Modélisation des actions mécaniques

Dimension: px
Commencer à balayer dès la page:

Download "Modélisation des actions mécaniques"

Transcription

1 Cours 07 - Modélisation des actions mécaniques Page 1/14 Modélisation des actions mécaniques 1) BJECTIFS....3 ) CTINS MECNIQUES : GENERLITES ) MISE EN EVIENCE....3 ) EFINITIN UNE M ) CLSSIFICTIN ES M...3 Les actions mécaniques de contact (qui agissent sur la surface) Les actions mécaniques à distance (qui agissent sur le ) ) MELISTIN LCLE ET GLBLE ES M....4 Modèle local réalisé par des champs de vecteurs df Modèle global réalisé par des champs de torseurs ère étape : Notion de résultante : R pièce doigt dfpiècedoigt... 4 ème étape : Notion de moment résultant : M,piècedoigt Q dfpiècedoigt..5 Bilan : Torseur de l action mécanique globale... 5 Remarque : Calcul du moment d un glisseur par la méthode du «bras de levier» ) CTIN MECNIQUE ISTNCE : CS E L PESNTEUR ) HYPTHESE U SLIE HMGENE : ( Q ) cste ) MELE LCL : dfpes 1.g. dv ) MELE GLBL....6 Notion de poids : Rpes 1 m. g V.G Q.dv... 6 Notion de centre de gravité : m.g Expression globale : T pes G MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 31/03/010

2 Cours 07 - Modélisation des actions mécaniques Page /14 4) CTIN MECNIQUE E CNTCT ) NTIN HERENCE ET FRTTEMENT...7 4) MELISTIN ES CTINS MECNIQUES E CNTCT SURFCIQUE....7 Mise en évidence : Comportement d un colis sous une poussée latérale F Colis au repos... 7 dhérence (équilibre stable)... 7 dhérence limite (équilibre strict ou instable)... 7 Frottement (glissement)...7 Récapitulatif sur l évolution des actions tangentielles d adhérence T a et de frottement T f... 8 Modèle local : Lois de Coulomb... 8 Cas de l adhérence (équilibre stable)... 8 Cas de l adhérence limite (équilibre strict ou instable)... 8 Cas du frottement (glissement)... 8 Coefficients d adhérence et de frottement :... 9 Modèle global ) MELISTIN ES CTINS MECNIQUES E CNTCT PNCTUEL er cas : ucun mouvement ni de tendance au mouvement ème cas : Glissement ou tendance au glissement (Rappel des lois de Coulomb) ème cas : Pivotement ou tendance au pivotement ème cas : Roulement ou tendance au roulement Cas général : Combinaison de tous les mouvements ou tendance aux mouvements ) MELISTIN ES M E CNTCT VEC L HYPTHESE SNS FRTTEMENT/HERENCE Choix de la prise en compte ou non de ces résistances au mouvement Modélisation locale des actions mécaniques de contact surfacique sans frottement/adhérence Modélisation des actions mécaniques de contact ponctuel sans frottement/adhérence Bilan ) CTIN MECNIQUE TRNSMISSIBLE PR UNE LIISN PRFITE ) BJECTIF...1 5) RPPEL SUR LES LIISNS PRFITES ) ULITE TRSEUR CINEMTIQUE / TRSEUR E L CTIN MECNIQUE TRNSMISSIBLE PR UNE LIISN PRFITE...1 Étude de l action mécanique transmissible par une glissière Généralisons ) TBLEU GENERL ES TRSEURS CINEMTIQUE ET E L CTIN MECNIQUE TRNSMISSIBLE PR UNE LIISN PRFITE...13 Complète ou encastrement Glissière de direction x ppui plan de normale z Linéaire rectiligne de ligne de contact,x et de normale z Ponctuelle de point de contact et de normale z Pivot glissant d axe,x Pivot d axe,x Hélicoïdale d axe,x et de pas p Rotule de centre Rotule à doigt de centre et de rotation interdite,y Linéaire annulaire de centre et de direction x MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 31/03/010

3 Cours 07 - Modélisation des actions mécaniques Page 3/14 n supposera comme dans le chapitre précédent que les solides sont géométriquement parfaits et indéformables. 1) bjectifs. Tout mécanisme est dimensionné pour pouvoir être utilisé pendant un temps donné. r, la durée de vie d une pièce dépend généralement : de l environnement dans lequel elle se trouve, de ses dimensions, du matériau utilisé, mais aussi des actions appliquées sur celle-ci, Ces actions peuvent être mesurées mais cela demande : la construction d un prototype, la mise en place d un laboratoire de mesure, trop coûteux n va donc essayer de «PRÉVIR» les actions appliquées sur un mécanisme en utilisant des modèles mathématiques et des lois physiques. ) ctions mécaniques : Généralités. 1) Mise en évidence. Tout système est en permanence soumis à des actions. Exemple de la pince Schrader : L action du poignet sur la pince, l action de la pièce sur la pince n appelle ces ctions : ctions Mécaniques. ) éfinition d une M. n appelle ction Mécanique (notée M) toute cause capable : - de maintenir un corps au repos, - de créer ou modifier un mouvement, - de déformer un corps. Modèle global (voir page 4) Modèle local (voir page 4) Robot Schrader 3) Classification des M. n distingue : Les actions mécaniques de contact (qui agissent sur la surface). Elles s appliquent directement sur la surface du solide (action ponctuelle ou surfacique). Exemples : Entre deux solides (action de liaison). Entre un solide et un fluide (action de pression) Les actions mécaniques à distance (qui agissent sur le ). Elles s exercent au niveau de son (action volumique). Exemples : ttraction terrestre (action de la pesanteur). Champ magnétique d un aimant (action magnétique) Pince Schrader seule MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 31/03/010

4 Cours 07 - Modélisation des actions mécaniques Page 4/14 4) Modélisation locale et globale des M. L étude des actions mécaniques repose sur des modèles différents suivant l objectif recherché. Modèle local réalisé par des champs de vecteurs df. Principe de ce modèle : Représenter localement toutes les actions mécaniques élémentaires en tout point Q où elles agissent : c'est-à-dire sur un élémentaire dv ou une surface élémentaire ds. bjectif de ce modèle : Etudier des pressions de contact, et des déformations de solides (notions qui sortent du cadre de votre programme) Modélisation par un champ de vecteurs df : Exemple de l action mécanique élémentaire de contact de la pièce sur le doigt de la pince : Q df pièce doigt Cette action mécanique élémentaire est modélisée en son point d application Q par un vecteur lié dfpièce doigt dont les caractéristiques sont : un point d'application Q, une direction, un sens, une intensité dont l unité est le NEWTN (N). Modèle global réalisé par des champs de torseurs. Principe de ce modèle : Représenter globalement les actions mécaniques (dans le cas de solides indéformables). bjectif de ce modèle : Etudier l'équilibre ou le mouvement (avec actions mécaniques) de solides indéformables. Cette représentation fait disparaître l effet local, mais est très efficace pour appliquer les lois de la Mécanique : Principes fondamentaux de la Statique (PFS) ou de la ynamique (PF). Modélisation par un champ de torseurs (résultante + moment) : 1 ère étape : Notion de résultante : R df (Q. pièce doigt pièce doigt ) Exemple de l action mécanique de contact de la pièce sur le doigt de la pince : Rpièce doigt Cette action mécanique est modélisée en un point particulier par un vecteur lié Rpièce doigt (appelée résultante) dont les caractéristiques sont : un point d'application, une direction, un sens, une intensité dont l unité est le NEWTN (N). R pièce doigt dfpiècedoigt ( pièce doigt R est la somme de tous les petits df pièce doigt ) où est le domaine sur lequel s exercent les actions mécaniques élémentaires (une surface ou un ). MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 31/03/010

5 Cours 07 - Modélisation des actions mécaniques Page 5/14 ème étape : Notion de moment résultant : M,piècedoigt Q dfpiècedoigt. La modélisation de l action mécanique par une résultante en 1 point particulier est : suffisante pour un point appartenant au support de l action, puisqu elle prend en compte l action de tirer ou pousser. insuffisante pour un point n appartenant pas au support de l action, puisqu elle ne prend pas en compte l action de tordre, tourner, visser ou dévisser. En effet si on s intéresse à l effet de l action mécanique précédente au point, celle-ci a tendance à : - pousser le doigt dans une direction verticale parallèle à Rpièce doigt. - faire tourner le doigt autour de l axe z. Par conséquent, nous modéliserons l action mécanique de la pièce doigt en : Y X M,pièce doigt par une résultante Rpièce doigt qui a tendance à pousser dans une direction (résultante inchangée par rapport à celle modélisée en ) et par un ème vecteur lié (appelée moment et notée Rpièce doigt d M,pièce doigt qui a tendance à faire tourner autour d un axe et dont les caractéristiques sont : un point d'application, une direction, un sens, une intensité dont l unité est le NEWTN MÈTRE (N.m). R pièce doigt dfpiècedoigt et M,piècedoigt Q dfpiècedoigt où est le domaine sur lequel s exercent les actions mécaniques élémentaires (une surface ou un ). Bilan : Torseur de l action mécanique globale. Lorsque l on s intéresse, pour une résultante, à un point différent d un des points de son support, on dit que la résultante induit un moment par rapport à ce point. insi, pour traduire avec précision les effets d une action mécanique en n importe quel point d un solide, il faut caractériser cette action mécanique par une Résultante et un Moment (ceux-ci pouvant être nul). C est pourquoi, nous utiliserons l outil mathématique qui permet de regrouper ces informations : le torseur. Le torseur d action mécanique est défini en un point donné par ces «deux éléments de réduction» : une résultante R indépendante du point d'expression du torseur. un moment M fonction du point choisi. T df1 R 1 1 M,1 Q df 1 Y Remarque : Calcul du moment d un glisseur par la méthode du «bras de levier». X d M,1 M,1 R1 M,1 (d.x?.y) ( R1.y) M,1 d. R1.z M,1 d. R1 Rpièce doigt d est appelé bras de levier (distance entre le point et le support de la résultante au point ). MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 31/03/010

6 Cours 07 - Modélisation des actions mécaniques Page 6/14 3) ction mécanique à distance : Cas de la pesanteur. 31) Hypothèse du solide homogène : ( Q ) cste Q solide, la masse volumique reste constante : ( Q ) cste (Hypothèse qui n est pas valable pour du béton par exemple). 3) Modèle local : df 1.g. dv pes. Soit un solide 1, de V, placé dans le champ de pesanteur g tel que g g.z (Par défaut, on prend : g 9,81m.s ). Le champ de la pesanteur est orienté suivant la verticale descendante. Il produit en tout point Q du solide 1 une action mécanique élémentaire df 1 pes proportionnelle au élémentaire dv entourant Q : dfpes 1.g.dv.g.dv (car solide homogène) 1 dv Q z df 1 pes NB : Pour les solides dont une dimension est négligeable (plaque) ou pour les solides unidimensionnels (fil), l'élément élémentaire est une surface (ds) ou une ligne (dl). 33) Modèle global. Notion de poids : Rpes 1 m. g. Selon la définition d une résultante : R df.g.dv.g. dv pes 1 pes1.g.v m. g (poids du solide 1 noté parfois P 1 ) Notion de centre de gravité : V.G Q.dv.,pes 1 pes1 Pour simplifier l expression de ce moment, on choisit de l exprimer non au point mais en un point G, tel que GQ.dv 0. insi en ce point G, M GQ.dv G,pes 1.g 0. Le point G peut être également définit en faisant intervenir le point, origine du repère : 0 GQ.dv (G Q).dv G.dv Q.dv V.G Q.dv V.G Selon la définition d un moment : M Q df Q.g.dv Q.dv. g Le point G ainsi défini, appelé centre de gravité, est le barycentre des points Q chacun pondéré du facteur dv. Q.dv m.g Expression globale : T. pes1 G 0 Le torseur de la pesanteur est donc un torseur glisseur dont l expression la plus simple est obtenue en G. L axe central du torseur passe par le centre de gravité et est vertical. MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 31/03/010

7 Cours 07 - Modélisation des actions mécaniques Page 7/14 4) ction mécanique de contact. 41) Notion d adhérence et frottement. 1/ Le frottement ou l adhérence sont des phénomènes qui tendent à s opposer au mouvement ou, à la tendance au mouvement relatif de pièces en contact. / S il existe un mouvement relatif entre les pièces en contact, on dit qu il y a frottement. 3/ S il existe une tendance au mouvement relatif entre les pièces en contact (mais sans mouvement ), on dit qu il y a adhérence. 4/ L équilibre strict se situe juste avant le mouvement (il n y a pas encore de mouvement). 4) Modélisation des actions mécaniques de contact surfacique. Mise en évidence : Comportement d un colis sous une poussée latérale F. F 0 F faible F F lim ite F F lim ite dhérence dhérence limite Frottement Colis au repos (équilibre stable) (équilibre strict ou instable) (glissement) Vitesse de glissement V g 0 V g 0 Lorsque qu une action F tend à faire glisser le colis/sol, il existe une action tangentielle d adhérence T a (égale et opposée à F) qui s oppose à la tendance au glissement. Cette action tangentielle d adhérence va faire incliner l action du solcolis d un angle a par rapport à la normale. Si F devient trop grand, le colis se mettra à glisser. onc, cette action tangentielle d adhérence a une limite T a limite (égale et opposée à F limite ) à partir de laquelle l opposition au glissement ne sera plus suffisante. Le colis se met à glisser sur le sol dans le même sens que F. Il existe une action tangentielle de frottement T f (quasi constante) < F qui s oppose au glissement. N schématise la résultante des actions de pression exercées par le sol sur le colis et P schématise le poids du colis. T a schématise la résultante des actions tangentielles d adhérence exercées par le sol sur le colis. T f schématise la résultante des actions tangentielles de frottement exercées par le sol sur le colis. T a F N P Ta lim ite Flimite angle d'adhérence a alimite angle d'adhérence limite ite Talimite Ta tan a alimite tan alimite cste N N avec a limite coef. d adhérence T f constant et Tf T a lim ite Le glissement se fera à vitesse : - uniforme si F=T f - accélérée si F>T f. a lim angle de frottement f a lim ite T tan f f f cste N avec f coef. de frottement MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 31/03/010

8 Cours 07 - Modélisation des actions mécaniques Page 8/14 Récapitulatif sur l évolution des actions tangentielles d adhérence T a et de frottement T f. L action tangentielle de frottement T f est à l origine des pertes d énergie par frottement. Si l objet est arrêté il faudra, pour le remettre en mouvement, fournir une action F > a limite.n. Les différentes phases sont résumées sur le graphique : Modèle local : Lois de Coulomb. Les lois de Coulomb permettent de faire la synthèse du paragraphe «mise en évidence» au niveau local. Soient deux solides S1 et S en contact sur une surface S. L action mécanique élémentaire df 1 de S1 sur S au point Q se projette sur la normale et dans le plan tangent commun à S1 et S en Q telle que : df1 dn1 dt1 où dn 1 caractérise l'action élémentaire de pression (normale au contact) dn 1 p. ds dt 1 caractérise l'action élémentaire de résistance au glissement (tangent au contact) dt1 alimite.dn1 Cas de l adhérence (équilibre stable) Cas de l adhérence limite (équilibre strict ou instable) Cas du frottement (glissement) Vitesse de glissement VQ / 1 0 Vitesse de glissement VQ / 1 0 Vitesse de glissement VQ / 1 0 Cône d adhérence S Cône d adhérence S Cône de frottement S dn 1 df 1 dn 1 df 1 dn 1 df 1 Tendance au glissement de /1 a limite a Tendance au glissement de /1 a limite Glissement de /1 f Q Q VQ / 1 Q ds dt 1 ds dt 1 ds dt 1 S1 S1 S1 a (angle d adhérence) alimite (angle d adhérence limite) f (angle de frottement) dt a limite. dn1 1 avec coef d adhérence alimite tanalimite L action mécanique élémentaire df 1 se situe NS le cône d adhérence (de sommet Q et de demi-angle au sommet L action élémentaire d adhérence dt 1 s oppose à la tendance au glissement de /1. dt a limite. dn1 1 avec coef d adhérence a limite tanalimite L action mécanique élémentaire df 1 se situe SUR le cône d adhérence )(de sommet Q et de demi-angle au sommet alimite L action élémentaire d adhérence ) alimite dt 1 s oppose à la tendance au glissement de /1. dt f. dn1 1 avec coef de frottement f tan f L action mécanique élémentaire df 1 se situe SUR le cône de frottement (de sommet Q et de demi-angle au sommet f ) L action élémentaire de frottement dt 1 s oppose au glissement de /1 : VQ /1 dt1 0 (colinéaire) VQ /1 dt1 0 (de sens opposé) MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 31/03/010

9 Cours 07 - Modélisation des actions mécaniques Page 9/14 Coefficients d adhérence et de frottement : a limite et f ne dépendent : ni de l intensité des actions exercées, ni de l étendue des surfaces en contact. Ils dépendent essentiellement : de la nature du couple de matériaux en contact, de la rugosité des surfaces en contact, de la lubrification (sec ou lubrifié), de la température au niveau des surfaces en contact qui peut favoriser des microsoudures ou la rupture du film d huile si le contact est lubrifié, de la vitesse de glissement Toutefois, en première approximation, on considère que le paramètre prépondérant concerne uniquement la nature du couple de matériaux en contact. dhérence a limite = tan a limite Frottement f = tan f Matériaux en contact sec Lubrifié sec Lubrifié cier sur acier 0,18 0,1 0,15 0,09 cier sur fonte 0,19 0,10 0,16 0,08 à 0,04 cier sur bronze 0,11 0,10 0,10 0,09 Téflon sur acier 0,04 0,04 Fonte sur bronze 0,10 0,0 0,08 à 0,04 Nylon sur acier 0,35 0,1 Bois sur bois 0,65 0,0 0,40 à 0,0 0,16 à 0,04 Métaux sur bois 0,60 à 0,50 0,10 0,50 à 0,0 0,08 à 0,0 Métal sur glace 0,0 Pneu voiture sur route 0,80 0,60 0,30 à 0,10 sur sol mouillé NB : Le coefficient d adhérence est toujours supérieur au coefficient de frottement ( a limite f ). Mais étant donné le grand nombre de paramètres qui interviennent dans leur détermination, on considère souvent, par mesure de simplification, que ces deux coefficients sont égaux et nommés ou f. Modèle global. df1 R T 1 surface 1 Ce torseur n a, à priori, aucune particularité. M,1 Q df 1 surface () 43) Modélisation des actions mécaniques de contact ponctuel. Tout le raisonnement qui a été effectué pour un contact surfacique (où le seul mouvement relatif est du glissement) peut être appliqué à un contact ponctuel (où le mouvement relatif peut-être cette fois-ci du glissement, du roulement ou du pivotement). Par analogie avec les lois de Coulomb où : le glissement donne naissance à une résistance au glissement modélisée par une résultante tangentielle (de résistance au glissement), le roulement donnera naissance à une résistance au roulement modélisée par un moment de résistance au roulement, le pivotement donnera naissance à une résistance au pivotement modélisée par un moment de résistance au pivotement. M1, Mr1, V / 1 S Mp,1 S1 N1 r / 1 p / 1 / 1 R1 T1 L action mécanique de 1 est modélisée en, point de contact entre 1 et, par le torseur suivant : R 1 N 1 T T 1 1 M,1 Mp,1 Mr,1 où N1 est la résultante normale de pression, T1 est la résultante tangentielle (de résistance au glissement), Mp,1 est le moment de résistance au pivotement en, Mr,1 est le moment de résistance au roulement en. Ces vecteurs sont obtenus par projection sur la normale et sur le plan tangent commun en à 1 et. NB1 : En réalité le contact ne se fait pas sur un point mais sur une surface de petite dimension (car la pression serait infinie). NB : / 1 p / 1 r / 1 MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 31/03/010

10 Cours 07 - Modélisation des actions mécaniques Page 10/14 1 er cas : ucun mouvement ni de tendance au mouvement. N T ème cas : Glissement ou tendance au glissement (Rappel des lois de Coulomb). N T T avec T1 a limite. N1 si V / 1 0 (non glissement) 0 T 1 f. N1 si V / 1 0 (glissement) coefficient de frottement (sans dimension) T1 s oppose au glissement de /1 : /1 T1 0 (colinéaire) V V /1 T1 0 (de sens opposé) 3 ème cas : Pivotement ou tendance au pivotement. N T 1 1 avec Mp,1 a limite. N1 si p / 1 0 (non pivotement) Mp,1 Mp,1 f. N1 si p / 1 0 (pivotement) paramètre de résistance au pivotement (exprimé en m) Mp,1 s oppose au pivotement de /1 : p / 1 Mp,1 0 (colinéaire) p / 1 Mp,1 0 (de sens opposé) 4 ème cas : Roulement ou tendance au roulement. N T 1 1 avec Mr,1 a limite. N1 si r / 1 0 (non roulement) Mr,1 Mr,1 f. N1 si r / 1 0 (roulement) paramètre de résistance au roulement (exprimé en m) Mr,1 s oppose au roulement de /1 : r / 1 Mr,1 0 (colinéaire) Mr 0 (de sens opposé) r / 1,1 Cas général : Combinaison de tous les mouvements ou tendance aux mouvements. Voir figure page précédente. R 1 N 1 T T 1 1 M,1 Mp,1 Mr,1 n utilise toujours les mêmes relations pour T1, Mp,1 et Mr,1 en fonction de N1. MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 31/03/010

11 Cours 07 - Modélisation des actions mécaniques Page 11/14 44) Modélisation des M de contact avec l hypothèse sans frottement/adhérence. Choix de la prise en compte ou non de ces résistances au mouvement. ans la plupart des problèmes, on ne prend pas en compte ces résistances au glissement, pivotement et roulement. En effet, les calculs issus des modèles (prise et non prise en compte) diffèrent très peu. En revanche, dans d autres cas, où on utilise justement cette propriété de résistance au mouvement avec bénéfice (freins, embrayages, courroies, arc-boutement, équilibre ou stabilité de certains mécanismes...), il est primordial de les prendre en compte. Enfin, dans certains mécanismes, nous en tiendrons compte aussi pour en diminuer leurs effets (résistance au mouvement, pertes d énergie, mauvais rendement...). Modélisation locale des actions mécaniques de contact surfacique sans frottement/adhérence. Soit deux solides S1 et S en contact sur une surface S. S df1 dn1 df 1, l action mécanique élémentaire de S1 sur S au point Q, est portée par la normale au plan tangent commun à S1 et S en Q. Elle n a pas de composante tangentielle. Q ds S1 Modélisation des actions mécaniques de contact ponctuel sans frottement/adhérence. Soit deux solides S1 et S en contact ponctuel. R1 N1 En réalité le contact ne se fait pas sur un point, mais sur une surface de petite dimension (car la pression serait infinie). S R1, l action mécanique de S1 sur S au point, est portée par la normale au plan tangent commun à S1 et S en. Elle n a pas de composante tangentielle. () S1 Bilan. Toutes les actions mécaniques (élémentaires pour un contact surfacique, ou globales pour un contact ponctuel) sont normales aux plans tangents communs aux contacts. Ceci revient à considérer que f a limite 0 f alimite 0 MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 31/03/010

12 Cours 07 - Modélisation des actions mécaniques Page 1/14 5) ction mécanique TRNSMISSIBLE par une liaison parfaite. 51) bjectif. Nous allons nous intéresser aux possibilités de transmission d actions entre les pièces constituant une liaison parfaite (compte tenu de la géométrie des surfaces de contact). 5) Rappel sur les liaisons parfaites. Une liaison parfaite est définie par : des surfaces de contact géométriquement parfaites, des jeux de fonctionnement nuls entre les surfaces de contact, un contact entre surfaces supposé sans adhérence. 53) ualité torseur cinématique / torseur de l action mécanique TRNSMISSIBLE par une liaison parfaite. Étude de l action mécanique transmissible par une glissière. Soit la liaison glissière de direction x supposée parfaite entre les pièces 1 et : Quels sont les mouvements élémentaires possibles? Translation suivant la direction x. Peut-on transmettre une action de 1 sur suivant ce degré de liberté? Non. En revanche peut-on transmettre une action de 1 sur suivant les 5 degrés de liaison? ui, les composantes de la résultante Y, Z et les composantes du moment L, M et N sont transmises d une pièce à l autre. insi il existe une dualité entre le torseur cinématique et le torseur de l action mécanique transmissible par la liaison glissière : Forme générale du Torseur cinématique 0 v x,p /1 / P (x,...,...) V Forme générale du Torseur de l action mécanique transmissible 0 L, 1 T 1 Y1 M, 1 Z 1 N, 1 (x,y,z) Généralisons. Lorsqu un degré de liberté est supprimé entre solides 1 et, il en résulte alors une composante dans le torseur de l action mécanique transmissible de 1 (qui empêche le mouvement). MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 31/03/010

13 Cours 07 - Modélisation des actions mécaniques Page 13/14 54) Tableau général des torseurs cinématique et de l action mécanique transmissible par une liaison parfaite. Parmi toutes les liaisons envisageables, la norme NF EN IS (mai 95) a retenu les plus courantes. Nom Représentation spatiale x z y z x Représentation plane y x z y Validité de la forme générale des Torseurs Forme générale du Torseur cinématique Forme générale du Torseur de l action mécanique transmissible Complète ou encastrement ou de l espace V 0 / P (...,...,...) pour tout point P de l'espace X1 T 1 Y1 Z 1 L,1 M,1 N,1 (x,y,z) Glissière de direction x de l espace V 0 /1 0 0 P v x,/1 0 0 (x,...,...) pour tout point P de l'espace 0 T 1 Y1 Z 1 L,1 M,1 N,1 (x,y,z) ppui plan de normale z Linéaire rectiligne de ligne de contact,x et de normale z (ou alors cylindreplan de ligne de contact,x et de normale z ) de l espace du plan (,x,z) 0 vx, /1 0 L, 1 V /1 0 v T y, /1 1 0 M, 1 P (,z) z,/1 0 Z 1 0 P (,z) (x,y,z) (x,y,z) pour tout point P de la normale pour tout point P de la normale (,z) (,z) V x,/1 /1 0 z,/1 0 0 T 1 0 M, 1 v x, /1 Z 1 0 v P (,z) (x,y,z) y, /1 0 (x,y,z) pour tout point P de la normale (,z) Ponctuelle de point de contact et de normale z (ou alors sphèreplan de point de contact et de normale z ) de la normale (,z) V x,/1 /1 y,/1 z,/1 v x, /1 v y, /1 0 (x,y,z) 0 0 T Z P (,z) 1 0 (...,...,z) pour tout point P de la normale (,z) MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 31/03/010

14 Cours 07 - Modélisation des actions mécaniques Page 14/14 Pivot glissant d axe,x ou de l axe (,x) x,/1 vx,p /1 / P (,x) (x,...,...) V pour tout point P de l'axe (,x) 0 T 1 Y1 Z 1 0 M,1 N,1 (x,y,z) Pivot d axe,x ou de l axe (,x) V x,/1 0 / P (,x) (x,...,...) pour tout point P de l'axe (,x) X1 T 1 Y1 Z 1 0 M,1 N,1 (x,y,z) Hélicoïdale d axe,x et de pas p ou ou de l axe (,x) p x,/1 x,/1. / P (,x) (x,...,...) V pour tout point P de l'axe (,x) X1 T 1 Y 1 Z 1 Pint 0 R1.V pas à droite : p X1. M, 1 N, 1 (x,y,z) M,1. / 1 p X1. x, / 1. L,1. x, / 1 0 (rad) p(mm) p p pas à gauche : x. vx x. p (rad) x(mm) X1.( x, / 1. ) L,1. x, / 1 0 Pas à droite p et p vx x. L X. / 1 Pas à gauche p v x. et p x L X. Rotule de centre (ou alors sphérique de centre ) Seulement en x, / 1 V / 1 y, / 1 0 T z, / (x,y,z) X1 1 Y1 Z (x,y,z) Rotule à doigt de centre et de rotation interdite,y (ou alors sphérique à doigt de centre et de rotation interdite,y ) Linéaire annulaire de centre et de direction x (ou alors sphèrecylindre de centre et de direction x ) x, /1 0 V /1 T en Seulement Seulement z, /1 0 (x,y,z) x,/1 x, /1 V /1 y,/1 0 T 1 en z,/1 v 0 (x,y,z) X1 Y1 Z 1 0 Y1 Z 1 0 M,1 0 (x,y,z) (x,y,z) MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 31/03/010

CHAPITRE II : STATIQUE

CHAPITRE II : STATIQUE CHPITRE II : STTIQUE - Généralités : I. NTIN DE RCE : En mécanique, les forces sont utilisées pour modéliser des actions mécaniques diverses (actions de contact, poids, attraction magnétique, effort ).

Plus en détail

1 Définition. 2 Modélisation des actions mécaniques. On appelle action mécanique toute cause susceptible de : - maintenir un corps au repos

1 Définition. 2 Modélisation des actions mécaniques. On appelle action mécanique toute cause susceptible de : - maintenir un corps au repos 1 Définition On appelle action mécanique toute cause susceptible de : - maintenir un corps au repos - créer ou modifier un mouvement - déformer un corps odélisation des actions mécaniques.1. Notion de

Plus en détail

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU) 0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2

Plus en détail

Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN.

Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN. TD 6 corrigé - PFS Résolution analytique (Loi entrée-sortie statique) Page 1/1 Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN. Question : Réaliser le graphe de structure, puis compléter

Plus en détail

Modèle d une automobile.

Modèle d une automobile. Modèle d une automobile. On modélise une automobile par deux disques homogènes identiques de masse m de rayon a, de moment d inertie J = (1/) m a par rapport à leurs axes respectifs, de centre C, en contact

Plus en détail

TD 8 Dynamique. 1 Nacelle à flèche téléscopique H21 TX 1. Compétences travaillées :

TD 8 Dynamique. 1 Nacelle à flèche téléscopique H21 TX 1. Compétences travaillées : Compétences travaillées : Déterminer tout ou partie du torseur cinétique d un solide par rapport à un autre. Déterminer tout ou partie du torseur dynamique d un solide par rapport à un autre. Déterminer

Plus en détail

Sciences industrielles Cours

Sciences industrielles Cours Lycée Blaise Pascal Mathématiques supérieures et spéciales Sciences industrielles Cours Mathématiques supérieures GENERALITE 7 QUELQUES INFORMATIONS SUR LES SYSTEMES 9 I Introduction 9 II Définition 9

Plus en détail

MINISTERE DE L'EDUCATION NATIONALE BACCALAUREAT PROFESSIONNEL REPARATION DES CARROSSERIES E.1- EPREUVE SCIENTIFIQUE ET TECHNIQUE

MINISTERE DE L'EDUCATION NATIONALE BACCALAUREAT PROFESSIONNEL REPARATION DES CARROSSERIES E.1- EPREUVE SCIENTIFIQUE ET TECHNIQUE MINISTERE DE L'EDUCATION NATIONALE BACCALAUREAT PROFESSIONNEL REPARATION DES CARROSSERIES Session : 2011 E.1- EPREUVE SCIENTIFIQUE ET TECHNIQUE UNITE CERTIFICATIVE U11 sous-épreuve E11 Analyse d un système

Plus en détail

BACCALAURÉAT SCIENCES ET TECHNOLOGIES INDUSTRIELLES. Étude d un Système Technique Industriel

BACCALAURÉAT SCIENCES ET TECHNOLOGIES INDUSTRIELLES. Étude d un Système Technique Industriel BACCALAURÉAT SCIENCES ET TECHNOLOGIES INDUSTRIELLES Spécialité génie électronique Étude des Systèmes Techniques Industriels SYSTÈME DE DISTRIBUTION AUTOMATIQUE DE BOISSONS CHAUDES ES 7600 NECTA-WITTENBORG.

Plus en détail

Étude statique du tire bouchon

Étude statique du tire bouchon Méthodologie MP1 Étude statique Tire-bouchon Étude statique du tire bouchon On s intéresse à l aspect statique du mécanisme représenté en projection orthogonale sur la figure 1. Le tire bouchon réel est

Plus en détail

CHAPITRE III : Travail et énergie

CHAPITRE III : Travail et énergie CHPITRE III : Travail et énergie III. 1 En principe, les lois de Newton permettent de résoudre tous les problèmes de la mécanique classique. Si on connaît les positions et les vitesses initiales des particules

Plus en détail

Concours CASTing 2011

Concours CASTing 2011 Concours CASTing 2011 Épreuve de mécanique Durée 1h30 Sans calculatrice Le candidat traitera deux exercices parmi les trois proposés dans le sujet. Dans le cas où les trois exercices seraient traités partiellement,

Plus en détail

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE 2. L EFFET GYROSCOPIQUE Les lois physiques qui régissent le mouvement des véhicules terrestres sont des lois universelles qui s appliquent

Plus en détail

SOMMAIRE 1 INTRODUCTION 3 2 NOTION DE TORSEUR 3. 2.1 Définition 3 2.1.1 Propriétés liées aux torseurs 4 2.1.2 Produit ou comoment de deux torseurs 4

SOMMAIRE 1 INTRODUCTION 3 2 NOTION DE TORSEUR 3. 2.1 Définition 3 2.1.1 Propriétés liées aux torseurs 4 2.1.2 Produit ou comoment de deux torseurs 4 SOAIRE 1 INTRODUCTION 3 2 NOTION DE TORSEUR 3 2.1 Définition 3 2.1.1 Propriétés liées aux torseurs 4 2.1.2 Prouit ou comoment e eux torseurs 4 2.2 Torseurs élémentaires 4 2.2.1 Torseur couple 4 2.2.2 Torseur

Plus en détail

EXAMENS PROPOSES EN STATIQUE ET CINEMATIQUE DES SOLIDES

EXAMENS PROPOSES EN STATIQUE ET CINEMATIQUE DES SOLIDES EXAMENS PROPOSES EN STATIQUE ET CINEMATIQUE DES SOLIDES L1 Page 41 Institut Supérieur des Etudes Technologique de Nabeul Département de Génie Mécanique EXAMEN DE MECANIQUE GENERALE Année universitaire

Plus en détail

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble.. 1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé

Plus en détail

les forces en physique sont des grandeurs vectorielles, définies par :

les forces en physique sont des grandeurs vectorielles, définies par : STATIQUE STATIQUE PLANE (Statics) Définition : étude de l équilibre des corps. En statique plane les actions et les forces étudiées appartiennent toutes à un même plan Les forces et les moments : une action

Plus en détail

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S Concours EPIT 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette MW K1200S Durée : 2h. Calculatrices autorisées. Présentation du problème Le problème

Plus en détail

LA STATIQUE MODELISATION DES ACTIONS MECANIQUES

LA STATIQUE MODELISATION DES ACTIONS MECANIQUES I- Introduction L MECNIQUE C est la science mise à notre disposition afin de déterminer : les efforts, les caractéristiques d un mouvement, les dimensions, les déformations, les conditions de fonctionnement

Plus en détail

Les Sciences de l Ingénieur

Les Sciences de l Ingénieur Les Sciences de l Ingénieur LES LIISONS SIMPLES ET COMPOSEES COURS B2-5 1. NOTION DE MECNISME ET DE LIISON Pièce (1) Un mécanisme est un ensemble de pièces assemblées possédant des mouvements relatifs.

Plus en détail

LÈVE-PERSONNE ORIOR MISE EN SITUATION.

LÈVE-PERSONNE ORIOR MISE EN SITUATION. LÈVE-PERSONNE ORIOR MISE EN SITUATION. Le lève-personne ORIOR permet de transférer en toute sécurité dans le cadre d un usage domestique une personne à mobilité réduite d un support à un autre, d un lit

Plus en détail

Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant

Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant I Présentation I.1 La roue autonome Ez-Wheel SAS est une entreprise française de technologie innovante fondée en 2009.

Plus en détail

S 4 F. I) Définitions : 1) En statique et en dynamique :

S 4 F. I) Définitions : 1) En statique et en dynamique : Chapitre 1 : NOTION DE FORCE S 4 F I) Définitions : 1) En statique et en dynamique : Une force, ou action mécanique, peut être définie comme : - toute cause capable de déformer un objet (statique). Exemple

Plus en détail

EPREUVE OPTIONNELLE de SCIENCES INDUSTRIELLES

EPREUVE OPTIONNELLE de SCIENCES INDUSTRIELLES EPREUVE OPTIONNELLE de SCIENCES INDUSTRIELLES FERME-PORTE (ou «groom») Un «groom» est un système hydro-mécanique de fermeture automatique de porte. Description du fonctionnement La figure montre le dispositif

Plus en détail

TABLE DES MATIERES #! #! # $ #!!

TABLE DES MATIERES #! #! # $ #!! MECANIQUE 1 2 TABLE DES MATIERES! "!! $!! 3 ! $!!!!! "! 4 $% % & ' % % %! $ %!! 5 $ ' $ $ %! % $!!! " ( "! ( $ ) " 6 $ $* $ $ " " % 7 8 UTILISATION DU COURS Il est conseillé aux utilisateurs de ce cours

Plus en détail

TP Statique - Equilibre d'un panneau préfabriqué

TP Statique - Equilibre d'un panneau préfabriqué TP Statique - Equilibre d'un panneau préfabriqué Présentation Cette activité est utilisable en ligne mais peut aussi être téléchargée et installée sur un pc en cliquant ici: Pensez à décompresser le fichier

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

TS Physique D Aristote à aujourd hui Exercice résolu

TS Physique D Aristote à aujourd hui Exercice résolu P a g e 1 TS Physique Eercice résolu Enoncé -34 avant JC : Aristote déclare qu une masse d or, de plomb ou de tout autre corps pesant tombe d autant plus vite qu elle est plus grosse et, en particulier,

Plus en détail

CHAPITRE VI : RESISTANCE DES MATERIAUX

CHAPITRE VI : RESISTANCE DES MATERIAUX CHAPITRE VI : RESISTANCE DES MATERIAUX A- énéralités : I. Introduction: L étude en RDM est une étape parfois nécessaire entre la conception et la réalisation d une pièce. Elle permet : - de justifier son

Plus en détail

Analyse fonctionnelle. 2-Etude cinématique Pied (1) = {1,3} Bras (2) = {2, }

Analyse fonctionnelle. 2-Etude cinématique Pied (1) = {1,3} Bras (2) = {2, } GMP 0 Janvier 202 EXMEN GMP 0 Session de Janvier 202- Durée 2 heures ucun document autorisé Calculatrice autorisée Documents fournis : Dessin d ensemble et nomenclature format 4 à l échelle :2 Documents

Plus en détail

Notes du Cours de Mécanique 1 er semestre, année 2011/2012

Notes du Cours de Mécanique 1 er semestre, année 2011/2012 Ecole Polytechnique de l Université de Nice - Sophia Antipolis CiP1 Notes du Cours de Mécanique 1 er semestre, année 2011/2012 Patrizia Vignolo Jean-Michel Chauveau Thibault Gayral Sommaire : Introduction

Plus en détail

DS n o 5 TS1 2012 Chutes des boulets (8 points, 1h45)

DS n o 5 TS1 2012 Chutes des boulets (8 points, 1h45) DS n o 5 TS1 2012 Chutes des boulets (8 points, 1h45) Exercice 1 Galilée à Pise (5,5 points) O i Selon la légende, Galilée (1564-1642) aurait étudié la chute des corps en lâchant divers objets du sommet

Plus en détail

PROBLÉMATIQUE «Comment améliorer la motricité du modèle réduit de la voiture 4 roues motrices en phase d accélération?»

PROBLÉMATIQUE «Comment améliorer la motricité du modèle réduit de la voiture 4 roues motrices en phase d accélération?» D après les productions de l équipe du lycée Clément Ader de Dourdan Mme Fabre-Dollé, Mr Dollé et Mr Berthod THÈME SOCIÉTAL Mobilité PROBLÉMATIQUE «Comment améliorer la motricité du modèle réduit de la

Plus en détail

FORCES MACROSCOPIQUES. ETUDE DES EQUILIBRES

FORCES MACROSCOPIQUES. ETUDE DES EQUILIBRES FORCES MACROSCOPIQUES. ETUDE DES EQUILIBRES I. Notion de force. Une force est une action exercée par un système sur un autre système. Une telle action se manifestera de diverses manières. Le système sur

Plus en détail

5 Principes de Newton

5 Principes de Newton 5 Principes de Newton En 1687, Newton 3 énonce ses fameuses trois lois fondamentales de la mécanique concernant les mouvements des corps. 5.1 Première loi de Newton : le principe d inertie Dans la section

Plus en détail

Mouvement et vitesse . A A B

Mouvement et vitesse . A A B Chapitre 1 Mouvement et vitesse I/ Caractère relatif d'un mouvement Le mouvement d'un objet est décrit par rapport à un autre objet qui sert de référence ( le référentiel) exemple : assis dans une voiture

Plus en détail

Etude d un ascenseur

Etude d un ascenseur Les calculatrices sont interdites. ***** N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui

Plus en détail

TD d après CCP TSI 2012 CI 4 - TEC

TD d après CCP TSI 2012 CI 4 - TEC Contexte de l étude La nécessité de diminuer le coût de transport des marchandises embarquées sur les bateaux porte-conteneurs impose de limiter au maximum le temps d immobilisation des navires à quai.

Plus en détail

Projet Calcul. Étude d'un système: Essuie-glace Renault Scénic

Projet Calcul. Étude d'un système: Essuie-glace Renault Scénic Gaillard Olivier Projet Calcul Semestre 5 Morisse Quentin Projet Calcul Étude d'un système: Essuie-glace Renault Scénic Table des matières I. Rappels sur le système étudié... 3 A. Présentation du système...

Plus en détail

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN MOTO ELECTRIQUE MISE EN SITUATION La moto électrique STRADA EVO 1 est fabriquée par une société SUISSE, située à LUGANO. Moyen de transport alternatif, peut-être la solution pour concilier contraintes

Plus en détail

CHAPITRE 8 LE CHAMP MAGNETIQUE

CHAPITRE 8 LE CHAMP MAGNETIQUE CHAPTRE 8 LE CHAMP MAGETQUE ) Champ magnétique 1) Magnétisme Phénomène connu depuis l'antiquité. Les corps possédant des propriétés magnétiques sont appelés des aimants naturel (fer, oxyde magnétique de

Plus en détail

Problèmes sur le chapitre 5

Problèmes sur le chapitre 5 Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire

Plus en détail

TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE

TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE L'objectif de ce tutorial est de décrire les différentes étapes dans CASTOR Concept / FEM permettant d'effectuer l'analyse statique d'une

Plus en détail

Devoir de Physique en autocorrection n 5 pour le 15 avril 2014

Devoir de Physique en autocorrection n 5 pour le 15 avril 2014 DA 5 pour le 15 avril 2014 Devoir de Physique en autocorrection n 5 pour le 15 avril 2014 Problème : Essuie-vitre à détecteur de pluie Si, au cours de l épreuve, un candidat repère ce qui lui semble être

Plus en détail

Etude de cas 1: Assemblage par couronne boulonnée Réducteur de TGV (d'après sujet ENS 1992)

Etude de cas 1: Assemblage par couronne boulonnée Réducteur de TGV (d'après sujet ENS 1992) Etude de cas 1: Assemblage par couronne boulonnée Réducteur de TGV (d'après sujet ENS 1992) Présentation du bogie moteur L'étude porte sur un élément de transmission de puissance d'un Train à Grande Vitesse.

Plus en détail

Chapitre 2: Mouvements Rectilignes

Chapitre 2: Mouvements Rectilignes e B et C Mouements rectilignes 13 Chapitre : Mouements Rectilignes 1. Définitions * Le mouement est rectiligne la trajectoire est une droite. * Le mouement est uniforme (intensité du ecteur itesse instantanée)

Plus en détail

Statique des systèmes de solides. 1 Deux exemples d illustration 2 1.1 Système de freinage du TGV 1... 2 1.2 Micro-compresseur...

Statique des systèmes de solides. 1 Deux exemples d illustration 2 1.1 Système de freinage du TGV 1... 2 1.2 Micro-compresseur... Statique des systèmes de solides Table des matières 1 Deux exemples d illustration 2 1.1 Système de freinage du TGV 1............................ 2 1.2 Micro-compresseur..................................

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE SESSION 2008 POSITIONNEUR DE PANNEAU SOLAIRE POUR CAMPING-CAR

BACCALAURÉAT TECHNOLOGIQUE SESSION 2008 POSITIONNEUR DE PANNEAU SOLAIRE POUR CAMPING-CAR BACCALAURÉAT TECHNOLOGIQUE SÉRIE SCIENCES ET TECHNIQUES INDUSTRIELLES GÉNIE ÉLECTROTECHNIQUE SESSION 2008 ÉPREUVE: ÉTUDE DES CONSTRUCTIONS Durée: 4 heures Coefficient : 6 POSITIONNEUR DE PANNEAU SOLAIRE

Plus en détail

Cours de résistance des matériaux

Cours de résistance des matériaux ENSM-SE RDM - CPMI 2011-2012 1 Cycle Préparatoire Médecin-Ingénieur 2011-2012 Cours de résistance des matériau Pierre Badel Ecole des Mines Saint Etienne Première notions de mécanique des solides déformables

Plus en détail

S2I. La robotique au service du handicap

S2I. La robotique au service du handicap I Introduction S2I PSI 4 heures Calculatrices autorisées La robotique au service du handicap 2010 Les avancées technologiques récentes des actionneurs électriques ont permis le développement du champ d

Plus en détail

Forces et Interactions

Forces et Interactions Février 2013 Cours de physique sur les Forces et les Interactions page 1 1 Objectifs Forces et Interactions Le but de ce cours est d'introduire la notion de force et d'étudier la statique, c'est-à-dire

Plus en détail

Guide pour l analyse de l existant technique. Partie 3

Guide pour l analyse de l existant technique. Partie 3 Partie 3 La Liaison Pivot sur roulement : Le Composant ROULEMENT 0 Introduction Le but de ce guide est de vous permettre une meilleure rédaction des rapports de Bureaux d Études que vous aurez à nous remettre

Plus en détail

Voyez la réponse à cette question dans ce chapitre. www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof

Voyez la réponse à cette question dans ce chapitre. www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof Une échelle est appuyée sur un mur. S il n y a que la friction statique avec le sol, quel est l angle minimum possible entre le sol et l échelle pour que l échelle ne glisse pas et tombe au sol? www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof

Plus en détail

BACCALAUREAT GENERAL Version simplifiée de la Session 2003 Série S Sciences de l ingénieur

BACCALAUREAT GENERAL Version simplifiée de la Session 2003 Série S Sciences de l ingénieur BACCALAUREAT GENERAL Version simplifiée de la Session 2003 Série S Sciences de l ingénieur Composition écrite de Sciences de l'ingénieur Durée 4 heures Étude d'un système pluritechnique. Sont autorisés

Plus en détail

Etude Annuelle. Analyse expérimentale et données constructeur. Comportement «durable» Contenu. Citroën C4-Coupé, Entreprise.

Etude Annuelle. Analyse expérimentale et données constructeur. Comportement «durable» Contenu. Citroën C4-Coupé, Entreprise. décembre 8 Yann DUCHEMIN Citroën C4-Coupé, Entreprise Etude Annuelle Analyse expérimentale et données constructeur Au terme d une année d utilisation d un véhicule de marque Citroën, et de type C4- coupé

Plus en détail

Cours de Physique 3BC. Yves Reiser

Cours de Physique 3BC. Yves Reiser Cours de Physique 3BC Yves Reiser version du 24 septembre 2015 Table des matières I Mécanique 4 1 Rappels sur les forces................................. 5 1.1 Les effets d une force.............................

Plus en détail

Relations fondamentales de la dynamique des milieux continus déformables

Relations fondamentales de la dynamique des milieux continus déformables Relations fondamentales de la dynamique des milieux continus déformables Lois universelles de la physique des milieux continus conservation de la masse bilan de quantité de mouvement bilan de moment cinétique

Plus en détail

par Gilbert Gastebois

par Gilbert Gastebois Le gyroscope 1. Schémas par Gilbert Gastebois 2. Étude du mouvement d'une toupie. Une toupie est un gyroscope dont l'une des extrémités de l'axe est posée sur le sol sans possibilité de glissement. : vitesse

Plus en détail

Réponds. Réponds. questions. questions. détermine la relation entre le poids et la masse d un objet

Réponds. Réponds. questions. questions. détermine la relation entre le poids et la masse d un objet ( P P B P C bjectifs distinguer le poids et la masse d un objet utiliser la relation de proportionnalité entre le poids et la masse énoncer et utiliser la condition d équilibre d un solide soumis à deux

Plus en détail

Auto-évaluation d acquisition des connaissances

Auto-évaluation d acquisition des connaissances Section e Physique 25.09.2015 Auto-évaluation acquisition es connaissances Inications préalables : L objectif est une auto-évaluation u progrès concernant les connaissances acquises penant le cours. Ce

Plus en détail

LA FORCE CENTRIFUGE. En effet, cette force tend à expulser les voitures en dehors d un virage serré.

LA FORCE CENTRIFUGE. En effet, cette force tend à expulser les voitures en dehors d un virage serré. LA ORCE CENTRIUGE Introduction La force centrifuge est assez connue du public, elle fait d ailleurs l objet d une question pouvant être posée pour l obtention du permis de conduire. En effet, cette force

Plus en détail

Un petit rien... qui peut tout changer! Octobre 2014

Un petit rien... qui peut tout changer! Octobre 2014 Un petit rien... qui peut tout changer! Octobre 2014 Présentation de l outil Présentation de l outil Vous êtes : 1 enseignant au collège. 2 enseignant au lycée. 3 les deux. 4 aucune des réponses précédentes.

Plus en détail

Sujet. calculatrice: autorisée durée: 2 heures (10h-12h)

Sujet. calculatrice: autorisée durée: 2 heures (10h-12h) DS SCIENCES PHYSIQUES MATHSPÉ CONCOURS BLANC calculatrice: autorisée durée: 2 heures (10h-12h) Sujet Vaisseau spatial... 2 I.Vaisseau spatial dans un champ newtonien... 2 II.Vitesse de libération...3 A.Option

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique Sommaire I) Théorie de l induction électromagnétique..2 A. Introduction 2 B. Notion de force électromotrice 3 C. Loi de Faraday..5 D. Quelques applications.7 Spire circulaire

Plus en détail

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR. Partie I - Analyse système

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR. Partie I - Analyse système SCIENCES INDUSTRIELLES POUR L INGÉNIEUR COMPORTEMENT DYNAMIQUE D UN VEHICULE AUTO-BALANCÉ DE TYPE SEGWAY Partie I - Analyse système Poignée directionnelle Barre d appui Plate-forme Photographies 1 Le support

Plus en détail

ECE : le plein d énergie!

ECE : le plein d énergie! 1S Thème : Comprendre Lois et modèles ECE : le plein d énergie! DESCRIPTIF DE SUJET DESTINE AU PROFESSEUR Formes et principes de conservation de l énergie Compétences exigibles du B.O. Énergie d un point

Plus en détail

DS n 6 (1h30) Chap D3+D4 27/03/2015. DEVOIR SURVEILLÉ n 6 Un petit tour à la fête foraine CALCULATRICE INTERDITE!!!

DS n 6 (1h30) Chap D3+D4 27/03/2015. DEVOIR SURVEILLÉ n 6 Un petit tour à la fête foraine CALCULATRICE INTERDITE!!! DEVOIR SURVEILLÉ n 6 Un petit tour à la fête foraine CALCULATRICE INTERDITE!!! Brenda Semeda-Moreiro, une élève de, décide de passer tout son week-end à réviser le contrôle de physique prévu pour lundi.

Plus en détail

Chapitre 2 : Caractéristiques du mouvement d un solide

Chapitre 2 : Caractéristiques du mouvement d un solide Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence

Plus en détail

ARISTOTE, GALILÉE ET NEWTON (6 points)

ARISTOTE, GALILÉE ET NEWTON (6 points) ARISTOTE, GALILÉE ET NEWTON (6 points) Pour cet exercice, l'utilisation de la calculatrice est autorisée Trois siècles avant notre ère, le célèbre savant grec Aristote affirmait qu "une masse d or, de

Plus en détail

Modélisation cinématique des liaisons

Modélisation cinématique des liaisons Cours 4 - Modélisation cinématique des liaisons Page /5 Modélisation cinématique des liaisons ) MODÉLISTION DES PIÈCES PR DES «SOLIDES PRFITS».... 4 ) MODÉLISTION DES LIISONS.... 4 ) MODÉLISTION DES LIISONS

Plus en détail

NOTION DE BIOMECANIQUE

NOTION DE BIOMECANIQUE NOTION DE BIOMECANIQUE PRINCIPES BIOMECANIQUES EN GYMNASTIQUE La connaissance des principes mécaniques constitue le point de départ de la compréhension du geste gymnique? La biomécanique c est L application

Plus en détail

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X INTRODUCTION La conception d'un mécanisme en vue de sa réalisation industrielle comporte plusieurs étapes. Avant d'aboutir à la maquette numérique du produit définitif, il est nécessaire d'effectuer une

Plus en détail

Le réglage mécanique virtuel

Le réglage mécanique virtuel Le réglage mécanique virtuel Didier LE PAPE [1] Un réglage mécanique est une modification de la configuration d un mécanisme, sans changement de la définition des pièces, réalisée afin de satisfaire une

Plus en détail

Test : principe fondamental de la dynamique et aspect énergétique

Test : principe fondamental de la dynamique et aspect énergétique Durée : 45 minutes Objectifs Test : principe fondamental de la dynamique et aspect énergétique Projection de forces. Calcul de durée d'accélération / décélération ou d'accélération / décélération ou de

Plus en détail

- cas d une charge isolée en mouvement et par extension d un ensemble de

- cas d une charge isolée en mouvement et par extension d un ensemble de Notion de courant de particule ; conservation du courant = expression du courant de particules chargées ; charges; j = q k k - cas d une charge isolée en mouvement et par extension d un ensemble de v k

Plus en détail

GRANDEURS PHYSIQUES et EQUATIONS AUX DIMENSIONS

GRANDEURS PHYSIQUES et EQUATIONS AUX DIMENSIONS GRANDEURS PHYSIQUES et EQUATIONS AUX DIMENSIONS Par Silicium 628 La physique décrit la matière et l espace, leurs propriétés et leurs comportements. Les propriétés mesurables sont nommées GRANDEURS PHYSIQUES.

Plus en détail

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE DURÉE DU JUR E FCTI DE LA DATE ET DE LA LATITUDE ous allons nous intéresser à la durée du jour, prise ici dans le sens de période d éclairement par le Soleil dans une journée de 4 h, en un lieu donné de

Plus en détail

M6 MOMENT CINÉTIQUE D UN POINT MATÉRIEL

M6 MOMENT CINÉTIQUE D UN POINT MATÉRIEL M6 MOMENT CINÉTIQUE D UN POINT MATÉRIEL OBJECTIFS Jusqu à présent, nous avons rencontré deux méthodes pour obtenir l équation du mouvement d un point matériel : - l utilisation du P.F.D. - et celle du

Plus en détail

La perte d équilibre d un cube

La perte d équilibre d un cube La perte d équilibre d un cube P. Coullet et M. Monticelli 20 mars 2003 Introduction Un parallélépipède homogène de section carré est posé sur un plan que l on peut incliner (voir figure ). Les revêtements

Plus en détail

Corrigé et barème. Ce dossier comporte 9 pages : Correction 8 pages Barème 1 page

Corrigé et barème. Ce dossier comporte 9 pages : Correction 8 pages Barème 1 page Corrigé et barème Ce dossier comporte 9 pages : Correction 8 pages Barème 1 page Portes Latérales Coulissantes de PEUGEOT 807 Éléments de correction Question 1A Diagramme FAST de la fonction FP1 FP1 Ouvrir

Plus en détail

L élève doit avoir une connaissance pratique de la force normale, du poids, des schémas d équilibre et de l analyse graphique.

L élève doit avoir une connaissance pratique de la force normale, du poids, des schémas d équilibre et de l analyse graphique. Leçon Frottement L applet Frottement simule le mouvement d une pile de livres tirée sur une surface rugueuse par un dynamomètre de traction. Préalables L élève doit avoir une connaissance pratique de la

Plus en détail

BALTIC Jusuf ETTIGHOFFER Loïc ROUZIER Ghislain. Course en Cours L optimisation des performances des voitures

BALTIC Jusuf ETTIGHOFFER Loïc ROUZIER Ghislain. Course en Cours L optimisation des performances des voitures BALTIC Jusuf ETTIGHOFFER Loïc ROUZIER Ghislain Course en Cours L optimisation des performances des voitures Introduction Objectifs du cours Ce cours fournit le savoir-faire et les quelques notions théoriques

Plus en détail

: scientifique. : Physique, technologie et sciences de l ingénieur (PTSI) Physique et technologie (PT) : Sciences industrielles de l ingénieur

: scientifique. : Physique, technologie et sciences de l ingénieur (PTSI) Physique et technologie (PT) : Sciences industrielles de l ingénieur : scientifique : Physique, technologie et sciences de l ingénieur (PTSI) Physique et technologie (PT) : Sciences industrielles de l ingénieur Première et seconde s PROGRAMME DE SCIENCES INDUSTRIELLES DE

Plus en détail

DIMENSIONNEMENT DU VERIN Pour un dimensionnement correct du vérin, il est nécessaire de procéder comme suit:

DIMENSIONNEMENT DU VERIN Pour un dimensionnement correct du vérin, il est nécessaire de procéder comme suit: DIMENSIONNEMENT DU VERIN Pour un dimensionnement correct du vérin, il est nécessaire de procéder comme suit: définition des données de l application (A) calcul de la charge unitaire (B) contrôle à la charge

Plus en détail

CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus.

CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus. CABLECAM de HYMATOM La société Hymatom conçoit et fabrique des systèmes de vidéosurveillance. Le système câblecam (figure 1) est composé d un chariot mobile sur quatre roues posé sur deux câbles porteurs

Plus en détail

Résistance des Matériaux RDM-I

Résistance des Matériaux RDM-I Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université Hassiba Ben Bouali de Chlef Faculté de Génie Civil et d Architecture Département de Génie Civil Polycopié de Résistance

Plus en détail

Banc d études des structures Etude de résistances de matériaux (RDM) et structures mécaniques

Banc d études des structures Etude de résistances de matériaux (RDM) et structures mécaniques Banc d études des structures Etude de résistances de matériaux (RDM) et structures mécaniques Descriptif du support pédagogique Le banc d essais des structures permet de réaliser des essais et des études

Plus en détail

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES RAPPELS DE MATHEMATIQUES ORTHOPHONIE Première année 27 28 Dr MF DAURES 1 RAPPELS DE MATHEMATIQUES I - LES FONCTIONS A - Caractéristiques générales des fonctions B - La fonction dérivée C - La fonction

Plus en détail

DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE

DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE Revue Construction étallique Référence DÉVERSEENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYÉTRIQUE SOUISE À DES OENTS D EXTRÉITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE par Y. GALÉA 1 1. INTRODUCTION Que ce

Plus en détail

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI Initiation à la Mécanique des Fluides Mr. Zoubir HAMIDI Chapitre I : Introduction à la mécanique des fluides 1 Introduction La mécanique des fluides(mdf) a pour objet l étude du comportement des fluides

Plus en détail

CHAPITRE XI : Le magnétisme

CHAPITRE XI : Le magnétisme CHAPITRE XI : Le magnétisme XI. 1 Les scientifiques n'ont découvert qu'au XIX ème le lien qui existe entre le magnétisme et l'électricité. Pourtant le magnétisme était connu depuis fort longtemps. Son

Plus en détail

La Formule 1 offre un spectacle qui fascine le public tant par la

La Formule 1 offre un spectacle qui fascine le public tant par la Chimie et voitures de Formule 1 8 CHI MIE ET VOITURES DE FORMULE 1 La Formule 1 offre un spectacle qui fascine le public tant par la vitesse que par la technique qui y est liée. Qui, en voyant ces bolides,

Plus en détail

Licence SPI Cinématique et Mécanismes. Introduction à la théorie des mécanismes

Licence SPI Cinématique et Mécanismes. Introduction à la théorie des mécanismes Licence SPI Cinématique et Mécanismes Introduction à la théorie des mécanismes Mobilité, hyperstatisme, singularité Plan Problèmes/Objectifs Quelques exemples Graphe mécanisme Nombre de cyclomatique Analyse

Plus en détail

ELECTROSTATIQUE - 2. 1. Rappels. 2. Outils mathématiques. 3. Distribution de charges. 4. Exemples de calculs de champ électrique

ELECTROSTATIQUE - 2. 1. Rappels. 2. Outils mathématiques. 3. Distribution de charges. 4. Exemples de calculs de champ électrique ELECTROTATIQUE - 2 1. Rappels 2. Outils mathématiques 2.1. ystèmes classiques de coordonnées 2.2. Volume élémentaire dans chaque système de coordonnées 2.3. Intégrales des fonctions de points 2.4. Circulation

Plus en détail

Qu est-ce que l approche biomécanique

Qu est-ce que l approche biomécanique André Plamondon, IRSST L approche biomécanique vise à ce que la charge supportée par les tissus d un individu n excède pas la capacité de son système musculosquelettique. Les critères les plus fréquents

Plus en détail

Moteurs à courant continu Moteurs asynchrones

Moteurs à courant continu Moteurs asynchrones Chapitre 17 Sciences Physiques - BTS Moteurs à courant continu Moteurs asynchrones 1 Loi de Laplace 1.1 Etude expérimentale Le conducteur est parcouru par un courant continu ; il est placé dans un champ

Plus en détail

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point

Plus en détail

I- Transfert d énergie par travail mécanique Doc 1. Un homme pousse sa voiture en panne Doc 2. Un parachutiste saute en chute libre

I- Transfert d énergie par travail mécanique Doc 1. Un homme pousse sa voiture en panne Doc 2. Un parachutiste saute en chute libre Chapitre P 9 : Travail d une force constante et énergie Correction Dans le chapitre précédent, nous avons étudié l évolution temporelle de différents systèmes mécaniques en exploitant la seconde loi de

Plus en détail

CHAPITRE V : Le champ électrique

CHAPITRE V : Le champ électrique CHAPITRE V : Le champ électrique V.1 La notion de champ a été introduite par les physiciens pour tenter d'expliquer comment deux objets peuvent interagir à distance, sans que rien ne les relie. A la fois

Plus en détail