Fiche méthodologique Les pièges dans les dénombrements

Dimension: px
Commencer à balayer dès la page:

Download "Fiche méthodologique Les pièges dans les dénombrements"

Transcription

1 Fiche méthodologique Les pièges dans les dénombrements BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Dans cette fiche, on résume quelques points techniques sur les dénombrements et la théorie des probabilités. Le piège du au moins : compter deux fois le même élément Considérons un jeu de 32 cartes. On demande combien de paires de cartes on peut réaliser contenant au moins un roi. Le piège consiste à raisonner en disant : il y a 4 choix pour le roi, puis 31 choix pour la deuxième carte (tout sauf la première, donc 4 31 paires possibles. L erreur est ici que certaines paires sont comptées en double : celles constituées de deux rois. Par exemple, la paire {RP, RC}, est comptée une fois en choisissant d abord le RP, puis le RC, une autre fois dans le sens inverse. Lorsqu on dénombre et que l on raisonne par choix successifs, il est donc important de ne pas compter un élément deux fois. Il y a deux bonnes manières de procéder pour éviter ce piège : Découper l ensemble considéré en deux ensembles disjoints : Ici, il s agit des ensembles A :paires constituées exactement d un roi de cardinal 4 28, et B : paires constituées exactement de deux rois de cardinal ( 4 ( 2. Le résultat est alors Procéder par complémentaire : En considérant le complémentaire de l ensemble cherché : A :paires constituées d aucun roi. Cet ensemble est de cardinal ( 28 ( 2. Le résultat est donc 32 ( Application 1 Dans un jeu de 52 cartes, on tire des mains de 5 cartes. Combien y a-t-il de tirages constitués exactement de 1 roi et 1 cœur? En comptant que le roi de cœur compte à la fois pour un cœur et pour un roi, c est-à-dire qu un tirage du type {RC, DP, 7T, 8P, 9T } est considéré dans l ensemble. La bonne manière de procéder est de compter : tout d abord les mains ne contenant pas le roi de cœur, soit 3 12 ( 37 3, puis celle contenant le roi de cœur, soit ( Le résultat est la somme des deux. Lemme des bergers et applications aux dénombrements Le lemme des bergers vient du fait que pour compter un troupeau de moutons on peut compter les têtes, ou bien compter les pattes et diviser par quatre. La plupart du temps c est cette version qui est utilisée : Proposition 1. Soient E( et F deux ensembles finis. On supose qu il existe f : E F, surjective, telle que λ N, y F, card f 1 ({y} λ, i.e. tous les éléments y F ont exactement λ antécédents dans E. Alors on a : card(e λcard(f. Dans l exemple du troupeau de moutons, la fonction f est celle qui aux pattes (ensemble E associe la tête (ensemble F. On a bien quatre pattes pour la même tête, donc la préimage d une tête est de cardinal 4, et l application est bien surjective, car à chaque tête correspond forcément 4 pattes. Ainsi, card(e le nombre de pattes est égal à 4card(F, c est-à-dire 4 fois le nombre de têtes. 1

2 ( Démonstration. On voit que les ensembles f 1 ({y} forment un système complet de E : y F E f 1 ({y}, union disjointe. y F En effet, si x E, alors x f 1 ({f(x}, et si y y, f 1 ({y} f 1 ({y }. Ainsi, card(e y F ( card f 1 ({y}. ( Puis comme card f 1 ({y} λ, on obtient : card(e λcard(f. La première application de ce lemme consiste à regarder l application qui, à un arrangement de p éléments parmi n, associe une combinaison de p éléments parmi n, c est-à-dire aux p éléments sans ordre : { {arrangements} {permutations} φ : (x 1,..., x p {x 1,..., x p } Il est clair qu à une permutation correspond p! arrangements. On retrouve donc le résultat : A p n p!cn. p Le lemme des bergers permet ainsi de compter avec ordre puis d enlever l ordre pour obtenir le résultat. Dans ce contexte, on divise les cardinaux, par le nombre d antécédents. Par exemple, supposons que l on veuille compter le nombre de mains de 4 cartes d un jeu de 32 cartes contenant une carte de chaque couleur (cœur, pique, trèfle, carreau. Une méthode pour faire ce calcul consiste à supposer (temporairement qu on garde l ordre des cartes, on obtient alors : Pour la première carte, 32 choix, puis 24 choix pour la deuxième carte, puis 16 choix pour la troisième, et 8 pour la dernière. On a ici compté le nombre d arrangements de 4 éléments vérifiant la propriété, le nombre de mains (donc sans ordre est obtenu en divisant ce nombre par 4!, puisque l application qui à un arrangements associe une combinaison est surjective, et vérifie que chaque combinaison est l image de 4 arrangements. Note: On peut aussi faire ce calcul en considérant l application : { {7, 8, 9,..., Roi, As} 4 {mains solutions} φ : (x 1, x 2, x 3, x 4 {x 1 C, x 2 T, x 3 C, x 4 P } qui est clairement une bijection d un ensemble de cardinal 8 4 dans l ensemble cherché. Autre exemple, on se demande comment ranger n boules dans 3 boîtes, de tel sorte que la boîte i contient k i boules. Avec k 1 + k 2 + k 3 n. Une manière de procéder consiste à regarder l application : {permutations} {solutions du problème} φ : { } (x 1,..., x n {x 1,..., x k1 }, {x k1 +1, x k1 +2,..., x k1 +k 2 }, {x k2 +1, x k1 +2,..., x n } Autrement dit, à une permutation, on associe la solution obtenue en mettant dans la première boîte les k 1 premières, puis dans la deuxième les k 2 boules suivantes, et les dernières dans la boîte 3. Cette application est surjective, et une solution donnée est l image de k 1!k 2!k 3! permutations, qui correspondent aux différentes manières de ranger les k 1 premières boules, les k 2 suivantes et les dernières. Ainsi, l ensemble cherché a pour cardinal n! k 1!k 2!k 3!. Note: On peut retrouver ce résultat en disant : on a ( k 1 n choix pour la première boîte, 2

3 puis ( k 2 n k 1 choix pour la deuxième boîte, enfin aucun choix pour la dernière. La nombre obtenu est alors : ( ( k1 k2 n! n n k 1 k 1!(n k 1! Ordre arbitraire (n k 1! k 2!(n k 1 k 2! n! k 1!k 2!k 3!. Considérons un lancer de deux dés indiscernables. L univers est alors [[1, 6]] 2. Ce résultat peut sembler étonnant puisqu on a précisé que les dés sont indiscernables. On impose alors un ordre dans les dés en disant : celui-ci est le premier et celui-là est le second, comme si les dés étaient de couleurs différentes, alors qu il est impossible de modéliser un événement comme le premier dé vaut 1, et le deuxième 3. Que se passerait-il si l on ne considérait pas cet ordre? L univers serait alors les parties à 1 ou 2 éléments de [[1, 6]]. Une partie à 1 élément comme {1} correspondrait à l événement les deux dés valent 1, soit la seule valeur lisible est 1, tandis qu une partie à deux éléments comme {1, 3} correspondrait à l événement l un des dés vaut 1, l autre 3, et donc deux valeurs seraient visibles : 1 et 3. Cette modélisation enlève tout ordre dans les dés. En fait ces deux modélisations sont possibles. La seule différence, est que la probabilité sur l ensemble [[1, 6]] 2 est clairement la probabilité uniforme, tandis que la probabilité sur l ensemble des parties à 1 ou 2 éléments sera telle qu un singleton aura pour probabilité 1 36, tandis que les 15 parties à deux éléments auront pour probabilité Ainsi, il est plus simple d imposer un ordre artificiel, en disant que le premier dé est simplement celui que l on lit en premier. Cet ordre est différent à chaque lancer, mais il permet d obtenir une probabilité uniforme. 3

4 Fiche méthodologique Rang de la i-ième boule dans un tirage avec remise BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Soit une urne, qui contient N boules, dont r sont blanches, les autres étant noires. On tire dans cette urne sans remise. Pour i [[1, r]], on note X i le rang de la i-ième boule blanche. Ainsi, X 1 est le rang de la première boule blanche et X r celui de la dernière. On voit que X i (Ω [[i, N r + i]], puisqu au mieux on ne tire que des blanches, et donc la i-ième arrive en position i, au pire on tire d abord les (N r noires, puis les i blanches, la i-ième arrive alors en position N r + i, toutes les valeurs entières entre les deux sont possibles. Dans cette fiche, on présente différentes méthodes pour déterminer la loi de X, chacune ayant un intérêt pédagogique. On note B k l événement obtenir une boule blanche au tirage k, et N k le contraire. Exemples : p(x i i et loi de X 1 Commençons par calculer p(x i i, cet événement n arrive que si on ne tire que des blanche dans les i premiers tirages. On a donc : (X i i (B 1 B 2... B i. Et donc : p(x i i p(b 1 B 2... B i. En utilisant la formule des probabilités composées, on obtient : p(x i i p(b 1 B 2... B i. p(b 1 p B1 (B 2 p B1 B 2 (B 3... p B1 B 2...B i 1 (B i Au tirage k, il y a N + 1 k boules dans l urne, si on n a tiré que des boules blanches avant, alors il y a donc r + 1 k boules blanches. On a donc : p(x i i p(b 1 p B1 (B 2 p B1 B 2 (B 3... p B1 B 2...B i 1 (B i r r 1 r 2 N N 1 N 2... r i + 1 N + 1 i r! (N i! (r i! N! Autre exemple : le cas i 1, i.e. on regarde le rang de la première boule blanche. Soit k [[1, N r + 1]]. L événement X 1 k signifie : les k 1 premiers tirages n ont donné que des noires, puis on a eu la première blanche au k-ième tirage. Cela s écrit donc : p(x 1 k p(n 1 N 2 N k 1 B k p(n 1 p N1 (N 2 p N1 N 2 (N 3... p N1 N 2...N k 2 (N k 1 p N1 N 2...N k 1 (B k, 4

5 d après la formule des probabilités composées. Cela donne : p(x 1 k N r N r 1... N r k + 2 r N N 1 N + 2 k N + 1 k (N r! (N k! r (N r k + 1! N! r! (N r! (N k! (r 1! N! (N r k + 1! ( 1 ( ( N k N k r 1 N ( r 1 N r r Méthode par dénombrements, boules discernables Supposons que les boules soient discernables. L univers Ω est alors l ensemble des permutations d un ensemble à n éléments soit #Ω n!. On le munit de la probabilité uniforme, puisqu aucun tirage ne semble plus probable qu un autre. Soit k [[1, N r + i]], on va compter le nombre de tirages qui vérifient X i k. Pour un tel tirage, il y a i 1 boules blanches dans les k 1 premières places, puis une boule blanche au tirage k, puis r i boules blanches dans les N k derniers tirages. Un tel tirage est déterminé par les choix successifs de : la place des i 1 boules blanches dans les k 1 premiers tirages, les boules noires sont alors aussi placées, soit ( k 1 i 1 choix, la place des r i boules blanches dans les N k derniers tirages, les boules noires sont alors aussi placées, soit ( N k r i choix, la position des r boules blanches parmi les places choisies (puisqu elles sont supposées discernables, soit r! choix, la position des N r boules noires (idem, soit (N r! choix. Cela donne : ( ( k 1 N k r!(n r! choix. i 1 r i D où la probabilité : ( ( k 1 N k r!(n r! p(x i k i 1 r i N! Méthode par dénombrements, boules indiscernables ( k 1 ( N k i 1 r i ( N r On reprend le raisonnement précédent, mais on ne suppose plus les boules discernables. Un tirage est alors déterminé par la position des blanches, donc par un choix de r éléments dans [[1, N]], ainsi #Ω ( N r. Soit k [[i, N r + i]], on va compter le nombre de tirages qui vérifie X i k. En reprenant le raisonnement précédent, on obtient qu un tel tirage est déterminé par les choix successifs de : la place des i 1 boules blanches dans les k 1 premiers tirages, les boules noires sont alors aussi placées, soit ( k 1 i 1 choix, la place des r i boules blanches dans les N k derniers tirages, les boules noires sont alors aussi placées, soit ( N k r i choix, Soit : ( k 1 i 1 ( N k r i choix. 5

6 D où la probabilité : p(x i k ( k 1 ( N k i 1 r i ( N. r Méthode par la loi hypergéométrique Puisqu on tire dans une urne sans remise, on a l idée de poser, pour j [[1, N]], la var Y j qui correspond au nombre de boules blanches dans les j premiers tirages. On sait alors que : Y j H(N, r N, j, puisqu on tire j boules sans remise dans une urne de taille N, qui contient une proportion de r N boules blanches. D autre part, pour k [[i, N r + i]], l événement X i k peut être décrit par : durant les k 1 premiers tirages, on a obtenu i 1 boules blanches, au tirage i on a obtenu une boule blanche. Ainsi, on trouve : ( (Yk 1 (X i k i 1 B i Cela donne p(x i k ( (Yk 1 p i 1 B i p ( Y k 1 i 1 ( p (Yk 1 i 1 Bi d après le cours, on sait que : p ( Y k 1 i 1 ( r ( N r i 1 k i ( N. k 1 Puis, au tirage k, on a N + 1 k boules dans l urne, et si on a tiré i 1 boules blanches, il en reste r i+1. Ainsi : ( r i + 1 p (Yk 1 i 1 Bi N + 1 k. Ainsi : p(x i k ( r ( N r i 1 k i ( N k 1 r i + 1 N + 1 k r! (N r! (k 1!(N k + 1! r i + 1 (i 1!(r i + 1! (N r k + i!(k i! N! N + 1 k r! (N r! (k 1!(N k! (i 1!(r i! (N r k + i!(k i! N! r!(n r! (k 1! (N k! N! (i 1!(k i! (r i!(n k r + i! ( k 1 ( N k i 1 r i ( N. r 6

I. Cas de l équiprobabilité

I. Cas de l équiprobabilité I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus

Plus en détail

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J.

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J. Année 2013-2014 UNIVERSIÉ DE CERGY LICENCE d ÉCONOMIE et FINANCE LICENCE de GESION Seconde année - Semestre 3 PROBABILIÉS Cours de M. J. Stéphan ravaux Dirigés de Mme M. Barrié, M. J-M. Chauvet et M. J.

Plus en détail

Dénombrement, opérations sur les ensembles.

Dénombrement, opérations sur les ensembles. Université Pierre et Marie Curie 2013-2014 Probabilités et statistiques - LM345 Feuille 1 (du 16 au 20 septembre 2013) Dénombrement, opérations sur les ensembles 1 Combien de façons y a-t-il de classer

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

Thème 3 : ensembles, espaces de probabilités finis

Thème 3 : ensembles, espaces de probabilités finis Thème 3 : ensembles, espaces de probabilités finis Serge Cohen, Monique Pontier, Pascal J. Thomas Septembre 2004 1 Généralités : ensembles et parties d un ensemble Définition 1.1 On appelle ensemble une

Plus en détail

1 Exercices d introdution

1 Exercices d introdution 1 Exercices d introdution Exercice 1 (Des cas usuels) 1. Combien y a-t-il de codes possibles pour une carte bleue? Réponse : 10 4. 2. Combien y a-t-il de numéros de téléphone commençant par 0694? Réponse

Plus en détail

Les trois sortes de tirages

Les trois sortes de tirages DERNIÈRE IMPRESSION LE 29 juin 2015 à 19:20 Les trois sortes de tirages Introduction Comme nous l avons vu, dans une loi équirépartie, il est nécessaire de dénombrer les cas favorables et les cas possibles.

Plus en détail

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre 1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Les deux modes de représentation des sous-espaces vectoriels Il existe deux modes

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Correction des exemples. Mathieu EMILY

Correction des exemples. Mathieu EMILY Correction des exemples Mathieu EMILY Novembre 2005 Table des Matières Exemple_Exercice 1 Page 2 Exemple_Exercice 2 Page 3 Exemple_Exercice 3 Page 5 Exemple_Exercice 4 Page 6 Exemple_Exercice 5 Page 7

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

Probabilités. C. Charignon. I Cours 3

Probabilités. C. Charignon. I Cours 3 Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3

Plus en détail

EXERCICES SUR LES PROBABILITÉS

EXERCICES SUR LES PROBABILITÉS EXERCICES SUR LES PROBABILITÉS Exercice 1 Dans un univers Ω, on donne deux événements A et B incompatibles tels que p(a) = 0,2 et p(b) = 0,7. Calculer p(a B), p(a B), p ( A ) et p ( B ). Exercice 2 Un

Plus en détail

Exercices de dénombrement

Exercices de dénombrement Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.

Plus en détail

Calculs de probabilités conditionelles

Calculs de probabilités conditionelles Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile

Plus en détail

Feuille d exercices 1

Feuille d exercices 1 Université Paris 7 - Denis Diderot L2 - Probabilités PS4 Année 2014-2015 Feuille d exercices 1 Exercice 1 Combien y a-t-il de paires d entiers non consécutifs compris entre 1 et n (n 1)? Exercice 2 1.

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

1. Un groupe de dix personnes comprend cinq hommes et cinq femmes.

1. Un groupe de dix personnes comprend cinq hommes et cinq femmes. Dénombrement Exercices 1. Un groupe de dix personnes comprend cinq hommes et cinq femmes. (a) Combien y a-t-il de manières de les disposer autour d une table ronde, en ne tenant compte que de leurs positions

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

2 Probabilités conditionnelles. Événements indépendants

2 Probabilités conditionnelles. Événements indépendants 2 Probabilités conditionnelles. Événements indépendants 2.1 Probabilité conditionnelle Soient A et B deux événements tels que P(B) > 0. Soit alors P(A B), la probabilité que A se réalise, B étant réalisé.

Plus en détail

Feuille TD 1 : Probabilités discrètes, dénombrement

Feuille TD 1 : Probabilités discrètes, dénombrement Université de Nice-Sophia Antipolis -L2 MASS - Probabilités Feuille TD 1 : Probabilités discrètes, dénombrement Exercice 1 : 1. On doit choisir 2 représentants dans une classe de 40 élèves. Quel est le

Plus en détail

Dénombrement Probabilité uniforme sur un ensemble fini

Dénombrement Probabilité uniforme sur un ensemble fini UPV - MathsL1S1 1 II Dénombrement Dénombrement Probabilité uniforme sur un ensemble fini I Dénombrement 1) Factorielles : Pour n entier 1, il y a : n! = n.(n - 1). (n - 2) 2.1 façons d aligner n objets

Plus en détail

Coefficients binomiaux

Coefficients binomiaux Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant

Plus en détail

CALCUL DES PROBABILITES

CALCUL DES PROBABILITES CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les

Plus en détail

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

Probabilités CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Probabilités CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Chapitre Ce que dit le programme : Probabilités CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Objectifs visés par l enseignement des statistiques et probabilités à l occasion de résolutions de problèmes dans

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

TD: Ensembles, applications, dénombrement

TD: Ensembles, applications, dénombrement Université de Provence Année 011/1 Licence Math Info ème année S3 Fondements de l Informatique 1 Ensembles et fonctions TD: Ensembles, applications, dénombrement 1. On suppose que l ensemble de tous les

Plus en détail

MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités

MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités Master Génie des Systèmes Industriels, mentions ACCIE et RIM Université du Littoral - Côte d Opale, La Citadelle Laurent SMOCH (smoch@lmpa.univ-littoral.fr)

Plus en détail

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

Feuille d exercices 2 : Espaces probabilisés

Feuille d exercices 2 : Espaces probabilisés Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un

Plus en détail

Calculer la probabilité d un événement

Calculer la probabilité d un événement THEME : CORRIGE DES EXERCICES PROBABILITES Calculer la probabilité d un événement Exercice n : Un sachet contient bonbons à la menthe, à l orange et au citron. On tire, au hasard, un bonbon du sachet et

Plus en détail

3 Exercices. 3.1 Probabilités simples. 3.2 Probabilités avec dénombrement. Probabilités 3. Exercice 1 On tire au hasard une carte parmi un jeu de 52.

3 Exercices. 3.1 Probabilités simples. 3.2 Probabilités avec dénombrement. Probabilités 3. Exercice 1 On tire au hasard une carte parmi un jeu de 52. Probabilités 3 3 Exercices 3.1 Probabilités simples Exercice 1 On tire au hasard une carte parmi un jeu de 52. Calculer la probabilité d obtenir : 1. un roi 2. le valet de trèfle 3. l as de coeur ou la

Plus en détail

Bureau N301 (Nautile) benjamin@leroy-beaulieu.ch

Bureau N301 (Nautile) benjamin@leroy-beaulieu.ch Pre-MBA Statistics Seances #1 à #5 : Benjamin Leroy-Beaulieu Bureau N301 (Nautile) benjamin@leroy-beaulieu.ch Mise à niveau statistique Seance #1 : 11 octobre Dénombrement et calculs de sommes 2 QUESTIONS

Plus en détail

P1 : Corrigés des exercices

P1 : Corrigés des exercices P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à

Plus en détail

Théorie des ensembles

Théorie des ensembles Théorie des ensembles Cours de licence d informatique Saint-Etienne 2002/2003 Bruno Deschamps 2 Contents 1 Eléments de théorie des ensembles 3 1.1 Introduction au calcul propositionnel..................

Plus en détail

TD 4 : HEC 2001 épreuve II

TD 4 : HEC 2001 épreuve II TD 4 : HEC 200 épreuve II Dans tout le problème, n désigne un entier supérieur ou égal à 2 On dispose de n jetons numérotés de à n On tire, au hasard et sans remise, les jetons un à un La suite (a, a 2,,

Plus en détail

Cours de Probabilités 1. Dénombrement 2. Probabilités 3. Variables aléatoires réelles

Cours de Probabilités 1. Dénombrement 2. Probabilités 3. Variables aléatoires réelles Cours de Probabilités 1. Dénombrement 2. Probabilités 3. Variables aléatoires réelles Pour BCPST 1 Année scolaire : 2004/2005 16 juin 2005 Mohamed TARQI Table des matières 1 Dénombrement 3 1.1 Généralités.

Plus en détail

Espace de probabilité, indépendance et probabilité conditionnelle

Espace de probabilité, indépendance et probabilité conditionnelle Chapter 2 Espace de probabilité, indépendance et probabilité conditionnelle Sommaire 2.1 Tribu et événements........................................... 15 2.2 Probabilité................................................

Plus en détail

Cours de Probabilités et de Statistique

Cours de Probabilités et de Statistique Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

Cours de mathématiques Partie IV Probabilités MPSI 4

Cours de mathématiques Partie IV Probabilités MPSI 4 Lycée Louis-Le-Grand, Paris Année 2013/2014 Cours de mathématiques Partie IV Probabilités MPSI 4 Alain TROESCH Version du: 30 mai 2014 Table des matières 1 Dénombrement 3 I Combinatoire des ensembles

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

Statistique descriptive : Exercices supplémentaires Introduction à la théorie des probabilités

Statistique descriptive : Exercices supplémentaires Introduction à la théorie des probabilités Statistique descriptive : Exercices supplémentaires Introduction à la théorie des probabilités 1. Lors du lancer d un dé équilibré dont les faces sont numérotées de 1 à 6, quelle est la probabilité d obtenir

Plus en détail

Actions de groupes. Exemples et applications

Actions de groupes. Exemples et applications 4 Actions de groupes. Exemples et applications G, ) est un groupe multiplicatif et on note ou G si nécessaire) l élément neutre. E est un ensemble non vide et S E) est le groupe des permutations de E.

Plus en détail

APERÇU SUR L'ENSEIGNEMENT DES PROBABILITÉS ET STATISTIQUES AU VIETNAM

APERÇU SUR L'ENSEIGNEMENT DES PROBABILITÉS ET STATISTIQUES AU VIETNAM DOCUMENT A Enseignement des Mathématiques Séminaire International Toulouse 5-9 juillet 1975 Extrait du Résumé des Communications APERÇU SUR L'ENSEIGNEMENT DES PROBABILITÉS ET STATISTIQUES AU VIETNAM par

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

Formules d inclusion-exclusion

Formules d inclusion-exclusion Université de Rouen L1 M.I.EEA 2011 2012 Mathématiques discrètes Formules d inclusion-exclusion Je présente ici une correction détaillée de l Exercice 5 de la Feuille d exercices 1, en reprenant le problème

Plus en détail

Analyse Combinatoire

Analyse Combinatoire Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien

Plus en détail

2. Probabilité. 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance. http://statwww.epfl.ch

2. Probabilité. 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance. http://statwww.epfl.ch 2. Probabilité 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance Probabilité et Statistiques I Chapître 2 1 2.1 Espaces de Probabilité Contenu Exemples élémentaires de probabilité,

Plus en détail

Chapitre 5 Les Probablilités

Chapitre 5 Les Probablilités A) Introduction et Définitions 1) Introduction Chapitre 5 Les Probablilités De nombreuses actions provoquent des résultats qui sont dus en partie ou en totalité au hasard. Il est pourtant nécessaire de

Plus en détail

Séquence 3. Probabilité : conditionnement et indépendance

Séquence 3. Probabilité : conditionnement et indépendance Séquence 3 Probabilité : conditionnement et indépendance Sommaire. Pré-requis. Conditionnement par un événement de probabilité non nulle 3. Indépendance 4. Synthèse Dans cette première séquence sur les

Plus en détail

Sujet 1. Problème 1 [2p] Lors d une course de chevaux, il y a 10 chevaux au départ. Combien de possibilités pour le tiercé?

Sujet 1. Problème 1 [2p] Lors d une course de chevaux, il y a 10 chevaux au départ. Combien de possibilités pour le tiercé? Sujet 1 Problème 1 [2p] Lors d une course de chevaux, il y a 10 chevaux au départ. Combien de possibilités pour le tiercé? Il faut choisir 3 chevaux parmi 10, et l ordre compte. Il y a 10 possibilités

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de Terminale ES 2 Table des matières 1 Équations de droites. Second degré 7 1.1 Équation de droite.................................. 7 1.2 Polynôme du second degré..............................

Plus en détail

Problèmes de Mathématiques Filtres et ultrafiltres

Problèmes de Mathématiques Filtres et ultrafiltres Énoncé Soit E un ensemble non vide. On dit qu un sous-ensemble F de P(E) est un filtre sur E si (P 0 ) F. (P 1 ) (X, Y ) F 2, X Y F. (P 2 ) X F, Y P(E) : X Y Y F. (P 3 ) / F. Première Partie 1. Que dire

Plus en détail

Objets Combinatoires élementaires

Objets Combinatoires élementaires Objets Combinatoires élementaires 0-0 Permutations Arrangements Permutations pour un multi-ensemble mots sous-ensemble à k éléments (Problème du choix) Compositions LE2I 04 1 Permutations Supposons que

Plus en détail

Arbre de probabilité(afrique) Univers - Evénement

Arbre de probabilité(afrique) Univers - Evénement Arbre de probabilité(afrique) Univers - Evénement Exercice 1 Donner l univers Ω de l expérience aléatoire consistant à tirer deux boules simultanément d une urne qui en contient 10 numérotés puis à lancer

Plus en détail

Probabilités (méthodes et objectifs)

Probabilités (méthodes et objectifs) Probabilités (méthodes et objectifs) G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Probabilités (méthodes et objectifs) 10 juin 2007 1 / 19 1 Déterminer la loi de probabilité d

Plus en détail

Examen Partiel. Un soin particulier dans la rédaction est demandé. Les astérisques indiquent l importance des questions et non pas leur difficulté.

Examen Partiel. Un soin particulier dans la rédaction est demandé. Les astérisques indiquent l importance des questions et non pas leur difficulté. UFR de Mathématiques, Université de Paris 7 DEA 1996/97 premier semestre Introduction à la cohomologie de de Rham des variétés algébriques A. Arabia & Z. Mebkhout Vendredi 6 décembre 1996 Examen Partiel

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Marches, permutations et arbres binaires aléatoires

Marches, permutations et arbres binaires aléatoires Marches, permutations et arbres binaires aléatoires Épreuve pratique d algorithmique et de programmation Concours commun des Écoles Normales Supérieures Durée de l épreuve: 4 heures Cœfficient: 4 Juillet

Plus en détail

BJ - RELATIONS BINAIRES

BJ - RELATIONS BINAIRES BJ - RELATIONS BINAIRES Définitions Soit A et B deux ensembles non vides, et G une partie de A B. On dit qu un élément x de A est relié à un élément y de B par une relation binaire de graphe G, si le couple

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

EXERCICES SUR LE CHAPITRE 1 : «MIXTE»

EXERCICES SUR LE CHAPITRE 1 : «MIXTE» EXERCICES SUR LE CHAPITRE 1 : «MIXTE» 1. Les électeurs d'une grande ville américaine sont constitués de 40% de blancs, 40% de noirs et 20% d'hispaniques. Un candidat noir à la fonction de Maire espère

Plus en détail

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile. Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir

Plus en détail

Exercices corrigés de probabilités et statistique

Exercices corrigés de probabilités et statistique Exercices corrigés de probabilités et statistique Université Paris 1 Panthéon-Sorbonne Cours de deuxième année de licence de sciences économiques Fabrice Rossi Cette œuvre est mise à disposition selon

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

4. Exercices et corrigés

4. Exercices et corrigés 4. Exercices et corrigés. N 28p.304 Dans une classe de 3 élèves, le club théâtre (T) compte 0 élèves et la chorale (C) 2 élèves. Dix-huit élèves ne participent à aucune de ces activités. On interroge au

Plus en détail

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde.

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde. Simuler des expériences aléatoires avec une calculatrice Niveau Seconde. Situation étudiée Différentes selon les séances : Séance 1 : Jeu de pile ou face, tirages de boule dans une urne avec des proportions

Plus en détail

COUPLES DE VARIABLES ALÉATOIRES

COUPLES DE VARIABLES ALÉATOIRES CHAPITRE 13 COUPLES DE VARIABLES ALÉATOIRES Dans tout le chapitre, (Ω, P) désignera un espace probabilisé fini. 1 Couple de variables aléatoires Définition 13.1 On appelle couple de variables aléatoires

Plus en détail

Contrôle de statistiques Sujet 2 Corrigé

Contrôle de statistiques Sujet 2 Corrigé Contrôle de statistiques Sujet 2 Corrigé L2 d économie - Université Paris 1 Panthéon-Sorbonne Nom : Prénom : Les exercices sont indépendants. Le barème est indicatif. L utilisation de documents, calculatrices,

Plus en détail

8 Probabilités. Les notions étudiées dans ce chapitre CHAPITRE. 1. Expérience aléatoire 2. Loi de probabilité 3. Probabilité d'un événement

8 Probabilités. Les notions étudiées dans ce chapitre CHAPITRE. 1. Expérience aléatoire 2. Loi de probabilité 3. Probabilité d'un événement CHAPITRE Probabilités Les notions étudiées dans ce chapitre Le mot hasard vient de l'arabe al zhar qui désigne un dé à jouer. Les jeux de hasard sont connus depuis la plus haute Antiquité. Déjà les romains

Plus en détail

Un tout petit peu d homotopie

Un tout petit peu d homotopie Vincent Beck On note I = [ 0, 1 ]. Un tout petit peu d homotopie 0.1 Homotopie Définition 1 Applications homotopes. Soient X, Y deux espaces topologiques et f, g : X Y deux applications continues. On dit

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient

Plus en détail

Applications linéaires

Applications linéaires Bibliothèque d exercices Énoncés L1 Feuille n 18 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R (x + y, x

Plus en détail

Théorie des ensembles et combinatoire

Théorie des ensembles et combinatoire Théorie des ensembles et combinatoire Valentin Vinoles 24 janvier 2012 Table des matières 1 Introduction 2 2 Théorie des ensembles 3 2.1 Définition............................................ 3 2.2 Aartenance

Plus en détail

SESSION 2006. NOM, Prénom : PROBABILITES 2006 T ES. France septembre 2005 (5 points)

SESSION 2006. NOM, Prénom : PROBABILITES 2006 T ES. France septembre 2005 (5 points) SESSION 2006 France septembre 2005 (5 points) Parmi les stands de jeux d une fête de village, les organisateurs ont installé une machine qui lance automatiquement une bille d acier lorsque le joueur actionne

Plus en détail

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5.

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. DÉVELOPPEMENT 32 A 5 EST LE SEUL GROUPE SIMPLE D ORDRE 60 Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. Démonstration. On considère un groupe G d ordre 60 = 2 2 3 5 et

Plus en détail

Préparation à l écrit Année 2008-2009. Liste des fiches de probabilités

Préparation à l écrit Année 2008-2009. Liste des fiches de probabilités Capes de Mathématiques Université Joseph Fourier Préparation à l écrit Année 2008-2009 Liste des fiches de probabilités Probabilités 1 : Introduction aux espaces probabilisés Probabilités 2 : Variables

Plus en détail

2. Un jeu de trente-deux cartes est constitué de huit cartes de chacune des quatre couleurs. Combien de cartes faut-il tirer au minimum pour

2. Un jeu de trente-deux cartes est constitué de huit cartes de chacune des quatre couleurs. Combien de cartes faut-il tirer au minimum pour Chapitre 8 PROBABILITE 8.1 Exercices introductifs 1. On tire une carte d un paquet bien mélangé et on note la couleur de cette carte: coeur, carreau, pique, trèfle. Parmi les adjectifs possible, certain

Plus en détail

TOPOLOGIE - SÉRIE 1. x f 1 B i f(x) B i x f 1 (B i ). f 1 ( i I B i) = i I f 1 (B i ); en effet. f 1 B i = f 1 B i et f 1 (B \ B ) = A \ f 1 B ; i I

TOPOLOGIE - SÉRIE 1. x f 1 B i f(x) B i x f 1 (B i ). f 1 ( i I B i) = i I f 1 (B i ); en effet. f 1 B i = f 1 B i et f 1 (B \ B ) = A \ f 1 B ; i I TOPOLOGIE - SÉRIE 1 Exercice 1. Soit f : A B une application. Prouver que (a) A f 1 fa pour tout A A, avec égalité si f est injective; (b) ff 1 B B pour tout B B, avec égalité si f est surjective; Preuve.

Plus en détail

Fiche Méthode 11 : Noyaux et images.

Fiche Méthode 11 : Noyaux et images. Fiche Méthode 11 : Noyaux et images. On se place dans un espace vectoriel E de dimension finie n, muni d une base B = ( e 1,..., e n ). f désignera un endomorphisme de E 1 et A la matrice de f dans la

Plus en détail

Cours de Probabilités. Jean-Yves DAUXOIS

Cours de Probabilités. Jean-Yves DAUXOIS Cours de Probabilités Jean-Yves DAUXOIS Septembre 2013 Table des matières 1 Introduction au calcul des probabilités 7 1.1 Espace probabilisable et loi de variable aléatoire........ 8 1.1.1 Un exemple

Plus en détail

Séquence 3. Probabilité : conditionnement. Sommaire

Séquence 3. Probabilité : conditionnement. Sommaire Séquence 3 Probabilité : conditionnement Objectifs de la séquence Dans cette première séquence sur les probabilités, on complète les connaissances des années précédentes en introduisant une notion nouvelle

Plus en détail

B03. Ensembles, applications, relations, groupes

B03. Ensembles, applications, relations, groupes B03. Ensembles, applications, relations, groupes Bernard Le Stum Université de Rennes 1 Version du 6 janvier 2006 Table des matières 1 Calcul propositionnel 2 2 Ensembles 5 3 Relations 7 4 Fonctions, applications

Plus en détail

Fluctuation d une fréquence selon les échantillons - Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

Poker Jack. http://www.casinosduquebec.com/montreal/fr/jeux/poker-3-cartes. L'objectif du jeu

Poker Jack. http://www.casinosduquebec.com/montreal/fr/jeux/poker-3-cartes. L'objectif du jeu Poker Jack Ce jeu est un jeu de carte inspiré du Blackjack et du Poker. Les règles ressemblent étrangement aux règles du Blackjack (mais avec aucun contrôle sur le tirage des cartes, il y aura toujours

Plus en détail

Université Paris 6 Année universitaire 2011-2012 Cours Groupes finis et leurs représentations Corrigé de l examen terminal du 21 mai 2012.

Université Paris 6 Année universitaire 2011-2012 Cours Groupes finis et leurs représentations Corrigé de l examen terminal du 21 mai 2012. Université Paris 6 Année universitaire 011-01 Cours Groupes finis et leurs représentations Corrigé de l examen terminal du 1 mai 01 Exercice 1 Questions de cours Soit G un groupe fini et soit p un nombre

Plus en détail