Finance. Anaïs HAMELIN. Sujet 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Finance. Anaïs HAMELIN. Sujet 1"

Transcription

1 Maser AS ames du er semesre 4/5 Face Aaïs HAMLI Sue urée : 3 H ocumes auorsés : aucu Maérel auorsé : Calcularce auorsée Mémore vde pour les calcularces graphques

2 Cosges : - Les eercces so dépedas les us des aures. - U ormulare es dspoble à la du sue. - esez à be gérer vore emps. - Les uscaos peuve êre lérares graphques ou mahémaques. - Les réposes au quesos dove êre coures e précses. QUSIOS 6 pos éssez les oos de survessseme e de sous vessseme. as quels coees peu-o observer ces phéomèes? Quels so les aceurs eplcas de ces comporemes?.5 pos s-l dspesable que les valeurs de deu acs acers lucue e ses verse pour que le rsque so rédu? ourquo? po 3 s-ce que le a que la reablé acpée par les acoares augmee avec le veau d edeeme es coradcore avec l approche de Modgla e Mller 958?.5 pos 4 Qu'es qu'ue ore à pr ouver OO? po XCICS 6 pos ercce po O vous propose d'acheer le dro de saoer sur ue place de parkg peda 75 as pour 3. ar alleurs vous pouvez louer ue place auelle à l'a revalorsé de % ous les as. S vore au d' acualsao es de 5% que chosssez-vous? ercce po ous pesez que l'aco Zygma vaudra 4 das u a. Quel pr êes-vous prê à la payer auourd'hu s le au de l'arge sas rsque es de 5% le au de reablé du marché dé 9% e que so β es de.7? ercce 3.5 pos ous décdez de réalser u vessseme vous avez le cho ere ros proes. Les proes A e B so muuelleme ecluss. Le au d acualsao s applqua au ros proes es de %. - roe A : L vessseme al es de 5 ce proe vous rapporera 5 la premère aée 3 la deuème aée e 35 la rosème aée. - roe B : L vessseme al es de 5 ce proe vous rapporera 3 par a peda ros as. - roe C : Ce proe a u au de redeme ere I de %. Quel s vessseme s chosssez-vous? Jusez vore répose e déallez vos calculs.

3 ercce 4.5 pos eme es ue ereprse eèreme acée par capau propres. Le bêa de ses capau propres es de.5. eme espère dsposer de lu de résorere auels de 5 mllos d euros à l. eme souhae s edeer pour racheer des acos. L obec es d aedre u lever égal à.3. La reablé requse sur la dee es de 6.5%. Le au d mposo sur les socéés es de 33%. O églge oues les aures mperecos de marché. Le au d érê sas rsque es de 5% e la reablé espérée du poreeulle de marché es de %. Compléez sur vore cope le ableau c-dessous e usa vos réposes.5 pos Lever Coû de la dee Coû de C CMC Ava - Après.3 6.5% Quelle es la valeur des écoomes d mpôs réalsés par eme e s edea? po COMMAI OCUM 3 pos vous appuya sur vore cours commeez les documes c-dessous eablé eecve hsorque Acos grades ereprses Acos M Idce sur acos M CAC 4 Bos du résor olalé hsorque 3

4 OBLM 5 pos L'ac écoomque e valeur de marché d'amc es de 4 mllos d'euros. oure l'ereprse dspose de lqudés ecédeares à haueur de mllos d'euros. L'ereprse 'a aucue dee e a éms mllos d'acos. AMC evsage d'aecer ses lqudés à u racha d'acos. Après ce racha d'acos des ormaos relaves à l'ereprse sero publées; elles augmeero l'cerude eoura la valeur de marché de l'ac écoomque qu sera égale à 6 ou mllos d'euros avec des probablés égales. Quelle es la valeur d'ue aco AMC ava le racha d'acos? po Quelle es la valeur d'ue aco AMC après le racha d'acos s la valeur de l'ac écoomque augmee à 6 mllos d'euros? S la valeur de l'ac écoomque chue à mllos d'euros? po 3 Faleme AMC dévde d'aedre la publcao des ormaos augmeao de la valeur de l'ac à 6 mllos ou dmuo à mllos ava de procéder au racha d'acos. Quelle sera la valeur d'ue aco AMC après le racha d'acos s la valeur de l'ac écoomque ava racha es de 6 mllos d'euros? Même queso s la valeur de l'ac écoomque es de mllos? po 4 Le drgea d'amc es covacu que les ormaos à ver ero augmeer la valeur de marché de l'ac écoomque. Il souhae mamser la valeur des acos AMC. Compe eu des réposes précédees do-l procéder au racha d'acos ava ou après la publcao des ormaos? Quad devra-l procéder à ce racha s'l aeda de mauvases ouvelles? po 5 Compe eu des quesos précédees quelle sera la réaco du cours bourser d'amc à l'aoce d'u racha d'acos? ourquo? po 4

5 Formulare oue ormule o présee das ce ormulare do êre usée ou démorée à parr des ormules dspobles das ce ormulare. Chapre edeme : rdm Arrvée épar épar aleur acuelle : r aleur acuelle d ue séquece de lu : r Iérês smples : Iérês composés : au e : p aleur acuelle d ue ree versée e d aée : r A r A r r r aleur acuelle d ue ree versée e débu d aée : aleur ale d ue ree versée e d aée : r A r r A r r A r aleur ale d ue ree versée e débu d aée : r A r r r A r r 5

6 aleur acuelle d ue ree perpéuelle : A r aleur acuelle d ue ree perpéuelle crossae : A r g au margal de subsuo MS : MS Y Y U m X Lm X X X U Y m au margal de subsuo eremporel MSI : MSI du C du C C C Chapre aleur acuelle ee A : A I CF r aleur ermale aleurer m ale FCF orma r g Chapre 3 chesse ale : w~ w ~ spérace de l ulé : w ~ U p U eablé espérée d u ac : p 6

7 7 arace d u ac : eablé hsorque d ue aco : eablé moyee d u ac : olalé d u ac : edeme d u poreeulle : eablé espérée d u poreeulle : arace : Corrélao : Marce de varace-covarace : arace d u poreeulle composé de acs : arace d u poreeulle quelcoque p v v ar p p Corr r Corr ar ar ar ar ar Corr ar

8 quao de la droe de l esemble des poreeulles obeus par combaso de l ac sas rsque e d u poreeulle rsqué : S r S r r r p ao de Sharpe : r écomposo du rsque d u ac : ar β ar M ar u quao de la droe de marché : r r r M m m quao de la droe d évaluao des acs acers : M r M r r β M r M Chapre 4 CMC marchés paras: CMC C C C C Lever : L C Coû des capau propres marchés paras : C CMC C CMC Coû des capau propres présece d mpôs : CMC C IS CMC τ C CMC présece d mpôs : CMC IS C C Is τ IS C C 8

9 Chapre 5 Coû scal addoel lé à la coservao de lqudés : τ * cos τ Is τ τ au d mposo addoel sur les dvdedes: pv τ * v τ v τ τ v v 9

Finance. Anaïs HAMELIN. Sujet 1

Finance. Anaïs HAMELIN. Sujet 1 Maser (AES Exames du er semesre 3/4 Face Aaïs HAMELI Sue urée : 3 H ocume(s auorsé(s : aucu Maérel auorsé : Calcularce auorsée (Mémore vde pour les calcularces graphques Cosges : - Les exercces so dépedas

Plus en détail

Finance. Steve Billon. Durée de l épreuve : 3 heures. Document(s) autorisé(s) : Aucun. Matériel autorisé : Calculatrice autorisée.

Finance. Steve Billon. Durée de l épreuve : 3 heures. Document(s) autorisé(s) : Aucun. Matériel autorisé : Calculatrice autorisée. Mase AS ames du e semese 5/6 Sesso Face Seve Bllo Duée de l éeuve : 3 heues Documes auosés : Aucu Maéel auosé : Calculace auosée Cosges : - Les eecces so déedas les us des aues. - omulae es dsoble à la

Plus en détail

Exercices de révision

Exercices de révision Exercices de révisio Exercice U ivesisseur souscri à l émissio d u bille de résorerie do les caracérisiques so les suivaes : - Nomial : 5 M - Taux facial : 3,2% - Durée de vie : 9 mois L ivesisseur doi

Plus en détail

, où E est un espace vectoriel réel de dimension finie et φ une forme bilinéaire symétrique sur E définie positive : φ (i)

, où E est un espace vectoriel réel de dimension finie et φ une forme bilinéaire symétrique sur E définie positive : φ (i) Esaces vecorels eucldes Groue orhogoal ESPACES VECTORIELS EUCLIDIENS GROUPE ORTHOGONAL Produ scalare Défo O aelle esace euclde ou coule ( E, φ, où E es u esace vecorel réel de dmeso fe e φ ue forme bléare

Plus en détail

Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen

Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen Aexe. Estmato d u quatle o-paramétrque par la méthode de Haze La probablté cumulée emprque d ue doée au se d u échatllo est pas u cocept parfatemet déf : pluseurs estmatos sot possbles ; l e est de même

Plus en détail

Le modèle linéaire général simple à deux variables

Le modèle linéaire général simple à deux variables L3 Mahémaique e Saisique Les esimaeurs des MCO M Le modèle liéaire gééral simple à deu variables Iroduio géérale U modèle es ue représeaio simplifiée, mais la plus ehausive possible, d ue eié éoomique

Plus en détail

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers.

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers. CHAP: 8 Objecifs de ce chpire : Clculer comme se cosiuer u cpile ; Clculer comme rembourser ue dee e effecu des versemes réguliers. RAPPELS : Qu'es-ce qu'ue vleur cquise? Qu'es-ce qu'ue vleur cuelle? Le

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

La statistique et les statistiques

La statistique et les statistiques Psy004 Secto : La statstque et les statstques Pla du cours: 0.0: Beveue 0.: Les catégores du savor 0.: Survol de la psychologe 0.3: Le pla de cours 0.4: Les assstats.0: La physque: scece exacte?.: Scece

Plus en détail

L hebdo Finance de la MACS

L hebdo Finance de la MACS - DU 2 AU 9 OCTOBRE 2006 - Numéro DÉFINITION DE LA SEMAINE : Stock otio Idice boursier DOSSIER DE LA SEMAINE : Simulatio d u rêt immobilier 2 LES COURS DU JOUR Le jeudi 2 octobre 7 L hebdo Fiace de la

Plus en détail

n 1 LES GRANDS THÈMES DE L ITB > 2009 Les intérêts simples et les intérêts composés ( ) C T D ( en mois)

n 1 LES GRANDS THÈMES DE L ITB > 2009 Les intérêts simples et les intérêts composés ( ) C T D ( en mois) LES GRANDS THÈMES DE L ITB Les iérês simples e les iérês composés RAPPELS THÉORIQUES Les iérês simples : l'iérê «I» es focio de la durée «D» (jour, quizaie, mois, rimesre, semesre, aée) de l'opéraio (placeme

Plus en détail

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement.

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement. Choix d ives i s s eme e cer iude 1 Chapire 1 Choix d ivesissemes e ceriude. Défiiio L es décisios d ivesissemes fo parie des décisios sraégiques de l erepris e. Le choix ere différes projes d ivesisseme

Plus en détail

Produit scalaire. Chap. 11 : cours complet. 1. Produit scalaire réel.

Produit scalaire. Chap. 11 : cours complet. 1. Produit scalaire réel. Produ scalare Chap : cours comple Produ scalare réel Défo : produ scalare sur u -espace vecorel, espace préhlbere réel Théorème : eemples classques Théorème : égalé de Cauchy-Schwarz Défo : forme bléare

Plus en détail

La Cible Sommaire F o c u s

La Cible Sommaire F o c u s La Cible Sommaire F o c u s F o n d a t e u r : J e a n L e B I S S O N N A I S D i r e c t e u r d e l a p u b l i c a t i o n : M a r t i n e M I N Y R é d a c t e u r e n c h e f : S e r g e C H A N

Plus en détail

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période)

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période) A-PDF OFFICE TO PDF DEMO: Purchase from www.a-pdf.com to remove the watermark Mathématques Facères : l essetel Les formules cotourables (F de érode) htt://www.ecogesam.ac-a-marselle.fr/esed/gesto/mathf/mathf.html#e5aels

Plus en détail

Energie et puissance électrique

Energie et puissance électrique - 1 - Energe e pussance élecrque 1 Tes de saor : Valeur effcace a) So un sgnal () pérodque de pérode T. Défnr sa aleur effcace en radusan «R.M.S». Pus défnr sa aleur effcace sous forme d une négrale. b)

Plus en détail

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES Il est très courat

Plus en détail

Les emprunts indivis. Auteur : Philippe GILLET

Les emprunts indivis. Auteur : Philippe GILLET Les emruts dvs Auteur : Phle GILLET Emrut dvs et emrut oblgatare Emrut dvs Emrut oblgatare Souscrt ar ue ou luseurs baques Pluseurs souscrteurs Dvsé e arts : oblgatos Oblgatos cotées Grad ombre de souscrteurs

Plus en détail

42$ 66$ 36$ 84$ Exemple : 5/10 min. 5/10 max. Sélectionnez le cercle de votre choix

42$ 66$ 36$ 84$ Exemple : 5/10 min. 5/10 max. Sélectionnez le cercle de votre choix Dans la prochaine série de décisions, vous aurez la chance de gagner aujourd hui un prix en argent comptant. Dans chaque cas, vous aurez à choisir entre l option de gauche et l option de droite. Les résultats

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

M A R C H E P U B L I C D E T R A V A U X. P r o c é d u r e a d a p t é e

M A R C H E P U B L I C D E T R A V A U X. P r o c é d u r e a d a p t é e M A R C H E P U B L I C D E T R A V A U X P r o c é d u r e a d a p t é e P a r t i e 2 - C a h i e r d e s C l a u s e s A d m i n i s t r a t i v e s P a r t i c u l i è r e s Université de Technologie

Plus en détail

MATHÉMATIQUES II. Nota : les trois parties du problème peuvent être abordées indépendamment. Partie I - Propriétés de la transformée de Legendre

MATHÉMATIQUES II. Nota : les trois parties du problème peuvent être abordées indépendamment. Partie I - Propriétés de la transformée de Legendre MATHÉMATIQUES II Noa : les rois paries du problème peuve êre abordées idépedamme Parie I - Propriéés de la rasformée de Legedre Das oue la parie I -, I désige u iervalle de IR e f ue focio à valeurs réelles,

Plus en détail

CORRIGÉ PARTIE I I. FIBRES OPTIQUES ET OPTIQUE GÉOMÉTRIQUE

CORRIGÉ PARTIE I I. FIBRES OPTIQUES ET OPTIQUE GÉOMÉTRIQUE Corrgé CORRIGÉ PARTIE I I FIBRES OPTIQUES ET OPTIQUE GÉOMÉTRIQUE IA IA IA Los de Sell-Desares Los de la réfleo ère lo : le rayo de e le rayo réfléh so oeus das le pla d dee ème lo : le rayo réfléh es symérque

Plus en détail

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie VARIABLES ALÉATOIRES déo oco de réro vrble léore dscrèe moyee - vrce - écr ye esérce mhémque vrble léore coue oco d ue vrble léore : rsormo combso lére de vrbles léores Déo E : eérece léore S : esce échllol

Plus en détail

Evaluation des obligations

Evaluation des obligations Evaluaio des obligaios Relaio aux requis-valeur das le cas de l iérê composé Noio d obligaio L ereprise qui souhaie s edeer à log erme peu se ourer vers deux caégories de pourvoyeurs de fods : - les baques

Plus en détail

Phonologie - Lecture Fiche 1. syllabes avec. Atelier. son (l) 1. Écris la syllabe. 2. Relie à la bonne syllabe.

Phonologie - Lecture Fiche 1. syllabes avec. Atelier. son (l) 1. Écris la syllabe. 2. Relie à la bonne syllabe. Phonologie - Lecture Fiche 1 1. Écris la son (l) 2. Relie à la bonne lo lé la le lu li Phonologie - Lecture Fiche 2 1. Entoure la bonne son (l) 2. Écris la syllabe à la bonne place. lo la le li le lu la

Plus en détail

Partie CCP - Devoir numéro 2

Partie CCP - Devoir numéro 2 Uiversié Claude Berard - Lyo Semesre de priemps 04-05 Mah IV - Cursus préparaoire A Durée : heure e 0 miues Parie CCP - Devoir uméro Le cadida aachera la plus grade imporace à la claré, à la précisio e

Plus en détail

Exercice 1: Déterminer si les intégrales suivantes sont convergentes, et le cas échéant calculer leur valeur :

Exercice 1: Déterminer si les intégrales suivantes sont convergentes, et le cas échéant calculer leur valeur : Eercice : Eercices : Iégrales gééralisées Déermier si les iégrales suivaes so covergees, e le cas échéa calculer leur valeur :.. d (+ ) d 3. 4. e d d 5. 6. 3 d e d Eercice : Déermier si les iégrales suivaes

Plus en détail

Seconde année - Semestre 3 PROBABILITÉS

Seconde année - Semestre 3 PROBABILITÉS 1 UNIVERSITÉ DE CERGY Aée 2012-2013 LICENCE d ÉCONOMIE et GESTION Secode aée - Semestre 3 PROBABILITÉS Feuille d exercices N 3 : Variables aléatoires - Lois discrètes 1. Calculez 3 2 + 2 5 Exercice I (

Plus en détail

Jeunesse et Sports ; Direction de l'administration ; Sous-Direction Personnel, Affaires Générales (1972)

Jeunesse et Sports ; Direction de l'administration ; Sous-Direction Personnel, Affaires Générales (1972) Jeunesse et Sports ; Direction de l'administration ; Sous-Direction Personnel, Affaires Générales (1972) Répertoire (19770252/1-19770252/197) Archives nationales (France) Pierrefitte-sur-Seine 1977 1 https://www.siv.archives-nationales.culture.gouv.fr/siv/ir/fran_ir_016644

Plus en détail

DROITES, TABLEAUX, FORMULES. Location de voitures. - Pour chaque société déterminer k et f et exprimer P en fonction de n.

DROITES, TABLEAUX, FORMULES. Location de voitures. - Pour chaque société déterminer k et f et exprimer P en fonction de n. 1/8 Situatios Des essais de locatio de voitures ot été effectués das trois sociétés de locatio différetes. our chaque essai, la voiture 'a été louée qu'ue jourée. Société Aimatour J'ai payé u jour 34 pour

Plus en détail

MATHEMATIQUES 2. Calculs de distances entre une matrice et certaines parties de M n (!)

MATHEMATIQUES 2. Calculs de distances entre une matrice et certaines parties de M n (!) SESSION 003 EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES Duée : 4 heues Les cacuaces so edes * * * NB : Le cadda aachea a us gade moace à a caé à a écso e à a cocso de a édaco S u cadda es ameé à eée ce

Plus en détail

Université de Picardie Jules Verne 2006-2007 Faculté de Mathématiques et d Informatique

Université de Picardie Jules Verne 2006-2007 Faculté de Mathématiques et d Informatique Uiversité de Picardie Jules Vere 006-007 Faculté de Mathématiques et d Iformatique Licece metio Mathématiques - Deuxième aée - Semestre 4 Probabilités Elémetaires Exame du ludi 4 jui 007 Durée h00 Documet

Plus en détail

Chapitre 8 Corrélation et régression linéaire simple. José LABARERE

Chapitre 8 Corrélation et régression linéaire simple. José LABARERE UE4 : Bostatstques Chaptre 8 Corrélato et régresso léare smple José LABARERE Aée uverstare 20/202 Uversté Joseph Fourer de Greoble - Tous drots réservés. Pla I. Corrélato et régresso léare II. Coeffcet

Plus en détail

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires UE 4 Evaluato des méthodes d aalyse applquées au sceces de la ve et de la saté Statstque Varables aléatores Frédérc Mauy - 27 septembre et 3 octobre 2013 1 Pla du cours 1. Varable aléatore 1. Défto 2.

Plus en détail

Méthodes «volumes finis»

Méthodes «volumes finis» Méhodes «volmes s» ArGECo MS²F Hydrologe, Hydrodymqe Applqée e Cosrcos Hydrlqes (HACH) Méhodes «volmes s» : rodco Déreces es Dscréso des éqos sr grd srcré crése Méhode smple e rpde Fclé de clcl des dérvées

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

Introduction. Comment actualiser des montants d argent? Pour en savoir. Pour quitter. Introduction. La mécanique des intérêts

Introduction. Comment actualiser des montants d argent? Pour en savoir. Pour quitter. Introduction. La mécanique des intérêts Comment Est ce que ça pourrait vouloir dire par exemple que je serais capable de planifier l achat d une voiture? Objectifs Connaître l impact des intérêts dans le temps Savoir trouver la valeur actuelle

Plus en détail

III ESPERANCE MATHEMATIQUE

III ESPERANCE MATHEMATIQUE /9 ésumé de ours e alul des probabltés (JJ bellager III ESPEAE MATHEMATIQUE I.Défto et alul de l espérae mathématque d ue VA La défto la plus géérale de l espérae d u VA : (do à valeurs postves ou ulles

Plus en détail

T E L E C H A R G E M E N T D E S D O C U M E N T S 2

T E L E C H A R G E M E N T D E S D O C U M E N T S 2 SAISIR UNE MUTATION FICHE A L USAGE DES CLUBS - - - - - - - - - - - - - D a t e : 0 3 J u i n 2 0 0 9. - - - - - - - - - A u t e u r s : F é d é r a t i o n F r a n ç a i s e d e H a n d b a l l / M. S

Plus en détail

Prénom et nom : Devoir-Maison, à rendre le mardi 28 avril 2014

Prénom et nom : Devoir-Maison, à rendre le mardi 28 avril 2014 Prénom e nom : Devoir-Maison, à rendre le mardi 28 avril 2014 Exercice n 1 Un ouvrier dispose de plaques de méal de 110 cm de longueur e de 88 cm de largeur. Il a reçu la consigne suivane : «Découpe dans

Plus en détail

IREM Section Martinique Groupe Lycée. QCM pour la classe de Terminale S

IREM Section Martinique Groupe Lycée. QCM pour la classe de Terminale S IREM Secto Matque Goupe Lycée QCM pou la classe de Temale S QCM : Calculatce o autosée Pou chaque questo, seules ou popostos sot vaes. Recope la ou les popostos vaes. Sot f la focto défe su IR pa f ( )

Plus en détail

I. Qu est-ce qu une variable aléatoire?

I. Qu est-ce qu une variable aléatoire? I. Qu est-ce qu ue varable aléatore?. Défto : Sot ue expérece aléatore dot l esemble des résultats possbles (l uvers est oté Ω. Ue varable aléatore est ue focto X allat de Ω sur R, c est-à-dre que c est

Plus en détail

Présentation de la plateforme

Présentation de la plateforme e o N n o a n n e o s é r a s P l u d e c Présenaon de la plaeforme Mad Doc es un espace vruel de consulaon e de mse à dsposon de suppors e nformaons produs / servces ITGA. L objecf es de connuer à s nscrre

Plus en détail

Test de validité et d'hypothèse

Test de validité et d'hypothèse Test de validité et d'hypothèse 1 Vocabulaire Problème: Il s'agit à partir de l'étude d'u ou plusieurs échatillos de predre des décisios cocerat l'esemble de la populatio. O est alors ameé à émettre des

Plus en détail

Amplification Linéaire à Transistor Bipolaire

Amplification Linéaire à Transistor Bipolaire UFM Préparaon APT Géne lerque Amplfaon néare à Transsor polare Sruure énérale d un ru d amplfaon : Snal à amplfer (as neau) X X Amplfaeur are (Hau neau) Soure de pussane (Fourne par ) X amplfaon ne onerne

Plus en détail

LDB.P. 12-44370 VARADES ) ) Π) ) ) ) ( )) ) ) ) ) ) ) ) b ) ) ) ) ) ( ) ) ) ) ) ) ) ) ) ) ) ) ) ) )) ) ) )) ) ) ) ) ) ) ) ) )(! ) 2 ) ) ) ) ) ) ) )

LDB.P. 12-44370 VARADES ) ) Œ ) ) ) ) ( )) ) ) ) ) ) ) ) b ) ) ) ) ) ( ) ) ) ) ) ) ) ) ) ) ) ) ) ) )) ) ) )) ) ) ) ) ) ) ) ) )(! ) 2 ) ) ) ) ) ) ) ) q = 88 hœur & c Lave-ous Seigeur toutes os fautes 6 Préparatio péitetielle Œ Texte : Beoît SHWIN Musique : Michel WAKENHEIM A... 6 c 1. La - ve - ous Sei-geur 3. Mo-tre - ous Sei-geur ta tou - tes os mi

Plus en détail

Lycée Fénelon Sainte-Marie. Mardi 19 Mars 2013 Durée : 3 heures DTL N 4

Lycée Fénelon Sainte-Marie. Mardi 19 Mars 2013 Durée : 3 heures DTL N 4 Lycée Féelo Saie-Marie Termiale ES Aée 0-0 Mahémaiques Mardi 9 Mars 0 Durée : heures DTL N La calcularice es auorisée. Le suje compore u oal de exercices. Le barème es fouri à ire idicaif. EXERCICE (6

Plus en détail

ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES

ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES SOMMAIRE. Normes sur u espace vectorel E 2.. Défto d'ue orme. Cter l'égalté tragulare reversée. 2.2. Normes usuelles

Plus en détail

II. Permutations sans répétitions et notation factorielle

II. Permutations sans répétitions et notation factorielle février 2012 ORRIGE II. Permutatios sas répétitios et otatio factorielle Aalyse combiatoire 4 ème - 1 I. Itroductio Les différets modèles mathématiques costruits pour étudier les phéomèes où iterviet le

Plus en détail

Santé & Beauté. Mer c h a n d i s i n g et Co m m u n i c a t i o n

Santé & Beauté. Mer c h a n d i s i n g et Co m m u n i c a t i o n Santé & Beauté Mer c h a n d i s i n g et Co m m u n i c a t i o n HL Display, concepteur et fabricant de solutions merchandising et de communication L EXPERTISE DE VOTRE SECTEUR Grâce aux nombreux projets

Plus en détail

Limites de fonctions (1) Approche intuitive ; limites des fonctions de référence. 1 ère S. II. La fonction carrée. 1 ) Tableau de variation

Limites de fonctions (1) Approche intuitive ; limites des fonctions de référence. 1 ère S. II. La fonction carrée. 1 ) Tableau de variation ère S Lmtes de foctos () Approche tutve ; tes des foctos de référece II. La focto carrée ) Tableau de varato Das ce chaptre, o lasse provsoremet de côté les dérvées. I. Itroducto ) Rappel Déà vu : oto

Plus en détail

Chapitre 2. Le mouvement rectiligne

Chapitre 2. Le mouvement rectiligne Chapre Le mouvemen reclgne Objec nermédare 1. Employer les équaons du mouvemen reclgne unormémen accéléré (m.r.u.a.) à un corps lbre ou en chue lbre. Vesse moyenne La vesse moyenne v 1 (enre 1 e ) es déne

Plus en détail

Conseil économique et social

Conseil économique et social Na t i ons U ni e s E / C N. 1 7 / 20 0 1 / PC / 1 7 Conseil économique et social D i s t r. gé n é r a l e 2 ma r s 20 0 1 F r a n ç a i s O r ig i n a l: a n gl a i s C o m m i s s io n d u d é v el

Plus en détail

Thème 3: Les instruments financiers

Thème 3: Les instruments financiers Thème 3: Les insrumens financiers Inroducion Evaluaion e compabilisaion des acions Evaluaion e compabilisaion des obligaions Cas pariculiers de la gesion des ires - acions propres Thème 3: Les insrumens

Plus en détail

LIMITES DU MARCHÉ : MONOPOLE NATUREL

LIMITES DU MARCHÉ : MONOPOLE NATUREL LIMITES DU MARCHÉ : MONOPOLE NATUREL Le monopole naurel CM décroî avec l échelle de producon = Cm rès fable / CF L Éa do réglemener Soluon 1 : arfcaon au coû margnal Effcace au sens de Pareo mas peres

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Fiace d Etreprise, Gestio des systèmes d iformatio. SESSION 2012 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et fiace d etreprise

Plus en détail

CORRIGE DE L'EXAMEN DU 4 DECEMBRE 2002

CORRIGE DE L'EXAMEN DU 4 DECEMBRE 2002 CORRIGE DE L'EXAMEN DU 4 DECEMBRE EXERCICE. Notos X la variable aléatoire décrivat l'idetificatio des pièces défectueuses. Le ombre de valeurs possibles de X correspod au ombre de cofiguratios possibles

Plus en détail

PERFORMANCE CONTACT vous présente son LOGICIEL de PRISE de RENDEZ-VOUS

PERFORMANCE CONTACT vous présente son LOGICIEL de PRISE de RENDEZ-VOUS PERFORMANCE CONTACT vous présete so LOGICIEL de PRISE de RENDEZ-VOUS OBTENEZ sas effort LES RENDEZ-VOUS que vous SOUHAITEZ SIMPLICITÉ ET EFFICACITÉ Spécialisée das la prise de redez-vous depuis de ombreuses

Plus en détail

Apprendre à protéger son ordinateur

Apprendre à protéger son ordinateur INORMATIQUE Appede à pége s deu Les vus s des lgcels cçus pu defe, eulse e éle des lgcels lvells (d les vus fque e s qu'ue cége). Ces dees peuve se bse su l'expl de flle de sécué, pu fece s fches écesses

Plus en détail

[ Aire ] représente l aire algébrique comprise entre la courbe et l axe des temps sur un intervalle d une période. T : période en secondes (s)

[ Aire ] représente l aire algébrique comprise entre la courbe et l axe des temps sur un intervalle d une période. T : période en secondes (s) AIDE-MEMOIRE REGIME PERIODIQE Grdeur périodique : e grdeur périodique es ue grdeur qui se répèe ideiqueme à elle même e régulièreme ds le emps. Période : durée cose oée, exprimée e secode (s) qui sépre

Plus en détail

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont :

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont : Estimatio Objectifs Estimer poctuellemet ue proportio, ue moyee ou u écart type d ue populatio à l aide de la calculatrice ou d u logiciel, à partir d u échatillo Détermier u itervalle de cofiace à u iveau

Plus en détail

i Le Qi Gong «a u t r a v a i l» L e Q i G o n g, «t r a v a i l de l En er g i e», es t u n e g y m n a s t i q u e de s a n t é c h i n o i s e t r

i Le Qi Gong «a u t r a v a i l» L e Q i G o n g, «t r a v a i l de l En er g i e», es t u n e g y m n a s t i q u e de s a n t é c h i n o i s e t r FÉDÉRATION DE QI GONG ET ARTS ÉNERGÉTIQU ES LE QI GONG «A U T R A V A IL» Crédit photo : Anne MELCER B L I B â A 3, a v u P a u C é z a n n 1 3 0 9 0 A i x v c T é : 0 4 4 2 9 3 3 4 3 1 a x : 0 4 4 2 6

Plus en détail

Un corps à ta louange

Un corps à ta louange Un corps à ta louange alla Cotry q = 100 ois bé ni, no tre Pè re, par tous tes en fants, ois bé m7 exte : Raphaëlle Mellot Musique : ébastien Parent rrangement VM : Grégory Notebaert ois bé ni, no tre

Plus en détail

TABLEAU DES REPONSES AU TEST DE MATH/PHYSIQUE :

TABLEAU DES REPONSES AU TEST DE MATH/PHYSIQUE : TABLEAU DES REPONSES AU TEST DE MATH/PHYSIQUE : Afin de vous noer : - si vous avez oues les bonnes réponses à un QCM, vous avez poin, - si vous avez une erreur par eeple, une réponse que vous n avez pas

Plus en détail

Université de Picardie Jules Verne 2013-2014 UFR des Sciences

Université de Picardie Jules Verne 2013-2014 UFR des Sciences Uiversié de Picardie Jles Vere 13-14 UFR des Scieces Licece meio Mahémaiqes - Semesre 3 Saisiqe Exame de ldi 7 javier 14 Drée h To docme ierdi - Calclarices aorisées Exercice 1 1) Das e poplaio doée, o

Plus en détail

Rentabilité et financement d un investissement

Rentabilité et financement d un investissement REFI01 : Reabilié e fiaceme COURS Jui 2000 Reabilié e fiaceme d u ivesisseme 1 OBJECTIFS O cherche : à assurer la compéiivié de l ereprise sur plusieurs aées ; après avoir examié l opporuié d u ivesisseme

Plus en détail

Intérêts. Administration Économique et Sociale. Mathématiques XA100M

Intérêts. Administration Économique et Sociale. Mathématiques XA100M Intérêts Administration Économique et Sociale Mathématiques XA100M 1. LA NOTION D INTÉRÊT 1.1. Définition. Définition 1. L intérêt est la rémunération d un prêt d argent effectué par un agent économique

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S

La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S D i r e c t e u r d e l a p u b l i c a t i o n : M a r t i n e M I N Y R é d a c t e u r e n c h e f : S e r g e C H A N T

Plus en détail

MATHÉMATIQUES Corrigé

MATHÉMATIQUES Corrigé Exame de ovembre 009 Exame du premier trimestre Le 30 ovembre 009 Classes de ère STG Durée 3 heures MATHÉMATIQUES Corrigé Note aux cadidats L emploi des calculatrices est autorisé (circulaire 99 86 du

Plus en détail

La Cible Sommaire F o c u s

La Cible Sommaire F o c u s La Cible Sommaire F o c u s F o n d a t e u r : J e a n L e B I S S O N N A I S D i r e c t e u r d e l a p u b l i c a t i o n : M a r t i n e M I N Y R é d a c t e u r e n c h e f : S e r g e C H A N

Plus en détail

Investir intelligemment dans l immobilier. wilinkslection.be

Investir intelligemment dans l immobilier. wilinkslection.be Investir intelligemment dans l immobilier wilinkslection.be Investir intelligemment dans l immobilier avec Wilink Selection Wilink, votre conseiller en immobilier, vous propose, sous le label Wilink Selection,

Plus en détail

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t Annuiés I Définiion : On appelle annuiés des sommes payables à inervalles de emps déerminés e fixes. Les annuiés peuven servir à : - consiuer un capial ( annuiés de placemen ) - rembourser une dee ( annuiés

Plus en détail

Divisibilité et congruences. Corrigés d exercices

Divisibilité et congruences. Corrigés d exercices Dvsblté et cogrueces Corrgés d exercces Les exercces du lvre corrgés das ce docuet sot les suvats : Page 445 : N 1, 5 Page 459 : N 45 Page 449 : N 10 Page 460 : N 51, 5, 55, 57 Page 451 : N 16 Page 461

Plus en détail

Thème 3: Les mathématiques financières. D eux concepts im portants : Les tables financières et la calculatrice: Sharp EL-733A

Thème 3: Les mathématiques financières. D eux concepts im portants : Les tables financières et la calculatrice: Sharp EL-733A Thème 3: Les mathématiques financières D eux concepts im portants : Le calcul des intérêts L anuité Les tables financières et la calculatrice: Sharp EL-733A Cinq concepts importants d un emprunts Capitalisation

Plus en détail

Thermographie infrarouge et conduction inverse : estimation d une source surfacique de chauffage par induction.

Thermographie infrarouge et conduction inverse : estimation d une source surfacique de chauffage par induction. hemogaphe faouge e coduco vese : esmao d ue souce sufacue de chauffage pa duco Aboubaca OUAAA, Des MAILLE, Mchel GADECK, Mchel LEBOUCHE Objecf : - fluece composo flude flude dus # eau du éseau efodsseme

Plus en détail

Voici un petit jeu logique qui pourrait bien vous amuser! ****

Voici un petit jeu logique qui pourrait bien vous amuser! **** Voici un petit jeu logique qui pourrait bien vous amuser! iche : Vous pouvez retrouver l'image choisie par une personne! U 6 7 9 ableau ableau D ableau ******** 5 ableau 5 **** ** * omment jouer? Demandez

Plus en détail

Lignes de transfert d Energie Electrique

Lignes de transfert d Energie Electrique Crcérso e oéso es ges - urée - G Cerc Lges e rsfer Eerge Eecrque 8 Moéso ue ge oopsée e ue ge rpsée Moéso ue ge oopsée c r g r c g Cu e, e, pour f ps rop gr so équo e Mwe Doc r c g Crcérso e oéso es ges

Plus en détail

Chapitre 2 LES EMPRUNTS INDIVIS

Chapitre 2 LES EMPRUNTS INDIVIS Chptre LES EMPRUNTS INDIVIS.1 Actulsto de flux Actvté.1.1 : O dspose de chffres cocert l évoluto du chffre d ffres de l socété FLORIS depus 1985. E 1985, le Chffre d ffres étt de 1 Mllo de Frcs, e 1990

Plus en détail

Structure de la matière condensée TD N 4 : Diffraction des rayons X

Structure de la matière condensée TD N 4 : Diffraction des rayons X M Psu l è osé 0 Oo 00 Suu l è osé TD 4 : Do s os X Do l psso l plu opl uso s ls s suvs : sslé os - F F so ls vus o ssoés u poos X s usés élsu, spv. - sé usé pou u vu uso oé s é. psso géél s oé p ρ, ρ ésg

Plus en détail

Calculs financiers. Auteur : Philippe GILLET

Calculs financiers. Auteur : Philippe GILLET Clculs fcers Auteur : Phlppe GILLET Le tux d térêt Pour l empruteur qu e dspose ps des fods écessres, l représete le prx à pyer pour ue cosommto mmédte. Pour le prêteur, l représete le prx ecssé pour l

Plus en détail

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20.

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20. BTS CG 996 Eercce : (0 pots) Ue agece mmoblère evsage de commercalser u programme de costructo d'appartemets Deu projets lu sot soums: Projet P : Le coût de producto de appartemets ( eter et 0 )est doé

Plus en détail

MOYENNES. Moyenne arithmétique simple x de n éléments n

MOYENNES. Moyenne arithmétique simple x de n éléments n MOYENNES. Moyees : premières formules Moyee arithmétique simple de élémets + +... + +,,...,, Moyee arithmétique podérée de élémets,,...,, muis des coefficiets p, p,..., p, p p + p +... + p + p p+ p+...

Plus en détail

Maths en vacances. problèmes de concours récents (tant pour la voie économique que pour la voie scientifique). C est pourquoi

Maths en vacances. problèmes de concours récents (tant pour la voie économique que pour la voie scientifique). C est pourquoi Mahéaques Mahs e vacaces Fraços Delaplace, Perre Grard Professeurs de ahéaques e classes préparaores écooques e coercales (ECS), lcée Nore-Dae du Gradchap (Versalles). Coe chaque aée ous pesos au éudas

Plus en détail

Asociación Colombo Francesa de Enseñanza Lycée Français Louis Pasteur NIT: 860.006.338-1 Calle 87 Nº7-77, BOGOTÁ

Asociación Colombo Francesa de Enseñanza Lycée Français Louis Pasteur NIT: 860.006.338-1 Calle 87 Nº7-77, BOGOTÁ RÈGLEMENTFINANCIER Asociación Colombo Francesa de Enseñanza Lycée Français Louis Pasteur NIT: 860.006.338-1 Calle 87 Nº7-77, BOGOTÁ Les tarifs mensuels pour l'année 2015-2016 ont été rajustés selon Résolution

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

Relevé de compte COMPTE DE PARTICULIER - en euros

Relevé de compte COMPTE DE PARTICULIER - en euros Relevé de compe COMPTE DE PARTICULIER - en euros Vos conacs Vore Banque à Disance, 24 h/24 Code clien Barbara MARTINON : 12345678 Inerne : pariculiers.socieegenerale.fr Inerne mobile : socieegenerale.mobi

Plus en détail

Première étape : Ouvrir des photos dans Corel AfterShot Pro

Première étape : Ouvrir des photos dans Corel AfterShot Pro Démarrage rapide Cette section présente les principales tâches de base que vous pouvez effectuer dans Corel AfterShot Pro. La procédure indiquée ci-dessous va vous permettre d apprendre très rapidement

Plus en détail

Intérêts simples. Calcul de l intérêt

Intérêts simples. Calcul de l intérêt FORMULES DE M ATHEM ATIQUES FINANIERES Iérês sles lcul de l érê So I l érê ; le cl rêé lcé ; le ux d érê ; l durée e ées ; l durée e os ; j l durée e jrs 00 00 2 00 j 360 lcul de l vleur cquse So I l érê

Plus en détail

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6 Corrigés TD Chapitre : Variables aléatoires sur u uivers fii Exercice : Soit X la VAR défiie par le tableau suivat : x i - - 0 p 6 4 6 4 6 i O ote Y = X ) Détermier la loi cooite de X et Y ) Détermier

Plus en détail

SITUATION ÉCONOMIQUE DES ENTREPRISES

SITUATION ÉCONOMIQUE DES ENTREPRISES SITUATION ÉCONOMIQUE DES ENTREPRISES DU COMMERCE DE DÉTAIL AU 1 ER TRIMESTRE 2016 AVRIL 2016 RÉSUMÉ DES RÉSULTATS U NE AC T I VIT É QU I R E S T E PE U D YN AM IQU E CE 1 ER T R IM ESTR E ET D E S PR É

Plus en détail

Contrôle du vendredi (30 minutes) 1 ère S Prénom et nom :.. Note :.. / I. (2 points)

Contrôle du vendredi (30 minutes) 1 ère S Prénom et nom :.. Note :.. / I. (2 points) ère S Cotrôle du vedredi 4-4-04 (30 miutes) Préom et om : Note : / 0 I ( poits) O cosidère la figure ci-cotre où ABC est u triagle isocèle e A O ote H le projeté orthogoal du poit C sur la droite (AB)

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

La croisière ludo-éducative du 8 au 19 septembre 2014 Parrainée par Mike Horn

La croisière ludo-éducative du 8 au 19 septembre 2014 Parrainée par Mike Horn La croisière ludo-éducative du 8 au 19 septembre 2014 Parrainée par Mike Horn Résumé D én omin a tion E A U ' t o u r d u L é m an - l a c r o i s i è r e l u d o - é d u c a t i v e ( E T L ) O bjec tifs

Plus en détail

MODULE 2 : Estimation par intervalle de confiance

MODULE 2 : Estimation par intervalle de confiance Echailloage M MODULE : Esiaio ar iervalle de cofiace Il s agi das ce odle de rover e esiaio ar iervalle de cofiace d araère θ, c es-à-dire de cosrire e «forchee de valers éries erea de sier» θ avec e robabilié

Plus en détail

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules est à dispositio olie et sera doé aux cadidats lors des exames oraux

Plus en détail