Institut de Biologie Fondamentale et Appliquée. M A T H E M A T I Q U E S pour SV 105

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Institut de Biologie Fondamentale et Appliquée. M A T H E M A T I Q U E S pour SV 105"

Transcription

1

2 U N I V E R S I T E de C A E N Institut de Biologie Fondamentale et Appliquée M A T H E M A T I Q U E S pour SV Présentation - Bibliographie. - Trigonométrie - Fonctions réciproques - Nombres complees - Fonctions puissance Calcul vectoriel 5 - Développements limités 6 - Fonctions de la variable réelle Primitives et intégrales Fonctions de plusieurs variables Equations différentielles du premier ordre Equations différentielles du second ordre 90 - Calculs de volumes et d aires de révolution 98 - Annales de mathématiques du L 0 LICENCE ère A N N É E S C I E N C E S du V I V A N T

3 PRESENTATIN Ce polycopié est conçu pour permettre au étudiants des Sciences du Vivant de consolider leurs connaissances et d acquérir les outils mathématiques nécessaires à leur formation. Les différents thèmes abordés ont été discutés et préparés en collaboration avec les enseignants des autres disciplines, en particulier ceu de Physique, Chimie et Biologie. L objectif est aussi d uniformiser les enseignements de Mathématiques des différents groupes d enseignement. n trouvera de nombreu eercices qui ne pourront pas tous être traités en Cours-TD ; c est pourquoi les corrigés succints sont inclus à la fin du polycopié ; il est cependant vivement conseillé au étudiants de chercher sérieusement les eercices avant de regarder la solution. Mathématiques - Université de Caen. BIBLIGRAPHIE. n retrouvera dispersés dans les livres de Mathématiques des DEUG des filières de sciences appliquées les thèmes abordés ici ; on pourra consulter : Mathématiques Analyse. V.Blondel (Dunod) Mathématiques Deug Sciences SV-VT. L Biologie. E.Azoulay (Edisciences)

4 Chapitre Trigonométrie Utilisée pour déterminer des distances inaccessibles en navigation, topographie, astronomie, la trigonométrie, qui traite des relations entre les cotés et les angles des triangles, est un outil mathématique employé aussi en physique pour modéliser les phénomènes périodiques comme par eemple les vibrations en mécanique, acoustique, électricité ou en optique.. Fonctions trigonométriques. Le cercle trigonométrique de centre, de rayon, est orienté dans le sens inverse des aiguilles d une montre. n note A le vecteur unitaire et mes( A, M) = la mesure de l angle eprimée en radians à près ou en degrés. n a la correspondance : radians = 60 degrés qui donne radians = 80 degrés et réciproquement degrés = 80 radians. Y Y n définit les fonctions trigonométriques : sin : sin = s ordonnée de M cos : cos = c abscisse de M tan : tan = sin cos = t. t s c A M X Le théorème de Pythagore appliqué au triangle Mc permet d écrire la formule fondamentale de la trigonométrie circulaire : cos + sin =.de période et La fonction sin est définie pour tout de R. Elle est impaire puisque sin( ) = sin et de période ; son graphe est donc symétrique par rapport à. Comme sin = sin( ), le graphe est symétrique par rapport à la droite d équation X = ; il suffit donc d étudier la fonction sur l intervalle [0, ] et 4

5 pour obtenir le graphe complet d effectuer les symétries, puis les translations de vecteur k i (k Z). La dérivée est sin () = cos, d où le tableau de variations et le graphe 0 sin + 0 sin 0 y La fonction cos est définie pour tout de R. Elle est paire puisque cos( ) = cos et de période ; son graphe est donc symétrique par rapport à y ; il est aussi symétrique par rapport au point (, 0) car cos = cos( ) ; il suffit donc d étudier la fonction sur l intervalle [0, ] et pour obtenir le graphe complet d effectuer les symétries, puis les translations de vecteur k i (k Z). La dérivée est cos () = sin, d où le tableau de variations et le graphe 0 cos 0 cos 0 y La fonction tan est définie pour + k (k Z). Elle est impaire puisque tan( ) = tan et de période ; son graphe est donc symétrique par rapport à et de plus admet pour asymptote la droite X = car lim tan = + ; il suffit donc d étudier la fonction sur l intervalle [0, [ et pour / obtenir le graphe complet d effectuer la symétrie, puis les translations de vecteur k i (k Z). La dérivée est tan () =, d où le tableau de variations et le graphe cos 0 tan + + tan 0 + 5

6 y 5 45º 5.. Formulaire de trigonométrie sin ( ) = cos sin( ) = sin sin( + ) = sin cos ( ) = sin cos( ) = cos cos( + ) = cos tan ( ) = tan( ) = tan tan( + ) = tan tan cos(a + b) = cosacosb sin a sin b sin(a + b) = sin a cosb + sin b cosa cos a = cos a sin a = sin a = cos a sin a = sin a cosa tan(a + b) = tana + tanb tanatan b tana = tana tan a ( ) cos a cosb = cos(a + b) + cos(a b) ( ) sin a sin b = cos(a b) cos(a + b) ( ) sin a cosb = sin(a + b) + sin(a b) sin p + sin q = sin p + q cos p + cosq = cos p + q sin p sin q = cos p + q cos p cos q = sin p + q cos p q cos p q sin p q sin p q 6

7 (cos ) = sin (tan ) = + tan = cos (sin ) = cos sin lim 0 = lim cos = Valeurs remarquables cos 0 sin 0 0 tan 0 0. Fonctions réciproques des fonctions trigonométriques.. Fonction réciproque de la fonction sinus La fonction sin est une fonction continue monotone strictement croissante de [ /, /] sur [, ] ; elle admet donc une fonction réciproque, notée Arc sin, continue monotone strictement croissante de [, ] sur [ /, /], dont le graphe est symétrique de celui de sin sur [ /, /] par rapport à la première bissectrice. Ainsi y = Arc sin = sin y avec y [, ] De plus, pour tout ], +[ on a d = d car cosy > 0 pour tout y ] /, /[. D où = cosy = Arc sin = ], +[. 7

8 y Arc sin 45º.. Fonction réciproque de la fonction cosinus La fonction cos est une fonction continue monotone strictement décroissante de [0, ] sur [, ] ; elle admet donc une fonction réciproque, notée Arc cos, continue monotone strictement décroissante de [, ] sur [0, ], dont le graphe est symétrique de celui de cos sur [0, ] par rapport à la première bissectrice. Ainsi y = Arc cos = cos y avec y [0, ] De plus, pour tout ], +[ on a d = d = sin y = car sin y > 0 pour tout y ]0, [. D où Arc cos = ], +[. y Arc cos 8

9 .. Fonction réciproque de la fonction tangente La fonction tan est une fonction continue monotone strictement croissante de ] /, /[ sur R ; elle admet donc une fonction réciproque, notée Arc tan, continue monotone strictement croissante de R sur ] /, /[, dont le graphe est symétrique de celui de tan sur ] /, /[ par rapport à la première bissectrice. Ainsi ] y = Arc tan = tany avec y, [ De plus, pour tout R on a d = d = + tan y = + D où Arc tan = + R. y 45º Arc tan. Applications de la trigonométrie à la géométrie Relations entre les éléments du triangle plan. Equation fondamentale : α + β + γ = (Tracer par un sommet la parallèle au côté opposé.) a Théorème des sinus : sin α = b sin β = c sin γ A α c β B b γ a C (H étant la projection orthogonale de A sur BC, calculer AH en fonction de γ puis de β.) Théorème des projections : a = b cosγ + c cosβ Théorème du cosinus : a = b + c bc cosα (Ecrire les équations du th. des projections et multiplier par a, b, c) 9

10 .. Coordonnées Sphériques (R, θ, ϕ) n pose M = R, R [0, + [ La colatitude est l angle θ = (z, M) avec θ [0, [ La longitude est l angle ϕ = (, m) avec ϕ [0, [ z R θ ϕ m M (R, θ, ϕ) y Formules de passage des coordonnées sphériques au cartésiennes : = R sin θ cosϕ, y = R sin θ sin ϕ, z = R cos θ..4 Complément sur les fonctions réciproques.4. Fonction croissante, décroissante, monotone, bijective, réciproque Soit f : D R R. n dit que f est une fonction croissante (resp. strictement croissante) sur D si :, D = f( ) f( ) (resp. < = f( ) < f( )) n dit que f est une fonction décroissante (resp. strictement décroissante) sur D si :, D = f( ) f( ) (resp. < = f( ) > f( )) Une fonction croissante ou décroissante est dite monotone. Une fonction f de [a, b] sur [c, d] est une bijection si et seulement si l équation f() = y a une solution unique dans [a, b] quel que soit y dans [c, d]. Désignonsla par ; on peut alors définir la fonction ϕ : [c, d] [a, b] y = ϕ(y). ϕ est bijective car y = f() = ϕ(y) 0

11 La fonction ϕ est appelée fonction réciproque de f ; on la note f et [a, b] y [c, d] y = f() = f (y) avec y [c, d] f ( f (y) ) = y et [a, b] f ( f() ) =.4. Théorème des fonctions réciproques Une fonction continue f strictement monotone sur [a, b] est une bijection de [a, b] sur [f(a), f(b)] si elle est croissante, sur [f(b), f(a)] si elle est décroissante. La fonction réciproque f est elle aussi continue et strictement monotone. - CNSTRUCTIN DU graphe DE f À PARTIR DE CELUI DE f. Dans un repère orthonormé, les points (, y) et (y, ) sont symétriques par rapport à la première bissectrice ; comme y = f() et f (y) = il en est donc de même des points (, f()) et (y, f (y)) pour tout [a, b]. Les graphes sont donc symétriques par rapport à la première bissectrice. - DÉRIVÉE DE LA FNCTIN y = f (). Si f est dérivable et si f (y) 0, en dérivant l équation f(f ()) = [c, d] on obtient f (f ())(f ) () = donc (f ) () = f (y) que l on peut écrire d = d Eemples. o Soit f la fonction définie par f() =. f est continue et strictement croissante de [0, + [ sur [0, + [, donc f eiste et est strictement croissante. f étant dérivable sur ]0, + [, il en est de même de f sur ]0, + [. n la note y = et y = ce qui équivaut à = y avec (y > 0). Calculons sa dérivée : ( ) = = (y ) y =. o Soit f la fonction f() = / de ]0, + [ sur ]0, + [ on a f () = / de ]0, + [ sur ]0, + [. o Soit f la fonction f() = ln de ]0, + [ sur R on a f () = e de R sur [0, + [.

12 Eercices.. Trouver en radians toutes les solutions des équations suivantes : a) cos = d) cos = b) sin = c) sin α = e) tanα = f) tan =.. Trouver en radians les solutions des équations suivantes : a) cos + cos = 0 b) + sin = cos c) sin sin = d) cos sin =.. La mesure d un angle est de 5 o. Quelle est sa mesure en radians? La mesure d un angle est de. radians. Quelle est sa mesure en degrés?.4. Trouver en degrés les solutions de l équation : sin( 60 o ) = sin( + 45 o ) Donner les solutions dans l intervalle [0 o, 60 o [..5. Trouver α en radians, α [0, /[, tel que tan α =.6. (Etraits de contrôles.) +. a. (P-06) Résoudre dans R, puis dans [0, [ l équation trigonométrique : cos( + 4 ) = 0 b. (P-07) Résoudre dans R, puis dans [0, [ l équation trigonométrique : 6cosθ sin θ = 0. (n pourra écrire 6cosθ sin θ sous la forme : r cos( + ϕ). ) c. Calculer cos 5 en fonction de et 5. (Noter que : = ( + 4 )).7. Calculer la dérivée de chacune des fonctions suivantes : a) f() = sin cos + tan b) g() = Arc cos + cos.8. Etudier et représenter graphiquement les fonctions suivantes : a) Arc cos ( cos ) b) cos ( Arc cos )

13 .9. Etudier et tracer le graphe de la fonction ϕ de R dans R définie par : ϕ() = Arc sin + Arc cos. (Chercher le domaine de définition et calculer la dérivée de ϕ)..0. Simplifier l epression ( ), puis résoudre l équation : 4 sin ( + ) sin + = 0... La fonction t A cos(ωt + ϕ) est utilisée en physique pour décrire les mouvements oscillants, tel celui du pendule. Montrer que t f(t) = α cosωt + β sin ωt peut s écrire sous cette forme. Application numérique : f(t) = cos t + sin t... Résoudre dans R l équation : cos + sin = m lorsque a) m= b) m= c) m= (Etrait P - 06). Trouver les solutions dans R et dans [0, ] des deu équations : cos sin = et cos + sin = (Etrait P - 07)... Application de la trigonométrie au calculs de distances : a) Calculer la distance du point au point B visible, mais non accessible, connaissant β, β et b. b) n mesure b, α, β et β ; calculer la hauteur AB d une montagne relativement à un plan horizontal. c) Distance Terre - Lune : on connaît α, β et R. Montrer que L = R cosβ cos(α + β). B A d) Comment calculer la distance Terre - Soleil connaissant la distance Terre - Lune?.4. Calculer la distance Paris - New York en nautiques et en kilomètres. Paris est à de latitude Nord et 0 4 de longitude Est et New-York est à de latitude Nord et 7 56 de longitude uest. Le nautique est une unité d angle correspondant à une minute. Le rayon moyen de la Terre est R = 668 km..5. Le signal d un satellite L du réseau GPS met le temps τ = 0.069s pour transiter de L à M. n donne, les notations étant celles de l eercice. : M = 668km ; L = 6000km (révolution heures) et c = 99790km.s. Calculer la latitude α = (L, M ). 90º 90º M M α β β b L

Fonctions circulaires et applications réciproques

Fonctions circulaires et applications réciproques Chapitre II Fonctions circulaires et applications réciproques A Fonctions circulaires A Rappels de trigonométrie Radians et cercle trigonométrique Le radian est une unité de mesure d angle (orienté) définie

Plus en détail

(Un) Corrigé du partiel Lundi 19 mars 2007. u u1 = Au = 1 2) 1 t forment une base des solutions de ce système,

(Un) Corrigé du partiel Lundi 19 mars 2007. u u1 = Au = 1 2) 1 t forment une base des solutions de ce système, Université Paris 7 Denis Diderot UFR de Mathématiques Licence L3 Equations différentielles 2006-2007 P. Perrin (Un) Corrigé du partiel Lundi 9 mars 2007 Eercice. On considère le système différentiel linéaire

Plus en détail

Compléments de trigonométrie

Compléments de trigonométrie IUT Orsay Mesures Physiques Cours du er semestre Compléments de trigonométrie A. Les outils A-I. Notion de bijection, bijection réciproque Une application de E vers F est une bijection lorsque : tout élément

Plus en détail

Partie I : Manipulation d inégalités. n k. k=0. (1 + a) n 1 + na. 27. Indication : On pourra utiliser les fonctions f(x) = (x+b+c)3.

Partie I : Manipulation d inégalités. n k. k=0. (1 + a) n 1 + na. 27. Indication : On pourra utiliser les fonctions f(x) = (x+b+c)3. Mathématiques Devoirs de Vacances MPSI/PCSI août 5 Partie I : Manipulation d inégalités Eercice Soit m un réel Déterminer l'ensemble E des réels tels que e + e l'ensemble E des réels tels que (m + + m

Plus en détail

Un cercle trigonométrique est un cercle de rayon 1 sur lequel on définit un sens de

Un cercle trigonométrique est un cercle de rayon 1 sur lequel on définit un sens de Première S Chapitre 7 : Angles orientés. Trigonométrie. Année scolaire 01/013 I) Rappels de seconde : 1) Définition d'un cercle trigonométrique Un cercle trigonométrique est un cercle de rayon 1 sur lequel

Plus en détail

Devoir commun de Mathématiques 18 janvier 2014. Problème 1

Devoir commun de Mathématiques 18 janvier 2014. Problème 1 Lycée Jean Bart MPSI & PCSI Année 213-214 Devoir commun de Mathématiques 18 janvier 214 La clarté des raisonnements, la précision de la rédaction et la présentation entreront pour une part non négligeable

Plus en détail

I. ÉTUDE DES FONCTIONS SIN ET COS

I. ÉTUDE DES FONCTIONS SIN ET COS I. ÉTUDE DES FONCTIONS SIN ET COS Les propriétés mises en évidence au thème précédent vont permettre d étudier les fonctions trigonométriques { { R R R R cos : et sin : x cosx) x sinx). On fixe un repère

Plus en détail

Fonctions de IR dans IR

Fonctions de IR dans IR Fonctions der dansr G03.1 JMS Fonctions de IR dans IR 1 ) Intervalles Intervalle fermé : [a;b] = { R tq a b } ( peut prendre les valeurs a et b) Intervalle semi-ouvert : [a;b[ = { R tq a < b } ne peut

Plus en détail

Introduction au cours de physique (1)

Introduction au cours de physique (1) Introduction au cours de physique () Exercices : Petites variations, valeurs moyennes Calculs de petites variations Méthode De manière générale : il est souvent plus simple de faire une différentiation

Plus en détail

Etude des fonctions trigonométriques

Etude des fonctions trigonométriques Chapitre Dans ce chapitre, nous continuons le travail sur les fonctions usuelles en introduisant les fonctions trigonométriques. Si celles sont définies à partir de la géométrie euclidienne, elles permettent

Plus en détail

MEÉF 1 - Mathématiques DS2-5 octobre 2015 Analyse - Géométrie

MEÉF 1 - Mathématiques DS2-5 octobre 2015 Analyse - Géométrie MEÉF - Mathématiques DS2-5 octobre 25 Analyse - Géométrie Eercice Soit E un K-espace vectoriel (K étant le corps R ou C). Deu normes N et N 2 sur E sont dites équivalentes s il eiste deu constantes réelles

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques 7 Généralités sur les fonctions numériques Une fonction numérique est, de manière générale, une fonction d une variable réelle et à valeurs réelles. 7.1 Notions de base sur les fonctions Si I, J sont deux

Plus en détail

Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples.

Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples. Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples. Introduction : On suppose connues les notions d injectivité, surjectivité,

Plus en détail

Synthèse d analyse Avril 2011

Synthèse d analyse Avril 2011 Snthèse d analse Avril 20 Cette snthèse d analse a été rédigée suite à une suggestion de M le Professeur E Delhez Elle est destinée à aider les étudiants à préparer l eamen d admission au études d ingénieur

Plus en détail

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année.

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année. MATHÉMATIQUES TERMINALE ES A. YALLOUZ Ce polcopié conforme au programme 00, regroupe les documents distribués au élèves en cours d année. Année 0-0 Année 0-0 T le ES A. YALLOUZ (MATH@ES) TABLE DES MATIÈRES

Plus en détail

Chapitre I : Continuité et dérivabilité des fonctions réelles

Chapitre I : Continuité et dérivabilité des fonctions réelles ENIHP1 mathématiques continuité et dérivabilité p 1/10 Chapitre I : Continuité et dérivabilité des fonctions réelles Le cours sera illustré à l'aide du logiciel de calcul formel gratuit Maima. Les commandes

Plus en détail

C(x) = 5 9. et h = 160

C(x) = 5 9. et h = 160 Chapitre Fonctions affines. Définition Définition. La fonction définie par f : R R = m+h où m et h sont des nombres réels, est appelée fonction affine. Eemple La fonction C() qui permet de convertir des

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail

La fonction logarithme népérien

La fonction logarithme népérien La fonction logarithme népérien Christophe ROSSIGNOL Année scolaire 204/205 Table des matières La fonction logarithme népérien 2. Définition Courbe représentative................................... 2.2

Plus en détail

MATÉRIEL D APPRENTISSAGE SERVANT D APPUI AU NOUVEAU TABLEAU DE CORRESPONDANCE DU CURRICULUM À : MATHÉMATIQUES 11 NO P-0-257

MATÉRIEL D APPRENTISSAGE SERVANT D APPUI AU NOUVEAU TABLEAU DE CORRESPONDANCE DU CURRICULUM À : MATHÉMATIQUES 11 NO P-0-257 MATÉRIEL D APPRENTISSAGE SERVANT D APPUI AU NOUVEAU CURRICULUM DE L ONTARIO : MATHÉMATIQUES, FONCTIONS, 11 e année, COURS PRÉUNIVERSITAIRE/PRÉCOLLÉGIAL (MCF3M) TABLEAU DE CORRESPONDANCE DU CURRICULUM À

Plus en détail

Exercices de rentrée MPSI-PCSI

Exercices de rentrée MPSI-PCSI Exercices de rentrée MPSI-PCSI Lycée Saint-Louis 015-016 Introduction Cette feuille d exercices s adresse aux élèves rentrant en MPSI ou en PCSI au lycée Saint- Louis Il s agit d exercices qui sont entièrement

Plus en détail

Mathématiques Complément et synthèse I

Mathématiques Complément et synthèse I Définition du domaine d'examen MAT-4- Mathématiques Complément et synthèse I Mise à jour novembre 004 Définition du domaine d'examen MAT-4- Mathématiques Complément et synthèse I Mise à jour novembre 004

Plus en détail

concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP)

concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP) SESSION DE 2005 concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP) section : mathématiques deuxième composition de mathématiques (épreuve de remplacement)

Plus en détail

Dérivées et applications. Equation

Dérivées et applications. Equation Dérivées et applications. Equation I) Dérivée d une fonction strictement monotone 1) Exemples graphiques Soit une fonction dérivable sur un intervalle I. Pour tout I, (x) est le coefficient directeur de

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x [ttp://mp.cpgedupuydelome.fr] édité le 29 décembre 205 Enoncés Dérivation Dérivabilité Eercice [ 0354 ] [Correction] Étudier la dérivabilité des fonctions suivantes : a) 2 3 b) 2 ) arccos 2 ) Eercice 2

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

7 FONCTIONS USUELLES. 1 Parité d une fonction. 2 Fonctions affines

7 FONCTIONS USUELLES. 1 Parité d une fonction. 2 Fonctions affines Cours 7 FONCTIONS USUELLES Parité d une fonction Définition Soit f une fonction définie sur un ensemble D. On dit que f est paire si : { D est symétrique par rapport à 0 Pour tout x D, f ( x) = f (x) On

Plus en détail

GÉNÉRALITÉS SUR LES FONCTIONS

GÉNÉRALITÉS SUR LES FONCTIONS . Qu'est-ce qu'une fonction? Vocabulaire GÉNÉRALITÉS SUR LES FONCTIONS Définition Notion de fonction À chaque fois que l'on associe à une quantité une (autre) quantité, on dit que que l'on définit une

Plus en détail

Simplification d expressions contenant des valeurs absolues & applications

Simplification d expressions contenant des valeurs absolues & applications Simplification d epressions contenant des valeurs absolues & applications Rappelons la définition de la valeur absolue : si 0 ( R ) si 0 En d autres termes, la valeur absolue d un réel positif est ce réel,

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 004 CA/PLP CONCOURS EXTERNE Section : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L'usage des calculatrices de poche est autorisé (conformément au directives

Plus en détail

CHAPITRE I TRIGONOMETRIE

CHAPITRE I TRIGONOMETRIE CHAPITRE I TRIGONOMETRIE ) Le cercle trigonométrique Un cercle trigonométrique est un cercle C de rayon qui est orienté, ce qui veut dire qu on a choisi un sens positif (celui des ronds-points) et un sens

Plus en détail

Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 2016

Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 2016 Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 0 A. P. M. E. P. EXERCICE Commun à tous les candidats points Partie A Une boite contient 00 médailles souvenir dont 50 sont argentées, les autres dorées.

Plus en détail

Baccalauréat Série S Métropole, juin 2014

Baccalauréat Série S Métropole, juin 2014 Baccalauréat Série S Métropole, juin 4 Sujet et Corrigé Stéphane PASQUET Disponible sur http://www.mathweb.fr juin 4 Exercice (5 points) - Commun à tous les candidats Partie A Dans le plan muni d un repère

Plus en détail

Projections et Perspective

Projections et Perspective Points principau: Projections et Perspective Transformation e projection Volume e visualisation Moule 6 2 Étapes pour la visualisation 3D Sstème e Cooronnées e Moélisation (SCM) Sstème e Cooronnées u Dispositif

Plus en détail

Chapitre 8 - Trigonométrie

Chapitre 8 - Trigonométrie Chapitre 8 - Trigonométrie A) Rappels et compléments ) Le cercle trigonométrique a) Définitions On appelle cercle trigonométrique le cercle de centre O et de rayon dans un repère orthonormal (O, I, J),

Plus en détail

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités Sujet Métropole 01 EXERIE 1. [4 pts] Probabilités Une jardinerie vend de jeunes plants d arbres qui proviennent de trois horticulteurs : 5% des plants proviennent de l horticulteur H 1, 5% de l horticulteur

Plus en détail

BACCALAURÉATS PROFESSIONNELS EN 3 ANS

BACCALAURÉATS PROFESSIONNELS EN 3 ANS BACCALAURÉATS PROFESSIONNELS EN ANS Électrotechnique énergie équipements communicants Exemple de progression pédagogique Programmes : BOEN n 11 du 1/06/199 / A 8/07/99 modifié A 19/07/0 Mathématiques :

Plus en détail

Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur. Yves Chiricota, professeur DIM, UQAC Cours 8TRD147

Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur. Yves Chiricota, professeur DIM, UQAC Cours 8TRD147 Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur Yves Chiricota, professeur DIM, UQAC Cours 8TRD147 14 Janvier 2015 2 Il est impossible d envisager l étude des méthodes

Plus en détail

TD Dérivation n 2 : étude des variations de fonctions

TD Dérivation n 2 : étude des variations de fonctions 1) f (x) = 7x+3 TD Dérivation n : étude des variations de fonctions Étude de variations f est une fonction affine, de coefficient directeur négatif, on sait donc qu elle est décroissante surê. Le calcul

Plus en détail

La dynamique du système est donnée par (1)

La dynamique du système est donnée par (1) Master d Ingénierie Mathématique Contrôle des systèmes non-linéaires Examen, durée 3h Sujet donné par Pierre Rouchon, tous les documents sont autorisés. Comme le montre la figure ci-contre, ce robot marcheur

Plus en détail

Cours Mathématiques PACES UHP-Nancy

Cours Mathématiques PACES UHP-Nancy Cours Mathématiques PACES UHP-Nancy V. Latocha PACES UHP septembre 2010 remerciements à D. Schmitt et V. Ries V. Latocha (PACES UHP) Cours mathématiques Paces septembre 2010 1 / 48 1 Fonctions d une variable

Plus en détail

Fonctions Affines Problèmes du premier degré

Fonctions Affines Problèmes du premier degré Fonctions Affines Problèmes du premier degré Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Fonctions Affines 2 1.1 Définition Représentation graphique.................................

Plus en détail

COURS : FONCTIONS LINÉAIRES & AFFINES

COURS : FONCTIONS LINÉAIRES & AFFINES CHAPITRE CURS : FNCTINS LINÉAIRES & AFFINES Etrait du programme de la classe de troisième : CNTENU CMPÉTENCES EXIGIBLES CMMENTAIRES Fonction linéaire. Connaître la notation a, pour une valeur numérique

Plus en détail

Fonctions réciproques

Fonctions réciproques Fonctions réciproques X =message coage y=f() Y y=message coé - = g(y)= f (y) écoage =message B. Aoubiza IUT Belfort-Montbéliar Département GTR 6 janvier 3 Table es matières.fonctionsréciproques... 3..

Plus en détail

Cours de mathématiques pour la Terminale S. Savoir-Faire par chapitre avec corrigé

Cours de mathématiques pour la Terminale S. Savoir-Faire par chapitre avec corrigé Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre avec corrigé Florent Girod Année scolaire 205 / 206. Eternat Notre Dame - Grenoble Table des matières I Savoir-Faire 2 ) Suites numériques.................................

Plus en détail

Chapitre 1. Rappels sur les fonctions Continuité. 1.1 Rappels sur les fonctions. Sommaire. 1.1.1 Fonctions de référence. 1.1.

Chapitre 1. Rappels sur les fonctions Continuité. 1.1 Rappels sur les fonctions. Sommaire. 1.1.1 Fonctions de référence. 1.1. Chapitre 1 Rappels sur les fonctions Continuité Sommaire 1.1 Rappels sur les fonctions.... 1 1.1.1 Fonctions de référence.... 1 1.1. Fonction trinôme....... 1 1. Continuité............. 4 1..1 Activités............

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

3D Compléments de cours. Guy GREISEN

3D Compléments de cours. Guy GREISEN 3D Compléments de cours Guy GREISEN 14 septembre 2009 3D 3 Table des matières 1 SECOND DEGRÉ 6 1.1 Introduction................................................ 6 1.2 Formule générale.............................................

Plus en détail

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Second degré. Christophe ROSSIGNOL. Année scolaire 2008/2009

Second degré. Christophe ROSSIGNOL. Année scolaire 2008/2009 Second degré Christophe ROSSIGNOL Année scolaire 008/009 Table des matières 1 Polynômes du second degré 1.1 Définition................................................. 1. Forme canonique.............................................

Plus en détail

Fonctions affines. exercices corrigés. 8 janvier 2012. Fonctions affines

Fonctions affines. exercices corrigés. 8 janvier 2012. Fonctions affines eercices corrigés 8 janvier 2012 Eercice 1 Eercice 2 Eercice Eercice 4 Eercice 5 Eercice 6 Eercice 7 Eercice 1 Enoncé Soit la fonction f : + 1 Représenter graphiquement la fonction f. 2 Donner le sens

Plus en détail

I. Parité et périodicité d'une fonction

I. Parité et périodicité d'une fonction Chapitre 4 Fonctions sinus et cosinus Term. S Ce que dit le programme : Fonctions sinus et cosinus Connaître la dérivée des fonctions sinus et cosinus. Connaître quelques propriétés de ces fonctions, notamment

Plus en détail

1 S Le produit scalaire Exercices. Diverses expressions du produit scalaire et calcul de grandeurs.

1 S Le produit scalaire Exercices. Diverses expressions du produit scalaire et calcul de grandeurs. S e produit scalaire Eercices Diverses epressions du produit scalaire et calcul de grandeurs. Eercice. est un triangle et I est le milieu de []. Données : I 6, I I et I. alculer : ) (introduire le point

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mathématiques 2 première partie : Analyse 2 DEUG MIAS 1 e année, 2 e semestre. Maximilian F. Hasler Département Scientifique Interfacultaire B.P. 7209 F 97275 SCHOELCHER CEDEX Fax : 0596 72 73

Plus en détail

Exercices du chapitre VI avec corrigé succinct

Exercices du chapitre VI avec corrigé succinct Exercices du chapitre VI avec corrigé succinct Exercice VI. Ch6-Exercice Montrer par récurrence que En déduire que puis que k =,,..., n, d k dx k xn = n(n ) (n + k)x n k, d n dx n xn = n! d k dx k xn =

Plus en détail

Fonctions hyperboliques et applications réciproques

Fonctions hyperboliques et applications réciproques Chapitre III Fonctions hyperboliques et applications réciproques A Fonctions hyperboliques directes A. Sinus hyperbolique et cosinus hyperbolique On va définir de nouvelles fonctions inspirées notamment

Plus en détail

La fonction logarithme népérien

La fonction logarithme népérien La fonction logarithme népérien La fonction exponentielle est continue strictement croissante sur R à valeurs dans ]0; + [. Elle définit donc une bijection de R sur ]0; + [, c est-à-dire que quel que soit

Plus en détail

Cours de mécanique M14-travail-énergies

Cours de mécanique M14-travail-énergies Cours de mécanique M14-travail-énergies 1 Introduction L objectif de ce chapitre est de présenter les outils énergétiques utilisés en mécanique pour résoudre des problèmes. En effet, parfois le principe

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année Programme de Mathématique Préparation Maths-Physique Analyse et Géométrie Différentielle Première Année I NOMBRES REELS ET COMPLEXES, SUITES ET FONCTIONS 1 Nombres réels et complexes 2 Suites de nombres

Plus en détail

Trigonométrie circulaire

Trigonométrie circulaire Trigonométrie circulaire On rappelle ici et on complète les résultats énoncés au lycée. L objectif à viser est la technicité. Pour cela, il faut : ➀ connaître par cœur les différentes formules de trigonométrie,

Plus en détail

3e degré professionnel MINISTÈRE DE LA COMMUNAUTE FRANÇAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE

3e degré professionnel MINISTÈRE DE LA COMMUNAUTE FRANÇAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE 3e degré professionnel MINISTÈRE DE LA COMMUNAUTE FRANÇAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE Administration Générale de l Enseignement et de la Recherche Scientifique Service général des Affaires

Plus en détail

( ) et orienté dans le

( ) et orienté dans le FONCTIONS COSINUS ET SINUS I. Rappels ) Définitions : Dans le plan muni d un repère!! ortonormé O ; i ; j ( ) et orienté dans le sens direct, on considère un cercle trigonométrique de centre O. Pour tout

Plus en détail

Fiche d exercices 3 : Continuité, Dérivabilité et Etude de fonctions Continuité

Fiche d exercices 3 : Continuité, Dérivabilité et Etude de fonctions Continuité Fiche d eercices : Continuité, Dérivabilité et Etude de fonctions Continuité Eercice On considère la fonction f définie sur [ ; + [ par : f() E() pour [ ; 4[ f() 4 + 4 pour [ 4 ; + [ a. Tracer la représentation

Plus en détail

Sujet de Bac 2010 Maths ES Obligatoire & Spécialité Amérique du Nord

Sujet de Bac 2010 Maths ES Obligatoire & Spécialité Amérique du Nord Sujet de Bac 2010 Maths ES Obligatoire & Spécialité Amérique du Nord EXERCICE 1 : 5 points Commun à tous les candidats On sait que la courbe C passe par les points A( 2; 0,5), B(0; 2), C(2; 4,5), D(4,5;

Plus en détail

FONCTIONS TRIGONOMÉTRIQUES

FONCTIONS TRIGONOMÉTRIQUES FONCTIONS TRIGONOMÉTRIQUES Définition ( voir animation ) On dit qu'un repère orthonormé (O; i, j) est direct lorsque ( i ; j ) = + []. Dans le plan rapporté à un repère orthonormé direct, si M est le point

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton BTS MCI Lycée Vauban, Brest 4 mai 06 André Breton Table des matières I Compléments pour les bac pro 8 ÉquationsFactorisationsInéquations 9. Identités remarquables................................ 9. Le

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES Série S ÉPREUVE DU JEUDI 19 JUIN 2014 Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont

Plus en détail

Cours de mathématiques. Chapitre 4 : Dérivabilité. Terminale S1. Année scolaire 2008-2009 mise à jour 22 novembre 2008. Fig.

Cours de mathématiques. Chapitre 4 : Dérivabilité. Terminale S1. Année scolaire 2008-2009 mise à jour 22 novembre 2008. Fig. Cours de matématiques Terminale S1 Capitre 4 : Dérivabilité Année scolaire 008-009 mise à jour novembre 008 Fig. 1 Jean Dausset Fig. alliday Fig. 3 Joann Radon Il y a des gens connus et des gens importants-idée

Plus en détail

TRAVAIL PRATIQUE. 2x + 1. x + 1

TRAVAIL PRATIQUE. 2x + 1. x + 1 A - Polynômes et factorisation Résultats d apprentissage générau C COMMUNICATION RP RÉSOLUTION DE PROBLÈMES L LIENS R RAISONNEMENT E ESTIMATION ET CALCUL MENTAL T TECHNOLOGIE V VISUALISATION généraliser

Plus en détail

Suites numériques. Sommaire :

Suites numériques. Sommaire : Suites numériques I Activité n o 2 page 295 Sommaire : II Généralités sur les suites numériques III Variations et bornes IV Suites arithmétiques V Suites géométriques VI Suites convergentes VII Représentation

Plus en détail

Pour tout nombre réel x, la valeur absolue de x est égale à la distance de ce nombre à 0. Elle est notée x. x si x 0. x =

Pour tout nombre réel x, la valeur absolue de x est égale à la distance de ce nombre à 0. Elle est notée x. x si x 0. x = 3 septembre 4 FONCTIONS ASSOCIÉES re STID I VALEUR ABSOLUE FONCTION VALEUR ABSOLUE VALEUR ABSOLUE D UN NOMBRE Pour tout nombre réel, la valeur absolue de est égale à la distance de ce nombre à. Elle est

Plus en détail

5) Une équation de la tangente à la courbe représentative de la fonction exponentielle au point d abscisse 0 est de la forme ( )( ) ( )

5) Une équation de la tangente à la courbe représentative de la fonction exponentielle au point d abscisse 0 est de la forme ( )( ) ( ) Amérique du Nord Eercice ) Le coeicient multiplicateur associé à une hausse de % est égal à + =, Le coeicient multiplicateur associé à une hausse de % est égal à + =, Donc le coeicient multiplicateur associé

Plus en détail

Nombre dérivé, interprétations géométrique et cinématique

Nombre dérivé, interprétations géométrique et cinématique CHAPITRE 4 DÉRIVATION ET PRIMITIVATION Nombre dérivé, interprétations géométrique et cinématique 08. Nombre dérivé Soit f une fonction numérique, définie sur un intervalle ou une réunion d intervalles,

Plus en détail

Exercices - Calcul d intégrales : corrigé. Intégration par parties - Changements de variable

Exercices - Calcul d intégrales : corrigé. Intégration par parties - Changements de variable Intégration par parties - Changements de variable Eercice - Changements de variables - Niveau - L/Math Sup -. La fonction t t est une bijection de classe C de, 4] sur, ]. On peut donc poser u t. Lorsque

Plus en détail

PHYSIQUE - MATHÉMATIQUES

PHYSIQUE - MATHÉMATIQUES SESSION 2013 SECOND CONCOURS ÉCOLE NORMALE SUPÉRIEURE PHYSIQUE - MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche à alimentation autonome, sans imprimante et sans document d accompagnement

Plus en détail

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 Durée : 3h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde partie 1/3 partie 2/3 partie 3/3 Sommaire 1 Ensemble

Plus en détail

COURBES PARAMÉTRÉES. t + 1. c ex :]0, [ R n, t + Γ ex := c ex (I). c est une courbe paramétrée de classe C 2.

COURBES PARAMÉTRÉES. t + 1. c ex :]0, [ R n, t + Γ ex := c ex (I). c est une courbe paramétrée de classe C 2. COUBES PAAMÉTÉES 1 Propriétés géométriques des courbes paramétrées Soit n = 2 ou 3 et E n un espace ane associé à l'espace vectoriel n Soit une norme sur n Dénition 11 Une courbe paramétrée est une application

Plus en détail

I n t r o d u c t i o n a u x ( 2 0 S ) m a t h é m a t i q u e s a p p l i q u é e s e t p r é - c a l c u l 1 0 e a n n é e

I n t r o d u c t i o n a u x ( 2 0 S ) m a t h é m a t i q u e s a p p l i q u é e s e t p r é - c a l c u l 1 0 e a n n é e I n t r o d u c t i o n a u x m a t h é m a t i q u e s a p p l i q u é e s e t p r é - c a l c u l 0 e a n n é e ( 0 S ) Examen de préparation de mi-session Corrigé I n t r o d u c t i o n a u x m a

Plus en détail

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES RAPPELS DE MATHEMATIQUES ORTHOPHONIE Première année 27 28 Dr MF DAURES 1 RAPPELS DE MATHEMATIQUES I - LES FONCTIONS A - Caractéristiques générales des fonctions B - La fonction dérivée C - La fonction

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

1 Premières propriétés de cos, sin et tan

1 Premières propriétés de cos, sin et tan Lycée Roland Garros Mathématiques BCPST 1ère année 2013-2014 Chapitre n o 3 : Trigonométrie 1 Premières propriétés de cos, sin et tan Dénition 1. Soit x R. Dans un plan muni d'un repère orthonormé (O,

Plus en détail

Travail d une force Correction

Travail d une force Correction Travail d une force Exercice 1 : Deux jumeaux de même masse m=75,0 kg montent au 5ème étage d'un immeuble en partant du rez-de-chaussée. Le jumeau A emprunte l'ascenseur et le jumeau B l'escalier. La distance

Plus en détail

Représentation des courbes planes

Représentation des courbes planes TP Maple 9 Représentation des courbes planes Nous n explorerons dans ce chapitre que les commandes graphiques essentielles offertes par Maple. Pour chacune des commandes de tracé, nous avons fait le choix

Plus en détail

Second degré Forme canonique d un trinôme Exercices corrigés

Second degré Forme canonique d un trinôme Exercices corrigés Second degré Forme canonique d un trinôme Exercices corrigés Objectifs abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : reconnaître une forme canonique Exercice 2 :

Plus en détail

Suites et Convergence

Suites et Convergence Suites et Convergence Une suite c est se donner une valeur (sans ambigüité) pour chaque N sauf peutêtre les premiers n. Donc une suite est une fonction : I R où I = N: = N. Notation : On note ( ) I R pour

Plus en détail

SYSTÈMES ÉLECTRONIQUES NUMÉRIQUES. Mention Alarme Sécurité Incendie. E1 : Épreuve scientifique à caractère professionnel Sous-épreuve E11

SYSTÈMES ÉLECTRONIQUES NUMÉRIQUES. Mention Alarme Sécurité Incendie. E1 : Épreuve scientifique à caractère professionnel Sous-épreuve E11 Lycée Professionnel Henri Becquerel BACCALAURÉAT PROFESSIONNEL Session 2007 2008 SYSTÈMES ÉLECTRONIQUES NUMÉRIQUES Mention Alarme Sécurité Incendie E1 : Épreuve scientifique à caractère professionnel Sous-épreuve

Plus en détail

4. Géométrie analytique du plan

4. Géométrie analytique du plan GÉOMÉTRIE ANALYTIQUE DU PLAN 35 4. Géométrie analytique du plan 4.1. Un peu d'histoire René Descartes (La Haye en Touraine, 31/3/1596 - Stockholm, 11/2/1650) La géométrie analytique est une approche de

Plus en détail

Série n 5 : Optimisation non linéaire

Série n 5 : Optimisation non linéaire Université Claude Bernard, Lyon I Licence Sciences & Technologies 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France Option: M2AO 2007-2008 Série n 5 : Optimisation

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/200 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 6 : PRIMITIVES ET INTEGRATION - COURS + ENONCE EXERCICE - 39 . Tableau

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. (a, b) + (c, d) = (a + c, b + d) (a, b) (c, d) = (ac bd, ad + bc) (a, 0) (b, 0) = (ab, 0)

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. (a, b) + (c, d) = (a + c, b + d) (a, b) (c, d) = (ac bd, ad + bc) (a, 0) (b, 0) = (ab, 0) NOMBRES COMPLEXES 1 Corps C des nombres complexes 1.1 Construction de C Construction de C On munit R de deux lois internes + et de la manière suivante. Pour (a, b, c, d) R 4, on pose (a, b) + (c, d) =

Plus en détail

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Résumé : A partir du problème de la représentation des droites sur un écran d ordinateur,

Plus en détail

Baccalauréat Métropole 12 septembre 2013 Sciences et technologies du design et des arts appliqués

Baccalauréat Métropole 12 septembre 2013 Sciences et technologies du design et des arts appliqués Baccalauréat Métropole 2 septembre 203 Sciences et technologies du design et des arts appliqués EXERCICE 5 points Questionnaire à choix multiples : pour chaque question une seule des propositions est exacte,

Plus en détail

Comment Utiliser Supra Math 4

Comment Utiliser Supra Math 4 Comment Utiliser Supra Math 4 1- Dérivation Tableau de Variations* : Calcule la dérivée et construit le tableau à partir de f(x), f (x) et les xo. Note : Quand vous entrez la fonction, vous pouvez taper

Plus en détail

Fonctions. Fonctions linéaires, affines et constantes

Fonctions. Fonctions linéaires, affines et constantes linéaires, affines et constantes 1. linéaires Comme il existe une infinité de fonctions différentes, on les classe par catégories. La première catégorie est constituée par les fonctions linéaires. Une

Plus en détail

Connaître les variations des fonctions polynômes de degré 2 (monotonie, extremum) et la propriété de symétrie de leurs courbes.

Connaître les variations des fonctions polynômes de degré 2 (monotonie, extremum) et la propriété de symétrie de leurs courbes. www.mathsenligne.com 2N3 - FONCTION CARRE ET SECOND DEGRE COURS (1/6) CONTENUS CAPACITES ATTENDUES COMMENTAIRES Expressions algébriques Transformations d expressions algébriques en vue d une résolution

Plus en détail