Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Dimension: px
Commencer à balayer dès la page:

Download "Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2"

Transcription

1 Exo7 Nombres complexes Vdéo parte. Les nombres complexes, défntons et opératons Vdéo parte. Racnes carrées, équaton du second degré Vdéo parte 3. Argument et trgonométre Vdéo parte 4. Nombres complexes et géométre Exercces Nombres complexes Préambule L équaton x + 5 = a ses coeffcents dans N mas pourtant sa soluton x = 3 n est pas un enter naturel. Il faut c consdérer l ensemble plus grand Z des enters relatfs. N x+5= Z x= 3 Q x = R x = C De même l équaton x = 3 a ses coeffcents dans Z mas sa soluton x = 3 est dans l ensemble plus grand des ratonnels Q. Contnuons ans, l équaton x = à coeffcents dans Q, a ses solutons x = +/ et x = / dans l ensemble des réels R. Ensute l équaton x = à ses coeffcents dans R et ses solutons x = + et x = dans l ensemble des nombres complexes C. Ce processus est-l sans fn? Non! Les nombres complexes sont en quelque sorte le bout de la chaîne car nous avons le théorème de d Alembert-Gauss suvant : «Pour n mporte quelle équaton polynomale a n x n + a n x n + + a x + a x + a 0 = 0 où les coeffcents a sont des complexes (ou ben des réels), alors les solutons x,..., x n sont dans l ensemble des nombres complexes». Outre la résoluton d équatons, les nombres complexes s applquent à la trgonométre, à la géométre (comme nous le verrons dans ce chaptre) mas auss à l électronque, à la mécanque quantque, etc.. Les nombres complexes.. Défnton

2 Défnton Un nombre complexe est un couple (a, b) R que l on notera a + b R b a + b 0 a R Cela revent à dentfer avec le vecteur (,0) de R, et avec le vecteur (0,). On note C l ensemble des nombres complexes. S b = 0, alors z = a est stué sur l axe des abscsses, que l on dentfe à R. Dans ce cas on dra que z est réel, et R apparaît comme un sous-ensemble de C, appelé axe réel. S b 0, z est dt magnare et s b 0 et a = 0, z est dt magnare pur... Opératons S z = a + b et z = a + b sont deux nombres complexes, alors on défnt les opératons suvantes : addton : (a + b) + (a + b ) = (a + a ) + (b + b ) R z + z z z 0 R multplcaton : (a + b) (a + b ) = (aa bb ) + (ab + ba ). C est la multplcaton usuelle avec la conventon suvante : =.3. Parte réelle et magnare Sot z = a + b un nombre complexe, sa parte réelle est le réel a et on la note Re(z) ; sa parte magnare est le réel b et on la note Im(z). R Im(z) z 0 Re(z) R

3 3 Par dentfcaton de C à R, l écrture z = Re(z) + Im(z) est unque : z = z Re(z) = Re(z ) et Im(z) = Im(z ) En partculer un nombre complexe est réel s et seulement s sa parte magnare est nulle. Un nombre complexe est nul s et et seulement s sa parte réelle et sa parte magnare sont nuls..4. Calculs Quelques défntons et calculs sur les nombres complexes. λz z 0 z L opposé de z = a + b est z = ( a) + ( b) = a b. La multplcaton par un scalare λ R : λ z = (λa) + (λb). L nverse : s z 0, l exste un unque z C tel que zz = (où = + 0). Pour la preuve et le calcul on écrt z = a + b pus on cherche z = a + b tel que zz =. Autrement dt (a + b)(a + b ) =. En développant et dentfant les partes réelles et magnares on obtent les équatons { aa bb = (L ) ab + ba = 0 (L ) En écrvant al + bl (on multple la lgne (L ) par a, la lgne (L ) par b et on addtonne) et bl + al on en dédut L nverse de z est donc { a ( a + b ) = a b ( a + b ) = b donc { a = b = a a +b b a +b z = z = a a + b + b a + b = a b a + b. La dvson : z z est le nombre complexe z z. Proprété d ntégrté : s zz = 0 alors z = 0 ou z = 0. Pussances : z = z z, z n = z z (n fos, n N). Par conventon z 0 = et z n = ( ) n z = z. n

4 4 Proposton Pour tout z C dfférent de + z + z + + z n = zn+ z. La preuve est smple : notons S = + z + z + + z n, alors en développant S ( z) presque tous les termes se télescopent et l on trouve S ( z) = z n+. Remarque Il n y pas d ordre naturel sur C, l ne faut donc jamas écrre z 0 ou z z..5. Conjugué, module Le conjugué de z = a + b est z = a b, autrement dt Re( z) = Re(z) et Im( z) = Im(z). Le pont z est le symétrque du pont z par rapport à l axe réel. Le module de z = a + b est le réel postf z = a + b. Comme z z = (a + b)(a b) = a + b alors le module vaut auss z = z z. z z = a + b 0 z b z 0 a Quelques formules : z + z = z + z, z = z, zz = zz z = z z R z = z z, z = z, zz = z z z = 0 z = 0 L négalté trangulare : z + z z + z

5 5 Exemple Dans un parallélogramme, la somme des carrés des dagonales égale la somme des carrés des côtés. S les longueurs des côtés sont notées L et l et les longueurs des dagonales sont D et d alors l s agt de montrer l égalté D + d = l + L. z + z z z L z + z l d z l D z z z z L 0 z Démonstraton Cela devent smple s l on consdère que notre parallélogramme a pour sommets 0, z, z et le derner sommet est donc z + z. La longueur du grand côté est c z, celle du pett côté est z. La longueur de la grande dagonale est z + z. Enfn l faut se convancre que la longueur de la pette dagonale est z z. D + d = z + z + z z = ( z + z ) (z + z ) + ( z z ) (z z ) = z z + zz + z z + z z + z z zz z z + z z = z z + z z = z + z = l + L Mn-exercces. Calculer +.. Écrre sous la forme a + b les nombres complexes ( + ), ( + ) 3, ( + ) 4, ( + ) En dédure + ( + ) + ( + ) + + ( + ) Sot z C tel que + z = z, montrer que z R. 5. Montrer que s Re z Re z et Im z Im z alors z z, mas que la récproque est fausse. 6. Montrer que / z = z/ z (pour z 0).. Racnes carrées, équaton du second degré.. Racnes carrées d un nombre complexe Pour z C, une racne carrée est un nombre complexe ω tel que ω = z. Par exemple s x R +, on connaît deux racnes carrées : x, x. Autre exemple : les racnes carrées de sont et.

6 6 Proposton Sot z un nombre complexe, alors z admet deux racnes carrées, ω et ω. Attenton! Contrarement au cas réel, l n y a pas de façon prvlégée de chosr une racne plutôt que l autre, donc pas de foncton racne. On ne dra donc jamas «sot ω la racne de z». S z 0 ces deux racnes carrées sont dstnctes. S z = 0 alors ω = 0 est une racne double. Pour z = a + b nous allons calculer ω et ω en foncton de a et b. Démonstraton Nous écrvons ω = x + y, nous cherchons x, y tels que ω = z. ω = z (x + y) = a + b { x y = a xy = b en dentfant partes réelles et partes magnares. Pette astuce c : nous rajoutons l équaton ω = z (qu se dédut ben sûr de ω = z) qu s écrt auss x + y = a + b. Nous obtenons des systèmes équvalents aux précédents : x y = a xy = b x + y = a + b x = a + b + a y = a + b a xy = b x = ± a + b + a y = ± a + b a xy = b Dscutons suvant le sgne du réel b. S b 0, x et y sont de même sgne ou nuls (car xy = b 0) donc ω = ± ( ) a + b + a + a + b a, et s b 0 ω = ± ( ) a + b + a a + b a. En partculer s b = 0 le résultat dépend du sgne de a, s a 0, a = a et par conséquent ω = ± a, tands que s a < 0, a = a et donc ω = ± a = ± a. Il n est pas nécessare d apprendre ces formules mas l est ndspensable de savor refare les calculs. Exemple Les racnes carrées de sont + ( + ) et ( + ). En effet : ω = (x + y) = { x y = 0 xy = Rajoutons la condtons ω = pour obtenr le système équvalent au précédent : x y = 0 xy = x + y = x = y = xy = x = ± y = ± xy =

7 7 Les réels x et y sont donc de même sgne, nous trouvons ben deux solutons : x + y = + ou x + y =.. Équaton du second degré Proposton 3 L équaton du second degré az + bz + c = 0, où a, b, c C et a 0, possède deux solutons z, z C éventuellement confondues. Sot = b 4ac le dscrmnant et δ C une racne carrée de. Alors les solutons sont z = b + δ a et z = b δ a. Et s = 0 alors la soluton z = z = z = b/a est unque (elle est dte double). S on s autorsat à écrre δ = pour le nombre complexe, on obtendrat la même formule que celle que vous connassez lorsque a, b, c sont réels. Exemple 3 z + z + = 0, = 3, δ = 3, les solutons sont z = ± 3. z + z + 4 = 0, =, δ = ± ( + ), les solutons sont z = ( + ) = ± 4 ( + ). On retrouve auss le résultat ben connu pour le cas des équatons à coeffcents réels : Corollare S les coeffcents a, b, c sont réels alors R et les solutons sont de tros types : s = 0, la racne double est réelle et vaut b a, s > 0, on a deux solutons réelles b ±, a s < 0, on a deux solutons complexes, mas non réelles, b ±. a Démonstraton On écrt la factorsaton ( az + bz + c = a z + b a z + c ) (( = a z + b ) b a a 4a + c ) a (( = a z + b ) ) (( a 4a = a z + b ) ) δ a 4a (( = a z + b ) δ )(( z + b ) + δ ) a a a a ( = a z b + δ )( z b δ ) = a(z z )(z z ) a a Donc le bnôme s annule s et seulement s z = z ou z = z.

8 8.3. Théorème fondamental de l algèbre Théorème. d Alembert Gauss Sot P(z) = a n z n + a n z n + + a z + a 0 un polynôme à coeffcents complexes et de degré n. Alors l équaton P(z) = 0 admet exactement n solutons complexes comptées avec leur multplcté. En d autres termes l exste des nombres complexes z,..., z n (dont certans sont éventuellement confondus) tels que P(z) = a n (z z )(z z ) (z z n ). Nous admettons ce théorème. Mn-exercces. Calculer les racnes carrées de, Résoudre les équatons : z + z = 0, z + ( 0 0)z = Résoudre l équaton z + ( )z, pus l équaton Z 4 + ( )Z. 4. Montrer que s P(z) = z + bz + c possède pour racnes z, z C alors z + z = b et z z = c. 5. Trouver les pares de nombres dont la somme vaut et le produt. 6. Sot P(z) = a n z n + a n z n + + a 0 avec a R pour tout. Montrer que s z est racne de P alors z auss. 3. Argument et trgonométre 3.. Argument S z = x + y est de module, alors x + y = z =. Par conséquent le pont (x, y) est sur le cercle unté du plan, et son abscsse x est notée cosθ, son ordonnée y est snθ, où θ est (une mesure de) l angle entre l axe réel et z. Plus généralement, s z 0, z/ z est de module, et cela amène à : Défnton Pour tout z C = C {0}, un nombre θ R tel que z = z (cosθ + snθ) est appelé un argument de z et noté θ = arg(z). R z z arg(z) 0 R Cet argument est défn modulo π. On peut mposer à cet argument d être unque s on rajoute la condton θ ] π,+π].

9 9 Remarque θ θ (mod π) k Z, θ = θ + kπ { cosθ = cosθ snθ = snθ Proposton 4 L argument satsfat les proprétés suvantes : arg ( zz ) arg(z) + arg ( z ) (mod π) arg(z n ) narg(z) (mod π) arg(/z) arg(z) (mod π) arg( z) arg z (mod π) Démonstraton zz = z (cosθ + snθ) z ( cosθ + snθ ) = zz ( cosθ cosθ snθ snθ + ( cosθ snθ + snθ cosθ )) = zz ( cos ( θ + θ ) + sn ( θ + θ )) donc arg ( zz ) arg(z) + arg ( z ) (mod π). On en dédut les deux autres proprétés, dont la deuxème par récurrence. 3.. Formule de Movre, notaton exponentelle La formule de Movre est : (cosθ + snθ) n = cos(nθ) + sn(nθ) Démonstraton Par récurrence, on montre que (cosθ + snθ) n = (cosθ + snθ) n (cosθ + snθ) = (cos((n )θ) + sn((n )θ)) (cosθ + snθ) = (cos((n )θ)cosθ sn((n )θ)snθ) +(cos((n )θ)snθ + sn((n )θ)cosθ) = cos nθ + sn nθ Nous défnssons la notaton exponentelle par e θ = cosθ + snθ et donc tout nombre complexe s écrt z = ρe θ où ρ = z est le module et θ = arg(z) est un argument.

10 0 Avec la notaton exponentelle, on peut écrre pour z = ρe θ et z = ρ e θ zz = ρρ e θ e θ = ρρ e (θ+θ ) z n = ( ρe θ) n = ρ n ( e θ) n = ρ n e nθ /z = / ( ρe θ) = ρ e θ z = ρe θ La formule de Movre se rédut à l égalté : ( e θ) n = e nθ. Et nous avons auss : ρe θ = ρ e θ (avec ρ,ρ > 0) s et seulement s ρ = ρ et θ θ (mod π) Racnes n-ème Défnton 3 Pour z C et n N, une racne n-ème est un nombre ω C tel que ω n = z. Proposton 5 Il y a n racnes n-èmes ω 0,ω,...,ω n de z = ρe θ, ce sont : ω k = ρ /n e θ+kπ n, k = 0,,..., n Démonstraton Écrvons z = ρe θ et cherchons ω sous la forme ω = re t tel que z = ω n. Nous obtenons donc ρe θ = ω n = ( re t ) n = r n e nt. Prenons tout d abord le module : ρ = ρe θ = r n e nt = r n et donc r = ρ /n (l s agt c de nombres réels). Pour les arguments nous avons e nt = e θ et donc nt θ (mod π) (n oublez surtout pas le modulo π!). Ans on résout nt = θ + kπ (pour k Z) et donc t = θ n + kπ n. Les solutons de l équaton ω n = z sont donc les ω k = ρ /n e θ+kπ n. Mas en fat l n y a que n solutons dstnctes car ω n = ω 0, ω n+ = ω,... Ans les n solutons sont ω 0,ω,...,ω n. Par exemple pour z =, on obtent les n racnes n-èmes de l unté e kπ/n, k = 0,..., n qu forment un groupe multplcatf. j = e π/3 e π/3 0 = e 0 = e π 0 j = e 4π/3 e π/3 Racne 3-ème de l unté (z =, n = 3) Racne 3-ème de (z =, n = 3) Les racnes 5-ème de l unté (z =, n = 5) forment un pentagone réguler :

11 e π/5 e 4π/5 0 e 6π/5 e 8π/ Applcatons à la trgonométre Voc les formules d Euler, pour θ R : cosθ = eθ + e θ, snθ = eθ e θ Ces formules s obtennent faclement en utlsant la défnton de la notaton exponentelle. Nous les applquons dans la sute à deux problèmes : le développement et la lnéarsaton. Développement. On exprme sn nθ ou cos nθ en foncton des pussances de cosθ et snθ. Méthode : on utlse la formule de Movre pour écrre cos(nθ) + sn(nθ) = (cosθ + snθ) n que l on développe avec la formule du bnôme de Newton. Exemple 4 cos3θ + sn3θ = (cosθ + snθ) 3 = cos 3 θ + 3cos θ snθ 3cosθ sn θ sn 3 θ = ( cos 3 θ 3cosθ sn θ ) + ( 3cos θ snθ sn 3 θ ) En dentfant les partes réelles et magnares, on dédut que cos3θ = cos 3 θ 3cosθ sn θ et sn3θ = 3cos θ snθ sn 3 θ. Lnéarsaton. On exprme cos n θ ou sn n θ en foncton des cos kθ et sn kθ pour k allant de 0 à n. ( ) Méthode : avec la formule d Euler on écrt sn n θ = e θ e n. θ On développe à l ade du bnôme de Newton pus on regroupe les termes par pares conjuguées. Exemple 5

12 ( e sn 3 θ e θ )3 θ = = ((e θ ) 3 3(e θ ) e θ + 3e θ (e θ ) (e θ ) 3) 8 = (e 3θ 3e θ + 3e θ e 3θ) 8 = ( e 3θ e 3θ 3 eθ e θ ) 4 = sn3θ + 3snθ Mn-exercces Mn-exercces. Mettre les nombres suvants sont la forme module-argument (avec la notaton exponentelle) :,,,, 3, +, 3, 3,, ( 3 ) 0xx où 0xx est l année en 3 cours.. Calculer les racnes 5-ème de. 3. Calculer les racnes carrées de 3 + de deux façons dfférentes. En dédure les valeurs de cos π et sn π. 4. Donner sans calcul la valeur de ω 0 + ω + + ω n, où les ω sont les racnes n-ème de. 5. Développer cos(4θ) ; lnéarser cos 4 θ ; calculer une prmtve de θ cos 4 θ. 4. Nombres complexes et géométre On assoce bjectvement à tout pont M du plan affne R de coordonnées (x, y), le nombre complexe z = x + y appelé son affxe. 4.. Équaton complexe d une drote Sot ax + by = c l équaton réelle d une drote D : a, b, c sont des nombres réels (a et b n étant pas tous les deux nuls) d nconnues (x, y) R. Écrvons z = x + y C, alors x = z + z, y = z z, donc D a auss pour équaton a(z + z) b(z z) = c ou encore (a b)z + (a + b) z = c. Posons ω = a + b C et k = c R alors l équaton complexe d une drote est : ωz + ω z = k où ω C et k R.

13 3 D C ω r Équaton complexe d un cercle Sot C (Ω, r) le cercle de centre Ω et de rayon r. C est l ensemble des ponts M tel que dst(ω, M) = r. S l on note ω l affxe de Ω et z l affxe de M. Nous obtenons : dst(ω, M) = r z ω = r z ω = r (z ω)(z ω) = r et en développant nous trouvons que l équaton complexe du cercle centré en un pont d affxe ω et de rayon r est : z z ωz ω z = r ω où ω C et r R Équaton z a z b = k Proposton 6 Sot A,B deux ponts du plan et k R +. L ensemble des ponts M tel que M A MB = k est une drote qu est la médatrce de [AB], s k =, un cercle, snon. Exemple 6 Prenons A le pont d affxe +,B le pont d affxe. Voc les fgures pour pluseurs valeurs de k. Par exemple pour k = le pont M dessné vérfe ben M A = MB.

14 4 M B A k = 3 k = 3 k = k = k = 4 3 k = k = 3 4 Démonstraton S les affxes de A,B, M sont respectvement a, b, z, cela revent à résoudre l équaton z a z b = k. z a z b = k z a = k z b (z a)(z a) = k (z b)(z b) ( k )z z z(ā k b) z(a k b) + a k b = 0 Donc s k =, on pose ω = a k b et l équaton obtenue z ω+ zω = a k b est ben celle d une drote. Et ben sûr l ensemble des ponts qu vérfent M A = MB est la médatrce de [AB]. S k on pose ω = a k b alors l équaton obtenue est z z z k ω zω = a +k b. C est l équaton d un cercle de centre k ω et de rayon r satsfasant r ω = a +k b, sot r = a k b + a +k b. k ( k ) k Ces calculs se refont au cas par cas, l n est pas nécessare d apprendre les formules. Mn-exercces. Calculer l équaton complexe de la drote passant par et.. Calculer l équaton complexe du cercle de centre + passant par. z 3. Calculer l équaton complexe des solutons de =, pus dessner les solutons. z z 4. Même queston avec z =. Auteurs Arnaud Bodn Benjamn Boutn Pascal Romon

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i Exercces avec corrgé succnct du chaptre 3 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

Valeur absolue et fonction valeur absolue Cours

Valeur absolue et fonction valeur absolue Cours Valeur absolue foncton valeur absolue Cours CHAPITRE 1 : Dstance entre deu réels 1) Eemples prélmnares 2) Défnton 3) Proprétés CHAPITRE 2 : Valeur absolue d un réel 1) Défnton 2) Proprétés CHAPITRE 3 :

Plus en détail

Utilisation du symbole

Utilisation du symbole HKBL / 7 symbole sgma Utlsaton du symbole Notaton : Pour parler de la somme des termes successfs d une sute, on peut ou ben utlser les pontllés ou ben utlser le symbole «sgma» majuscule noté Par exemple,

Plus en détail

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus.

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus. Unversté Perre & Mare Cure (Pars 6) Lcence de Mathématques L3 UE LM364 Intégraton 1 Année 2011 12 TD4. Trbus. Échauffements Exercce 1. Sot X un ensemble. Donner des condtons sur X pour que les classes

Plus en détail

Exercices d algorithmique

Exercices d algorithmique Exercces d algorthmque Les algorthmes proposés ne sont pas classés par ordre de dffculté Nombres Ecrre un algorthme qu renvoe la somme des nombre entre 0 et n passé en paramètre Ecrre un algorthme qu renvoe

Plus en détail

Cours de Calcul numérique MATH 031

Cours de Calcul numérique MATH 031 Cours de Calcul numérque MATH 03 G. Bontemp, A. da Slva Soares, M. De Wulf Département d'informatque Boulevard du Tromphe - CP22 http://www.ulb.ac.be/d Valeurs propres en pratque. Localsaton. Méthode de

Plus en détail

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

Les jeunes économistes

Les jeunes économistes Chaptre1 : les ntérêts smples 1. défnton et calcul pratque : Défnton : Dans le cas de l ntérêt smple, le captal reste nvarable pendant toute la durée du prêt. L emprunteur dot verser, à la fn de chaque

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

Représentation de l'information

Représentation de l'information 1. L nformaton 1-1 Dualté état et temps Représentaton de l'nformaton La noton d'nformaton correspond à la connassance d'un état donné parm pluseurs possbles à un nstant donné. La Fgure 1 llustre cette

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

Corrigé du problème de Mathématiques générales 2010. - Partie I - 0 0 0. 0.

Corrigé du problème de Mathématiques générales 2010. - Partie I - 0 0 0. 0. Corrgé du problème de Mathématques générales 2010 - Parte I - 1(a. Sot X S A. La matrce A est un polynôme en X donc commute avec X. 1(b. On a : 0 = m A (A = m A (X n ; le polynôme m A (x n est annulateur

Plus en détail

Champ magnétique. 1 Notions préliminaires. 1.1 Courant électrique et densité de courant

Champ magnétique. 1 Notions préliminaires. 1.1 Courant électrique et densité de courant 4 Champ magnétque 1 Notons prélmnares 1.1 Courant électrque et densté de courant Un courant électrque est défn par un déplacement de charges électrques élémentares (ex : les électrons de conducton dans

Plus en détail

NOMBRES COMPLEXES. Exercice 1 :

NOMBRES COMPLEXES. Exercice 1 : Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1

Plus en détail

Prérequis de Mathématiques pour GMP

Prérequis de Mathématiques pour GMP Prérequs de Mathématques pour GMP V. Nolot Sommare. Rappels sur les vecteurs La noton de foncton. Foncton et graphe de foncton..................... Nombre dérvé et foncton dérvée.................. 3.3

Plus en détail

Les nombres premiers ( Spécialité Maths) Terminale S

Les nombres premiers ( Spécialité Maths) Terminale S Les nombres premers ( Spécalté Maths) Termnale S Dernère mse à jour : Mercred 23 Avrl 2008 Vncent OBATON, Ensegnant au lycée Stendhal de Grenoble (Année 2007-2008) Lycée Stendhal, Grenoble ( Document de

Plus en détail

Théorie des Nombres - TD1 Rappels d arithmétique élémentaire

Théorie des Nombres - TD1 Rappels d arithmétique élémentaire Unversté Perre & Mare Cure Master de mathématques 1 Année 2012-2013 Module MM020 Théore des Nombres - TD1 Rappels d arthmétque élémentare Exercce 1 : Trouver tous les enters n N tels que ϕ(n) = 6. Même

Plus en détail

Corrélation et régression linéaire

Corrélation et régression linéaire Corrélaton et régresson lnéare 1. Concept de corrélaton. Analyse de régresson lnéare 3. Dfférences entre valeurs prédtes et observées d une varable 1. Concept de corrélaton L objectf est d analyser un

Plus en détail

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)

Plus en détail

Université d El Oued Cours Circuits Electriques 3 LMD-EM

Université d El Oued Cours Circuits Electriques 3 LMD-EM ère parte : Electrocnétque Chaptre ntroducton L Electrocnétque est la parte de l Electrcté qu étude les courants électrques. - Courant électrque -- Défntons Défnton : un courant électrque est un mouvement

Plus en détail

V FORMATION DES IMAGES DANS L EXEMPLE DU MIROIR PLAN

V FORMATION DES IMAGES DANS L EXEMPLE DU MIROIR PLAN Chaptre V page V-1 V FORMTION DES IMGES DNS L EXEMPLE DU MIROIR PLN Le but de ce chaptre est d ntrodure la noton d mage { travers l exemple du mror plan. Vous vous êtes sûrement déjà regardé(e) dans un

Plus en détail

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique Spécale PSI - Cours "Electromagnétsme" 1 Inducton électromagnétque Chaptre IV : Inductance propre, nductance mutuelle. Energe électromagnétque Objectfs: Coecents d nductance propre L et mutuelle M Blan

Plus en détail

2 Nombres complexes. et trigonométrie CHAPITRE

2 Nombres complexes. et trigonométrie CHAPITRE CHAPITRE Nombres complexes et trigonométrie A Les nombres complexes 66 B Représentation géométrique Affixe Module Argument 67 1 Image d un complexe Affixe d un point, d un vecteur 67 Module 68 3 Nombres

Plus en détail

SIMNUM : Simulation de systèmes auto-gravitants en orbite

SIMNUM : Simulation de systèmes auto-gravitants en orbite SIMNUM : Smulaton de systèmes auto-gravtants en orbte sujet proposé par Ncolas Kelbasewcz : ncolas.kelbasewcz@ensta-parstech.fr 14 janver 2014 1 Établssement du modèle 1.1 Approxmaton de champ lontan La

Plus en détail

Mémento de théorie de l information

Mémento de théorie de l information Mémento de théore de l nformaton Glles Zémor 6 octobre 204 0 Rappels de probabltés Espaces probablsés. Un espace probablsé (Ω, P ) est un ensemble Ω mun d une mesure de probablté P qu est, lorsque Ω est

Plus en détail

TD n 3. 1 Modules libres. MM002 (Algèbre et théorie de Galois) Automne 2012

TD n 3. 1 Modules libres. MM002 (Algèbre et théorie de Galois) Automne 2012 Unversté Perre & Mare Cure M de Mathématques MM002 (Algèbre et théore de Galos) Automne 202 TD n 3. Modules lbres Exercce. Montrer que Z/nZ n est pas un Z-module lbre. Plus généralement, montrer que s

Plus en détail

Cours de mathématiques Première année. Exo7

Cours de mathématiques Première année. Exo7 Cours de mathématiques Première année Eo7 2 Eo7 Sommaire Logique et raisonnements 9 Logique 9 2 Raisonnements 4 2 Ensembles et applications 9 Ensembles 20 2 Applications 23 3 Injection, surjection, bijection

Plus en détail

Cours de mathématiques. Chapitre 9 : Nombres complexes

Cours de mathématiques. Chapitre 9 : Nombres complexes Cours de mathématiques Terminale S1 Chapitre 9 : Nombres complexes Année scolaire 2008-2009 mise à jour 15 février 2009 Fig. 1 Gerolamo Cardano Médecin et mathématicien italien qui ne redoutait pas les

Plus en détail

Montage émetteur commun

Montage émetteur commun tour au menu ontage émetteur commun Polarsaton d un transstor. ôle de la polarsaton La polarsaton a pour rôle de placer le pont de fonctonnement du transstor dans une zone où ses caractérstques sont lnéares.

Plus en détail

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau GEA I Mathématques nancères Poly de révson Lonel Darondeau Intérêts smples et composés Voc la lste des exercces à révser, corrgés en cours : Exercce 2 Exercce 3 Exercce 5 Exercce 6 Exercce 7 Exercce 8

Plus en détail

TP Programmation de protocoles de communication Basé sur un TP de M1- Master IST, Université Paris-Sud

TP Programmation de protocoles de communication Basé sur un TP de M1- Master IST, Université Paris-Sud IUT Bordeaux 1 2008-2009 Département Informatque ASR2-Réseaux TP Programmaton de protocoles de communcaton Basé sur un TP de M1- Master IST, Unversté Pars-Sud Ce TP a pour objectf d'nter à la programmaton

Plus en détail

Exercices d Électrocinétique

Exercices d Électrocinétique ercces d Électrocnétque Intensté et densté de courant -1.1 Vtesse des porteurs de charges : On dssout une masse m = 20g de chlorure de sodum NaCl dans un bac électrolytque de longueur l = 20cm et de secton

Plus en détail

Electricité II : Régimes sinusoïdaux et transitoires AC and transient circuit analysis Fascicule d'exercices de Travaux Dirigés

Electricité II : Régimes sinusoïdaux et transitoires AC and transient circuit analysis Fascicule d'exercices de Travaux Dirigés Electrcté II : égmes snusoïdaux et transtores and transent crcut analyss Fasccule d'exercces de Travaux Drgés 5 cours / Séances de TD / 5 séances de TP égmes snusoïdaux Nombre de séances de TD prévues

Plus en détail

Algorithme approché d optimisation d un modèle de Processus Décisionnel de Markov sur Graphe

Algorithme approché d optimisation d un modèle de Processus Décisionnel de Markov sur Graphe Algorthme approché d optmsaton d un modèle de Processus Décsonnel de Markov sur Graphe Nathale Peyrard Régs Sabbadn INRA-MIA Avgnon et Toulouse E-Mal: {peyrard,sabbadn}@toulouse.nra.fr Réseau MSTGA, Avgnon,

Plus en détail

Séquence 6. Ensemble des nombres complexes. Sommaire. Prérequis Définition Forme algébrique Forme trigonométrique Synthèse

Séquence 6. Ensemble des nombres complexes. Sommaire. Prérequis Définition Forme algébrique Forme trigonométrique Synthèse Séquence 6 Ensemble des nombres complexes Sommaire Prérequis Définition Forme algébrique Forme trigonométrique Synthèse Cette séquence est une brève introduction à un nouvel ensemble de nombres, ensemble

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2015 2016. Statistiques Descriptives

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2015 2016. Statistiques Descriptives UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année unverstare 215 216 L1 Économe Cours de B. Desgraupes Statstques Descrptves Séance 7: Indces synthétques Table des matères 1 Introducton 1 1.1

Plus en détail

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix?

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix? Note méthodologque Tratements hebdomadares Questlemonscher.com Quelle méthode de collecte de prx? Les éléments méthodologques ont été défns par le cabnet FaE onsel, socété d études et d analyses statstques

Plus en détail

Gestion et stratégie Utilisateur

Gestion et stratégie Utilisateur Geston et stratége Utlsateur GESTION ET STRATEGIE UTILISATEUR...2 1.) Comment gérer des utlsateurs?...2 1.1) Geston des utlsateurs en groupe de traval...2 1.2) Geston des utlsateurs par domane...2 Rôle

Plus en détail

MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA)

MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) Unversté d Orléans Econométre des Varables Qualtatves Chaptre 3 Modèles à Varable Dépendante Lmtée Modèles Tobt Smples et Tobt Généralsés Chrstophe Hurln

Plus en détail

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique Ch 4 Séres statstques à une dmenson Défntons et représentaton graphque Termnologe Ensemble étudé = populaton Eléments de cet ensemble = ndvdus ou untés Attrbut consdéré = caractère qu peut être qualtatf

Plus en détail

Interprétation cristalline de l isomorphisme de Deligne-Illusie (cas des courbes)

Interprétation cristalline de l isomorphisme de Deligne-Illusie (cas des courbes) Interprétaton crstallne de l somorphsme de Delgne-Illuse (cas des courbes) C. Huyghe et N. Wach 6 avrl 23 Abstract In 987, Delgne and Illuse proved the degeneraton of the spectral sequence de Hodge vers

Plus en détail

Grandeurs de réaction et de formation

Grandeurs de réaction et de formation PSI Brzeux Ch. hermochme 1 : grandeurs de réacton et de formaton 1 C H A P I R E 1 r a p p e l s e t c o m p l é m e n t s ) Grandeurs de réacton et de formaton 1. RAPPELS 1.1. Phases et consttuants Donnons

Plus en détail

Nombres complexes. cours, exercices corrigés, programmation

Nombres complexes. cours, exercices corrigés, programmation 1 Nombres complexes cours, exercices corrigés, programmation Nous allons partir des nombres réels pour définir les nombres complexes. Au cours de cette construction, les nombres complexes vont être munis

Plus en détail

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin

Plus en détail

Première partie. Proportionnalité. 1 Reconnaître des situations de proportionnalité... 7

Première partie. Proportionnalité. 1 Reconnaître des situations de proportionnalité... 7 Premère parte Proportonnalté 1 Reconnaître des stuatons de proportonnalté....... 7 2 Trater des stuatons de proportonnalté en utlsant un rapport de lnéarté........................ 8 3 Trater des stuatons

Plus en détail

Chapitre 5. Menu de SUPPORT

Chapitre 5. Menu de SUPPORT 155 Chaptre 5. Menu de SUPPORT Ce que vous apprendrez dans ce chaptre Ce chaptre vous présentera des routnes supplémentares susceptbles de vous ader dans les analyses de données présentées dans le chaptre

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Nombres complexes et géométrie euclidienne

Nombres complexes et géométrie euclidienne 19 Nombres complexes et géométrie euclidienne Le corps C des nombres complexes est supposé construit voir le chapitre 7. On rappelle que C est un corps commutatif et un R-espace vectoriel de dimension,

Plus en détail

Définition des tâches

Définition des tâches Défnton des tâches Défnton des tâches Project 2010 Sasr les tâches d'un projet Les tâches représentent le traval à accomplr pour attendre l'objectf du projet. Elles représentent de ce fat, les éléments

Plus en détail

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Introduction : Cette leçon s inscrit dans la continuité de la précédente. On supposera connu

Plus en détail

Maquette Tournesol Soleil, Terre et rotations La géométrie et mathématiques du système Maquette pour comprendre PhM Observatoire de Lyon

Maquette Tournesol Soleil, Terre et rotations La géométrie et mathématiques du système Maquette pour comprendre PhM Observatoire de Lyon Maquette ournesol olel, erre et rotatons La géométre et mathématques du sstème Maquette pour comprendre hm Observatore de Lon Les repères classques éclptque (longtudes et lattudes éclptques) et équatoral

Plus en détail

Fiche 17 Nombres complexes

Fiche 17 Nombres complexes Fiche 7 Nombres complexes Objectifs : Connaître les différentes définitions Savoir passer d une notation à l autre Savoir simplifier des nombres et effectuer les opérations élémentaires. Définitions On

Plus en détail

Contrats prévoyance des TNS : Clarifier les règles pour sécuriser les prestations

Contrats prévoyance des TNS : Clarifier les règles pour sécuriser les prestations Contrats prévoyance des TNS : Clarfer les règles pour sécurser les prestatons Résumé de notre proposton : A - Amélorer l nformaton des souscrpteurs B Prévor plus de souplesse dans l apprécaton des revenus

Plus en détail

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks Plan Geston des stocks Abdellah El Fallah Ensa de Tétouan 2011 Les opératons de gestons des stocks Les coûts assocés à la geston des stocks Le rôle des stocks Modèle de la quantté économque Geston calendare

Plus en détail

4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE

4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE 4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE 1 Introduction. 1. 1 Justication historique. La résolution de l'équation du degré (par la méthode de Cardan) amena les mathématiciens italiens du seizième 3ème siècle

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Nombres complexes

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Nombres complexes Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin 1, Olivier Hervé 2 Dernière révision : 22 mai 2008 Document diffusé via le site www.bacamaths.net de Gilles Costantini

Plus en détail

BTS GPN 2EME ANNEE-MATHEMATIQUES-MATHS FINANCIERES MATHEMATIQUES FINANCIERES

BTS GPN 2EME ANNEE-MATHEMATIQUES-MATHS FINANCIERES MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES I. Concepts généraux. Le référentel précse : Cette parte du module M4 «Acquérr des outls mathématques de base nécessares à l'analyse de données économques» est en relaton avec

Plus en détail

Sujets des projets. Informatique de Base Université Pierre et Marie Curie

Sujets des projets. Informatique de Base Université Pierre et Marie Curie 1 Sujets des projets Informatque de Base Unversté Perre et Mare Cure D Bernard, F Hecht, N Segun Master I / sesson 2004/2005 Table des matères 1 Sujet : Recherche rapde d un trangle contenant un pont dans

Plus en détail

La fourniture de biens et facteurs publics en présence de ménages et d entreprises mobiles

La fourniture de biens et facteurs publics en présence de ménages et d entreprises mobiles La fournture de bens et facteurs publcs en présence de ménages et d entreprses mobles Pascale Duran-Vgneron évrer 007 Le modèle On suppose un pays drgé par un gouvernement central ayant compétence sur

Plus en détail

Sous-groupes additifs de rangs dénombrables dans un corps séparablement clos

Sous-groupes additifs de rangs dénombrables dans un corps séparablement clos Sous-groupes addtfs de rangs dénombrables dans un corps séparablement clos Thomas Blosser 25 novembre 2010 Résumé Pour tout enter n, on construt des sous-groupes, nfnment défnssables de rang de Lascar

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

CHAPITRE 2 LA SPECTROMETRIE RMN

CHAPITRE 2 LA SPECTROMETRIE RMN .J. Ducauze et D.N. Rutledge groparstech PITRE L SPETRMETRIE RMN «Spectrométre RMN» veut dre qu on s ntéresse aux nformatons qu apportent les spectres, c est-à-dre à un ensemble d observatons effectuées

Plus en détail

Économétrie. Annexes : exercices et corrigés. 5 e édition. William Greene New York University

Économétrie. Annexes : exercices et corrigés. 5 e édition. William Greene New York University Économétre 5 e édton Annexes : exercces et corrgés Wllam Greene New York Unversty Édton françase drgée par Dder Schlacther, IEP Pars, unversté Pars II Traducton : Stéphane Monjon, unversté Pars I Panthéon-Sorbonne

Plus en détail

- Equilibre simultané IS/LM : Pour déterminer le couple d équilibre général, il convient de résoudre l équation IS = LM.

- Equilibre simultané IS/LM : Pour déterminer le couple d équilibre général, il convient de résoudre l équation IS = LM. Exercce n 1 Cet exercce propose de détermner l équlbre IS/LM sur la base d une économe dépourvue de présence étatque. Pour ce fare l convent, dans un premer temps de détermner la relaton (IS) marquant

Plus en détail

L anonymat dans les protocoles cryptographiques

L anonymat dans les protocoles cryptographiques École normale supéreure Département d nformatque Équpe CASCADE INRIA Unversté Pars 7 Dens Dderot L anonymat dans les protocoles cryptographques Thèse présentée et soutenue publquement le jeud 1 er octobre

Plus en détail

Équations différentielles et systèmes dynamiques. Jean-Christophe yoccoz, membre de l institut (Académie des sciences), professeur

Équations différentielles et systèmes dynamiques. Jean-Christophe yoccoz, membre de l institut (Académie des sciences), professeur Équatons dfférentelles et systèmes dynamques Jean-Chrstophe yoccoz, membre de l nsttut (Académe des scences), professeur enseignement Cours : Quelques aspects de la théore des systèmes dynamques quaspérodques

Plus en détail

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h.

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h. A2 Analyser le système Converson statque de l énerge Date : Nom : Cours 2 h 1 Introducton Un ConVertsseur Statque d énerge (CVS) est un montage utlsant des nterrupteurs à semconducteurs permettant par

Plus en détail

Installation & Guide de démarrage WL510 Adaptateur sans fil /Antenne

Installation & Guide de démarrage WL510 Adaptateur sans fil /Antenne Installaton & Gude de démarrage WL510 Adaptateur sans fl /Antenne Informaton mportante à propos du WL510 Adresse IP = 192.168.10.20 Nom d utlsateur = wl510 Mot de passe = wl510 QUICK START WL510-01- VR1.1

Plus en détail

Le Potentiel chimique

Le Potentiel chimique 44 Le Potentel chmque PIERRE DUHEM (1861 1916) 44.1 Grandeurs molares partelles 44.1.1 Varables de Gbbs Système polyphasé Nous étuderons dans la sute un système thermodynamque formé de pluseurs phases

Plus en détail

TD 1. Statistiques à une variable.

TD 1. Statistiques à une variable. Danel Abécasss. Année unverstare 2010/2011 Prépa-L1 TD de bostatstques. Exercce 1. On consdère la sére suvante : TD 1. Statstques à une varable. 1. Calculer la moyenne et l écart type. 2. Calculer la médane

Plus en détail

Notes de cours L1 MATH120. Hervé Le Dret

Notes de cours L1 MATH120. Hervé Le Dret Notes de cours L1 MATH120 Hervé Le Dret 11 septembre 2006 2 Chapitre 1 Rappels sur les nombres complexes Dans ces notes de cours, on travaillera essentiellement à l aide de nombres réels, dont les propriétés

Plus en détail

Calcul de tableaux d amortissement

Calcul de tableaux d amortissement Calcul de tableaux d amortssement 1 Tableau d amortssement Un emprunt est caractérsé par : une somme empruntée notée ; un taux annuel, en %, noté ; une pérodcté qu correspond à la fréquence de remboursement,

Plus en détail

Chapitre 6. Economie ouverte :

Chapitre 6. Economie ouverte : 06/2/202 Chaptre 6. Econome ouverte : le modèle Mundell Flemng Elsabeth Cudevlle Le développement des échanges nternatonaux (bens et servces et flux fnancers) a rendu fortement nterdépendantes les conjonctures

Plus en détail

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS.

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS. ÉLÉMETS DE THÉORIE DE L IFORMATIO POUR LES COMMUICATIOS. L a théore de l nformaton est une dscplne qu s appue non seulement sur les (télé-) communcatons, mas auss sur l nformatque, la statstque, la physque

Plus en détail

-7- Cest le plus petit élément du territoire. Elle figure sur le titre de propriété, identifiée par ':lnnuméro et rattachée à une section cadastrale.

-7- Cest le plus petit élément du territoire. Elle figure sur le titre de propriété, identifiée par ':lnnuméro et rattachée à une section cadastrale. -7- ""C, 7~~,VJ Il convent de dstnguer: LA PARCELLE " j 0 J J / CI Cest le plus pett élément du terrtore Elle fgure sur le ttre de proprété, dentfée par ':lnnuméro et rattachée à une secton cadastrale

Plus en détail

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction -

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction - EXAME FIAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSIO 1 - Correcton - Exercce 1 : 1) Consdérons une entreprse E comportant deux établssements : E1 et E2 qu emploent chacun 200 salarés. Au sen de l'établssement

Plus en détail

RÉPONSES À UN ÉCHELON. Sortie u(t) réponse. t(s)

RÉPONSES À UN ÉCHELON. Sortie u(t) réponse. t(s) BTS S ÉPONSS À UN ÉHON. éponse à n échelon d n système d premer ordre xemple : almentaton d n condensater de capacté par ne sorce de tenson e(t) à travers résstance a tenson varable e(t) est n échelon

Plus en détail

Nous avons placé nos idéaux bien plus haut que les plus hauts des idéaux. (Francis Blanche)

Nous avons placé nos idéaux bien plus haut que les plus hauts des idéaux. (Francis Blanche) 1 Unversté Claude Bernard Lyon I Agrégaton de Mathématques : Algèbre & géométre Année 2009 2010 Anneaux Z/nZ Nous avons placé nos déaux ben plus haut que les plus hauts des déaux. (Francs Blanche) A ne

Plus en détail

Grandeur physique, chiffres significatifs

Grandeur physique, chiffres significatifs Grandeur physque, chffres sgnfcatfs I) Donner le résultat d une mesure en correspondance avec l nstrument utlsé : S avec un nstrument, ren n est ndqué sur l ncerttude absolue X d une mesure X, on consdère

Plus en détail

Courant alternatif. Dr F. Raemy La tension alternative et le courant alternatif ont la représentation mathématique : U t. cos (!

Courant alternatif. Dr F. Raemy La tension alternative et le courant alternatif ont la représentation mathématique : U t. cos (! Courant alternatf Dr F. Raemy La tenson alternatve et le courant alternatf ont la représentaton mathématque : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Une résstance dans un crcut à courant

Plus en détail

THÉORIE DES INTÉGRALES et des FONCTIONS ELLIPTIQUES Gand mp C Annoot-Bracckman G) THEORIE DES INTÉGRALES ET DES FONCTIONS ELLIPTIQUES PAR LE D' OSKAR SGHLOEMILGH Professeur à TÉcole Polytechnque de Dresde

Plus en détail

Oscillations électriques libres

Oscillations électriques libres Oscllatons électrues lbres A Oscllatons lbres amortes 1/ Etude expérmentale a Expérence et observatons Après avor chargé le condensateur (poston 1) On bascule l nterrupteur sur la poston, on obtent l oscllogramme

Plus en détail

Exercices de révision pour examen #1

Exercices de révision pour examen #1 Exercces de révson pour examen #1 Queston 1. Questons théorques. a) Nommez les courants qu exstent quand une dode est en équlbre. Courants de dffuson et de drft. b) Dessnez la structure physque réelle

Plus en détail

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain.

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain. Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amens.fr/pedagoge/maths/new/ue2007/synthese_ateler_annette_alan.pdf 1 La règle du jeu Un drecteur de casno se propose d nstaller le

Plus en détail

GENESIS - Generalized System for Imputation Simulations (Système généralisé pour simuler l imputation)

GENESIS - Generalized System for Imputation Simulations (Système généralisé pour simuler l imputation) GENESS - Generalzed System for mputaton Smulatons (Système généralsé pour smuler l mputaton) GENESS est un système qu permet d exécuter des smulatons en présence d mputaton. L utlsateur fournt un ensemble

Plus en détail

Normalisation holomorphe d algèbres de type Cartan de champs de vecteurs holomorphes singuliers

Normalisation holomorphe d algèbres de type Cartan de champs de vecteurs holomorphes singuliers Annals of Mathematcs, 6 25, 589 62 Normalsaton holomorphe d algèbres de type Cartan de champs de vecteurs holomorphes sngulers By Laurent Stolovtch Abstract Nous montrons un résultat de normalsaton holomorphe

Plus en détail

Fi chiers. Créer/ouvrir/enregistrer/fermer un fichier. i i

Fi chiers. Créer/ouvrir/enregistrer/fermer un fichier. i i Fchers F chers Offce 2013 - Fonctons de base Créer/ouvrr/enregstrer/fermer un fcher Clquez sur l onglet FICHIER. Pour créer un nouveau fcher, clquez sur l opton Nouveau pus, selon l applcaton utlsée, clquez

Plus en détail

Travaux pratiques : GBF et oscilloscope

Travaux pratiques : GBF et oscilloscope Travaux pratques : et osclloscope S. Benlhajlahsen ésumé L objectf de ce TP est d apprendre à utlser, c est-à-dre à régler, deux des apparels les plus couramment utlsés : le et l osclloscope. I. Premère

Plus en détail

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage Fche n 7 : Vérfcaton du débt et de la vtesse par la méthode de traçage 1. PRINCIPE La méthode de traçage permet de calculer le débt d un écoulement ndépendamment des mesurages de hauteur et de vtesse.

Plus en détail

Editions ENI. Excel 2010. Collection Référence Bureautique. Extrait

Editions ENI. Excel 2010. Collection Référence Bureautique. Extrait Edtons ENI Excel 2010 Collecton Référence Bureautque Extrat Tableau crosé dynamque Tableau crosé dynamque Excel 2010 Créer un tableau crosé dynamque Un tableau crosé dynamque permet de résumer, d analyser,

Plus en détail

Cours et exercices de PHYSIQUE :

Cours et exercices de PHYSIQUE : Cours et exercces de PHYSIQUE : Électrcté. Ingéneur CESI Préparaton aux tests de sélecton. Stéphane Vctor. stephanevctor@yahoo.fr - - Programme de physque. Électrcté. Chaptre : Les composants passfs. -

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Cours polycopié pour le module L1 SFA Mathématiques I Analyse

Cours polycopié pour le module L1 SFA Mathématiques I Analyse i Cours polycopié pour le module L1 SFA Mathématiques I Analyse [60h de cours/td] À propos de ce module Programme prévu : nombres complexes, polynômes, fractions rationnelles, fonctions réelles usuelles

Plus en détail

STATISTIQUE AVEC EXCEL

STATISTIQUE AVEC EXCEL STATISTIQUE AVEC EXCEL Excel offre d nnombrables possbltés de recuellr des données statstques, de les classer, de les analyser et de les représenter graphquement. Ce sont prncpalement les tros éléments

Plus en détail

classification non supervisée : pas de classes prédéfinies Applications typiques

classification non supervisée : pas de classes prédéfinies Applications typiques Qu est ce que le clusterng? analyse de clusterng regroupement des obets en clusters un cluster : une collecton d obets smlares au sen d un même cluster dssmlares au obets appartenant à d autres clusters

Plus en détail

La physiologie du cerveau montre que celui-ci est constitué de cellules (les neurones) interconnectées. Quelques étapes de cette découverte :

La physiologie du cerveau montre que celui-ci est constitué de cellules (les neurones) interconnectées. Quelques étapes de cette découverte : Chaptre 3 Apprentssage automatque : les réseaux de neurones Introducton Le Perceptron Les réseaux mult-couches 3.1 Introducton Comment l'homme fat-l pour rasonner, parler, calculer, apprendre,...? Comment

Plus en détail

Activité Intitulé de l'activité Volume horaire

Activité Intitulé de l'activité Volume horaire Informatons de l'unté d'ensegnement Implantaton Cursus de ECAM Insttut Supéreur Industrel Bacheler en Scences ndustrelles Electronque applquée B2150 Cycle 1 Bloc 2 Quadrmestre 2 Pondératon 4 Nombre de

Plus en détail

Méthodologie quiestlemoinscher de comparaison de prix entre magasins

Méthodologie quiestlemoinscher de comparaison de prix entre magasins Méthodologe questlemonscher de comparason de prx entre magasns Les éléments méthodologques ont été défns par le cabnet FaCE Consel, socété d études et d analyses statstques ndépendante. Le cabnet FaCE

Plus en détail