APPLICATIONS SUR LES ANALYSES ASSOCIÉES AUX CHAPITRES 12 ET 13 (TESTS DE COMPARAISON ET D INDÉPENDANCE)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "APPLICATIONS SUR LES ANALYSES ASSOCIÉES AUX CHAPITRES 12 ET 13 (TESTS DE COMPARAISON ET D INDÉPENDANCE)"

Transcription

1 5 APPLICATIONS SUR LES ANALYSES ASSOCIÉES AUX CHAPITRES 12 ET 13 (TESTS DE COMPARAISON ET D INDÉPENDANCE) Exercice 1 : test de comparaison de proportions (voir chapitre 12) Une entreprise souhaite lancer un nouveau produit. Pour cela, elle confie l étude du marché à une société de sondage. Lors du sondage, on demande à 1200 clients potentiels s ils sont prêts à acheter ce nouveau produit et on constate que 120 s y déclarent favorables. Trois mois après, et bien que la fabrication ait commencé, un nouveau sondage réalisé auprès de 1600 clients potentiels permet de constater que seulement 80 s y déclarent favorables. Tester avec un niveau de signification de 5 % l hypothèse H 0 «la proportion de clients potentiels favorables à l achat n a pas sensiblement évolué» contre H 1 «cette proportion a diminué». Autrement dit, p 1 et p 2 désignant respectivement la proportion à la date du premier puis du second sondage, tester H 0 «p 2 = p 1» contre H 1 «p 2 < p 1». Rappel (cf. p. 218) : sous l hypothèse H 0 «p 2 = p 1» (n 1 et n 2 étant grands), on sait que : T 0 = F 1 F 2 = N 0;1 où F = (n 1 F 1 + n 2 F 2 )/(n 1 + n 2 ). F(1 F) (1/n1 ) + (1/n 2 ) Corrigé de l exercice 1 F 1 et F 2 désignant respectivement les propositions aléatoires du premier et du second sondage, on sait que : n 1 F 1 B(n 1 ; p 1 ) et n 2 F 2 B(n 2 ; p 2 ) avec n 1 = 1200 et n 2 = 1600.

2 2 STATISTIQUES POUR LA GESTION Sous l hypothèse H 0 «p 2 = p 1» (n 1 et n 2 étant grands), on sait que : T 0 = F 1 F 2 = N 0;1 où F = (n 1 F 1 + n 2 F 2 )/(n 1 + n 2 ). F(1 F) (1/n1 ) + (1/n 2 ) Sous l hypothèse alternative H 1 «p 1 > p 2», on constate que F 1 F 2 pr p 1 p 2 > 0 lorsque n 1 et n 2, donc T 0 tend à prendre de grandes valeurs positives. Par suite, le domaine de rejet de H 0, noté δ 0,05, est du type [c α ; [ où c α est défini par la condition : 0,05 = P 0 (T 0 c α ) = P(N 0;1 c α ) = 1 (c α ). On constate que (c α ) = 0,95 c α = 1,65 (cf. p. 427) et donc : δ 0,05 = [1,65; [. F 1 prend la valeur f 1 = 120/1200 = 0,1 ; F 2 prend la valeur f 2 = 80/1600 = 0,05 ; F prend la valeur : f = ( )/( ) = 0,0714 et donc T 0 prend la valeur t = 0,1 0,05 0,0714 0,9286 (1/1200) + (1/1600) = 5,08. t δ 0,05 donc on rejette H 0 au profit de H 1 et ce avec un risque d erreur négligeable puisque P 0 (T 0 5,08) = P(N 0;1 5,08) = 0. Exercice 2 : test d indépendance du khi-deux (voir chapitre 13) Un dirigeant d une firme automobile offre, pour un certain type de véhicules, trois conditions de paiement à ses clients : un paiement immédiat avec une remise de 15 % (PP 1 ), un crédit gratuit de 12 mois prolongé par un crédit sur 5 ans à 10 % (PP 2 ), un crédit-bail sur 10 ans (PP 3 ). Les trois segments de marché considérés, notés respectivement C 1, C 2 et C 3 sont les ans, les ans et les plus de 55 ans. Le relevé des ventes des 3000 véhicules vendus au cours des dernières semaines est présenté ci-dessous : PP 1 PP 2 PP 3 C C C À partir de ces données, tester l hypothèse H 0 «le choix du mode de paiement est indépendant de l âge de l acheteur» en utilisant le test du khi-deux avec un niveau de signification de 1 %.

3 Applications sur les analyses associées aux chapitres 12 et 13 3 Corrigé de l exercice 2 À partir de ces données, tester l hypothèse H 0 «le choix du mode de paiement est indépendant de l âge de l acheteur» en utilisant le test du khi-deux avec un niveau de signification de 1 %. PP 1 PP 2 PP 3 C C C X est partagé en 3 classes (h = 3) et Y en 3 classes (k = 3) ainsi que l indique le tableau ci-dessous. Les 3000 couples de valeurs sont donc répartis entre 6 classes C ij présentées ci-dessous : C 1 :PP 1 C 2 :PP 2 C 3 :PP 3 total n i C 1 effectifs observés n ij n 11 = 276 n 21 = 548 n 31 = 176 n 1 = 1000 effectifs théoriques n * ij n * 11 = 266,66 n 21 * = 566,66 n 31 * = 166,66 C 2 effectifs observés n ij n 12 = 358 n 22 = 877 n 32 = 265 n 2 = 1500 effectifs théoriques n * ij n * 12 = 400 n 22 * = 850 n 32 * = 250 C 3 effectifs observés n ij n 13 = 166 n 23 = 275 n 33 = 59 n 3 = 500 effectifs théoriques n * ij n * 13 = 133,33 n 23 * = 283,33 n 33 * = 83,33 total n j n 1 = 800 n 2 = 1700 n 3 = 500 n = 3000 Les effectifs théoriques : n 11 = n 1 n 1 /3000 = /3000 = ,...,n 32 = n 2 n 3 /3000 = 250. Statistique utilisée. Tous les effectifs théoriques nij = ni n j /n étant supérieurs à 5, 3 3 (N ij N i N j /n) 2 sous l hypothèse H 0 on a la propriété Z = = χ 2 4 car N i=1 j=1 i N j /n (h 1)(k 1) = 4 Règle de décision. Le domaine de rejet de H 0 est nécessairement de type [c α, [ où c α est défini par P 0 (Z c α ) = P(χ 2 4 c α) = α = 0,01 soit c = 13,28. La v. a. Z prend la valeur z = ( ,66) 2 /266,66 + ( ,66) 2 /566, (59 83,33) 2 /83,33 = 22,986. La valeur z prise par Z étant supérieure à 13,28 on décide de rejeter l hypothèse d indépendance des variables X et Y.

4 4 STATISTIQUES POUR LA GESTION Exercice 3 : test d indépendance de Spearman (voir chapitre 13) Un chercheur s interroge sur l existence éventuelle d un lien entre la confiance des clients et leur satisfaction. Pour cela, il a été demandé à 8 clients d évaluer la confiance dans l entreprise et leur satisfaction en tant que client de celle-ci (ces échelles sont fondées sur la moyenne d items à sept points, c est-à-dire des valeurs de 1 à 7) : Satisfaction Confiance 4,2 1,3 4,8 2,4 6,9 6,5 5,3 2,3 6,2 1,1 4,1 4,2 5 2,7 6,5 2,8 Utilisez le test de Spearman pour tester l hypothèse H 0 «d indépendance entre X la satisfaction et Y la confiance dans la marque» contre l hypothèse «X et Y ne sont pas indépendantes» avec un risque d erreur de première espèce de 10 %. Corrigé de l exercice 3 Réécrivons les couples de valeurs (x i, y i ) prises par (X, Y ) dans l ordre croissant des valeurs prises par X : Valeur x i 4,1 4,2 4,8 5,0 5,3 6,2 6,5 6,9 Valeur y i 4,2 1,3 2,4 2,7 2,3 1,1 2,8 6,5 r i Rang de x i s i Rang de y i La valeur ρ = Cov(r,s)/σ(r) σ(s) prise par la variable de Spearman ρ S est le coefficient de corrélation des n = 8 couples de valeurs (r i, s i ). On sait que : ρ = 1 6d 2 /(n 3 n) où d 2 = i (r i s i ) 2 [cf. p. 234]. Ici, d 2 = (1 7) 2 + (2 2) 2 + (3 4) 2 + (4 5) 2 + (5 3) 2 + (6 1) 2 donc ρ = /84 = 4/21 = 0, (7 6) 2 + (8 8) 2 = 68

5 Applications sur les analyses associées aux chapitres 12 et 13 5 Page 434, on lit pour n = 8 : P 0 (ρ S 0,643) = 0,05 donc P 0 ( ρ S < 0,643) = 0,90. La valeur ρ = 4/21 prise par ρ S étant inférieure à 0,643, on décide d accepter l hypothèse d indépendance. Note. La qualité du test peut s évaluer à partir du niveau de signification observé : P 0 ( ρ S 4/21) = 0,651

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé Baccalauréat ES/L Amérique du Sud 2 novembre 2 Corrigé A. P. M. E. P. EXERCICE Commun à tous les candidats 5 points. Diminuer le budget de 6 % sur un an revient à multiplier par 6 =,94. Diminuer le budget

Plus en détail

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon PACES - APEMK UE 4 Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie

Plus en détail

PREMIERE ANNEE COMMUNE DES ETUDES DE SANTE. Faculté de Médecine Lyon Est Année Universitaire 2010-2011 UE4. Epreuve du jeudi 16 décembre 2010

PREMIERE ANNEE COMMUNE DES ETUDES DE SANTE. Faculté de Médecine Lyon Est Année Universitaire 2010-2011 UE4. Epreuve du jeudi 16 décembre 2010 PREMIERE ANNEE COMMUNE DES ETUDES DE SANTE Faculté de Médecine Lyon Est Année Universitaire 2010-2011 UE4 Epreuve du jeudi 16 décembre 2010 Dr Claire BARDEL, Dr Marie-Aimée DRONNE, Dr Delphine MAUCORT-BOULCH

Plus en détail

Statistiques. IUT Biotechnologie 2ème année. Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008

Statistiques. IUT Biotechnologie 2ème année. Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008 Statistiques IUT Biotechnologie 2ème année Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008 version du 04 octobre 2008 Table des matières 1 Lois de probabilité usuelles 1 1.1 Dénombrement................................

Plus en détail

Chapitre 6 TESTS STATISTIQUES

Chapitre 6 TESTS STATISTIQUES Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 6 TESTS STATISTIQUES Les tests statistiques sont des méthodes de la statistique inférentielle qui, comme

Plus en détail

Statistique (MATH-F-315, Cours #3)

Statistique (MATH-F-315, Cours #3) Statistique (MATH-F-315, Cours #3) Thomas Verdebout Université Libre de Bruxelles 2015 Plan de la partie Statistique du cours 1. Introduction. 2. Théorie de l estimation. 3. Tests d hypothèses et intervalles

Plus en détail

Chapitre 9 Section 9.1 Test d indépendance du khi-deux (c 2 )

Chapitre 9 Section 9.1 Test d indépendance du khi-deux (c 2 ) Chapitre 9 Section 9.1 Test d indépendance du khi-deux (c 2 ) page 154 Ariane Robitaille (Modifications par Eric T., A14, Joanie L., H14 et Marc-Élie Lapointe H15) 8.1 Relations entre les variables Ex.1

Plus en détail

Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire

Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire Julien JACQUES Polytech Lille - Université Lille 1 Julien JACQUES (Polytech Lille) Statistiques de base 1 / 48 Plan 1 Tests

Plus en détail

Chapitre 7 Tests d hypothèse (partie 1)

Chapitre 7 Tests d hypothèse (partie 1) Chapitre 7 Tests d hypothèse (partie 1) I Qu est ce qu un test statistique? La philosophie est toujours la même : déterminer des informations sur une population à partir d informations sur un échantillon

Plus en détail

Fonctions affines. Notation1 Notation 2

Fonctions affines. Notation1 Notation 2 I/ Fonctions affines 1 ) Définition Fonctions affines Une fonction est affine lorsque l image d un nombre où a et b sont deux nombres quelconques connus. peut s écrire sous la forme Les nombres a et b

Plus en détail

ECGE 1224 - Statistiques en économie et gestion : TP 1

ECGE 1224 - Statistiques en économie et gestion : TP 1 ECGE 14 - Statistiques en économie et gestion : TP 1 Exercice 1 Un dé parfaitement équilibré est lancé. Soit X la variable aléatoire (v.a.) correspondant au résultat obtenu avec le dé. a) Justifer pourquoi

Plus en détail

TUTORAT UE 4 2015-2016 Biostatistiques Séance n 5 Semaine du 19/10/2015

TUTORAT UE 4 2015-2016 Biostatistiques Séance n 5 Semaine du 19/10/2015 TUTORAT UE 4 2015-2016 Biostatistiques Séance n 5 Semaine du 19/10/2015 Tests statistiques 2 M. Molinari. Séance préparée par Cécile JOURDAN, Charlotte SILVESTRE, Brice LAVABRE, Julie DUSSAUT, Mathilde

Plus en détail

DIU Infirmières de Santé au Travail - IDF. Service Central de Santé au Travail de l AP-HP PLAN DE COURS

DIU Infirmières de Santé au Travail - IDF. Service Central de Santé au Travail de l AP-HP PLAN DE COURS DIU Infirmières de Santé au Travail - IDF Faculté de Médecine Paris VII - Denis Diderot Mardi 7 juin 2016 STATISTIQUES EN SANTE AU TRAVAIL : NOTIONS ESSENTIELLES Service Central de Santé au Travail de

Plus en détail

Corrigé du baccalauréat ES Pondichéry 16 avril 2015

Corrigé du baccalauréat ES Pondichéry 16 avril 2015 Corrigé du baccalauréat ES Pondichéry 16 avril 2015 Exercice 1 Commun à tous les candidats 5 points Partie A On appelle B l événement «la batterie est défectueuse» ; l événement «le disque dur est défectueux».

Plus en détail

Baccalauréat ES Pondichéry 21 avril 2016

Baccalauréat ES Pondichéry 21 avril 2016 Exercice 1 Commun à tous les candidats Baccalauréat ES Pondichéry 21 avril 216 4 points Cet exercice est un QCM (questionnaire à choix multiples). Pour chacune des quatre questions posées, une seule des

Plus en détail

Principe des Tests Statistiques

Principe des Tests Statistiques Principe des Tests Statistiques Vocabulaire & Notions Générales Marc AUBRY Plateforme Transcriptome Biogenouest Rennes Askatu Les Étapes d un Test Statistique Question scientifique Choix d un test statistique

Plus en détail

TD : Microéconomie de l incertain. Emmanuel Duguet

TD : Microéconomie de l incertain. Emmanuel Duguet TD : Microéconomie de l incertain Emmanuel Duguet 2013-2014 Sommaire 1 Les loteries 2 2 Production en univers incertain 4 3 Prime de risque 6 3.1 Prime de risque et utilité CRRA.................. 6 3.2

Plus en détail

Estimation. Anita Burgun

Estimation. Anita Burgun Estimation Anita Burgun Estimation Anita Burgun Contenu du cours Sondages Mesures statistiques sur un échantillon Estimateurs Problème posé Le problème posé en statistique: On s intéresse à une population

Plus en détail

Estimation indirecte en sciences humaines : une méthode bayésienne

Estimation indirecte en sciences humaines : une méthode bayésienne Estimation indirecte en sciences humaines : une méthode bayésienne Henri Caussinus, Institut de Mathématiques de Toulouse, en collaboration avec Daniel Courgeau, INED Isabelle Séguy, INED Luc Buchet, CNRS

Plus en détail

Statistiques appliquées (L3 d'économie) - Cours de Patrick Sevestre - TD 2 - Corrigé

Statistiques appliquées (L3 d'économie) - Cours de Patrick Sevestre - TD 2 - Corrigé Statistiques appliquées (L3 d'économie) - Cours de Patrick Sevestre - TD 2 - Corrigé Marc Sangnier - marc.sangnier@ens-cachan.fr 29 octobre 2007 Exercice 1 - Lien entre salaire et formation Remarques préliminaires

Plus en détail

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé)

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) EXERCICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chacune des questions posées, une seule des quatre réponses

Plus en détail

Enquête.sba Procédure Tableaux croisés

Enquête.sba Procédure Tableaux croisés Enquête.sba Procédure Tableaux croisés Tris croisés p. 27 «Cette procédure est conçue pour le calcul et l édition massive de tableaux croisés. On obtient à partir de cette procédure des tableaux de contingence,

Plus en détail

Exercice II. l offre de transport (en tonnes.kilomètres) l effectif le poids de la flotte (en tonnes) le caractère public ou privée de la compagnie

Exercice II. l offre de transport (en tonnes.kilomètres) l effectif le poids de la flotte (en tonnes) le caractère public ou privée de la compagnie 1 Exercice II II. On dispose de données (fichier «aviation87.xls», section Exemples pour Excel) concernant le transport aérien en 1987, et indiquant pour 50 compagnies occidentales : Q L K PP l offre de

Plus en détail

4.1 Planification d une expérience complètement randomisée

4.1 Planification d une expérience complètement randomisée Chapitre 4 La validation des hypothèses d ANOVA à un facteur Dans le modèle standard d ANOVA, on a fait quelques hypothèses. Pour que les résultats de l analyse effectuée soient fiables, il est nécessaire

Plus en détail

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50 10. Estimation MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: estimation 1/50 Plan 1. Introduction 2. Estimation ponctuelle 3. Estimation par intervalles de confiance 4. Autres

Plus en détail

Chapitre 1 LE TEST DU KHI-DEUX

Chapitre 1 LE TEST DU KHI-DEUX Chapitre LE TEST DU KHI-DEUX I. Présentation de la statistique khi - carré ( χ²) Une somme de ν carré de variables indépendantes normalement distribuées de moyenne 0 et de variance suit une loi normale

Plus en détail

Principes Pourcentage / Standard Moyenne / Standard. Tests d'hypothèse. Formation Fondamentale

Principes Pourcentage / Standard Moyenne / Standard. Tests d'hypothèse. Formation Fondamentale Tests d'hypothèse Formation Fondamentale Sommaire 1 Principes Généralités 2 Pourcentage par rapport à un standard 3 Moyenne par rapport à un standard Sommaire 1 Principes Généralités 2 Pourcentage par

Plus en détail

Université d Orléans - Licence Economie et Gestion Statistique Mathématique

Université d Orléans - Licence Economie et Gestion Statistique Mathématique Université d Orléans - Licence Economie et Gestion tatistique Mathématique C. Hurlin. Correction du Contrôle de Décembre 9 Exercice Barème : 6 points. Ratio de harpe et tests paramétriques Question préliminaire

Plus en détail

Corrigé du baccalauréat ES Asie 19 juin 2014

Corrigé du baccalauréat ES Asie 19 juin 2014 Corrigé du baccalauréat ES Asie 9 juin 4 EXERCICE 4 points Commun à tous les candidats Proposition : fausse f (4) est le coefficient directeur de la tangente à la courbe au point C ; cette droite passe

Plus en détail

Chapitre 5 Fonctions affines et équations du 1 er degré. Table des matières

Chapitre 5 Fonctions affines et équations du 1 er degré. Table des matières Chapitre 4 Fonctions affines et équations du 1 er degré. TABLE DES MATIÈRES page -1 Chapitre 5 Fonctions affines et équations du 1 er degré. Table des matières I Exercices I-1 1................................................

Plus en détail

Statistiques inférentielles : estimation

Statistiques inférentielles : estimation Statistiques inférentielles : estimation Table des matières I Estimation ponctuelle d un paramètre 2 I.1 Moyenne................................................ 2 I.2 Écart-type...............................................

Plus en détail

Au menu. Cours 7: Classes Probabilistes. Application : Calcul de la médiane. Sous menu. Retours sur quelques algorithmes.

Au menu. Cours 7: Classes Probabilistes. Application : Calcul de la médiane. Sous menu. Retours sur quelques algorithmes. Au menu Cours 7: Classes Probabilistes Olivier Bournez bournez@lix.polytechnique.fr LIX, Ecole Polytechnique Retours sur quelques algorithmes Quelques résultats INF561 Algorithmes et Complexité 1 2 Sous

Plus en détail

Traitement statistique. des petits échantillons. Application avec JMP - 3 jours (*)

Traitement statistique. des petits échantillons. Application avec JMP - 3 jours (*) Traitement statistique Application avec JMP - 3 jours (*) Référence : STA-N1-SPECHAJMP Durée : 3 jours soit 21 heures (*) : La durée proposée est une durée standard. Elle peut être adaptée selon les besoins,

Plus en détail

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq»

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Guy Perrière Pôle Rhône-Alpes de Bioinformatique 14 novembre 2012 Guy Perrière (PRABI) Tests statistiques 14 novembre 2012 1 / 40 Plan

Plus en détail

I. APPROCHE STATISTIQUE COMPARATIVE DES ACTIVITES PRODUCTIVES DES TIC EN AQUITAINE

I. APPROCHE STATISTIQUE COMPARATIVE DES ACTIVITES PRODUCTIVES DES TIC EN AQUITAINE I. APPROCHE STATISTIQUE COMPARATIVE DES ACTIVITES PRODUCTIVES DES TIC EN AQUITAINE L analyse statistique qui suit a été réalisée par Séverine Penaud-Roux à partir des données brutes issues de la base CLAP

Plus en détail

Échantillonnage et estimation

Échantillonnage et estimation Échantillonnage et estimation Dans ce chapitre, on s intéresse à un caractère dans une population donnée dont la proportion est notée. Cette proportion sera dans quelques cas connue (échantillonnage),

Plus en détail

Corrrigé du sujet de Baccalaurat S. Pondichery 2015. Spécialité

Corrrigé du sujet de Baccalaurat S. Pondichery 2015. Spécialité Corrrigé du sujet de Baccalaurat S Pondichery 2015 Spécialité EXERCICE 1 (4 points) commun à tous les candidats Partie A Soit f la fonction définie sur R par f(x) et la droite d équation et la droite d

Plus en détail

C(x) = 5 9. et h = 160

C(x) = 5 9. et h = 160 Chapitre Fonctions affines. Définition Définition. La fonction définie par f : R R = m+h où m et h sont des nombres réels, est appelée fonction affine. Eemple La fonction C() qui permet de convertir des

Plus en détail

COMMENT METTRE EN PLACE UN TEST CONSOMMATEUR?

COMMENT METTRE EN PLACE UN TEST CONSOMMATEUR? COMMENT METTRE EN PLACE UN TEST CONSOMMATEUR? Les différents tests de préférences Étude de cas: Laits et cafés Analyse statistique des tests de préférence Dess Qualite Test consommateurs 1 Hédonique :

Plus en détail

Validation d une méthode performante de dosage des steviols glycosides de Stevia Rebaudiana

Validation d une méthode performante de dosage des steviols glycosides de Stevia Rebaudiana Validation d une méthode performante de dosage des steviols glycosides de Stevia Rebaudiana J.M. Roussel, Consultant, Aix-en-Pce Prof. Dr. Gertrud Morlock, Chair of Food Science, JLU Giessen S. Meyer,

Plus en détail

L ensemble de définition de la fonction inverse est l ensemble des réels non nuls notér, c est la réunion de deux intervalles ] ;0[ ]0;+ [

L ensemble de définition de la fonction inverse est l ensemble des réels non nuls notér, c est la réunion de deux intervalles ] ;0[ ]0;+ [ I FONCTION INVERSE DÉFINITION La fonction inverse est la fonction définie pour tout réel 0 par f()= ENSEMBLE DE DÉFINITION L ensemble de définition de la fonction inverse est l ensemble des réels non nuls

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer [http://mp.cpgedupuydelome.fr] édité le 9 décembre 05 Enoncés Familles sommables Ensemble dénombrable a) Calculer n+ Exercice [ 03897 ] [Correction] Soit f : R R croissante. Montrer que l ensemble des

Plus en détail

Régression linéaire et corrélation

Régression linéaire et corrélation CHAPITRE 10 Régression linéaire et corrélation 1. Introduction Dans ce chapitre, nous regarderons comment vérifier si une variable à un influence sur une autre variable afin de prédire une des variables

Plus en détail

Classe de 3ème. Effectif partiel n Effectif total N

Classe de 3ème. Effectif partiel n Effectif total N Classe de 3ème Chapitre 2 Statistiques. 1. Quelques rappels. Une série statistique est composée de valeurs. Le nombre de fois où une valeur est répétée s'appelle l'effectif partiel de cette valeur. La

Plus en détail

Échantillonnage Équipe Académique Mathématiques - 2011

Échantillonnage Équipe Académique Mathématiques - 2011 Échantillonnage Équipe Académique Mathématiques - 2011 Fluctuation des échantillons Considérons une urne «de Bernoulli» (la population) contenant une proportion p de boules blanches, dont on extrait n

Plus en détail

8. Statistique descriptive

8. Statistique descriptive 8. Statistique descriptive MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: statistique descriptive 1/47 Plan 1. Introduction 2. Terminologie 3. Descriptions graphiques des

Plus en détail

Définitions Covariance Corrélation Meilleur prédicteur linéaire. Chapitre 5 Couple de variables aléatoires

Définitions Covariance Corrélation Meilleur prédicteur linéaire. Chapitre 5 Couple de variables aléatoires Chapitre 5 Couple de variables aléatoires Définitions 1 On appelle couple de variables aléatoires (discrètes) l application: Ω R ω (X (ω), Y (ω)) 2 La distribution d un couple de v.a. est définie par les

Plus en détail

Pierre-Louis GONZALEZ

Pierre-Louis GONZALEZ SEGMENTATION Pierre-Louis GONZALEZ 1 I. Les méthodes de segmentation. Introduction Les méthodes de segmentation cherchent à résoudre les problèmes de discrimination et de régression en divisant de façon

Plus en détail

Séminaire d Epidémiologie Animale Analyse de données en présence de clusters

Séminaire d Epidémiologie Animale Analyse de données en présence de clusters Analyse de données en présence de clusters Notion de clusters Conséquences de la non prise en compte des clusters Un exemple, une structure hiérarchique Elevage > Animal Le facteur d inflation de la variance

Plus en détail

2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A

2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 013 Lectures graphiques (9 points) Les parties sont indépendantes Partie A Tous les clients d un petit restaurant ont opté pour la formule

Plus en détail

SONDAGE DANS LA MISSION D AUDIT UNITE MONETAIRE. Fethi NEJI & Mounir GRAJA

SONDAGE DANS LA MISSION D AUDIT UNITE MONETAIRE. Fethi NEJI & Mounir GRAJA SONDAGE DANS LA MISSION D AUDIT UNITE MONETAIRE Le sondage est une sélection d'éléments que l'auditeur décide d'examiner afin de tirer, en fonction des résultats obtenus, une conclusion sur les caractéristiques

Plus en détail

FONCTIONS (2) : FONCTIONS AFFINES REPRESENTATIONS GRAPHIQUES

FONCTIONS (2) : FONCTIONS AFFINES REPRESENTATIONS GRAPHIQUES SYNTHESE ( THEME 9 ) FONCTIONS (2) : FONCTIONS AFFINES REPRESENTATIONS GRAPHIQUES A - FONCTION AFFINE A : DEFINITION ET NOTATION a et b étant deux nombres fixés, on appelle fonction affine tout processus

Plus en détail

Les théorèmes de Gerschgorin et de Hadamard

Les théorèmes de Gerschgorin et de Hadamard Localisation des valeurs propres : Quelques propriétés sur les disques de Gerschgorin. Jean-Baptiste Campesato 22 septembre 29 Gerschgorin est parfois retranscrit en Gershgorin, Geršgorin, Hershhornou

Plus en détail

Le Saux Loïc Tanguy Brewal. Enquête d opinion sur la dégradation de la qualité de la télévision française dans le temps

Le Saux Loïc Tanguy Brewal. Enquête d opinion sur la dégradation de la qualité de la télévision française dans le temps Le Saux Loïc Tanguy Brewal Enquête d opinion sur la dégradation de la qualité de la télévision française dans le temps Traitement des enquêtes M1 ISC 2007/2008 Sommaire Introduction... 3 I ANALYSE DESCRIPTIVE

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

INTRODUCTION A LA RECHERCHE QUANTITATIVE

INTRODUCTION A LA RECHERCHE QUANTITATIVE INTRODUCTION A LA RECHERCHE QUANTITATIVE Deuxième partie : de la base de données aux résultats Juin 2010 Julien Gelly, Caroline Huas, Josselin Le Bel Plan 2 1. Introduction 2. Saisie des données : Epi

Plus en détail

Test de comparaison de deux modèles de régression non paramétriques basé sur les coefficients de Fourier

Test de comparaison de deux modèles de régression non paramétriques basé sur les coefficients de Fourier Test de comparaison de deux modèles de régression non paramétriques basé sur les coefficients de Fourier Zaher Mohdeb Université Mentouri Département de Mathématiques, Constantine, Algérie E-mail: zaher.mohdeb@umc.edu.dz

Plus en détail

Espaces de Sobolev. Résumé du cours de MEDP Maîtrise de mathématiques 2001 2002. medp-sobolev.tex (2001nov24)

Espaces de Sobolev. Résumé du cours de MEDP Maîtrise de mathématiques 2001 2002. medp-sobolev.tex (2001nov24) Espaces de Sobolev Résumé du cours de MEDP Maîtrise de mathématiques 2001 2002 medp-sobolevtex (2001nov24) Sauf mention explicite du contraire, toutes les fonctions considérées seront à valeurs réelles

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Dénombrement et probabilités Version du juillet 05 Enoncés Exercice - YouTube Sur YouTube, les vidéos sont identifiées à l aide d une chaîne

Plus en détail

Expert Automobile 2001 Electricité

Expert Automobile 2001 Electricité Expert Automobile 2001 Electricité Le schéma suivant est une représentation simplifiée d une commande de montée / descente de la fourche d un chariot élévateur. Le mouvement de la fourche est contrôlé

Plus en détail

Présentation de la législation sur la réversion. Caisse Nationale d Assurance Vieillesse Direction Statistiques et prospective

Présentation de la législation sur la réversion. Caisse Nationale d Assurance Vieillesse Direction Statistiques et prospective CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 09 juillet 2008-9 h 30 «Evolution des droits familiaux et conjugaux ; niveau de vie au moment du veuvage» Document N 14 Document de travail, n engage

Plus en détail

Analyse Microéconomique. Francesco Quatraro L1 AES 2010/2011

Analyse Microéconomique. Francesco Quatraro L1 AES 2010/2011 Francesco Quatraro L1 AES 2010/2011 1 Les courbes de coût Considérons la fonction de coût qui donne le coût minimum de production d un niveau d output y: c(w 1, w 2, y) Considérons les prix des facteurs

Plus en détail

Ax = b iff (B + N) x N

Ax = b iff (B + N) x N Chapitre 3 Algorithme du simplexe 3.1 Solution de base admissible P en forme standard. A = (a 1,...,a n ) Hypothèse : n m (plus de variables que d équations) et rg(a)=m (pas d équation inutile). Donc après

Plus en détail

Agrégation interne de Sciences économiques et sociales - Session 2008 Épreuve de Mathématiques - sujet A

Agrégation interne de Sciences économiques et sociales - Session 2008 Épreuve de Mathématiques - sujet A Épreuve de Mathématiques - sujet A Exercice Une société de location de voitures possède trois agences, une à Rennes, une à Lyon, une à Marseille. Lorsqu un client loue une voiture, un jour donné, dans

Plus en détail

Topologie des espaces vectoriels normés

Topologie des espaces vectoriels normés Topologie des espaces vectoriels normés Cédric Milliet Version préliminaire Cours de troisième année de licence Université Galatasaray Année 2011-2012 2 Chapitre 1 R-Espaces vectoriels normés 1.1 Vocabulaire

Plus en détail

Les paraboles. x ax 2 + bx + c.

Les paraboles. x ax 2 + bx + c. 1ES Résumé du cours sur le second degré. Les paraboles. On appelle fonction du second degré une fonction de la forme x ax 2 + bx + c. Bien sûr a doit être différent de 0 sinon ce n est pas une fonction

Plus en détail

LES GUIDES. Gestion des sites

LES GUIDES. Gestion des sites LES GUIDES Gestion des sites 1 4. Gestion des sites 4.1 Pièces : 4.2 Equipements : 4.2.1 Création d un équipement La création d un équipement passe par la sélection d un type d équipement dans le bandeau

Plus en détail

Rappels (1) Objectif et plan. Rappels (2) On considère le problème modèle, supposé bien posé, Chercher uh V h tel que (1) a(u, v) = b(v)

Rappels (1) Objectif et plan. Rappels (2) On considère le problème modèle, supposé bien posé, Chercher uh V h tel que (1) a(u, v) = b(v) Rappels (1) On considère le problème modèle, supposé bien posé, { Chercher u V tel que a(u, v) = b(v) v V (1) Éléments finis en 2D Alexandre Ern ern@cermics.enpc.fr http://cermics.enpc.fr/cours/cs (V Hilbert,

Plus en détail

Heureusement, le tableau ci-dessus est complété par l'histogramme ci-dessous où un centimètre carré représente 10 jours.

Heureusement, le tableau ci-dessus est complété par l'histogramme ci-dessous où un centimètre carré représente 10 jours. Exercice 1 Le comptable des Tacauds Blancois vient de comptabiliser le nombre de passagers transportés par les taxis de son entreprise pour chaque jour de l'année 2011. Pour que son travail soit plus compréhensible

Plus en détail

Exos corrigés darithmétique...classe : TS-Spé. Prof. MOWGLI Ahmed. Année scolaire 2015-2016

Exos corrigés darithmétique...classe : TS-Spé. Prof. MOWGLI Ahmed. Année scolaire 2015-2016 Exos corrigés darithmétique...classe : TS-Spé Prof. MOWGLI Ahmed Année scolaire 2015-2016 1 Pour des cours particuliers par petits groupes de 3 ou 4 élèves en maths et/ou physique-chimie, veuillez me contacter.

Plus en détail

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Corrigé du baccalauréat STMG Centres étrangers 11 juin 2015

Corrigé du baccalauréat STMG Centres étrangers 11 juin 2015 Corrigé du baccalauréat STMG Centres étrangers 11 juin 2015 La calculatrice (conforme à la circulaire n o 99-186 du 16 novembre 1999) est autorisée. Le candidat est invité à faire figurer sur la copie

Plus en détail

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6 Probabilités et Statistiques Raphaël KRIKORIAN Université Paris 6 Année 2005-2006 2 Table des matières 1 Rappels de théorie des ensembles 5 1.1 Opérations sur les ensembles................... 5 1.2 Applications

Plus en détail

Communauté de Communes en Terres Vives. 18110 - Vasselay

Communauté de Communes en Terres Vives. 18110 - Vasselay Communauté de Communes en Terres Vives 18110 - Vasselay PROCEDURE ADAPTEE DOCUMENT VALANT ACTE D ENGAGEMENT REGLEMENT DE CONSULTATION CAHIER DES CHARGES ADMINISTRATIVES ET TECHNIQUES PARTICULIERES Pouvoir

Plus en détail

Comme la moyenne au devoir est plutôt faible, le professeur propose deux possibilités pour augmenter cette moyenne :

Comme la moyenne au devoir est plutôt faible, le professeur propose deux possibilités pour augmenter cette moyenne : Chapitre 6 : Statistiques I Premières définitions - Etablir une statistique, c est relever pour tous les individus d une population les valeurs d une grandeur X, appelée caractère ou variable statistique.

Plus en détail

Second degré. Christophe ROSSIGNOL. Année scolaire 2008/2009

Second degré. Christophe ROSSIGNOL. Année scolaire 2008/2009 Second degré Christophe ROSSIGNOL Année scolaire 008/009 Table des matières 1 Polynômes du second degré 1.1 Définition................................................. 1. Forme canonique.............................................

Plus en détail

Baccalauréat STMG Polynésie 12 septembre 2014 Correction

Baccalauréat STMG Polynésie 12 septembre 2014 Correction Baccalauréat STMG Polynésie 1 septembre 014 Correction Durée : 3 heures EXERCICE 1 6 points Pour une nouvelle mine de plomb, les experts d une entreprise modélisent le chiffre d affaires (en milliers d

Plus en détail

MATHEMATIQUES BTS1 2013-2014 Corrigés des devoirs

MATHEMATIQUES BTS1 2013-2014 Corrigés des devoirs MATHEMATIQUES BTS1 2013-201 Corrigés des devoirs CC 23 /09/2013 page2 CC 18/10/2013 page DV 25/11/2013 page 6 BTS Blanc 13/12/2013 page 8 CC 07/01/201 page 12 CC 0/02/201 page 1 BTS Blanc 27/02/201 page

Plus en détail

Bien connaître le tarif Vert

Bien connaître le tarif Vert Bien connaître le tarif Vert http://corse.edf.com Comment se présente le tarif vert A5 1 Plusieurs versions tarifaires Courtes utilisations Moyennes utilisations Longues utilisations mais une structure

Plus en détail

ACCORD DU 14 JANVIER 2011 RELATIF À L ÉGALITÉ PROFESSIONNELLE ENTRE LES FEMMES ET LES HOMMES

ACCORD DU 14 JANVIER 2011 RELATIF À L ÉGALITÉ PROFESSIONNELLE ENTRE LES FEMMES ET LES HOMMES MINISTÈRE DU TRAVAIL, DE L EMPLOI ET DE LA SANTÉ CONVENTIONS COLLECTIVES Brochure n 3020 Convention collective nationale IDCC : 787. PERSONNEL DES CABINETS D EXPERTS-COMPTABLES ET DE COMMISSAIRES AUX COMPTES

Plus en détail

Cohérence des dépenses déclarées au regard des prestations réalisées et des clauses du contrat

Cohérence des dépenses déclarées au regard des prestations réalisées et des clauses du contrat PROCÉDURE DE CONTRÔLE DE REGULARITE DE L ACHAT PUBLIC POUR LES DOSSIERS RELEVANT DES AXES I, III, IV ET VI DU PROGRAMME OPERATIONNEL 2007-2013 COMPETITIVITE ET EMPLOI DE MIDI-PYRÉNÉES 01.08.2013 I.- Contrôle

Plus en détail

Séance 2: Modèle Euclidien

Séance 2: Modèle Euclidien Généralités Métrique sur les INDIVIDUS Métrique sur les VARIABLES Inertie Analyse des individus Laboratoire de Statistique et Probabilités UMR 5583 CNRS-UPS www.lsp.ups-tlse.fr/gadat Généralités Métrique

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES BACCALAURÉAT TECHNOLOGIQUE Session 2015 Jeudi 18 juin 2015 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DE LABORATOIRE Spécialité : BIOTECHNOLOGIES Durée de l épreuve : 4 heures Coefficient : 4 Calculatrice

Plus en détail

MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE

MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE Pierre-Louis Gonzalez 1 I INTRODUCTION 1 variable qualitative. Tri à plat. Représentations graphiques. Modélisation : loi binomiale loi multinomiale

Plus en détail

Statistiques appliquées avec Geogebra

Statistiques appliquées avec Geogebra Université Claude Bernard Lyon-1 Stage PAF Statistiques appliquées avec Geogebra Anne Perrut Janvier 2014 2 Table des matières 1 Statistique descriptive à une variable 7 1.1 Variables quantitatives discrètes.........................

Plus en détail

I- FONCTION DE RÉFÉRENCE. Les fonctions de référence 1, et ² ainsi que leurs utilisations ont été abordées en classe de seconde. a) Fonction affine

I- FONCTION DE RÉFÉRENCE. Les fonctions de référence 1, et ² ainsi que leurs utilisations ont été abordées en classe de seconde. a) Fonction affine Première Maths FONCTIONS DE LA FORME f+g ET kf I- FONCTION DE RÉFÉRENCE Les fonctions de référence 1, et ² ainsi que leurs utilisations ont été abordées en classe de seconde. a) Fonction affine Elle est

Plus en détail

Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve...

Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve... Sommaire Descriptif de l épreuve............................................. Conseils pour l épreuve............................................ Les pourcentages FICHES Pages 1 Pourcentage Proportions....................................7

Plus en détail

Incertitudes expérimentales Étude de cas : logiciel Chute

Incertitudes expérimentales Étude de cas : logiciel Chute Nº 755 BULLETIN DE L UNION DES PHYSICIENS 883 Incertitudes expérimentales Étude de cas : logiciel Chute par Daniel BEAUFILS Institut National de Recherche Pédagogique, 910 Montrouge Juan-Carlos IMBROGNO

Plus en détail

Validation d un questionnaire de fréquence alimentaire court et qualitatif

Validation d un questionnaire de fréquence alimentaire court et qualitatif Validation d un questionnaire de fréquence alimentaire court et qualitatif J. Giovannelli, UMR 744, Institut Pasteur de Lille C. Simon, CARMEN, INSERM U1060, Université de Lyon / INRA U1235 J. Ferrieres,

Plus en détail

Probabilités conditionnelles

Probabilités conditionnelles 22 Probabilités conditionnelles Ω, B, P est un espace probabilisé. 22. Définition et propriétés des probabilités conditionnelles Considérons l expérience aléatoire qui consiste à lancer deux fois un dé

Plus en détail

Baccalauréat STG Pondichéry 17 avril 2015 Sciences et technologies du management et de la gestion

Baccalauréat STG Pondichéry 17 avril 2015 Sciences et technologies du management et de la gestion Baccalauréat ST Pondichéry 17 avril 015 Sciences et technologies du management et de la gestion Correction EXERCICE 1 6 points Le tableau ci-dessous, extrait d une feuille de calcul, donne le revenu disponible

Plus en détail

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Résumé : A partir du problème de la représentation des droites sur un écran d ordinateur,

Plus en détail

1. Calculer: P(Z<1.34); P(Z<-1.72); P(Z>2.41); P(Z>-1.53); P(1.12<Z<1.57); P(- 0.75<Z<0.36); P( Z >1.96)

1. Calculer: P(Z<1.34); P(Z<-1.72); P(Z>2.41); P(Z>-1.53); P(1.12<Z<1.57); P(- 0.75<Z<0.36); P( Z >1.96) EXERCICES SUR LA LOI NORMALE Exercice 1. Soit Z une V.A. de loi N(0,1). 1. Calculer: P(Z-1.53); P(1.12

Plus en détail

Statistiques descriptives Variance et écart type

Statistiques descriptives Variance et écart type Statistiques descriptives Variance et écart type I) Rappel : la moyenne (caractéristique de position ) Définition Soit la série statistique définie dans le tableau suivant : Valeur... Effectif... Fréquences

Plus en détail

DEVOIR DE CONCEPTION COMPRESSEUR SANDEN

DEVOIR DE CONCEPTION COMPRESSEUR SANDEN Mercredi 10 mai 2006 DEVOIR DE CONCEPTION COMPRESSEUR SANDEN Les documents de cours et de TD sont autorisés. Certaines données sont à rechercher dans le cours. Pour toutes les questions vous préciserez

Plus en détail

Chapitre 6 : Tests d hypothèses

Chapitre 6 : Tests d hypothèses U.P.S. I.U.T. A, Département d Informatique Année 2008-2009 Chapitre 6 : Tests d hypothèses Les statistiques peuvent être une aide à la décision permettant de choisir entre deux hypothèses. Par exemple,

Plus en détail

Présentation de l application Livret personnel de compétences

Présentation de l application Livret personnel de compétences Présentation de l application Livret personnel de compétences Sommaire 1. Accéder au livret 2. Paramétrer l application 3. Renseigner un item 4. Valider une compétence et confirmer le socle 5. Editer des

Plus en détail

TD 15-16-17 : Martingales et portefeuilles, modèles de Ho et Lee

TD 15-16-17 : Martingales et portefeuilles, modèles de Ho et Lee Université Paris VI Master 1 : Modèles stochastiques pour la finance (4M065) 2013/2014 TD 15-16-17 : Martingales et portefeuilles, modèles de Ho et Lee Dans toute cette feuille (sauf dans l exercice sur

Plus en détail

BAROMÈTRE DE LA COMPETITIVITÉ DES ENTREPRISES ACCOMPAGNÉES PAR. 8 ème édition 2 ème semestre 2012 Principaux résultats

BAROMÈTRE DE LA COMPETITIVITÉ DES ENTREPRISES ACCOMPAGNÉES PAR. 8 ème édition 2 ème semestre 2012 Principaux résultats BAROMÈTRE DE LA COMPETITIVITÉ DES ENTREPRISES ACCOMPAGNÉES PAR L ANPME 8 ème édition 2 ème semestre 2012 Principaux résultats Conférence de presse du 14 Février 2013 Rabat Sommaire 1. Contexte et objectifs

Plus en détail