la demande hebdomadaire en essence,

Plus en détail

COURS DE DENOMBREMENT

COURS DE DENOMBREMENT COURS DE DENOMBREMENT 1/ Définition des objets : introduction Guesmi.B Dénombrer, c est compter des objets. Ces objets sont créés à partir d un ensemble E, formé d éléments. A partir des éléments de cet

Plus en détail

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon PACES - APEMK UE 4 Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

Formulaire de Probabilités et Statistiques

Formulaire de Probabilités et Statistiques Formulaire de Probabilités et Statistiques AD+JS 1 Rappels de combinatoire Arrangements avec répétitions Nombre d applications d un ensemble à k éléments dans un ensemble à n éléments : n k Arrangements

Plus en détail

Cours de mathématiques pour la Terminale S. Savoir-Faire par chapitre avec corrigé

Cours de mathématiques pour la Terminale S. Savoir-Faire par chapitre avec corrigé Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre avec corrigé Florent Girod Année scolaire 205 / 206. Eternat Notre Dame - Grenoble Table des matières I Savoir-Faire 2 ) Suites numériques.................................

Plus en détail

Chapitre 3. Modèles de tirage. 3.1 Introduction : Probabilités, modèles de tirages

Chapitre 3. Modèles de tirage. 3.1 Introduction : Probabilités, modèles de tirages Chapitre 3 Modèles de tirage 3.1 Introduction : Probabilités, modèles de tirages Ce chapitre présentera quelques exemples de calculs de probabilités. D un point de vue théorique la situation la plus simple

Plus en détail

Eléments de stratégie d échantillonnage à l adresse des diagnostiqueurs amiante.

Eléments de stratégie d échantillonnage à l adresse des diagnostiqueurs amiante. Eléments de stratégie d échantillonnage à l adresse des diagnostiqueurs amiante. Essai de détermination du nombre de prélèvements à effectuer lors d un diagnostic amiante afin d assurer une représentativité

Plus en détail

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Université d Avignon Fichier dispo sur http://fredericnaud.perso.sfr.fr/ Une étude statistique dans la population montre que le Q.I. est

Plus en détail

Excel 2002 Avancé. Guide de formation avec exercices et cas pratiques. Patrick Morié, Bernard Boyer

Excel 2002 Avancé. Guide de formation avec exercices et cas pratiques. Patrick Morié, Bernard Boyer Excel 2002 Avancé Guide de formation avec exercices et cas pratiques Patrick Morié, Bernard Boyer Tsoft et Groupe Eyrolles, 2003 ISBN : 2-212-11238-6 5 - ANALYSE ET SIMULATION MODÈLE ITÉRATIF 1 - NOTION

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR SOUS ÉPREUVE : MATHÉMATIQUES. Informatique de gestion de 2001 à 2011

BREVET DE TECHNICIEN SUPÉRIEUR SOUS ÉPREUVE : MATHÉMATIQUES. Informatique de gestion de 2001 à 2011 BREVET DE TECHNICIEN SUPÉRIEUR A. P. M. E. P. SOUS ÉPREUVE : MATHÉMATIQUES Informatique de gestion de 2001 à 2011 Nouvelle-Calédonie 2000................................ 4 2001..........................................

Plus en détail

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html Arithmétique Algorithmique http://www.math.univ-lyon1.fr/~roblot/ens.html Partie III Algorithmes classiques 1 Coût de la multiplication et de la division 2 Exponentiation rapide 3 Algorithme d Euclide

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Séminaire de Statistique

Séminaire de Statistique Master 1 - Economie & Management Séminaire de Statistique Support (2) Variables aléatoires & Lois de probabilité R. Abdesselam - 2013/2014 Faculté de Sciences Economiques et de Gestion Université Lumière

Plus en détail

Les algorithmes évolutionnistes. INF6953 Les algorithmes évolutionnistes (1) 1

Les algorithmes évolutionnistes. INF6953 Les algorithmes évolutionnistes (1) 1 Les algorithmes évolutionnistes INF6953 Les algorithmes évolutionnistes (1) 1 Métaheuristiques et algorithmes évolutionnistes Les métaheuristiques recherche locale consistent fondamentalement à faire évoluer

Plus en détail

Question de cours. Exercice 1. Exercice 2

Question de cours. Exercice 1. Exercice 2 1 UBO, Faculté de Droit et Sciences Economiques de Brest STATISTIQUE : 2 ème année DEUG Sc. Eco Examen de Fevrier 1998 A. Nassiri Durée = 3 heures Attention : Une bonne présentation de la copie sera récompensée

Plus en détail

Probabilités, fiche de T.D. n o 2

Probabilités, fiche de T.D. n o 2 U.F.R. de Mathématiques Licence de Mathématiques S6, M66, année 2013-2014 Probabilités, fiche de T.D. n o 2 Ex 1. Jour de chance Un site de jeux propose le jeu suivant. Chaque internaute désireux de jouer

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

L impôt sur le revenu Partie 2 : Pour les experts Activités pour l élève

L impôt sur le revenu Partie 2 : Pour les experts Activités pour l élève L impôt sur le revenu Partie 2 : Pour les experts Activités pour l élève L impôt sur le revenu est un impôt direct mis en place en France en juillet 1914 pour moderniser le système fiscal de l État et

Plus en détail

Informatique 1ère Année 2012-2013

Informatique 1ère Année 2012-2013 SERIE D EXERCICES N 1 INTRODUCTION, STRUCTURE CONDITIONNELLE : IF..ELSE Exercice 1 Ecrire le programme qui lit deux entiers saisis et affiche leur produit. Modifier ensuite ce programme pour saisir des

Plus en détail

) 1 avec E. : «on obtient au moins une fois un 6 en n lancers». I. Méthode de dénombrement 1. Cas de deux lancers

) 1 avec E. : «on obtient au moins une fois un 6 en n lancers». I. Méthode de dénombrement 1. Cas de deux lancers première question supplémentaire. Cette méthode mène à une variable aléatoire suivant la loi binomiale. Copie n 5 : ce groupe résout très rapidement la question en considérant l'événement contraire! Heureusement

Plus en détail

2) Ecrire en utilisant la notation : 3+5+7+9+ 15+17

2) Ecrire en utilisant la notation : 3+5+7+9+ 15+17 STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES Exercice n. Les 5 élèves d'une classe ont composé et le tableau ci-dessous donne la répartition des diverses notes. Recopier et compléter ce tableau en calculant

Plus en détail