Chapitre 2 LES EMPRUNTS INDIVIS

Save this PDF as:
Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 2 LES EMPRUNTS INDIVIS"

Transcription

1 Chptre LES EMPRUNTS INDIVIS.1 Actulsto de flux Actvté.1.1 : O dspose de chffres cocert l évoluto du chffre d ffres de l socété FLORIS depus E 1985, le Chffre d ffres étt de 1 Mllo de Frcs, e 1990 l étt de 1, M F et e l 000 l s élevt à 1,6 M F. 1- O suppose que les tux d flto prs e compte etre 1985 et 1990 étet de 4,5% et de,3% etre 1991 et 000. Peut-o ffrmer que FLORIS se sot be développée sur les 15 derères ées vt 000? - O suppose que le tux d flto moye etre 1980 et 000 sot de 3,4%. E 1985, 1990 et 000 l ptroe de FLORIS vt effectué tros dotos pour s flle uprès d u otre, à chque échéce l doto étt de 5% du chffre d ffres. Quelle est l vleur totle de l doto e 1980, dte de ssce de s flle? Corrgé de l ctvté : 1- O représete le dgrmme des flux vec le pot de vue de l socété FLORIS. 1 MF 1, MF 1,6 MF Avec l flto, les prx se déprécet. Il covet d ctulser les vleurs e 1990 pour comprer les chffres d ffres des ées 1990 et O obtet l vleur cquse du chffre d ffres de 1985 e 1990 : V cquse (CA 1985) (1 0,045) F - L vleur ctuelle e 1990 du chffre d ffres de 1990 est : VA(CA 1990) = F - L vleur ctuelle e 1990 du chffre d ffres de 000 est : VA(CA 000) (1 0,03) 10 O costte que FLORIS légèremet régressé e terme gesto etre 1985 et 1990 et progressé etre 1990 et 000 pour ttedre u veu de résultt légèremet supéreur à celu de Les motts des dos : E 1985 : 5% 1 M F = F ; e 1990 : 5% 1, M F = F ; e 1990 : 5% 1,6 M F = F L vleur ctuelle e 1980 de l esemble des flux est : VA 16 41F (1 0,034) (1 0,034) (1 0,034) F

2 . Clcul de tux d térêts cturel et oml Actvté..1 : M. Durd emprute ue somme de à so m bquer. Le mode de remboursemet se ft e tros échéces et se égoce de l fço suvte : - l premère leu u bout de 6 mos : l secode u bout de 1 : l trosème u bout de 1 et deux mos : Clculer le tux d térêts cturel uel de cet emprut. Corrgé de l ctvté : O le dgrmme des flux suvt : = = pot de vue de M. Durd Actvté.. : M. Durd emprute ue somme de à so m bquer. Le mode de remboursemet se ft e tros échéces, o compose mesuellemet les térêts et l se égoce de l fço suvte : - l premère leu u bout de 3 mos : l secode u bout de 10 mos : l trosème u bout de 1 : 700. Clculer le tux d térêts cturel uel de cet emprut. Clculer le tux d térêts oml uel de cet emprut Dgrmme des flux 3 =7 000 = = pot de vue de M. Durd 1 =5 000 = =700 O : = (1+ 1/1 ) 1 1 1,68% ; o clcule le tux d térêts oml uel, l est égl à : 1 1/1 1%. 1 (1 ) 0,5 1 3 (1 ) O résout vec l ordteur : / ,5 (1 ) 1 (1 ) 1/1 et o obtet : 9,13% O : 1 (1 1/1 ) 3 (1 1/1 ) 10 3 (1 1/1 ) 1 O résout vec l ordteur : (1 1/1 ) (1 1/1 ) (1 1/1 ) 1 et o obtet : 1/1 1%. O l relto (pge 53) : 1/1 (1 ) 1/1 1 et le tux d térêts cturel uel est : 15

3 Remrque : O retet les formules de trsformto des dfférets types de tux ; le tux d térêts cturel uel clculé à prtr de l équto d équlbre des flux et le tux d térêts oml uel. O : 1/1 (1 ) 1/1 1 ; 1 1/1 1 (1 ) 1/1 1 et Défto.3 : U emprut dvs est u emprut cotrcté uprès d u seul prêteur. L empruteur est plus commuémet ppelé débteur et le prêteur, qu est e géérl ue bque, est ppelé crécer. Le remboursemet du prêt s ccompge d u coût d emprut dépedt d u tux d térêts fxe ou vrble. As, les sommes versées pr le débteur à chque échéce compreet ue prt lée u remboursemet propre du prêt, qu o ppelle mortssemet et ue prt lée u coût de l emprut, ppelée térêts. Les motges fcers que proposet e géérl les bques sot exmés pr l empruteur ; celuc chost e focto de ses cotrtes et de s covece le scéro qu lu plît le plus. U cs prtculer mportt étudé ds l sute porte sur l emprut vec des versemets effectués à tervlles de temps costts. S l tervlle est mesuel le mott de chque versemet est ppelé mesulté ; s l est uel o dt uté. Pour le dgrmme des flux que l o représete, o cosdérer celu ssocé u pot de vue du débteur. Exercce corrgé : U cptl de = est remboursé e 4 s sous forme d utés de f de pérode vec u tux d térêts de =10,66%. O demde de clculer le mott des utés. Corrgé de l exercce : Dgrmme des flux A : pot de vue de l empruteur F 1 F F 3 F 4 0,1066 = (1+ 0,1066) -4 O : F 1 F F 3 F 4. L équto d équlbre des flux est : 1+ (1 + ) (1 + ) 3 (1 + ) 4 1 (1+ ) p que l o écrt : d où : 16 = euros p1 1 (1+ ) p 4 p1 que l o écrt ecore : C 0 1 (1 ) 4

4 A RETENIR 1 (1 + )- ; = C 0 1 (1+ ) - ; C (1+ ) 1 C 0 (1 ) : cptl empruté ou vleur de l emprut ou vleur ctuelle : tux d térêt (uel ou mesuel etc...) : ombre de pérodes : mott de chque pemet effectué e f de pérode ( fe) C : vleur cquse de C u bout de pérodes. L vleur d u emprut ugmete lorsque le tux bsse. L vleur d u emprut dmue lorsque le tux croît. Exercce corrgé : Pour cheter ue mso, Moseur Durd emprute à so bquer, u tux de =8% pour ue pérode de 10 s. Quel est le mott des utés? Corrgé de l exercce : Dgrmme des flux pot de vue de M. Durd Exercce corrgé : Pour cheter ue mso, Moseur Durd emprute à so bquer, u tux de =5,47%. Il verse chque ée ue somme de Combe y -t-l d utés costtes versées e f de pérode? Corrgé de l exercce : Dgrmme des flux A : = O : = ; =10 ; =8% ; =? O : = 1 (1+ ) - et doc : 0,08 = (1+ 0,08) ,4 euros O : = ; = ; =5,47% ; =? 1 (1 + )- O : et doc : 1 (1+ ) - C 0 et (1+ ) 1 C 1 pot de vue de 0 M. Durd d où : log 1 log(1 ) ,0547 -log s log(1 + 0,0547) 17

5 Exercce 1 : Vous fcez l cht d ue utomoble à pr u prêt sur 3 s à u tux d térêts oml de 8,5% pr, composé mesuellemet, vec u pport persoel de 000. Quels serot vos versemets mesuels? Nous supposeros c que les versemets commecerot u mos près l cht - c est-àdre à l f de l premère pérode. O représeter le dgrmme des flux. Quel tux d térêt devez-vous obter pour rédure de 15 vos versemets mesuels? Exercce : E projett l cht proch d u pprtemet, près ue lyse ttetve de vos fces persoelles, vous vez décdé que vous pouvez vous permettre des versemets mesuels d u mott mxml de 650. Votre pport persoel peut s élever à et le tux d térêt cturel uel est de 9,5 %. S vous preez u emprut sur 15 s, quel est le prx d cht mxml que vous pussez evsger pour l cht de l pprtemet? (o trsformer le tux cturel e u tux oml uel et o représeter le dgrmme des flux.).4 Vleur ctuelle ette - vleur future ette Actvté.4.1 : U vestsseur ft u pemet tl de = et tted des gs étlés sur les qutre proches ées tels qu exprmés ds le schém c-dessous : F 1 = 900 F = 1 00 F 3 = Clculer le tux de redemet tere de l vestssemet. Clculer l vleur ctuelle ette et l vleur future ette, e suppost u tux d térêts uel de =7,6% (e composto uelle). = Corrgé de l ctvté : Sot TRI le tux de redemet tere de l vestssemet. E écrvt l équto d équlbre des flux o : F 1 1 TRI F F 3 F 4 (1 TRI) (1 TRI) 3 (1 TRI) 4 Avec ue clcultrce fcère, o obtet : TRI 1,37%. S =7,6%, l VAN est défe à l orge de l fço suvte : F1 F F3 F4 VAN C (1 ) (1 ) (1 ) et o obtet : VAN 596,03 euros. De même pour l VFN, o écrt : VFN F1 F F3 F4 C et o obtet : (1 ) 1 (1 ) (1 ) (1 ) VFN 3 479,84 euros (o vérfe uss que : VFN F 4 = Pot de vue de l vestsseur 4 VAN (1+ ) ) 18

6 Actvté.4. : Vous vez prs u prêt de sur 10 s, vec u tux d térêt oml uel de 9,8%. Vous prévoyez d être proprétre de l mso ds qutre s pus de l revedre, e rembourst le prêt de fço tcpée. Quel ser le mott de ce remboursemet tcpé à l f des qutre s? Corrgé de l ctvté : 1ère étpe : clcul des mesultés 0,098 Dgrmme des flux 0,817% ; F 1 F F 10 pot de vue de l empruteur 1 ème étpe : clcul du remboursemet tcpé u bout de qutre s Dgrmme des flux F 1 F F 119 F 10 pot de vue de l empruteur F 1 F F 47 F 48 VFN 1/1 O : = ; =48 ; =13,8% ; F 1 = F = = F 48 = 1 048,37 ; l vleur recherchée est VFN ppelée uss vleur future ette. L équto d équlbre des flux est : - 1+ O : = ; =10 ; =9,8% ; 1 =? O : = 0,0115 = (1+ 0,0115) (1+ 1/1 1 (1+ 1/1 ) - et doc : 1048,37 euros... (1+ VFN (1+ ) 48 ) ) 48 1/1 1/1 1/1 1/1 O obtet (vec ue clcultrce ou meux, vec u ordteur) : VFN56 898,66 : o terprète (ds cet exercce) l vleur future ette comme le mott du remboursemet tcpé u bout de qutre s. A RETENIR L vleur ctuelle (VA) d u esemble de flux fcers est l somme lgébrque des vleurs ctuelles de chque flux rpportées à ue dte chose (pr défut le chox de l dte est l orge des dtes du scéro fcer). L vleur future (VF) d u esemble de flux fcers est l somme lgébrque des vleurs cquses de chque flux rpportées à l derère dte du scéro fcer. O : VF VA (1+ ) où est le ombre de pérodes séprt les deux dtes de référeces. L vleur ctuelle ette (VAN) est u cs prtculer de VA. - Ds le cdre d u projet d vestssemet, vec le pot de vue de l vestsseur, c est l vleur ctuelle des flux. - Ds le cdre d u emprut, vec le pot de vue de l empruteur, c est l vleur ctuelle des flux. (De même : VFN VAN (1+ ) ) 0 19

7 Exercce : Ds le cdre d u emprut mmobler, votre bque souhte fcer etèremet votre cht e vous prêtt l somme totle de à u tux d térêt oml de 6,39%. Cepedt, vous evsgez de rembourser qu e u plus 8 s, pr des mesultés e dépsst ps 600. Quel est le mott mmum de l pport persoel pour rélser cette opérto?.5 Amortssemet de prêt Actvté : Tbleu d mortssemet d u emprut mmobler sur 15 s. = ; tux d térêts oml : =1,5%. Vérfez que les mesultés sot de =1 3,5 et complétez le tbleu c-dessous : Mos Mesulté Itérêts Amortssemets Cptl restt dû , , ,67 190,86 1 3, , , ,5 194, , , , , , ,5 01, , , , ,5 O cosdère u emprut d u cptl à u tux remboursble e s sous forme d utés e f de pérodes. L empruteur verse lors de l p-ème échéce d térêts ue uté p comportt, d ue prt l térêt du cptl restt à rembourser K p1, d utre prt, u mortssemet M p, celu-c pouvt être ul à certes échéces. O les reltos suvtes : p K p1 M p M p K p1 K p K p K p-1 M p et K 0 = ; K = 0 M 1 M... M Cs prtculer : Remboursemet pr utés costtes - vleur de l uté costte : 1 (1 ) - prt d mortssemet coteue ds l p-ème uté : M p - prt d térêt coteue ds l p-ème uté : I p M p - cptl restt à mortr près l p-ème uté : K p C0 - totl rthmétque des térêts pyés : S (1 ) p1 (1 ) (1 ) (1 ) 1 0 p

8 Exercce corrgé : Dresser le tbleu d mortssemet d u emprut de cotrcté pour qutre s u tux de 8% et remboursble pr utés costtes O clcule d bord les utés : euros ; =8% ; =4 ; 0,08 doc : ,6 euros 1 (1 ) (1+ 0,08) Tbleu d mortssemet : Mos Auté Itérêts Amortssemets Cptl restt dû , ,6 400, ,6 3 34, , , , , ,6 1 9, , , ,6 670, ,69 0,00 O clcule pr exemple : et (1 ) 9 057,6 (1 0,08) M (1 ) (1 ) (1 0,08) (1 0,08) K C (1 ) 1 (1 0,08) ,45 euros 1615,14 euros..6 Noto sur les retes Ce prgrphe e retre ps ds le cdre des empruts dvs comme préseté ds les prgrphes précédets. L pproche mthémtque des retes ressemblt tellemet à celle cocert les empruts dvs, ous cluos ce prgrphe ds ce chptre. Défto.6.1 : Ue rete est ue sute de règlemets effectués à tervlles de temps égux. Chque versemet est ppelé terme de l rete. Remrque : ds u scéro emprut - remboursemet, o clut u flux supplémetre, celu du mott du prêt. O dstgue pluseurs types de retes : Rete certe : le ombre de ses termes est fxé à l vce. Rete létore : le ombre de ses termes est ps prévu à l vce (rete vgère). Rete temporre : le ombre de ses terme est f. Rete perpétuelle : le ombre de ses termes est f. 1

9 Rete mmédte ou rete à terme échu : les versemets se fot e f de pérode. Rete dfférée : l dte du premer versemet dépsse ue pérode. Rete tcpée : l dte du premer versemet est féreure d ue pérode. Rete à échor : l dte du premer versemet coïcde vec l dte d orge. A RETENIR : : le ombre de termes ; : le tux d térêt de l rete. Vleur ctuelle d ue rete (mmédte) : c est l somme des vleurs ctuelles de chque terme. V p (1 ) p (1 ) Vleur cquse d ue rete (mmédte) : c est l somme des vleurs cquses pr chque terme à l dte de versemet du derer terme. V 1 (1 ) 1 p (1 ) p Relto vleur ctuelle - vleur cquse d ue rete : V V 0 (1 ) Exercce corrgé : Le ttulre d ue rete à = 5 termes uels de = , l premère échéce est du 1 er vrl 006, égoce l rete le 1 er vrl 005. Quelle est l vleur de l rete u 1 er vrl 005, pour u tux d térêt de 8%? O : 1 (1 ) V 1 (1 0,08) , ,76 euro Exercce : Ue compge d ssurce ve propose le cotrt suvt : elle reçot du clet, à l f de chque trmestre, ue somme de cotre ue somme de V 40 ds dx s. O suppose que le tux uel de l rete est de 13,039%. Clculer V 40? (o représeter d bord le dgrmme des flux.)

10 .6. Cs prtculer : rete perpétuelle A RETENIR : Pour ue rete perpétuelle à termes costts, s vleur ctuelle est : V 0 L vleur d ue rete ugmete qud le tux de l rget bsse. L vleur d ue rete dmue qud le tux de l rget s élève. Exercce : Ue compge de retrte propose à u clet de 35 s le cotrt suvt : le versemet d ue somme de pr pedt 5 s cotre ue rete perpétuelle mesuelle de 3 91,87 qu démrre à so 60 ème versre. Quel est le mott du tux d térêt de l rete? (répose : =6%) 3

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets

Plus en détail

!! " # $ #! %! &! ' (!& )**+

!!  # $ #! %! &! ' (!& )**+ !!"# $ #! %! &!'(!&)** Ce cous vse à ésete les dfféets élémets du clcul fce et d exlque l oto de l vleu temoelle de l get. Il ft îte clemet cq éoccutos : L dfféece ete les dfféets tyes d téêts (téêt smle,

Plus en détail

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période)

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période) A-PDF OFFICE TO PDF DEMO: Purchase from www.a-pdf.com to remove the watermark Mathématques Facères : l essetel Les formules cotourables (F de érode) htt://www.ecogesam.ac-a-marselle.fr/esed/gesto/mathf/mathf.html#e5aels

Plus en détail

INTENTION LES PROCESSUS MATHÉMATIQUES

INTENTION LES PROCESSUS MATHÉMATIQUES INTENTION Adpttios u Cdre commu des progrmmes d études de mthémtiques M-9 telles que reflétées ds le documet Mthémtiques M-9 : Progrmme d études de l Albert (2007) Le coteu du documet Mthémtiques M-9 :

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

Coefficient de partage

Coefficient de partage Coeffcet de partage E chme aque, la sythèse d'u composé se fat e pluseurs étapes : la réacto propremet dte (utlsat par exemple u motage à reflux quad la réacto dot être actvée thermquemet), les extractos

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

Estimation des incertitudes sur les erreurs de mesure.

Estimation des incertitudes sur les erreurs de mesure. Estmto des certtdes sr les errers de mesre. I. Itrodcto : E sceces epérmetles, l este ps de mesres ectes. Celle-c e pevet être q etchées d errers pls o mos mporttes selo le protocole chos, l qlté des strmets

Plus en détail

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers.

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers. CHAP: 8 Objecifs de ce chpire : Clculer comme se cosiuer u cpile ; Clculer comme rembourser ue dee e effecu des versemes réguliers. RAPPELS : Qu'es-ce qu'ue vleur cquise? Qu'es-ce qu'ue vleur cuelle? Le

Plus en détail

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie VARIABLES ALÉATOIRES déo oco de réro vrble léore dscrèe moyee - vrce - écr ye esérce mhémque vrble léore coue oco d ue vrble léore : rsormo combso lére de vrbles léores Déo E : eérece léore S : esce échllol

Plus en détail

A11 : La représentation chaînée (1ère partie)

A11 : La représentation chaînée (1ère partie) A11 : L représettio chîée (1ère prtie) - Défiitio et schéms de cosulttio - Schéms de mise à jour (isertio, suppressio) - Exemples J-P. Peyri - L représettio chîée (première prtie) 0 Pricipe de l représettio

Plus en détail

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C. 16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

SYSTEME FERME EN REACTION CHIMIQUE

SYSTEME FERME EN REACTION CHIMIQUE SYSTEME FERME EN REACTION CHIMIQUE I. DESCRIPTION D UN SYSTEME. Les dfférets types de système (ouvert, fermé, solé U système S est formé d u esemble de corps séparés du reste de l uvers (appelé mleu extéreur

Plus en détail

Intégrales généralisées

Intégrales généralisées 3 Iégrles géérlisées Pour ce chpire, les focios cosidérées so priori défiies sur u iervlle réel I o rédui à u poi, à vleurs réelles ou complees e coiues pr morceu. L défiiio e les propriéés de l iégrle

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau GEA I Mathématques nancères Poly de révson Lonel Darondeau Intérêts smples et composés Voc la lste des exercces à révser, corrgés en cours : Exercce 2 Exercce 3 Exercce 5 Exercce 6 Exercce 7 Exercce 8

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

TARIFICATION, PROVISIONNEMENT ET PILOTAGE D UN PORTEFEUILLE DÉPENDANCE

TARIFICATION, PROVISIONNEMENT ET PILOTAGE D UN PORTEFEUILLE DÉPENDANCE TARIFICATION, PROVISIONNEMENT ET PILOTAGE D UN PORTEFEUILLE DÉPENDANCE Mre-Pscle Deléglse, Chrstn Hess, Sébsten Nouet To cte ths verson: Mre-Pscle Deléglse, Chrstn Hess, Sébsten Nouet. TARIFICATION, PROVISION-

Plus en détail

COURS DE MATHEMATIQUE FINANCIERE A COURT ET LONG TERME Promotion : Première année de graduat

COURS DE MATHEMATIQUE FINANCIERE A COURT ET LONG TERME Promotion : Première année de graduat P R O F E S REPUBLIQUE DEMOCRATIQUE DU CONGO ENSEIGNEMENT SUPEREIEUR ET UNIVERSITAIRE INSTITUT SUPERIEUR DE GESTION INFORMATIQUE DE GOMA /I.S.I.G-GOMA DEVELOPPEMENT ISIG M A T I O N COURS DE MATHEMATIQUE

Plus en détail

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria.

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria. 1 CAS nédt d applcaton sur les normes IAS/IFRS Coût amort sur oblgatons à taux varable ou révsable La socété Plumera présente ses comptes annuels dans le référentel IFRS. Elle détent dans son portefeulle

Plus en détail

3- Les taux d'intérêt

3- Les taux d'intérêt 3- Les tux d'intérêt Mishkin (2007), Monnie, Bnque et mrchés finnciers, Person Eduction, ch. 4 et 6 Vernimmen (2005), Finnce d'entreprise, Dlloz, ch. 20 à 22 1- Mesurer les tux d'intérêt comprer les différents

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

Les nouveaux relevés de compte

Les nouveaux relevés de compte Ifo CR Les ouveaux relevés de compte Les relevés de compte actuels du Crédit Agricole de Champage-Bourgoge sot issus de la migratio iformatique sur le GIE AMT e 2001 : petit format (mais A4 pour les Professioels),

Plus en détail

CHAPITRE 6 : LE BIEN-ETRE. Durée : Objectif spécifique : Résumé : I. L agrégation des préférences. Cerner la notion de bien-être et sa mesure.

CHAPITRE 6 : LE BIEN-ETRE. Durée : Objectif spécifique : Résumé : I. L agrégation des préférences. Cerner la notion de bien-être et sa mesure. TABLE DES MATIERES Durée...2 Objectf spécfque...2 Résumé...2 I. L agrégato des préféreces...2 I. Le système de vote à la majorté...2 I.2 Vote par classemet...3 I.3 Codtos de décso socale et théorème d

Plus en détail

Déroulement de l épreuve de mathématiques

Déroulement de l épreuve de mathématiques Dérouleet de l épreuve de thétiques MATHÉMATIQUES Extrit de l ote de service 2012-029 du 24 février 2012 (BOEN 13 du 29-3-2012) Durée de l épreuve : 2 heures Nture de l épreuve : écrite pr le socle cou

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Toyota Assurances Toujours la meilleure solution

Toyota Assurances Toujours la meilleure solution Toyot Assurnces Toujours l meilleure solution De quelle ssurnce vez-vous besoin? Vous roulez déjà en Toyot ou vous ttendez s livrison. Votre voiture est neuve ou d occsion. Vous vlez les kilomètres ou

Plus en détail

Les jeunes économistes

Les jeunes économistes Chaptre1 : les ntérêts smples 1. défnton et calcul pratque : Défnton : Dans le cas de l ntérêt smple, le captal reste nvarable pendant toute la durée du prêt. L emprunteur dot verser, à la fn de chaque

Plus en détail

Séquence 8. Probabilité : lois à densité. Sommaire

Séquence 8. Probabilité : lois à densité. Sommaire Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit

Plus en détail

Dérivation. 1. Nombre dérivé, tangente 2. Fonction dérivée 3. Fonction dérivée et variations 4. Fonction dérivée et extrema

Dérivation. 1. Nombre dérivé, tangente 2. Fonction dérivée 3. Fonction dérivée et variations 4. Fonction dérivée et extrema «À l utomne 97 le présdent Non nnoncé que le tu d ugmentton de l nflton dmnué C étt l premère fos qu un présdent en eercce utlst l dérvée terce pour ssurer s réélecton» Hugo Ross, mtémtcen, à propos d

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

Algorithmes sur les mots (séquences)

Algorithmes sur les mots (séquences) Introduction Algorithmes sur les mots (séquences) Algorithmes sur les mots (textes, séquences, chines de crctères) Nomreuses pplictions : ses de données iliogrphiques ioinformtique (séquences de iomolécules)

Plus en détail

a g c d n d e s e s m b

a g c d n d e s e s m b PPrrooppoossiittiioo 22001111JJPP 22770055 000011 uu 0088 fféévvrriirr 22001111 VVlliiiittéé jjuussqquu uu 3300//0044//22001111 tim c ir tv é p g c h u i rè s G A Z iv lu s IC.G R é c lo y m ip s 9 r7

Plus en détail

2 ième partie : MATHÉMATIQUES FINANCIÈRES

2 ième partie : MATHÉMATIQUES FINANCIÈRES 2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul

Plus en détail

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot I - PRECISION DES SYSTEMES ASSERVIS A. Poton du roblème 1. Préentton On vu que le rôle d un ytème erv et de fre uvre à l orte (t) une

Plus en détail

ANALYSE NUMERIQUE NON-LINEAIRE

ANALYSE NUMERIQUE NON-LINEAIRE Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1 Tble des mtières Chpitre

Plus en détail

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks Plan Geston des stocks Abdellah El Fallah Ensa de Tétouan 2011 Les opératons de gestons des stocks Les coûts assocés à la geston des stocks Le rôle des stocks Modèle de la quantté économque Geston calendare

Plus en détail

STI2D Logique binaire SIN. L' Algèbre de BOOLE

STI2D Logique binaire SIN. L' Algèbre de BOOLE L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.

Plus en détail

BTS GPN 2EME ANNEE-MATHEMATIQUES-MATHS FINANCIERES MATHEMATIQUES FINANCIERES

BTS GPN 2EME ANNEE-MATHEMATIQUES-MATHS FINANCIERES MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES I. Concepts généraux. Le référentel précse : Cette parte du module M4 «Acquérr des outls mathématques de base nécessares à l'analyse de données économques» est en relaton avec

Plus en détail

Chapitre 3 : Transistor bipolaire à jonction

Chapitre 3 : Transistor bipolaire à jonction Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats

Plus en détail

Pour développer votre entreprise LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI!

Pour développer votre entreprise LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI! Pour développer votre entreprise Gestion Commercile Gérez le cycle complet des chts (demnde de prix, fcture fournisseur), des stocks (entrée, sortie mouvement, suivi) et des ventes (devis, fcture, règlement,

Plus en détail

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars

Plus en détail

Réalisation de sites Internet PME & Grandes entreprises Offre Premium. Etude du projet. Webdesign. Intégration HTML. Développement.

Réalisation de sites Internet PME & Grandes entreprises Offre Premium. Etude du projet. Webdesign. Intégration HTML. Développement. Rélistion de sites Internet PME & Grndes entreprises Offre Premium Etude du projet Réunions de trvil et étude personnlisée de votre projet Définition d une strtégie de pré-référencement Webdesign Définition

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Dirigeant de SAS : Laisser le choix du statut social

Dirigeant de SAS : Laisser le choix du statut social Drgeant de SAS : Lasser le chox du statut socal Résumé de notre proposton : Ouvrr le chox du statut socal du drgeant de SAS avec 2 solutons possbles : apprécer la stuaton socale des drgeants de SAS comme

Plus en détail

n 1 LES GRANDS THÈMES DE L ITB > 2009 Les intérêts simples et les intérêts composés ( ) C T D ( en mois)

n 1 LES GRANDS THÈMES DE L ITB > 2009 Les intérêts simples et les intérêts composés ( ) C T D ( en mois) LES GRANDS THÈMES DE L ITB Les iérês simples e les iérês composés RAPPELS THÉORIQUES Les iérês simples : l'iérê «I» es focio de la durée «D» (jour, quizaie, mois, rimesre, semesre, aée) de l'opéraio (placeme

Plus en détail

Exercices de révision

Exercices de révision Exercices de révisio Exercice U ivesisseur souscri à l émissio d u bille de résorerie do les caracérisiques so les suivaes : - Nomial : 5 M - Taux facial : 3,2% - Durée de vie : 9 mois L ivesisseur doi

Plus en détail

Page 5 TABLE DES MATIÈRES

Page 5 TABLE DES MATIÈRES Page 5 TABLE DES MATIÈRES CHAPITRE I LES POURCENTAGES 1. LES OBJECTIFS 12 2. LES DÉFINITIONS 14 1. La varaton absolue d'une grandeur 2. La varaton moyenne d'une grandeur (par unté de temps) 3. Le coeffcent

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

Guide d'utilisation Easy Interactive Tools Ver. 2

Guide d'utilisation Easy Interactive Tools Ver. 2 Guide d'utilistion Esy Interctive Tools Ver. 2 Guide d'utilistion Esy Interctive Tools Ver.2 Présenttion de Esy Interctive Tools 3 Crctéristiques Fonction de dessin Vous pouvez utiliser Esy Interctive

Plus en détail

Compte Sélect Banque Manuvie Guide du débutant

Compte Sélect Banque Manuvie Guide du débutant GUIDE DU DÉBUTANT Compte Sélect Baque Mauvie Guide du débutat Besoi d aide? Preez quelques miutes pour lire attetivemet votre Guide du cliet. Le préset Guide du débutat vous facilitera l utilisatio de

Plus en détail

Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble.

Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble. II LE MARCHE DU CAFE 1 L attractivité La segmetatio selo le mode de productio Le marché du café peut être segmeté e foctio de deux modes de productio pricipaux : la torréfactio et la fabricatio de café

Plus en détail

S-PENSION. Constituez-vous un capital retraite complémentaire pour demain tout en bénéficiant d avantages fiscaux dès aujourd hui.

S-PENSION. Constituez-vous un capital retraite complémentaire pour demain tout en bénéficiant d avantages fiscaux dès aujourd hui. S-PENSION Costituez-vous u capital retraite complémetaire pour demai tout e bééficiat d avatages fiscaux dès aujourd hui. Sommaire 1. Il est temps de predre l iitiative 4 2. Profitez dès aujourd hui des

Plus en détail

Effets de la dépendance entre différentes branches sur le calcul des provisions

Effets de la dépendance entre différentes branches sur le calcul des provisions Effets de l dépendnce entre dfférentes brnches sur le clcul des provsons Thème ASTIN : Contrôle des rsques Gllet Antonn Commsson de Contrôle des Assurnces 54, rue de Châteudun 75009 PARIS ntonn.gllet@cc.fnnces.gouv.fr

Plus en détail

Avant d utiliser l appareil, lisez ce Guide de référence rapide pour connaître la procédure de configuration et d installation.

Avant d utiliser l appareil, lisez ce Guide de référence rapide pour connaître la procédure de configuration et d installation. Guide de référence rpide Commencer Avnt d utiliser l ppreil, lisez ce Guide de référence rpide pour connître l procédure de configurtion et d instlltion. NE rccordez PAS le câle d interfce mintennt. 1

Plus en détail

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................

Plus en détail

1. 1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 2. 2.1.

1. 1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 2. 2.1. T/TR 01-01 Pge 3 r+ 1. EQUIPMENT CONCERNE L interconnexion numerique interntionl pour le service visiophonique et de visioconf&ence necessite l stndrdistion des principux prmttres num&iques tels que d~it,

Plus en détail

- Phénoméne aérospatial non identifié ( 0.V.N.I )

- Phénoméne aérospatial non identifié ( 0.V.N.I ) ENQUETE PRELIMINAIRE ANALYSE ET REFEREWCES : Phénoméne érosptil non identifié ( 0VNI ) B8E 25400 DEF/GEND/OE/DOlRENS du 28/9/1992 Nous soussigné : M D L chef J S, OPJ djoint u commndnt de l brigde en résidence

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Faites prospérer vos affaires grâce aux solutions d épargne et de gestion des dettes

Faites prospérer vos affaires grâce aux solutions d épargne et de gestion des dettes Faites prospérer vos affaires grâce aux solutios d éparge et de gestio des dettes Quelques excelletes raisos d offrir des produits bacaires et de fiducie à vos cliets Vous avez la compétece écessaire pour

Plus en détail

Techniques d analyse de circuits

Techniques d analyse de circuits Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre

Plus en détail

Direction des Études et Synthèses Économiques G 2007 / 12. Aléa moral en santé : une évaluation dans le cadre du modèle causal de Rubin

Direction des Études et Synthèses Économiques G 2007 / 12. Aléa moral en santé : une évaluation dans le cadre du modèle causal de Rubin Drecton des Études et Synthèses Économques G 2007 / 12 Alé morl en snté : une évluton dns le cdre du modèle cusl de Rubn Vlére ALBOUY - Bruno CRÉPON Document de trvl Insttut Ntonl de l Sttstque et des

Plus en détail

/HVV\VWqPHVFRPELQDWRLUHV

/HVV\VWqPHVFRPELQDWRLUHV /HVV\VWqPHVFRPELQDWRLUHV I. Définition On ppelle système combintoire tout système numérique dont les sorties sont exclusivement définies à prtir des vribles d entrée (Figure ). = f(x, x 2,,, x n ) x x

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4 UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Clemenceau. Régime sinusoïdal forcé. Impédances Lois fondamentales - Puissance. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.

Clemenceau. Régime sinusoïdal forcé. Impédances Lois fondamentales - Puissance. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O. ycé Clnca PCS - Physq ycé Clnca PCS (O.Granr) ég snsoïdal forcé pédancs os fondantals - Pssanc ycé Clnca PCS - Physq ntérêt ds corants snsoïdax : Expl d tnsons snsoïdals : tnson d sctr (50 H 0 V) s lgns

Plus en détail

La spirale de Théodore bis, et la suite «somme=produit».

La spirale de Théodore bis, et la suite «somme=produit». Etde d e vrite de l spirle de Théodore, dot issce à e site dot les sommes prtielles sot égles x prodits prtiels. Mots clés : spirle de Théodore, théorème de Pythgore, site, série, polyôme. L spirle de

Plus en détail

Pour développer votre entreprise. Compta LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI!

Pour développer votre entreprise. Compta LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI! Pour développer votre entreprise Compt Avec EBP Compt, vous ssurez le suivi de l ensemble de vos opértions et exploitez les données les plus complexes en toute sécurité. Toutes les fonctionnlités essentielles

Plus en détail

Partie 4 : La monnaie et l'inflation

Partie 4 : La monnaie et l'inflation Prtie 4 : L monnie et l'infltion Enseignnt A. Direr Licence 2, 1er semestre 2008-9 Université Pierre Mendès Frnce Cours de mcroéconomie suite 4.1 Introduction Nous vons vu dns l prtie introductive que

Plus en détail

Méthodologie version 1, juillet 2006

Méthodologie version 1, juillet 2006 Méthodologe verson, ullet 2006 Tendances Carbone résente chaque mos sx groues d ndcateurs :. Synthèse du mos 2. Clmat 3. Actvté économque. Energe 5. Envronnement nsttutonnel 6. Tableau de bord Ce document

Plus en détail

Une action! Un message!

Une action! Un message! Ue actio! U message! Cotact Master est u service exclusif de relaces automatiques de vos actes vers vos cliets, par SMS, messages vocaux, e-mails, courrier... Il se décleche lorsque vous réalisez ue actio

Plus en détail

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états. ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie

Plus en détail

Le Sphinx. Enquêtes, Sondages. Analyse de données. Internet : http://www.lesphinxdeveloppement.fr/club/index.html

Le Sphinx. Enquêtes, Sondages. Analyse de données. Internet : http://www.lesphinxdeveloppement.fr/club/index.html Equêtes, Sodages Aalyse de doées Le Sphix! Iteret : http://www.lesphixdeveloppemet.fr/club/idex.html Lagarde J. Aalyse statistique de doées, Duod. Réaliser vos equêtes Questioaire Traitemets et aalyses

Plus en détail

Conception d un outil décisionnel pour la gestion de la relation client dans un site de e-commerce

Conception d un outil décisionnel pour la gestion de la relation client dans un site de e-commerce Cocepto d u outl décsoel pour la gesto de la relato clet das u ste de e-commerce Nazh SELMOUNE *, Sada BOUKHEDOUMA * ad Zaa ALIMAZIGHI * * Laboratore des Systèmes Iformatques(LSI )- USTHB - ALGER selmoue@wssal.dz

Plus en détail

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement.

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement. Choix d ives i s s eme e cer iude 1 Chapire 1 Choix d ivesissemes e ceriude. Défiiio L es décisios d ivesissemes fo parie des décisios sraégiques de l erepris e. Le choix ere différes projes d ivesisseme

Plus en détail

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2 Les parties A et B sont indépendantes. Partie A Exercice 3 (5 points) Commun à tous les candidats On considère la fonction A définie sur l'intervalle [1 ; + 00 [ par A(x) = 1-e -0039' ' x 1. Calculer la

Plus en détail

Les solutions mi-hypothécaires, mi-bancaires de Manuvie. Guide du conseiller

Les solutions mi-hypothécaires, mi-bancaires de Manuvie. Guide du conseiller Les solutios mi-hypothécaires, mi-bacaires de Mauvie Guide du coseiller 1 2 Table des matières Itroductio... 5 La Baque Mauvie...5 Le compte Mauvie U...5 Le compte Sélect Baque Mauvie...5 1. Les solutios

Plus en détail

Les emprunts indivis. Administration Économique et Sociale. Mathématiques XA100M

Les emprunts indivis. Administration Économique et Sociale. Mathématiques XA100M Les emprunts indivis Administration Économique et Sociale Mathématiques XA100M Les emprunts indivis sont les emprunts faits auprès d un seul prêteur. On va étudier le cas où le prêteur met à disposition

Plus en détail

RECHERCHE DE CLIENTS simplifiée

RECHERCHE DE CLIENTS simplifiée RECHERCHE DE CLIENTS simplifiée Nous ous occupos d accroître votre clietèle avec le compte Avatage d etreprise Pour trouver des cliets potetiels grâce à u simple compte bacaire Vous cherchez des idées

Plus en détail

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes.

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes. Plan Intérêts 1 Intérêts 2 3 4 5 6 7 Retour au menu général Intérêts On place un capital C 0 à intérêts simples de t% par an : chaque année une somme fixe s ajoute au capital ; cette somme est calculée

Plus en détail

ANNEXES...16 Notation...16 Rente financière certaine...16. Mémo d Actuariat - Sophie Terrier @ 2004 1/16

ANNEXES...16 Notation...16 Rente financière certaine...16. Mémo d Actuariat - Sophie Terrier @ 2004 1/16 ÉO TUIT FOULS TUILLS SU TT Probbé ouo 3 dfféré4 ee gère be à ere échu 5 ee gère be à ere échu ueur fo d ée 6 ee gère à ere be d ce7 ee gère à ere be d ce ueur fo d ée8 urce décè 9 urce décè à c rbe cro

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

Le canal étroit du crédit : une analyse critique des fondements théoriques

Le canal étroit du crédit : une analyse critique des fondements théoriques Le cnl étroit du crédit : une nlyse critique des fondements théoriques Rfl Kierzenkowski 1 CREFED Université Pris Duphine Alloctire de Recherche Avril 2001 version provisoire Résumé A l suite des trvux

Plus en détail

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

Chapitre VI Contraintes holonomiques

Chapitre VI Contraintes holonomiques 55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail