L hebdo Finance de la MACS

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "L hebdo Finance de la MACS"

Transcription

1 - DU 2 AU 9 OCTOBRE Numéro DÉFINITION DE LA SEMAINE : Stock otio Idice boursier DOSSIER DE LA SEMAINE : Simulatio d u rêt immobilier 2 LES COURS DU JOUR Le jeudi 2 octobre 7 L hebdo Fiace de la MACS Ce bulleti d iformatios rerésete u des sujets - de Projet de Fi d Etude - roosé aux élèves de trois aée. U DEFINITION DE LA SEMAINE e stock otio doée à u collaborateur est le droit d acheter ue actio (stock) à ue date et à u rix fixés à l avace. Le collaborateur qui ossède cette stock otio eut exercer ou o (otio) ce droit, e foctio de la valeur de l actio. Si le rix e bourse est iférieur à la valeur, il exerce as so droit, si le rix e bourse est suérieur à la valeur révue ar cotrat, il l exerce. L avatage est que cette actio est lus das les actifs de l etrerise (avatage fiscal) tat qu elle est as exercée, et as ecore das celui du collaborateur. U idice boursier est ue valeur calculée ar le regrouemet des valeurs des titres de lusieurs sociétés. L'idice boursier sert à mesurer la tedace d'ue bourse ou d'u marché. La tedace d'ue bourse est habituellemet mesurée ar lusieurs idices:. u idice ricial qui mesure la tedace globale de la bourse ; cet idice est calculé à artir de la majorité de comagies iscrites à cette bourse ou du mois la majorité des grades comagies iscrites à la bourse. 2. des idices sectoriels qui mesuret la erformace d'u sous-esemble de comagies ayat des caractéristiques commues ; ces idices sot calculés à artir des comagies icluses das le sousesemble visé (ar exemle, les comagies d'u secteur d'activité comme les télécommuicatios ou les comagies de taille semblable comme les etites comagies). Quad o dit qu'ue bourse est e hausse ou e baisse, o se réfère gééralemet à so idice ricial, ar exemle le CAC 40 our la bourse de Paris. - -

2 DOSSIER : SIMULATION D UN PRET IMMOBILIER U e oératio de rêt ou d emrut cosiste à mettre à disositio u caital, our ue durée détermiée, moyeat ue rémuératio. Ceux qui mettet à disositio le caital sot les rêteurs, ceux qui le reçoivet, les emruteurs. Les coditios auxquelles se fot ces attributios doet lieu à des cotrats das lesquels sot sécifiées les modalités de remboursemet du caital et de sa rémuératio. Pour le calcul de celles-ci, o fait référece à u taux, aelé taux d itérêts. Selo le tye d oératios fiacières, le calcul des itérêts va se faire différemmet. O arle de calcul e itérêts simles, lors de lacemets ou d emruts à court terme, c est à dire dot la durée totale est iférieure ou égale à ue aée. Lorsque la durée est suérieure à u a, les calculs se fot e itérêts comosés. Notatio :. S, le caital de l oératio 2. i, le taux d itérêt 3. t, la date courate 4. T, l échéace 5., la durée, exrimée e ombre de ériodes Le ricie de l itérêt comosé est la caitalisatio des itérêts acquis de ériode e ériode. O cosidère ue oératio sur ériodes de durée uitaire (ar exemle ue aée). Arès ue ériode, le caital acquis est de S ( + i). A la fi de cette ériode, le caital acquis est lui-même lacé au taux i our la ériode suivate, ce qui coduit au caital acquis suivat arès deux ériodes : ( + i) + is( + i) = S( i) 2 S + E reouvelat ce lacemet de ériode e ériode, le caital acquis à la fi de la Remarque : Vocabulaire : ( i) S = S + ériode est :. la somme qu il faut lacer aujourd hui (date 0) au taux i our obteir la somme S à la date s aelle valeur actuelle de S au taux i, elle est otée S ~ ~ S. Il est évidet que S = ( + i ).. L'amortissemet est le remboursemet du caital sas redre e comte les charges d'itérêt. 2. L'itérêt est la rémuératio our le rêteur. 3. L'auité (ou la mesualité, trimestrialité, etc ) est la somme décaissée ériodiquemet our le remboursemet et la charge d'itérêt. auité = amortissemet auel du caital + itérêts sur l'aée De multiles formules euvet être evisagées quat aux modalités de remboursemet du ricial (o arle d amortissemet du caital) : le remboursemet i fie, le remboursemet avec amortissemet costat du caital et - 2 -

3 le remboursemet ar auités costates. Avat d exoser la simulatio, il serait judicieux d exliquer les deux deriers modes de remboursemet. Remboursemet avec amortissemet costat du caital Das ce mode, le remboursemet du caital est de S à chaque ériode et le calcul des itérêts orte sur le caital restat dû. Les auités, qui comreet le remboursemet de l amortissemet auel du caital (le ricial) et les itérêts, sot ayées e fi de ériode. Les auités et les itérêts sot e rogressio arithmétique de raiso S i. Cette méthode d amortissemet coduit à des décaissemets décroissats d aée e aée. Le tableau suivat résete le la d amortissemet d u emrut d u motat S, au taux i, remboursable ar amortissemet costat du caital sur ériode. Période Caital dû e début de Itérêts Amortissemets Auités ériode S 0 = S is S S + is 2 S = S( ) is( ) S S + is i S 3 S 2 = S( 2 ) is( 2 ) S S + is 2i S : : : : : N S = S( ( ) = S i S S S + i S ) Remboursemet ar auités costates Selo cette modalité, les auités de remboursemet (ricial et itérêts) restet costates edat toute la durée de l oératio. Le flux costat d auités de fi de ériode, de motat a, caitalisé à i, équivalet à S, est défii ar : a ( + i) i = S ( + i) a = S i ( + i) Les itérêts, quat à eux sot calculés à artir du caital dû. Etudios formellemet ce tye d emrut et otos : O a :. S, le caital dû à la fi de la ériode (date ) 2. A, l amortissemet du caital de la ériode 3. B, le total du caital remboursé à la 4. a, l auité de la ériode (ayée e ) ériode (date ) A = S S (.) - 3 -

4 a + A = is Puisque les auités sot costates, ous avos : a = a + ou is + A = is + A+ E utilisat (.), il viet : ou ecore : is ( S + A ) + A+ = is ia A + A = is + A+ = i + + ( i) A = A+ ia A+ = A + Les amortissemets sot doc e rogressio géométrique de raiso ( + i) et il viet : A = A ( + i) O a efi our le caital remboursé à la ériode : B = A + L + A = A ( + i) i Aisi our calculer l auité, o égale la derière relatio à S ( + i) (qui tiet comte des itérêts) et o red A = a. La simulatio suivate sera effectuée ar le mode de remboursemet ar auités costates

5 Simulatio : Madame et Mosieur X doivet emruter afi de ouvoir fiacer l achat de leur ouvel aartemet. Ils emrutet cette somme sur ue durée de 5 as, à u taux fixe de 3,5 %. L auité ou la mesualité calculée est de 085,3. La courbe qui suit rerésete la réartitio (e ourcetage sur l auité) etre les itérêts et le caital remboursé. REPARTITION INTERETS/CAPITAL 00% 80% réartitio 60% 40% 20% 0% -20% durée de 5 as Itérêts Caital La valeur des itérêts décroît das le tems. Par cotre la valeur du caital remboursé augmete. Le tableau qui suit ous motre l évolutio des doées au cours des 20 remiers mois. Echéacier Itérêts Caital à remb. %mes e itérêts %mes e caital ,00-437, ,9 40,3% 59,69% 2-435, ,48 40,4% 59,86% 3-433, ,89 39,96% 60,04% 4-43, ,39 39,79% 60,2% 5-429, ,98 39,6% 60,39% 6-428, ,67 39,44% 60,56% 7-426, ,43 39,26% 60,74% 8-424, ,28 39,08% 60,92% 9-422, ,9 38,90% 6,0% 0-420, ,8 38,73% 6,27% - 48, ,22 38,55% 6,45% 2-46, ,32 38,37% 6,63% 3-44, ,46 38,9% 6,8% 4-42, ,65 38,0% 6,99% 5-40, ,88 37,83% 62,7% 6-408, ,4 37,65% 62,35% 7-406, ,42 37,46% 62,54% 8-404, ,73 37,28% 62,72% 9-402, ,05 37,0% 62,90% , ,38 36,9% 63,09% - 5 -

6 Simulatio 2 : o rered le même roblème exceté la valeur du taux d itérêt. Emrut ,00 Nb aées 5 Taux 6,00 Mesualité 287,03 REPARTITION INTERETS/CAPITAL 00% 80% réartitio 60% 40% 20% 0% -20% durée de 5 as Itérêts Caital Simulatio 3 : o rered le même roblème exceté la valeur du taux d itérêt. Das les aées 80, le taux d itérêt était d eviro 8-9 %. Emrut ,00 Nb aées 5 Taux 8,00 Mesualité 460,37 REPARTITION INTERETS/CAPITAL 00% 80% réartitio 60% 40% 20% 0% -20% durée de 5 as Itérêts Caital Nous remarquos que lus le taux d itérêt augmete, lus la valeur de l auité augmete et de surcroît l emruteur se voit même ayer lus d itérêts que de caital au début de la ériode de remboursemet

7 LES COURS DU JOUR Q est ce que le SRD (le Service de Règlemet différé)? Il s'agit d'u service réservé aux valeurs fraçaises et étragères cotées à la Bourse de Paris, valeurs les lus liquides, que le cliet ourra acheter ou vedre à terme (u mois ou lus) à coditio de disoser d'ue couverture garatissat qu'il ourra bie ayer ses titres (cas de l'acheteur à découvert) ou les aorter (cas du vedeur à découvert). Observatios : A 5h4, le CAC 40 (voir la figure ci dessous) affichait ue hausse de 0.68%. Le DOW JONES (US) et le Nikkei 225 (JP) affichaiet resectivemet ue baisse de 0.3% et 0.9%. Les lus fortes hausses deuis hier armi les valeurs éligibles au SRD sot, à 5h34,. BACOU-DALLOZ (+ 4.24%) 2. THOMPSON (+ 3.55%) Les lus fortes baisses deuis hier armi les valeurs éligibles au SRD sot, à 5h34,. FAURECIA (- 3.54%) 2. MAROC TELECOM (- 2.27%) Quelques doées aexes : NYMEX (New York Mercatile Exchage) gaz aturel étrole or arget - 7 -

8 Remarques géérales : Vous ouvez à tout momet m evoyer vos imressios, questios ou autres suggestios à l adresse mail suivat : Sources : La Gestio du Risque de Taux d Itérêt - Fraçois QUITTARD-PINON, Thierry ROLANDO - Editio ECONOMICA Les Echos Wikiédia - htt://fr.wikiedia.org - La Vie Fiacière - htt:// - Boursorama - htt:// - NYMEX - htt:// - Auteur : D. Karim Resosable : O. Lafitte - 8 -

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

MATHEMATIQUES Terminale Scientifique

MATHEMATIQUES Terminale Scientifique MATHEMATIQUES Termiale Scietifique Fiches PROGRAMME 22 (v24) Sylvie LAMY Agrégée de Mathématiques Dilômée de l École Polytechique Cours Pi e-mail : lescoursi@cours-icom site : htt://wwwcours-icom siège

Plus en détail

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4 1 Déombremet Table des matières 1 Déombrer des listes 2 1.1 Permutatio................................ 2 1.2 Arragemet............................... 3 1.3 -liste.................................... 4

Plus en détail

Les emprunts indivis. Auteur : Philippe GILLET

Les emprunts indivis. Auteur : Philippe GILLET Les emruts dvs Auteur : Phle GILLET Emrut dvs et emrut oblgatare Emrut dvs Emrut oblgatare Souscrt ar ue ou luseurs baques Pluseurs souscrteurs Dvsé e arts : oblgatos Oblgatos cotées Grad ombre de souscrteurs

Plus en détail

PERFORMANCE CONTACT vous présente son LOGICIEL de PRISE de RENDEZ-VOUS

PERFORMANCE CONTACT vous présente son LOGICIEL de PRISE de RENDEZ-VOUS PERFORMANCE CONTACT vous présete so LOGICIEL de PRISE de RENDEZ-VOUS OBTENEZ sas effort LES RENDEZ-VOUS que vous SOUHAITEZ SIMPLICITÉ ET EFFICACITÉ Spécialisée das la prise de redez-vous depuis de ombreuses

Plus en détail

CORRECTION DU BAC BLANC 2

CORRECTION DU BAC BLANC 2 CORRCTION DU BAC BLANC 2 XRCIC 1 (6 poits) Baccalauréat ST Mercatique Podichéry - 2010 Deux tableaux sot doés e aexe : le premier doe l évolutio du prix du mètre carré das l immobilier résidetiel acie

Plus en détail

Questions pour un champion en ligne

Questions pour un champion en ligne Questios pour u champio e lige Le jeu télévisé QPUC préseté sur FR3 et aimé par Julie Lepers existe aussi e variate «e lige». U jeu «e lige» se déroule aisi : Six iterautes disputet ue première mache dite

Plus en détail

L he b d o Finan c e de la

L he b d o Finan c e de la - DU 24 Novembre AU 1 Décembre 2007 - Numéro 17 Dossier : Dossier : LES CO U R S Simulation d un prêt immobilier Titrisation p1-3 p-3-4 p-5-7 L he b d o Finan c e de la M A C S Ce bulletin d informations

Plus en détail

Université de Picardie Jules Verne 2006-2007 Faculté de Mathématiques et d Informatique

Université de Picardie Jules Verne 2006-2007 Faculté de Mathématiques et d Informatique Uiversité de Picardie Jules Vere 006-007 Faculté de Mathématiques et d Iformatique Licece metio Mathématiques - Deuxième aée - Semestre 4 Probabilités Elémetaires Exame du ludi 4 jui 007 Durée h00 Documet

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

Cours VII. Tests de randomisation - Tests de contingence P. Coquillard 2015

Cours VII. Tests de randomisation - Tests de contingence P. Coquillard 2015 1 TESTS DE RANDOMISATION Cours VII. Tests de radomisatio - Tests de cotigece P. Couillard 2015 Das ue majorité de cas e biologie o cosidèrera certaies hyothèses comme des alteratives à l hyothèse ulle.

Plus en détail

Dénombrement. Le nombre de p-listes d éléments distincts d un ensemble à n éléments est Le nombre d injections de E p dans F n : (n p) :

Dénombrement. Le nombre de p-listes d éléments distincts d un ensemble à n éléments est Le nombre d injections de E p dans F n : (n p) : Filière E Deis Pasquigo Résumé du cours : 1. Esembles fiis Déombremet Défiitios E et F sot équiotets si il existe ue bijectio de E sur F. E est déombrable si E est équiotet à N. E est u esemble fii si

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

Seconde année - Semestre 3 PROBABILITÉS

Seconde année - Semestre 3 PROBABILITÉS 1 UNIVERSITÉ DE CERGY Aée 2012-2013 LICENCE d ÉCONOMIE et GESTION Secode aée - Semestre 3 PROBABILITÉS Feuille d exercices N 3 : Variables aléatoires - Lois discrètes 1. Calculez 3 2 + 2 5 Exercice I (

Plus en détail

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques Agrégatio extere de mathématiques, sessio 2008 Épreuve de modélisatio, optio (public 2008) Mots clefs : Loi des grads ombres, espace des polyômes, estimatio o-paramétrique Il est rappelé que le jury exige

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

MATHÉMATIQUES Corrigé

MATHÉMATIQUES Corrigé Exame de ovembre 009 Exame du premier trimestre Le 30 ovembre 009 Classes de ère STG Durée 3 heures MATHÉMATIQUES Corrigé Note aux cadidats L emploi des calculatrices est autorisé (circulaire 99 86 du

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

Suites arithmétiques et suites géométriques Bilan et croissances

Suites arithmétiques et suites géométriques Bilan et croissances Sites arithmétiqes et sites géométriqes Bila et croissaces I Bila sr les sites arithmétiqes et géométriqes ) Tablea de formles Défiitio Relatio etre dex termes coséctifs Calcl d terme 4 ) Ue qestio de

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

Chapitre 1: Calcul des intérêts

Chapitre 1: Calcul des intérêts Chapitre 1: Calcul des itérêts Ce chapitre vise à familiariser le lecteur avec les otios suivates : Itérêt Taux d itérêt omial Taux d itérêt périodique Valeur acquise Valeur actuelle Capitalisatio Le lecteur

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme.

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme. 1S DS o 1 Durée : h Exercice 1 ( 7 poits ) 1. La suite (u ) est défiie pour tout etier aturel par u = 3 + est-elle arithmétique? Pour tout etier aturel, o a : u +1 = ( + 1) 3( + 1) + = + + 1 3 3 + = La

Plus en détail

Chapitre 1 : Les notions de base

Chapitre 1 : Les notions de base Chapitre : Les otios de base Itroductio I Comparer des gradeurs A) Les pourcetages B) Taux de variatio, coefficiet multiplicateur, idice C) Importace du ses de la comparaiso ) Raisoemet sur les taux de

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Déombremet Exercice 1 [ 01529 ] [correctio] Soiet E et F deux esembles fiis de cardiaux resectifs et. Combie y a-t-il d ijectios de E das F?

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

Partie I. Les données qualitatives

Partie I. Les données qualitatives Variables qualitatives : aalyse des corresodaces Jea-Marc Lasgouttes htt://www-rocqiriafr/~lasgoutt/aa-doees L aalyse factorielle des corresodaces But O cherche à décrire la liaiso etre deux variables

Plus en détail

Promenades aléatoires : vers les chaînes de Markov

Promenades aléatoires : vers les chaînes de Markov AME Dossier : Matrices et suites 545 romeades aléatoires : vers les chaîes de Markov ierre Griho (*) Cet article propose ue mise e perspective de la otio de promeade ou de marche aléatoire itroduite das

Plus en détail

CORRIGE DE L'EXAMEN DU 4 DECEMBRE 2002

CORRIGE DE L'EXAMEN DU 4 DECEMBRE 2002 CORRIGE DE L'EXAMEN DU 4 DECEMBRE EXERCICE. Notos X la variable aléatoire décrivat l'idetificatio des pièces défectueuses. Le ombre de valeurs possibles de X correspod au ombre de cofiguratios possibles

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

TRANSISTORS A EFFET DE CHAMP

TRANSISTORS A EFFET DE CHAMP TRANITOR A EFFET E CHAMP La déomiatio «trasistor à effet de cham» (TEC ou FET) regroue deux tyes de trasistors : le TEC à joctio (JFET) le TEC à grille isolée (IFET : isulated gate FET, MOFET : Métal Oxyde

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4 UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires

Plus en détail

LES MESURES CLéS DU PROJET DE LOI économie SOCIALE ET SOLIDAIRE

LES MESURES CLéS DU PROJET DE LOI économie SOCIALE ET SOLIDAIRE LES MESURES CLéS DU PROJET DE LOI économie SOCIALE ET SOLIDAIRE Qu est-ce que l écoomie sociale et solidaire? Qu est-ce que l écoomie sociale et solidaire? Scop Scic Coopératives Etreprises sociales Fiaceurs

Plus en détail

EPREUVES AU CHOIX DU CANDIDAT. Durée : De 09 h 00 à 12 h 00 (Heure de Yaoundé, TU + 1)

EPREUVES AU CHOIX DU CANDIDAT. Durée : De 09 h 00 à 12 h 00 (Heure de Yaoundé, TU + 1) CYCLE DESS-A 02 JUILLET 200 20 ème Promotio 200 / 202 CONCOURS D ENTREE A L IIA EPREUVES AU CHOIX DU CANDIDAT Durée : De 09 h 00 à 2 h 00 (Heure de Yaoudé, TU + ) Le cadidat traitera au choix l ue des

Plus en détail

Séquence 1. Suites numériques

Séquence 1. Suites numériques Séquece Suites umériques Objectifs de la séquece Recoaître des situatios faisat iterveir des suites géométriques ou des suites arithmético-géométriques. Modéliser ces situatios par des suites géométriques

Plus en détail

LES SUITES. u n = 1 n, pour n 1. u n = n 3

LES SUITES. u n = 1 n, pour n 1. u n = n 3 LES SUITES. Défiitio.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique et u désige l'image de l'etier (appelé

Plus en détail

Chapitre 3 Détermination de la taille de l'échantillon

Chapitre 3 Détermination de la taille de l'échantillon Chapitre 3 Détermiatio de la taille de l'échatillo Lorsqu o prélève u échatillo pour estimer u paramètre, o court toujours le risque de découvrir u peu trop tard que l'échatillo prélevé est trop petit

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation 1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

CHAPITRE 2 FILES D'ATTENTE

CHAPITRE 2 FILES D'ATTENTE 46 CHAPITRE 2 FILES D'ATTENTE 1. Gééralités. La théorie des files d'attete s attache à modéliser et à aalyser de ombreuses situatios e aarece très diverses, mais qui relèvet éamois toutes du schéma descritif

Plus en détail

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u : SUITES NUMERIQUES Coteus : Capacités attedues : Commetaires : Suites Limite d ue suite défiie par so terme gééral Notatio lim u Suites géométriques : - somme de termes cosécutifs d ue suite géométrique

Plus en détail

TS Limites de suites (1)

TS Limites de suites (1) TS Limites de suites () 000 La otio de ite de suite a été abordée e ère. O s est coteté d ue aroche ituitive à artir d exemles (aroche umérique, grahique e utilisat otammet la calculatrice et le tableur).

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

I. Séries de données et représentation graphique

I. Séries de données et représentation graphique Chaitre Statistiques : I. Séries de doées et rerésetatio grahique. Vocabulaire Ue série statistique traite de doées de différets tyes : effectifs, ourcetages, idices, Le caractère quatitatif étudié eut

Plus en détail

INF582 : Cryptologie Attaque de clés RSA par la méthode de Wiener

INF582 : Cryptologie Attaque de clés RSA par la méthode de Wiener INF58 : Cryptologie Attaque de clés RSA par la méthode de Wieer Nicolas DOUZIECH - Thomas JANNAUD - X005 9 mars 008 Table des matières Quelques rappels sur le cryptosystème RSA Pricipe de l attaque de

Plus en détail

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé :

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé : http://maths-scieces.fr OPÉRATIONS FINANIÈRES A INTÉRÊTS OMPOSÉS I) Itérêts et valeur acquise Défiitio U capital est placé à itérêts composés lorsque le motat des itérêts produits à la fi de chaque période

Plus en détail

PROBABILITES EXERCICES CORRIGES

PROBABILITES EXERCICES CORRIGES PROBABILITES EXERCICES CORRIGES Vocabulaire des probabilités Exercice. Das chacue de situatios décrites ci-dessous, éocer l évéemet cotraire de l évéemet doé. ) Das ue classe, o choisit deux élèves au

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

1 Dénombrement. 1.1 Principe. Définition : 1.2 Combinaisons. Définition :

1 Dénombrement. 1.1 Principe. Définition : 1.2 Combinaisons. Définition : Probabilités : coditioemet et idéedace Termiale S Déombremet. Pricie O raelle que le cardial d u esemble fii E, oté Card(E), rerésete so ombre d élémets. Si E 0,0 alors Card(E). Notre but est de détermier

Plus en détail

UNE APPROCHE DE LA COMPÉTITIVITÉ DE LA ZONE EURO : LE TAUX DE CHANGE EFFECTIF DE L EURO

UNE APPROCHE DE LA COMPÉTITIVITÉ DE LA ZONE EURO : LE TAUX DE CHANGE EFFECTIF DE L EURO UN APPROCH D LA COMPÉTITIVITÉ D LA ZON URO : L TAU D CHANG FFCTIF D L URO Le taux de chage effectif d ue moaie omial et réel costitue u idicateur privilégié pour apprécier la compétitivité d ue écoomie

Plus en détail

Exercices d ALGORITHMIQUE

Exercices d ALGORITHMIQUE Exercices d ALGORITHMIQUE Exercice 1 : Ecrire u rogramme qui boucle à l ifii a) E utilisat la structure TANT QUE b) E utilisat la structure REPETER JUSQUE c) E utilisat POUR Exercice 2 : Écrire u sous-rogramme

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

Comment utiliser ce que vous POSSÉDEZ pour réduire ce que vous DEVEZ

Comment utiliser ce que vous POSSÉDEZ pour réduire ce que vous DEVEZ Commet utiliser ce que vous POSSÉDEZ pour réduire ce que vous DEVEZ Survol du compte Mauvie U La majorité des Caadies gèret leurs fiaces comme suit : 1. Ils déposet leur reveu et autres actifs à court

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Fiace d Etreprise, Gestio des systèmes d iformatio. SESSION 2012 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et fiace d etreprise

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

5.)/. ).4%2.!4)/.!,% $%3 4, #/--5.)#!4)/.3

5.)/. ).4%2.!4)/.!,% $%3 4, #/--5.)#!4)/.3 5.)/. ).4%.!4)/.!,% $%3 4, #/--5.)#!4)/.3 Geève, 1 er décembre 1997.O -ANUEL DE L5)4 SUR LIONOSPH RE ET SES EFFETS SUR LA PROPAGATION DES ONDES RADIO LECTRIQUES Ce Mauel doe des iformatios sur la propagatio

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

Le meilleur scénario pour votre investissement

Le meilleur scénario pour votre investissement ivestir Best Strategy 2012 Le meilleur scéario pour votre ivestissemet U ivestissemet diversifié U coupo uique de 0% à 50% brut* à l échéace Ue courte durée : 4 as et demi Votre capital garati à l échéace

Plus en détail

Ce type de compresseur est aussi appelée compresseur volumetrique.

Ce type de compresseur est aussi appelée compresseur volumetrique. Chapitre 4 Compresseurs Buts 1. Savoir que das ce cas if faut se redre compte qu il y a des effets thermique 2. Savoir qu il y a ue limite á l augmetatio de la pressio de gaz 3. Savoir quelles istabilités

Plus en détail

Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski

Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski Dossier : Actualité de l Aalyse e Lycée 447 Qu est-ce qu u bo éocé de bac? Aalyse de l exercice de spécialité de TS de Podichéry 2013 Jacques Lubczaski «Podichéry est tombé!» : cela ressemble à l aoce

Plus en détail

i-mathematiques.com 2016/2017

i-mathematiques.com 2016/2017 mr.mage@live.fr i-mathematiques.com 06/07 Les suites A redre le ludi 6 mars Dossier de la semaie. Exercice - Suites Marc postule pour u emploi das ue etreprise. La société ALLCAUR propose à compter du

Plus en détail

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période)

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période) A-PDF OFFICE TO PDF DEMO: Purchase from www.a-pdf.com to remove the watermark Mathématques Facères : l essetel Les formules cotourables (F de érode) htt://www.ecogesam.ac-a-marselle.fr/esed/gesto/mathf/mathf.html#e5aels

Plus en détail

Donnez une nouvelle dimension à votre gestion. Gagnant sur toute la ligne

Donnez une nouvelle dimension à votre gestion. Gagnant sur toute la ligne Doez ue ouvelle dimesio à votre gestio Gagat sur toute la lige 74 Bd des Etats-Uis 60200 COMPIEGNE Tél. 03 44 86 36 36 Pour augmeter votre retabilité et réduire vos frais fiaciers, itroduisez cette souris

Plus en détail

Codes détecteurs et correcteurs d erreurs

Codes détecteurs et correcteurs d erreurs Codes détecteurs et correcteurs d erreurs Lorsque des doées umériques sot stockées ou trasmises, des perturbatios (par exemple électromagétiques) peuvet les edommager. Les codes détecteurs et correcteurs

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

COMITE DE NORMALISATION OBLIGATAIRE "C.N.O." Association régie par la loi du 1er juillet 1901

COMITE DE NORMALISATION OBLIGATAIRE C.N.O. Association régie par la loi du 1er juillet 1901 COMITE DE NORMALISATION OBLIGATAIRE "C.N.O." Associatio régie par la loi du 1er juillet 1901 Le 17 Mars 2005 Règles de calcul des coupos des empruts d Etat sur le marché de gros Après décisio de so A.G.

Plus en détail

Suites géométriques suite géométrique suite géométrique de raison q

Suites géométriques suite géométrique suite géométrique de raison q Sites géométriqes Itrodctio : M. Fiace dispose d e somme de 5 FF et désire faire frctifier so pactole ; por cela il va voir so baqier qi li propose de optios : e agmetatios forfaitaire, aelle, de 5 F =

Plus en détail

Dénombrement. ECE3 Lycée Carnot. 30 novembre 2011

Dénombrement. ECE3 Lycée Carnot. 30 novembre 2011 Déombremet ECE Lycée Carot 0 ovembre 2011 Itroductio La combiatoire, sciece du déombremet, sert comme so om l idique à comter Il e s agit bie etedu as de reveir au stade du CP et d aredre à comter sur

Plus en détail

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe 1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios

Plus en détail

Application du logiciel Excel

Application du logiciel Excel Applicatio du logiciel Ecel Utilisatio du Solver du logiciel Ecel Table de matiers Lacemet du logiciel... Optimisatios... Programmatio liéaire... Problème du trasport... 8 Problème de programmatio quadratique...

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

REQUÊTES. Il est possible de créer des formulaires ou des états à partir de requête.

REQUÊTES. Il est possible de créer des formulaires ou des états à partir de requête. Cliclasolutio Aée 2006/2007 REQUÊTES Utilité des requêtes QUESTIONNER LA BASE DE DONNÉES La foctio classique d'ue requête est de répodre à ue questio sur la base de doées. "Quels sot les cliets habitat

Plus en détail

II. Permutations sans répétitions et notation factorielle

II. Permutations sans répétitions et notation factorielle février 2012 ORRIGE II. Permutatios sas répétitios et otatio factorielle Aalyse combiatoire 4 ème - 1 I. Itroductio Les différets modèles mathématiques costruits pour étudier les phéomèes où iterviet le

Plus en détail

INTRODUCTION A L ANALYSE COMBINATOIRE.

INTRODUCTION A L ANALYSE COMBINATOIRE. INTRODUCTION A L ANALYSE COMBINATOIRE. I- ENSEMBLES FINIS ET CARDINAL D UN ENSEMBLE FINI. ) Produit cartésie d esembles fiis. Défiitio. Soit E et F deux esembles fiis et o vides. O aelle roduit cartésie

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Chapitre 3: Réfraction de la lumière

Chapitre 3: Réfraction de la lumière 2 e B et C 3 Réfractio de la lumière 16 Chapitre 3: Réfractio de la lumière 1. Expériece 1 : tour de magie avec ue pièce de moaie a) Dispositio Autour d'ue petite boîte coteat ue pièce de 1 de ombreux

Plus en détail

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont :

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont : Estimatio Objectifs Estimer poctuellemet ue proportio, ue moyee ou u écart type d ue populatio à l aide de la calculatrice ou d u logiciel, à partir d u échatillo Détermier u itervalle de cofiace à u iveau

Plus en détail

Plan du cours. 1 Jeux à deux joueurs à somme nulle. 4 Théorème du MINIMAX en stratégies mixtes. 3 stratégies mixtes

Plan du cours. 1 Jeux à deux joueurs à somme nulle. 4 Théorème du MINIMAX en stratégies mixtes. 3 stratégies mixtes Pla du cours Cours 8 : Alicatios ratiques de la rograatio liéaire Christohe Gozales LIP6 Uiversité Paris 6, Frace 1 Jeux à deux joueurs à soe ulle 2 Théorèe du MINIMAX e stratégies ures 3 stratégies ixtes

Plus en détail

Rappels. A-Oukhai Suites géométriques 2 e Science

Rappels. A-Oukhai Suites géométriques 2 e Science A-Oukhai Suites géométriques e Sciece Rappels Pour motrer que u est ue suite géométrique : Soit o exprime u +1 e foctio de u et o doit trouver ue relatio de la forme u +1 qu où q est u réel qui e déped

Plus en détail

Résultats du groupe sur un, cinq et dix ans

Résultats du groupe sur un, cinq et dix ans L Oréal e chiffres Résultats du groupe sur u, ciq et dix as chiffre d affaires cosolidé (e millios d euros) RÉPARTITION DU CHIFFRE D AFFAIRES CONSOLIDÉ 2008 PAR DEVISE (1) (e %) 17 542 17 063 15790 14533

Plus en détail

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES Il est très courat

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

LES MESURES CLÉS DU PROJET DE LOI ÉCONOMIE SOCIALE ET SOLIDAIRE

LES MESURES CLÉS DU PROJET DE LOI ÉCONOMIE SOCIALE ET SOLIDAIRE LES MESURES CLÉS DU PROJET DE LOI ÉCONOMIE SOCIALE ET SOLIDAIRE Qu est-ce que l Écoomie sociale et solidaire? Coopératives Etreprises sociales Scop Fiaceurs sociaux Scic CAE Mutuelles Coopératives d etreprises

Plus en détail

DROITES, TABLEAUX, FORMULES. Location de voitures. - Pour chaque société déterminer k et f et exprimer P en fonction de n.

DROITES, TABLEAUX, FORMULES. Location de voitures. - Pour chaque société déterminer k et f et exprimer P en fonction de n. 1/8 Situatios Des essais de locatio de voitures ot été effectués das trois sociétés de locatio différetes. our chaque essai, la voiture 'a été louée qu'ue jourée. Société Aimatour J'ai payé u jour 34 pour

Plus en détail

Onzième Aventure DÉNOMBREMENTS A - PERMUTATIONS

Onzième Aventure DÉNOMBREMENTS A - PERMUTATIONS Ozième Aveture DÉNOMBREMENTS A - PERMUTATIONS Le Père Noël a offert à ma etite cousie Josette u jeu de cubes où sot iscrits les lettres de l alhabet. Très édagogue, je lui doe d abord les trois cubes A,

Plus en détail

TECHNIQUE: Distillation

TECHNIQUE: Distillation TECHNIQUE: Distillatio 1 Utilité La distillatio est u procédé permettat la séparatio de différetes substaces liquides à partir d u mélage. Les applicatios usuelles de la distillatio sot : l élimiatio d

Plus en détail

Quel métier pour demain Avec un BTS

Quel métier pour demain Avec un BTS Quel métier pour demai Avec u BTS Dessiateur-projeteur CAO-DAO (e bureau d'études ou bureau des méthodes). Techico-commercial à haut iveau de techicité. Cotrôle-sécurité (orgaismes de certificatio). Services

Plus en détail

est la probabilité cherchée est donc :

est la probabilité cherchée est donc : Lycée Secodaire Ali Zouaoui Probabilités 4 Sc-T Loi iomiale: Ue ure cotiet des boules blaches et des boules oires.la - robabilité de tirer ue boule blache au hasard est égale à ; q Aée Scolaire 007/008

Plus en détail

2 Mathématiques financières

2 Mathématiques financières 2 Mathématiques fiacières 2.1 Cours et TD Les créaciers prêtet des capitaux cotre ue rémuératio : les itérêts, ce que l o rembourse e plus du capital empruté. Nous percevos égalemet des itérêts lorsque

Plus en détail

Intérêt simple CHAPITRE. Sommaire

Intérêt simple CHAPITRE. Sommaire HAPTRE térêt simple Sommaire A B D E F G H J K L Notio d itérêt Formule fodametale de l itérêt simple Durée de placemet exprimée e mois Durée de placemet exprimée e jours alculs sur la formule fodametale

Plus en détail

P U n est une suite géométrique.

P U n est une suite géométrique. Notre Dame de La Merci Exercices sur les suites arithmético-géométriques CORRIGES e deuxième partie Exercice : Das u pays, u orgaisme étudie l évolutio de la populatio Compte teu des aissaces et des décès,

Plus en détail