Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties

Dimension: px
Commencer à balayer dès la page:

Download "Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties"

Transcription

1 Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties L'objet de cette ressource est l'étude des systèmes physiques, de type mécanique, électrique ou microscopique, se comportant comme des oscillateurs libres amortis et décrits par le modèle de l'oscillateur harmonique amorti. Prérequis indispensables : Savoir définir un système physique oscillant. Connaître le modèle de l'oscillateur harmonique. Savoir appliquer le Principe fondamental de la dynamique à un système mécanique. Savoir appliquer la loi des mailles à un circuit électrique et exprimer les différences de potentiel aux bornes d'une bobine, d'un condensateur et d'une résistance. Connaître les expressions des énergies cinétique, potentielle élastique et mécanique. Connaître les expressions des énergies emmagasinées dans une bobine et dans un condensateur, dissipée dans une résistance. Savoir résoudre les équations différentielles du second ordre, linéaires, à coefficients constants, sans second membre. Objectifs : Savoir décrire le modèle de l'oscillateur harmonique amorti et savoir l'appliquer à l'étude de systèmes physiques oscillants. Savoir étudier les réponses de ces systèmes, en tenant compte des paramètres caractéristiques et des conditions initiales, et cela pour des excitations diverses. Savoir étudier l'énergie de tels systèmes. Temps de travail prévu : 120 minutes 1

2 SOMMAIRE RAPPEL PRELIMINAIRE... 3 L'OSCILLATEUR HARMONIQUE AMORTI... 4 Présentation... 4 Approche analytique... 5 Approche énergétique... 5 EXEMPLES... 6 Oscillateur mécanique : système amorti [masse, ressort] horizontal... 6 Autres exemples d'oscillateurs mécaniques... 8 Oscillateur électrique : circuit série (R, L, C)... 9 OSCILLATIONS LIBRES AMORTIES Résolution de l'équation différentielle Régimes d'évolution Expressions des constantes Réponses d'oscillateurs harmoniques amortis Etude de la forme de la réponse d'un oscillateur harmonique amorti en fonction des conditions initiales GRANDEURS CARACTERISTIQUES La pseudo-période Le décrément logarithmique La constante de temps et le temps de relaxation Le facteur de qualité Conclusion ETUDE DE L'ENERGIE Energie dissipée, facteur de qualité ANALOGIE ENTRE OSCILLATEURS MECANIQUE ET ELECTRIQUE Oscillateurs analogues

3 Rappel préliminaire La variable caractéristique du système physique étudié est notée d'une façon générale q lorsque le type du système (mécanique, électrique...) n'est pas précisé. Suivant le type de système, q représente la position d'un point matériel, une intensité ou une tension électrique, la charge portée par un condensateur, un moment dipolaire, une densité moyenne d'électrons dans un plasma... Lorsque le type du système est défini, la notation correspondante de q est utilisée. La fonction décrit l'évolution du système au cours du temps. Les dérivations première et seconde par rapport au temps sont notées respectivement : et. 3

4 L'oscillateur harmonique amorti L'oscillateur harmonique amorti Présentation Considérons un système physique dont les oscillations sont décrites par la variable dynamique, le système constitue un oscillateur harmonique amorti si satisfait à l'équation différentielle : où et désignent respectivement la pulsation propre et le coefficient d'amortissement. et sont deux constantes positives caractéristiques du système, ces deux constantes s'expriment en. ou La notation est également utilisée pour désigner le coefficient d'amortissement. La solution de l'équation différentielle (ou réponse de l'oscillateur) décrit les oscillations libres et amorties du système. q s'exprime en unité SI de la grandeur physique représentée. L'oscillateur évolue suivant un régime transitoire libre du second ordre. Remarquons que si, on retrouve le modèle de l'oscillateur harmonique. 4

5 L'oscillateur harmonique amorti Approche analytique Mathématiquement, l'équation précédente,, est une équation différentielle linéaire du second ordre à coefficients constants, de forme générale : En identifiant terme à terme les deux types d'équations mathématique et physique, il vient :,, et. Les expressions de la solution générale se déduisent de la résolution de l'équation différentielle. Elles sont exposées par la suite. L'oscillateur harmonique amorti Approche énergétique A l'instant initial, l'excitation fournit au système une quantité d'énergie : le système est mis en oscillation. L'énergie décroît ensuite en fonction du temps, jusqu'à une valeur nulle : le système perd de l'énergie par des phénomènes de dissipation (amortissement, frottement, effet Joule...). Les oscillations libres des systèmes physiques se font en général avec une telle décroissance de l'énergie. 5

6 Exemples Oscillateur mécanique : système amorti [masse, ressort] horizontal Le ressort est caractérisé par sa raideur k et par sa longueur à vide (sans déformation). A l'équilibre : La masse m est en O, (ici ). Les forces de pesanteur et de réaction normale s'équilibrent :. Mise en mouvement : La masse m est en A. Les conditions initiales sont la position (positive ou négative), et la vitesse initiale, soit nulle ( ) soit positive ou négative ( ). 6

7 En mouvement à un instant t : La masse m est en M. On repère la position de m par rapport à la position d'équilibre O soit. Appliquons le Principe Fondamental de la Dynamique à m : où est une force dissipative, force représentant l'amortissement ; si l'on suppose que l'amortissement est de type visqueux la force est proportionnelle à la vitesse et de sens opposé à celle-ci, on la note ( coefficient constant positif). correspond à une force se frottement. Projetons l'équation vectorielle précédente sur l'axe, et étant orthogonaux à l'axe, il vient :. On pose et. On constate que l'équation différentielle précédente est du type oscillateur harmonique amorti de coefficient d'amortissement et de pulsation propre. 7

8 Autres exemples d'oscillateurs mécaniques Système [masse, ressort] vertical amorti [k, l, m] Pendule simple amorti [l, m] (g : accélération de la pesanteur, approximation des petits angles) Pendule de torsion amorti [C, l, m] (C : constante de torsion du fil, I : moment d'inertie) 8

9 Exemples Oscillateur électrique : circuit série (R, L, C) Dans cet exemple, nous étudions la décharge d'un condensateur à travers une bobine et une résistance. Conditions initiales : et A l'instant initial le circuit est fermé ; désignons à un instant t par charge du condensateur, par l'intensité du circuit et par, et les tensions respectives aux bornes de la bobine, de la résistance et du condensateur. Mise en équation du système, équation en intensité la, explicitons les tensions par rapport à t, il vient,, dérivons ou On pose : et. L'équation différentielle ci-dessus est du type oscillateur harmonique amorti de coefficient d'amortissement et de pulsation propre. Autres équations 9

10 Sachant que, d'après les conventions utilisées sur la figure, on établit facilement à partir de l'équation différentielle précédente l'équation satisfaite par la charge instantanée du condensateur : Sachant que, on déduit de l'équation relative à la charge, l'équation satisfaite par la tension instantanée aux bornes du condensateur : Oscillations libres amorties Oscillations libres amorties Résolution de l'équation différentielle Mathématiquement, l'équation est une équation différentielle linéaire du second ordre à coefficients constants, de forme générale. En identifiant terme à terme les deux types d'équations mathématique et physique il vient : et. A partir des expressions de la solution générale, que l'on suppose connues, suivant les valeurs positive, nulle ou négative du discriminant les expressions de ou du discriminant réduit données dans la page suivante., on obtient directement Rappelons également le calcul complet de résolution à partir de l'équation physique. 10

11 Rappel de la méthode de résolution de l'équation différentielle du second ordre linéaire et à coefficients constants (1) On montre en mathématiques que la solution générale d'une telle équation est une combinaison linéaire de deux solutions linéairement indépendantes et : (A et B étant deux constantes) (2) La recherche des solutions et se fait en considérant la fonction et en reportant cette fonction dans l'équation (1). Sachant que et que l'équation (1) conduit à l'équation. Nous obtenons ainsi l'équation caractéristique associée à l'équation différentielle : (3) Si r satisfait à cette équation, alors satisfait à l'équation (1). L'équation caractéristique possède en général deux racines (réelles ou complexes conjuguées) et. On peut donc déterminer deux solutions linéairement indépendantes de (1) : La solution générale s'écrit : et La forme de dépend de la nature des racines et et donc des valeurs positive, nulle ou négative du discriminant de l'équation caractéristique associée ou du discriminant réduit. 11

12 Les expressions de sont données dans la page suivante. Oscillations libres amorties Régimes d'évolution En fonction du discriminant réduit suivants :, on définit les trois régimes : régime apériodique Il existe deux racines réelles nécessairement négatives : Alors Autre forme de : en rappelant que et, on montre que. : régime critique Il existe une racine double réelle négative. Dans ce cas particulier, on montre que est égale au produit d'une fonction exponentielle par un polynôme d'ordre 1, soit :. : régime pseudo-périodique (ou sinusoïdal amorti) 12

13 Il existe deux racines complexes conjuguées : En introduisant la pseudo-pulsation, les racines s'écrivent : En reportant les expressions des racines dans l'expression générale équivalentes :, le calcul montre que s'écrit sous les trois formes Les oscillations sont sinusoïdales amorties : de pseudo-pulsation, d'amplitude décroissante en fonction du temps suivant la loi : de phase initiale (à ) ou. Les constantes qui interviennent dans les diverses expressions de explicitées dans la page suivante. sont 13

14 Oscillations libres amorties Expressions des constantes La solution générale dépend de deux constantes :,,, ou. Elles sont déterminées à l'aide de deux relations. En général dans un problème physique ces relations caractérisent l'état du système à l'instant initial, elles correspondent aux conditions initiales : et Les différentes constantes sont reliées entre elles par les relations suivantes : On calcule facilement les expressions des constantes en fonction de et. On obtient pour les différents régimes les relations suivantes : régime apériodique, régime critique, 14

15 régime pseudo-périodique, (avec du signe de ) 15

16 Oscillations libres amorties Réponses d'oscillateurs harmoniques amortis La figure ci-dessous représente les réponses de quatre oscillateurs, caractérisés chacun par un coefficient d'amortissement et une pulsation propre, évoluant soit en régime apériodique, soit en régime critique, soit en régime pseudopériodique. 16

17 Oscillations libres amorties Etude de la forme de la réponse d'un oscillateur harmonique amorti en fonction des conditions initiales Rappelons que : Un oscillateur étant caractérisé par un coefficient d'amortissement pulsation propre discriminant réduit :., le type de régime d'évolution se déduit du calcul du L'expression de la réponse d'un oscillateur donné dépend de deux constantes qui sont déterminées à partir des deux conditions initiales : et. et par une Connaissant,, et, l'expression de la réponse de l'oscillateur est déterminée. Les figures suivantes représentent les réponses de trois oscillateurs harmoniques amortis différents évoluant respectivement : en régime apériodique pour le premier, en régime critique pour le second, en régime pseudo-périodique pour le troisième. La réponse de chaque oscillateur est représentée successivement pour trois couples de valeurs des conditions initiales différents : Pour chaque oscillateur, la condition est fixe, la condition varie. Les valeurs numériques sont exprimées en unités SI. Les expressions des réponses sont données pour chaque figure. 17

18 Régime apériodique : Dans ce type de régime, tend vers 0 sans oscillation. L'oscillateur est caractérisé par : Régime critique :Dans ce type de régime, tend vers 0 sans oscillation. L'oscillateur est caractérisé par : 18

19 Régime pseudo-périodique : L'oscillateur est caractérisé par : 19

20 Grandeurs caractéristiques Grandeurs caractéristiques La pseudo-période On définit la pseudo-période par : On rappelle l'expression de la période propre :. Pour donnée, la pseudo-période est supérieure à la période propre et elle augmente quand le coefficient d'amortissement croît. En effet, car et donc, soit. Cas de l'amortissement très faible : Par définition l'amortissement très faible correspond à un coefficient d'amortissement très petit tel que, dans ce cas. En effet, rappelons que, pour et, par suite : 20

21 Grandeurs caractéristiques Le décrément logarithmique On définit le décrément logarithmique par : où et représentent les amplitudes des oscillations aux instants et ; généralement ces deux instants sont choisis comme correspondant à deux extréma successifs de même signe. Cette quantité mesure la décroissance des amplitudes. On montre facilement que. On en déduit l'expression de en fonction de et :. Remarque : la pseudo-période et le décrément logarithmique n'ont de sens que si le régime est pseudo-périodique. Grandeurs caractéristiques La constante de temps et le temps de relaxation Quelque soit le type de régime, l'amortissement des oscillations dépend du terme exponentiel, étant homogène à l'inverse d'un temps, on pose ( est une constante de temps, chaque fois qu'il s'écoule un intervalle de temps égal à, la valeur de l'exponentielle est divisée par 2,7). En fait, on utilise la quantité (quantité relative à l'énergie). appelée temps de relaxation définit par 21

22 Grandeurs caractéristiques Le facteur de qualité On définit le facteur de qualité Q par les expressions : ou Plus l'amortissement est faible, plus la qualité du système est grande. Or Q est d'autant plus grand, à donné, que l'amortissement est faible, d'où le nom de facteur de qualité. Il existe également deux autres définitions de Q liées : l'une à l'énergie :, où est l'énergie totale du système à l'instant, et est l'énergie dissipée pendant la pseudopériode suivant. l'autre à la bande passante en pulsation ou en fréquence (quantités définies dans la ressource traitant des oscillations forcées, et désignant respectivement la pulsation et la fréquence à la résonance) : Dans le cas de l'amortissement très faible ( ) : On montre d'une part que : et d'autre part que et. Il en résulte que les deux dernières définitions du facteur de qualité sont dans ce cas équivalentes à la définition donnée en premier :. Notons qu'un grand nombre d'oscillateurs, principalement électriques, sont caractérisés par un amortissement très faible et la dernière définition de Q est utilisée. 22

23 Ordre de grandeur de Q pour différents systèmes : circuit (R, L, C) : 100 tremblement de terre : cavité micro-onde : quartz piézo-électrique : atome excité : laser : noyau atomique excité : Grandeurs caractéristiques Conclusion Un oscillateur harmonique amorti est caractérisé par la pulsation et le coefficient d'amortissement, ou par la pulsation propre (ou la fréquence propre ) et le facteur de qualité Q. On retiendra que (ou ) et Q sont les deux principales caractéristiques d'un oscillateur. L'étude expérimentale d'un système physique implique généralement l'enregistrement du graphe de sa réponse. Dans le cas où les oscillations, libres et amorties, correspondent à un régime pseudo-périodique, on mesure à partir de l'enregistrement les valeurs du décrément logarithmique et de la pseudo-période. On en déduit successivement les valeurs du coefficient d'amortissement, de la pulsation propre et du facteur de qualité. On détermine ainsi les caractéristiques de l'oscillateur. 23

24 Etude de l'énergie Etude de l'énergie Energie dissipée, facteur de qualité Rappelons qu'un système physique, quelque soit son type mécanique, électrique ou autre, est un système amorti. Il perd de l'énergie par des phénomènes de dissipation (amortissement, frottement, effet Joule...) L'énergie totale du système décroît au cours du temps. Energie dissipée au cours d'une pseudo-période : Considérons un système amorti évoluant en régime pseudo-périodique ( pseudo-période. ) de Désignons par l'énergie totale de cet oscillateur à un instant (énergie mécanique, électrique ou autre suivant le type d'oscillateur) et par l'énergie dissipée par l'oscillateur entre les instants. L'instant correspondant à un extrémum des oscillations. et On établit les résultats suivants (voir la ressource d'exercices correspondante) : Dans le cas de l'amortissement :. Le décrément logarithmique étant constant pour un oscillateur harmonique donné, l'énergie dissipée par le système au cours d'une pseudo-période est constante en valeur relative. Dans le cas de l'amortissement très faible ( ) :. Dans ce cas, les deux définitions du facteur de qualité et sont très peu différentes et la perte d'énergie en valeur relative s'écrit. Plus le facteur de qualité est grand, moins le système dissipe de l'énergie. 24

25 Analogie entre oscillateurs mécanique et électrique Analogie entre oscillateurs mécanique et électrique Oscillateurs analogues Rappelons les équations : équation générale : oscillateur mécanique (masse-ressort) : oscillateur électrique (circuit série R, L, C) : Les correspondances suivantes se déduisent de la comparaison de ces équations : Pour les pulsations propres :. Pour les coefficients d'amortissement :. On définit ainsi l'oscillateur analogue à un oscillateur donné, c'est-à-dire que à un oscillateur mécanique on fait correspondre un oscillateur électrique et réciproquement. 25

TP 7 : oscillateur de torsion

TP 7 : oscillateur de torsion TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)

Plus en détail

PY401os (2011-2012) Vous pouvez prévisualiser ce test, mais s'il s'agit d'une tentative réelle, vous serez bloqué en raison de : Navigation du test

PY401os (2011-2012) Vous pouvez prévisualiser ce test, mais s'il s'agit d'une tentative réelle, vous serez bloqué en raison de : Navigation du test Navigation PY401os (2011-2012) Collège École de Commerce PER Université Impressum Connecté sous le nom «Bernard Vuilleumier» (Déconnexion) Réglages Outils de travail Outils de travail Accueil Cours Collège

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Sujet. calculatrice: autorisée durée: 2 heures (10h-12h)

Sujet. calculatrice: autorisée durée: 2 heures (10h-12h) DS SCIENCES PHYSIQUES MATHSPÉ CONCOURS BLANC calculatrice: autorisée durée: 2 heures (10h-12h) Sujet Vaisseau spatial... 2 I.Vaisseau spatial dans un champ newtonien... 2 II.Vitesse de libération...3 A.Option

Plus en détail

Oscillateurs amortis et forcés - Résonance

Oscillateurs amortis et forcés - Résonance Année 01-013 École Nationale d Ingénieurs de Tarbes Enseignements Semestres 5-5 et 7 App Oscillateurs amortis et forcés - Résonance Intervenant Karl DELBÉ Karl.Delbe@enit.fr La publication et la diffusion

Plus en détail

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

CONSERVATOIRE NATIONAL DES ARTS ET METIERS CONSERVATOIRE NATIONAL DES ARTS ET METIERS Centre de préparation au diplôme d'état d'audioprothésiste Epreuve de Physique (Durée: heures) 7 juillet Exercice : LA BALANCOIRE ( points) Une balançoire constituée

Plus en détail

pendule pesant pendule élastique liquide dans un tube en U

pendule pesant pendule élastique liquide dans un tube en U Chapitre 2 Oscillateurs 2.1 Systèmes oscillants 2.1.1 Exemples d oscillateurs Les systèmes oscillants sont d une variété impressionnante et rares sont les domaines de la physique dans lesquels ils ne jouent

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

Modélisation de l'amortissement en dynamique linéaire

Modélisation de l'amortissement en dynamique linéaire Titre : Modélisation de l'amortissement en dynamique linéa[...] Date : 4/11/11 Page : 1/13 Modélisation de l'amortissement en dynamique linéaire Résumé : Les analyses dynamiques linéaires des structures

Plus en détail

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques

Plus en détail

L oscillateur OSCILLATEUR HARMONIQUE. Chapitre 1. I. Introduction, définitions. I.1. Exemple. I.2. Caractérisation du mouvement

L oscillateur OSCILLATEUR HARMONIQUE. Chapitre 1. I. Introduction, définitions. I.1. Exemple. I.2. Caractérisation du mouvement Chapitre 1 OSCILLATEUR HARMONIQUE harmonique étudié dans ce chapitre est un oscillateur mécanique constitué d un ressort et d une masse. Cet exemple simple permettra L oscillateur d introduire le concept

Plus en détail

Test d auto-évaluation 2010

Test d auto-évaluation 2010 SwissPhO Olympiade Suisse de Physique 2010 Test d auto-évaluation 2010 Ce test permet aux intéressés d évaluer leurs capacités à résoudre des problèmes et de reconnaître des lacunes dans certaines notions.

Plus en détail

Electrodynamique. Moteur monte-charge. Ref : 302 194. Français p 1. Version : 1004

Electrodynamique. Moteur monte-charge. Ref : 302 194. Français p 1. Version : 1004 Français p 1 Version : 1004 1 Description Le monte-charge est constitué des éléments suivants : 1 moteur avec moto-réducteur commandé par un bouton poussoir une poulie solidaire de l'axe du moteur permettant

Plus en détail

Chapitre IV : Circuits linéaires en régime sinusoïdal forcé

Chapitre IV : Circuits linéaires en régime sinusoïdal forcé Chapitre IV : Circuits linéaires en régime sinusoïdal forcé I Le régime sinusoïdal forcé (ou permanent) I-1) Présentation I-2) Exemple du circuit R-L II Grandeurs complexes : notations et exemples II-1)

Plus en détail

TD : Oscillateur harmonique

TD : Oscillateur harmonique TD : Oscillateur harmonique Observation du chromosome X par microscopie à force atomique. À gauche : nanoparticules observées par microscopie à force atomique (AFM, SP1-P2). Image du Dr. K. Raghuraman

Plus en détail

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance. XIII. 1 CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance. Dans les chapitres précédents nous avons examiné des circuits qui comportaient différentes

Plus en détail

harmonique CHAPITRE 1 Oscillateur Introduction Plan du chapitre1

harmonique CHAPITRE 1 Oscillateur Introduction Plan du chapitre1 CHAPITRE 1 Oscillateur harmonique Introduction L oscillateur harmonique est un concept important en physique car il permet notamment de décrire le comportement autour d une position d équilibre de nombreux

Plus en détail

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2 BTS Mécanique et Automatismes Industriels Équations différentielles d ordre, Année scolaire 005 006 . Définition Notation Dans tout ce paragraphe, y désigne une fonction de la variable réelle x. On suppose

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Sections : L1 Santé - 1 Olivier CAUDRELIER oc.polyprepas@orange.fr Chapitre 1 : Equations aux dimensions 1. Equation aux dimensions a) Dimension

Plus en détail

TRAVAUX DIRIGES Equipements Electriques La machine à courant continu

TRAVAUX DIRIGES Equipements Electriques La machine à courant continu Ingénieur Manager Entrepreneur TRAVAUX DIRIGES Equipements Electriques La machine à courant continu ITEEM 1ere année 1 Les exercices encadrés seront fait en TD. Il est vivement conseillé de préparer les

Plus en détail

FORCES MACROSCOPIQUES. ETUDE DES EQUILIBRES

FORCES MACROSCOPIQUES. ETUDE DES EQUILIBRES FORCES MACROSCOPIQUES. ETUDE DES EQUILIBRES I. Notion de force. Une force est une action exercée par un système sur un autre système. Une telle action se manifestera de diverses manières. Le système sur

Plus en détail

Examen de la maturita bilingue de physique. Corrigé officiel

Examen de la maturita bilingue de physique. Corrigé officiel Examen de la maturita bilingue de physique Session de mai 2013 Corrigé officiel Questions de cours Mécanique I. 1a) Référentiel le cadre par rapport auquel on étudie le mouvement. 1b) Réf. terrestre est

Plus en détail

Cours d électrocinétique EC4-Régime sinusoïdal

Cours d électrocinétique EC4-Régime sinusoïdal Cours d électrocinétique EC4-Régime sinusoïdal 1 Introduction Dans les premiers chapitres d électrocinétique, nous avons travaillé sur les régimes transitoires des circuits comportant conducteur ohmique,

Plus en détail

Conversion électronique statique

Conversion électronique statique Conversion électronique statique Sommaire I) Généralités.2 A. Intérêts de la conversion électronique de puissance 2 B. Sources idéales.3 C. Composants électroniques..5 II) III) Hacheurs..7 A. Hacheur série

Plus en détail

Cours 9 Une variable numérique : distribution et répartition

Cours 9 Une variable numérique : distribution et répartition Cours 9 Une variable numérique : distribution et répartition Lorsqu'une variable est qualitative et l'autre numérique, il est courant que la première identie des sous-populations (sexe, catégories socio-économiques,

Plus en détail

DS SCIENCES PHYSIQUES MATHSPÉ

DS SCIENCES PHYSIQUES MATHSPÉ DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Jouets...2 I.Voiture avec volant d'inertie réservoir d'énergie cinétique...2 A.Préliminaire...3 B.Phase 1...3 C.Phase 2...4 D.Phase

Plus en détail

f m 280 Hz 0,30x1,0.10

f m 280 Hz 0,30x1,0.10 CORRECTION DU TP PHYSIQUE N 12 SPECIALITE TS 1/5 LA RECEPTION RADIO Correction du TP de physique N 12 La réception radio Activité préparatoire Les stations radios : nécessité d un dispositif récepteur

Plus en détail

1 Introduction. CIRCUITS RLC À COURANT ALTERNATIF

1 Introduction. CIRCUITS RLC À COURANT ALTERNATIF PHYSQ 126: Circuits RLC 1 CIRCUITS RLC À COURANT ALTERNATIF 1 Introduction. Le but de cette expérience est d introduire le concept de courant alternatif (en anglais, Alternating Current ou AC) et d étudier

Plus en détail

MODULE 1. Performances-seuils. Résistance interne (générateur). Pertes par effet Joule. Pertes en ligne.

MODULE 1. Performances-seuils. Résistance interne (générateur). Pertes par effet Joule. Pertes en ligne. MODUL 1 MODUL 1. ésistance interne (générateur). Pertes par effet Joule. Pertes en ligne. Performances-seuils. L élève sera capable 1. d expliquer l effet qu occasionne la résistance interne d une source

Plus en détail

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Exercice 1. Exercice n 1 : Déséquilibre mécanique Exercice 1 1. a) Un mobile peut-il avoir une accélération non nulle à un instant où sa vitesse est nulle? donner un exemple illustrant la réponse. b) Un mobile peut-il avoir une accélération de direction

Plus en détail

I. Les oscillateurs mécaniques.

I. Les oscillateurs mécaniques. Chapitre 9 : Comment exploiter des phénomènes périodiques pour accéder à la mesure du temps? I. Les oscillateurs mécaniques. On appelle oscillateur (ou système oscillant) un système pouvant évoluer, du

Plus en détail

Champ magnétique de la barre aimantée.

Champ magnétique de la barre aimantée. Module expérimental : Etude de la loi de Faraday Étude de la loi de Faraday Objectif Etude expérimentale de la loi de Faraday de l induction. La loi de Faraday de l induction est abordée par l observation

Plus en détail

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté 010-011 CHAPITE IV Oscillations libres des systèmes à plusieurs derés de liberté Introduction : Dans ce chapitre, nous examinons

Plus en détail

Oscillateurs et mesure du temps

Oscillateurs et mesure du temps Oscillateurs et mesure du temps Qu est-ce que le temps? «Qui pourra le définir [le temps]? et pourquoi l'entreprendre, puisque tous les hommes conçoivent ce qu'on veut dire en parlant du temps sans qu'on

Plus en détail

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g. PHYSQ 130: Hooke 1 LOI DE HOOKE: CAS DU RESSORT 1 Introduction La loi de Hooke est fondamentale dans l étude du mouvement oscillatoire. Elle est utilisée, entre autres, dans les théories décrivant les

Plus en détail

La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA)

La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA) La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA) I. L'intérêt de la conversion de données, problèmes et définitions associés. I.1. Définitions:

Plus en détail

Microscopie à Force Atomique

Microscopie à Force Atomique M1 SCIENCES DE LA MATIERE - ENS LYON ANNEE SCOLAIRE 2009-2010 Microscopie à Force Atomique Compte-rendu de Physique Expérimentale Réalisé au Laboratoire de Physique de l ENS Lyon sous la supervision de

Plus en détail

CHAPITRE III : Travail et énergie

CHAPITRE III : Travail et énergie CHPITRE III : Travail et énergie III. 1 En principe, les lois de Newton permettent de résoudre tous les problèmes de la mécanique classique. Si on connaît les positions et les vitesses initiales des particules

Plus en détail

SYSTEMES LINEAIRES DU PREMIER ORDRE

SYSTEMES LINEAIRES DU PREMIER ORDRE SYSTEMES LINEIRES DU PREMIER ORDRE 1. DEFINITION e(t) SYSTEME s(t) Un système est dit linéaire invariant du premier ordre si la réponse s(t) est liée à l excitation e(t) par une équation différentielle

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique Sommaire I) Théorie de l induction électromagnétique..2 A. Introduction 2 B. Notion de force électromotrice 3 C. Loi de Faraday..5 D. Quelques applications.7 Spire circulaire

Plus en détail

ÉLECTROMAGNÉTISME BLINDAGE ELECTROMAGNETIQUE

ÉLECTROMAGNÉTISME BLINDAGE ELECTROMAGNETIQUE Spé ψ 1-11 Devoir n ÉLECTROMAGNÉTISME LINDAGE ELECTROMAGNETIQUE Ce problème s intéresse à certains aspects du blindage électromagnétique par des conducteurs La section A rassemble quelques rappels destinés

Plus en détail

MODULE LA3M3 VIBRATIONS, EQUILIBRE ET STABILITE

MODULE LA3M3 VIBRATIONS, EQUILIBRE ET STABILITE Avant la séances de TP : ICENCE DE MECANIQUE TRAVAUX PRATIQUES DE MECANIQUE DES SOIDES MODUE A3M3 VIBRATIONS, EQUIIBRE ET STABIITE le polycopié doit être lu attentivement les parties théoriques à préparer

Plus en détail

Observation : Le courant induit circule dans le sens opposé.

Observation : Le courant induit circule dans le sens opposé. 2 e BC 3 Induction électromagnétique 21 Chapitre 3: Induction électromagnétique 1. Mise en évidence du phénomène : expériences fondamentales a) Expérience 1 1. Introduisons un aimant dans une bobine connectée

Plus en détail

Chapitre 2 : Acoustique physique : -I- Acoustique musicale A- La hauteur d'un son L'oreille perçoit des sons aigus et des sons graves.

Chapitre 2 : Acoustique physique : -I- Acoustique musicale A- La hauteur d'un son L'oreille perçoit des sons aigus et des sons graves. BTS BAT ème année Les ondes 1 Chapitre : Acoustique physique : -I- Acoustique musicale A- La hauteur d'un son L'oreille perçoit des sons aigus et des sons graves. Un son est d'autant plus aigu que sa fréquence

Plus en détail

Traitement numérique du signal

Traitement numérique du signal Nº 754 BULLETIN DE L UNION DES PHYSICIENS 707 Traitement numérique du signal par J. ESQUIEU Lycée de Brive 1. TRAITEMENT Le traitement numérique du signal consiste à agir sur le signal à partir d échantillons

Plus en détail

Mouvement et vitesse . A A B

Mouvement et vitesse . A A B Chapitre 1 Mouvement et vitesse I/ Caractère relatif d'un mouvement Le mouvement d'un objet est décrit par rapport à un autre objet qui sert de référence ( le référentiel) exemple : assis dans une voiture

Plus en détail

Utilisation de python pour le calcul numérique

Utilisation de python pour le calcul numérique Utilisation de python pour le calcul numérique Résumé L objectif de ce TP est de découvrir quelques possibilités de python pour le calcul numérique. Il pourra également vous servir de référence si vous

Plus en détail

Electrotechnique triphasé. Chapitre 11

Electrotechnique triphasé. Chapitre 11 Electrotechnique triphasé Chapitre 11 CADEV n 102 679 Denis Schneider, 2007 Table des matières 11.1 GÉNÉRALITÉS... 2 11.1 1 DÉFINITION TENSIONS TRIPHASÉES... 2 11.1.2 COURANTS TRIPHASÉS... 2 11.1.3 AVANTAGE

Plus en détail

CHAPITRE XII : L'induction électromagnétique et les inducteurs

CHAPITRE XII : L'induction électromagnétique et les inducteurs CHAPITRE XII : L'induction électromagnétique et les inducteurs XII. 1 Nous avons vu dans le chapitre XI qu'un courant produisait un champ magnétique. A la suite de cette observation, les scientifiques

Plus en détail

SCIENCES PHYSIQUES ET PHYSIQUE APPLIQUEE

SCIENCES PHYSIQUES ET PHYSIQUE APPLIQUEE BACCALAUREAT TECHNOLOGIQUE SCIENCES ET TECHNOLOGIES INDUSTRIEllES GENIE MECANIQUE SESSION 2007 SCIENCES PHYSIQUES ET PHYSIQUE APPLIQUEE Durée: 2 heures Coefficient : 5 L'emploi de toutes les calculatrices

Plus en détail

Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires

Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires 25 Lechapitreprécédent avait pour objet l étude decircuitsrésistifsalimentéspar dessourcesde tension ou de courant continues. Par

Plus en détail

CHAPITRE 8 LE CHAMP MAGNETIQUE

CHAPITRE 8 LE CHAMP MAGNETIQUE CHAPTRE 8 LE CHAMP MAGETQUE ) Champ magnétique 1) Magnétisme Phénomène connu depuis l'antiquité. Les corps possédant des propriétés magnétiques sont appelés des aimants naturel (fer, oxyde magnétique de

Plus en détail

CHAPITRE II : STATIQUE

CHAPITRE II : STATIQUE CHPITRE II : STTIQUE - Généralités : I. NTIN DE RCE : En mécanique, les forces sont utilisées pour modéliser des actions mécaniques diverses (actions de contact, poids, attraction magnétique, effort ).

Plus en détail

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année Cours d électricité Circuits électriques en courant constant Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre

Plus en détail

Tournez la page S.V.P.

Tournez la page S.V.P. 17 Tourne la page S.V.P. Le problème est constitué de quatre parties indépendantes La mesure de l intensité d un courant électrique peut nécessiter des méthodes très éloignées de celle utilisée dans un

Plus en détail

Tension d alimentation : V CC. i C R C R B

Tension d alimentation : V CC. i C R C R B Chapitre 4 Polarisation du transistor bipolaire à jonction 4.1 Le problème de la polarisation 4.1.1 Introduction Dans le chapitre 3, nous avons analysé un premier exemple de circuit d amplification de

Plus en détail

ING3 PHYSIQUE (TD) ELECTROMAGNETISME

ING3 PHYSIQUE (TD) ELECTROMAGNETISME ING3 PHYSIQUE (TD) ELECTROMAGNETISME 27-28 Exercice 1 Soit le champ vectoriel A = 1 r B 2, où B est un champ uniforme parallèle à Oz. Calculer le rotationnel de A. Exercice 2 r Soit le champ vectoriel

Plus en détail

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls.

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls. Diagonalisation des matrices http://www.math-info.univ-paris5.fr/~ycart/mc2/node2.html Sous-sections Matrices diagonales Valeurs propres et vecteurs propres Polynôme caractéristique Exemples Illustration

Plus en détail

Chapitre 5: Oscillations d un pendule élastique horizontal

Chapitre 5: Oscillations d un pendule élastique horizontal 1 re B et C 5 Oscillations d'un pendule élastique horizontal 40 Chapitre 5: Oscillations d un pendule élastique horizontal 1. Définitions a) Oscillateur écanique * Un systèe écanique qui effectue un ouveent

Plus en détail

2 CIRCUITS ÉLECTRIQUES

2 CIRCUITS ÉLECTRIQUES Circuits électriques 1 2 CIRCUITS ÉLECTRIQUES 2.1 COMPOSANTES D UN CIRCUIT La série d expériences qui suit va vous permettre d étudier le comportement de plusieurs circuits électroniques dans lesquels

Plus en détail

TP oscilloscope et GBF

TP oscilloscope et GBF TP oscilloscope et GBF Ce TP est évalué à l'aide d'un questionnaire moodle. Objectif : ce travail a pour buts de manipuler l oscilloscope et le GBF. A l issu de celui-ci, toutes les fonctions essentielles

Plus en détail

DEUXIÈME COMPOSITION DE PHYSIQUE. Deux phénomènes d hystérésis

DEUXIÈME COMPOSITION DE PHYSIQUE. Deux phénomènes d hystérésis ÉCOLE POLYTECHNIQUE ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION 2009 FILIÈRE PC DEUXIÈME COMPOSITION DE PHYSIQUE (Durée : 4 heures) L utilisation des calculatrices est

Plus en détail

Le moteur asynchrone triphasé

Le moteur asynchrone triphasé Cours d Electricité 2 Électrotechnique Le moteur asynchrone triphasé I.U.T Mesures Physiques Université Montpellier 2 Année universitaire 2008-2009 Table des matières 1 Définition et description 2 2 Principe

Plus en détail

G.P. DNS05 Octobre 2012

G.P. DNS05 Octobre 2012 DNS Sujet Impédance d'une ligne électrique...1 I.Préliminaires...1 II.Champ électromagnétique dans une ligne électrique à rubans...2 III.Modélisation par une ligne à constantes réparties...3 IV.Réalisation

Plus en détail

Professeur Eva PEBAY-PEYROULA

Professeur Eva PEBAY-PEYROULA UE3-1 : Physique Chapitre 4 : Les ondes Professeur Eva PEBAY-PEYROULA Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. IV- Les ondes Finalité du chapitre Pour

Plus en détail

Test : principe fondamental de la dynamique et aspect énergétique

Test : principe fondamental de la dynamique et aspect énergétique Durée : 45 minutes Objectifs Test : principe fondamental de la dynamique et aspect énergétique Projection de forces. Calcul de durée d'accélération / décélération ou d'accélération / décélération ou de

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Master Lumière et Mesures Extrêmes Signal et Bruits : travaux pratiques. Détection par effet mirage Mesures photothermiques

Master Lumière et Mesures Extrêmes Signal et Bruits : travaux pratiques. Détection par effet mirage Mesures photothermiques 1 Master Lumière et Mesures Extrêmes Signal et Bruits : travaux pratiques 1 Introduction Détection par effet mirage Mesures photothermiques La méthode de détection par effet mirage fait partie de méthodes

Plus en détail

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S Concours EPIT 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette MW K1200S Durée : 2h. Calculatrices autorisées. Présentation du problème Le problème

Plus en détail

ELEC2753 Electrotechnique examen du 11/06/2012

ELEC2753 Electrotechnique examen du 11/06/2012 ELEC2753 Electrotechnique examen du 11/06/2012 Pour faciliter la correction et la surveillance, merci de répondre aux 3 questions sur des feuilles différentes et d'écrire immédiatement votre nom sur toutes

Plus en détail

par Gilbert Gastebois

par Gilbert Gastebois Le gyroscope 1. Schémas par Gilbert Gastebois 2. Étude du mouvement d'une toupie. Une toupie est un gyroscope dont l'une des extrémités de l'axe est posée sur le sol sans possibilité de glissement. : vitesse

Plus en détail

Propagation des ondes électromagnétiques dans le vide

Propagation des ondes électromagnétiques dans le vide Chapitre 5 Propagation des ondes électromagnétiques dans le vide 5.1 Equations de propagation pour E et B Dans le vide, au voisinage de tout point où les charges et les courants sont nuls, les équations

Plus en détail

SDLV120 - Absorption d'une onde de compression dans un barreau élastique

SDLV120 - Absorption d'une onde de compression dans un barreau élastique Titre : SDLV120 - Absorption d'une onde de compression dan[...] Date : 09/11/2011 Page : 1/9 SDLV120 - Absorption d'une onde de compression dans un barreau élastique Résumé On teste les éléments paraxiaux

Plus en détail

LP25. Traitement analogique d un signal électrique. Étude spectrale. Exemples et applications.

LP25. Traitement analogique d un signal électrique. Étude spectrale. Exemples et applications. LP5. Traitement analogique d un signal électrique. Étude spectrale. Exemples et applications. Antoine Bérut, David Lopes Cardozo Bibliographie Physique tout en 1 première année, M.-N. Sanz, DUNOD Électronique

Plus en détail

1 Grandeurs sinusoïdales

1 Grandeurs sinusoïdales 1 Grandeurs sinusoïdales Dans un circuit fonctionnant en régime sinusoïdal, tous les courants et toutes les tensions dans le circuit sont sinusoïdaux, de même pulsation que la source d alimentation. 1.1

Plus en détail

Premier principe : bilans d énergie

Premier principe : bilans d énergie MPSI - Thermodynamique - Premier principe : bilans d énergie page 1/5 Premier principe : bilans d énergie Table des matières 1 De la mécanique à la thermodynamique : formes d énergie et échanges d énergie

Plus en détail

LE CHAMP MAGNETIQUE Table des matières

LE CHAMP MAGNETIQUE Table des matières LE CHAMP MAGNETQUE Table des matières NTRODUCTON :...2 MSE EN EVDENCE DU CHAMP MAGNETQUE :...2.1 Détection du champ magnétique avec une boussole :...2.2 Le champ magnétique :...3.2.1 Le vecteur champ magnétique

Plus en détail

Devoir de Physique en autocorrection n 5 pour le 15 avril 2014

Devoir de Physique en autocorrection n 5 pour le 15 avril 2014 DA 5 pour le 15 avril 2014 Devoir de Physique en autocorrection n 5 pour le 15 avril 2014 Problème : Essuie-vitre à détecteur de pluie Si, au cours de l épreuve, un candidat repère ce qui lui semble être

Plus en détail

TP filtres électriques

TP filtres électriques P filtres électriques Objectif : Étudier les caractéristiques de gain et de phase de quelques filtres classiques 1 Introduction oute cette partie est informative : la non compréhension de certains paragraphes

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE

BACCALAURÉAT TECHNOLOGIQUE BACCALAURÉAT TECHNOLOGIQUE SCIENCES ET TECHNOLOGIES INDUSTRIELLES «Génie Électronique» Session 2012 Épreuve : PHYSIQUE APPLIQUÉE Durée de l'épreuve : 4 heures Coefficient : 5 Dès que le sujet vous est

Plus en détail

Modélisation d'un axe asservi d'un robot cueilleur de pommes

Modélisation d'un axe asservi d'un robot cueilleur de pommes Modélisation d'un axe asservi d'un robot cueilleur de pommes Problématique Le bras asservi Maxpid est issu d'un robot cueilleur de pommes. Il permet, après détection d'un fruit par un système optique,

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR ÉLECTRONIQUE SESSION 2002. E p r e u v e : P H Y S I Q U E A P P L I Q U É E

BREVET DE TECHNICIEN SUPÉRIEUR ÉLECTRONIQUE SESSION 2002. E p r e u v e : P H Y S I Q U E A P P L I Q U É E BREVET DE TECHNICIEN SUPÉRIEUR ÉLECTRONIQUE SESSION 2002 Calculatrice à fonctionnement autonome autorisée (circulaire 99-186 du 16.11.99) E p r e u v e : P H Y S I Q U E P P L I Q U É E Durée : 4 heures

Plus en détail

Microscopie à force atomique

Microscopie à force atomique Microscopie à force atomique DETREZ Fabrice Table des matières 1 Principe 2 2 Analyse structurale 3 3 Interactions pointes surfaces 4 4 Boucle d asservissement et contrastes 6 5 Traitement des Images 8

Plus en détail

NOTION DE BIOMECANIQUE

NOTION DE BIOMECANIQUE NOTION DE BIOMECANIQUE PRINCIPES BIOMECANIQUES EN GYMNASTIQUE La connaissance des principes mécaniques constitue le point de départ de la compréhension du geste gymnique? La biomécanique c est L application

Plus en détail

TENSION et COURANT ALTERNATIF

TENSION et COURANT ALTERNATIF Chapitre 2 TENSION et COURANT ALTERNATIF I/ Principe de fonctionnement d'un oscilloscope 1- Schéma Plaques de déviation horizontale et verticale Tube à vide Faisceau d'électrons B Cathode Anode + Spot

Plus en détail

UTILISATION DE L'OSCILLOSCOPE CATHODIQUE ----- I - CONSTITUTION ET FONCTIONNEMENT DE L'OSCILLOSCOPE CATHODIQUE

UTILISATION DE L'OSCILLOSCOPE CATHODIQUE ----- I - CONSTITUTION ET FONCTIONNEMENT DE L'OSCILLOSCOPE CATHODIQUE UTILISATION DE L'OSCILLOSCOPE CATHODIQUE ----- Le but de cette étude est de familiariser l'étudiant avec l'utilisation d'un oscilloscope au travers de mesures de diverses grandeurs physiques : tensions,

Plus en détail

TABLE DES MATIERES CHAPITRE 1 OSCILLATEURS LINÉAIRES...3

TABLE DES MATIERES CHAPITRE 1 OSCILLATEURS LINÉAIRES...3 TABLE DES MATIERES CHAPITRE 1 OSCILLATEURS LINÉAIRES...3 I. OSCILLATEURS HARMONIQUES AMORTIS...3 II. ANALYSE QUALITATIVE...5 1. Energétique...5. L'espace des phases...5 3. Visualisation de l'espace des

Plus en détail

L I FI I E SCIE CES PHYSIQUES

L I FI I E SCIE CES PHYSIQUES L infini L I FI I E SCIE CES PHYSIQUES Par Anne Martini La notion d infini intervient dans de nombreux domaines des sciences physiques. Cet exposé vise à en donner une brève présentation. 1. L infini et

Plus en détail

1.8 Exercices. Analyse d'erreurs 43

1.8 Exercices. Analyse d'erreurs 43 1.8 Exercices Analyse d'erreurs 43 1. Tous les chires des nombres suivants sont signicatifs. Donner une borne supérieure de l'erreur absolue et estimer l'erreur relative. a) 0,1234 b) 8,760 c) 3,14156

Plus en détail

FICHE 1 Fiche à destination des enseignants 1S 15 Volant de badminton en perte d énergie?

FICHE 1 Fiche à destination des enseignants 1S 15 Volant de badminton en perte d énergie? FICHE 1 Fiche à destination des enseignants 1S 15 Type d'activité Activité expérimentale Notions et contenus du programme de 1 ère S Compétences attendues du programme de 1 ère S Énergie d un point matériel

Plus en détail

CHAPITRE CP1 C Conversion électromagnétique statique

CHAPITRE CP1 C Conversion électromagnétique statique PSI Brizeux Ch. CP1: Conversion électromagnétique statique 1 CHAPITRE CP1 C Conversion électromagnétique statique Les sources d énergie, naturelles ou industrielles, se trouvent sous deux formes : thermique

Plus en détail

Electricité. Chapitre 1: Champ électrique

Electricité. Chapitre 1: Champ électrique 2 e BC 1 Champ électrique 1 Electricité L interaction électromagnétique a été évoqué dans la partie «Interactions fondamentales» en énonçant la loi de Coulomb, et en analysant des phénomènes macroscopiques

Plus en détail

Session de Juillet 2001. Durée 2 H Documents interdits.

Session de Juillet 2001. Durée 2 H Documents interdits. Session de Juillet 2001 Durée 2 H Documents interdits. Exercice 1 : Oscillations forcées de dipôles électriques Lors d une séance de travaux pratiques, les élèves sont conduits à étudier les dipôles en

Plus en détail

On justifiera toutes les réponses, même celles jugées «évidentes», avec précision.

On justifiera toutes les réponses, même celles jugées «évidentes», avec précision. DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: non autorisée durée: 4 heures Sujet Particule chargée dans le champ magnétique terrestre...3 I.Questions préliminaires...3 II.Particule chargée dans un champ

Plus en détail

P11B1 - PHYSIQUE - Semestre 1

P11B1 - PHYSIQUE - Semestre 1 P11B1 - PHYSIQUE - Semestre 1 Outils de la Physique 1 Jacques LEQUIN Nombre heures Cours 4,5 Nombre heures TD 6 Grandeurs scalaires et vectorielles. Calcul différentiel, systèmes de coordonnées. Définir

Plus en détail

moteur asynchrone MOTEUR ASYNCHRONE

moteur asynchrone MOTEUR ASYNCHRONE MOTEUR ASYNCHRONE Rappel: trois bobines, dont les axes font entre eux des angles de 120 et alimentées par un réseau triphasé équilibré, crée dans l'entrefer un champ magnétique radial, tournant à la fréquence

Plus en détail

GENERALITES SUR LES APPAREILS DE MESURE

GENERALITES SUR LES APPAREILS DE MESURE Chapitre 2 GENERALITES SUR LES APPAREILS DE MESURE I- LES APPAREILS DE MESURE ANALOGIQUES: Un appareil de mesure comprend généralement un ou plusieurs inducteurs fixes ( aimant permanant ou électroaimant)

Plus en détail

Contrôle vibratoire des passerelles piétonnes

Contrôle vibratoire des passerelles piétonnes RFS2-CT-2007-00033 Human induced Vibrations of Steel Structures Contrôle vibratoire des passerelles piétonnes de dimensionnement Table des Matières 4.1 Etape 1 : Evaluation des fréquences propres... 8

Plus en détail

TEST ET RÉGLAGE DES SUSPENSIONS

TEST ET RÉGLAGE DES SUSPENSIONS TEST ET RÉGLAGE DES SUSPENSIONS Généralités En règle générale, toutes les suspensions pour les motos standard sont réglées pour un conducteur d'un poids moyen de 70 kg. Généralement, le poids moyen du

Plus en détail

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6 Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6 1 1.But et théorie: Le but de cette expérience est de comprendre l'intérêt de la spectrophotométrie d'absorption moléculaire

Plus en détail