Correction de l examen de la première session

Dimension: px
Commencer à balayer dès la page:

Download "Correction de l examen de la première session"

Transcription

1 de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi un mail à

2

3 Table des matières Page de garde Table des matières 3 Remarque d ordre général 7 Exercices 9 Exercice Calcul du discriminant Calcul d une racine du discriminant Les solutions de l équation Vérification Exercice de la première question de la seconde question Exercice Équation homogène associée Solution particulière Résolution générale Exercice de la première question de la seconde question

4 Problème Préliminaires Question Question Question Équation homogène associée 5 Question Question Question Question Question Question Question Question

5 Question Question Résolution de l équation générale 37 Question Question Question Question Question Méthode directe de résolution 43 5

6 6

7 Remarque d ordre général L examen était volontairement long et il n était pas attendu de votre part de répondre à toutes les questions. La meilleure copie a obtenu la note de 5.5 sur 3 et a à peine eu le temps d aborder la dernière question du problème. Il était précisé dans l énoncé que la qualité de la rédaction et de la langue serait prépondérante. Ce n était pas du bluff. Une réponse partiellement fausse mais bien rédigée rapportait plus de points que des réponses justes mais sans rédaction. Il ne s agit pas de tartiner la copie mais d insérer quelques phrases et des mots comme alors, donc, ainsi, conséquemment, on obtient, il vient, cette égalité donne, on en déduit... Également, il est vivement recommandé de lire les questions d un problème avant d essayer de résoudre celui-ci. En effet, il était possible de deviner les réponses des premières questions à partir de la suite de l énoncé. Il est aussi conseillé de vérifier les réponses autant que faire se peut et d être très prudent sur les calculs. Les calculs sont ici volontairement très détaillés. Il va de soit qu en situation réelle, on n attend pas tant de détails des étudiants. 7

8 8

9 Exercices Exercice Résoudre l équation z (5 + i)z + (6 + 7i). Calcul du discriminant Ici, le discriminant est égal à : (5 + i) 4 (6 + 7i) i + i i 5 + i 4 8i (5 4) + i ( 8) 8i. Calcul d une racine du discriminant On cherche maintenant δ C tel que δ 8i. Remarque : on ne doit surtout pas noter 8i (des points ont été retirés à ceux qui ont écrit ceci). On peut utiliser deux méthodes pour trouver δ. Première méthode On cherche δ sous la forme δ a + ib avec a, b R. De cela, il vient deux équations : a b et ab 8. On en déduit immédiatement a ±b et ab 9. Les réels a et b sont ainsi de signes contraires. D où b a et a 9. Alors, a 3 et b 3 vérifie les deux équations ci-dessus. Remarque : on n a pas procédé par équivalence donc on doit vérifier que 3 3i est bien une racine de. On calcule (3 3i) 3 + (3i) 3 3i 9 9 8i 8i. 9

10 On a donc bien δ avec δ : 3 3i. Les deux racines de sont donc 3 3i et 3 + 3i. Deuxièmeméthode Onutiliselaformepolaire: 8i 8 exp [ ] 3iπ. Conséquemment, δ : 8 exp [ ] 3iπ 4 est une racine de. On calcule : δ [ ] 3iπ 8 exp 4 3 { ( ) 3iπ cos + i sin 4 3 { } + i 3 + 3i. ( )} 3iπ 4 On a donc δ avec δ : 3 + 3i. Les deux racines de sont donc 3 3i et 3 + 3i. Les solutions de l équation Le discriminant est non nul. Il y a donc exactement deux solutions à l équation. Ces deux solutions sont z : b + δ a et z : b δ a avec a :, b : (5 + i) et δ : 3 3i. On procède au calcul : z : b + δ a +(5 + i) + (3 3i) (5 + 3) + i( 3) 8 i 4 i.,

11 Et la deuxième solution est Vérification z : b δ a +(5 + i) (3 3i) 5 + i 3 + 3i (5 3) + i( + 3) + 4i + i. Il n était pas demandé aux étudiants de vérifier que z 4 i et z + i sont des solutions. Mais, il est essentiel de le faire! Ne serait-il pas dommage d avoir fait tout ce qui précède pour n avoir que la moitié des points? Il est toutefois absolument inutile de rédiger la vérification sur la copie (à moins que cela ne vous soit demandé). On procède donc à la vérification. z (5 + i)z + (6 + 7i) (4 i) (5 + i)(4 i) + (6 + 7i) 4 8i ( 5i + 4i + ) i 6 8i ( i) i 5 8i + i i (5 + 6) + i( ).

12 Donc z est bien solution de l équation. On fait de même avec z : z (5 + i)z + (6 + 7i) ( + i) (5 + i)( + i) + (6 + 7i) + 4i 4 (5 + i + i ) i + 4i 4 (3 + i) i + 4i 4 3 i i ( ) + i(4 + 7). Conséquemment, z est aussi solution de l équation.

13 Exercice Question On considère la série numérique ( ) Σ ( )n 3 n (n+) cette série. Question n. Justifier la convergence de En utilisant le développement en série entière de la fonction arctan, calculer la somme de la série ( ) Σ ( )n 3 n (n+) n. de la première question On peut justifier cette convergence de plusieurs manières : critère des séries alternées, critère de D Alembert, critère de comparaison des séries à termes positifs, critère de Cauchy. Première méthode : critère des séries alternées La méthode la plus utilisée lors de l examen a été celle-ci. Toutefois, beaucoup d entre vous n ont pas su bien l appliquer. On pose u n : l on a ( ) n u n pour tout n. Pour appliquer le critère des séries alternées, il faut vérifier deux hypothèses : ( )n pour tout n. La suite (u 3 n (n+) n) n est donc alternée puisque. Lasuitedetermegénéral u n estdécroissante.lafonction x 3 x (x+ ) est croissante. Aussi, la suite de terme général u n est bien décroissante.. La suite (u n ) n tend vers quand n tend vers l infini. La fonction x 3 x (x + ) tend vers + quand x tend vers l infini. Aussi, la quantité u n tend bien vers quand n tend vers l infini. En conclusion, la suite (u n ) n est alternée, tend vers en l infini et la suite de terme générale u n est décroissante. On peut donc appliquer le critère des séries alternées et l on en déduit la convergence de la série ( ) Σ ( )n 3 n (n+) n. 3

14 Deuxième méthode : critère de D Alembert Certains d entre vous ont utilisé cette méthode mais n ont pas fait attention à la non positivité de la suite. On pose u n : ( )n pour tout n. On a donc u 3 n (n+) n. Pour tout 3 n (n+) n N, u n >. On peut donc calculer u n+ u n 3n (n + ) 3 n+ (n + 3) n + 3 n n + 3 } {{ } 3 <. D après le critère de D Alembert, on en déduit que la série (Σ u n ) n converge. En d autres termes, la série (Σu n ) n converge absolument donc elle est convergente. On peut utiliser le critère de D Alembert directement sur la suite u n. MAIS, il faut dans ce cas obtenir l inégalité suivante : u n+ < n lim <. u n Par exemple, la série (Σ( ) n ( ) n+ ) n ne converge pas bien que n lim <. ( ) n Troisième méthode : critère de comparaison des séries à termes positifs On pose u n : ( )n pour tout n. On a donc u 3 n (n+) n. 3 n (n+) Pour tout n N, n +. Ainsi, on a u n ( ) n. 3 n 3 Or, la série de terme général ( ) n 3 est une série géométrique de raison q : ] 3 ; [. On en déduit que la série ( Σ ( ) n ) converge. On utilise le critère de 3 n comparaison des séries à termes positifs ce qui implique la convergence de la série (Σ u n ) n. En d autres termes, la série (Σu n ) n converge absolument donc elle est convergente. 4

15 Quatrième méthode : critère de Cauchy On pose u n : ( )n pour 3 n (n+) tout n. On a donc u n. Pour tout n N, u 3 n (n+) n >. On peut donc calculer n u n [ ] log un exp n [ exp log ] (3n (n + )) n [ ] n log(3) + log(n + ) exp n log(n + ) exp log(3) } {{ n } exp [ log(3)] 3 <. D après le critère de Cauchy, on en déduit que la série (Σ u n ) n converge. En d autres termes, la série (Σu n ) n converge absolument donc elle est convergente. de la seconde question Il fallait d abord donner le développement en série entière de la fonction arctangente. Celui-ci était dans le formulaire de cours ainsi que dans la dernière diapositive du septième cours magistral. Le développement en série entière de la fonction arctangente est arctan(x) n ( ) n (n + )! xn+ pour tout x ] ; [. Il est essentiel de préciser l intervalle. Par ailleurs, on n a pas demandé un développement limité mais bien le développement en série entière. Il n était pas demandé de prouver ce développement. Pour tout y ] ; [, on a N k y k yn+ y y, 5

16 quand N tend vers l infini. Ainsi, on a y pour tout y ] ; [. En particulier, pour tout x ] ; [, en prenant y : x, il vient + x ( ) n x n. n La primitive de la fonction x +x qui s annule en est la fonction arctangente. On intègre donc terme à terme : n y n,, arctan(x) ( ) n xn+ n n +, pour tout x ] ; [. Précisons par ailleurs que ce développement est aussi valide en et en, comme l un d entre vous me l a signalé dans sa copie. En prenant x : 3, on a arctan ( 3 ) Conséquemment, la limite de la série est n ( ) n n 3 3 n (n + ). ( ) n 3 n (n + ) ( ) 3 arctan 3 π 3 6. Remarque : il est extrêmement important de préciser l intervalle où le développement en série entière est valide. En effet, arctan( 3) π mais la série ( ( ) ) 3 n x n+ ne converge pas si x 3 vu que le terme général ne tend n+ n pas vers. 6

17 Exercice 3 Résoudre l équation x (t) x(t) e 3t. Équation homogène associée On considère l équation homogène associée L équation caractéristique est donc x (t) x (t). X. La solution est X. Ainsi, les solutions de l équation homogène associée sont de la forme x (t) Ce t avec C R. Solution particulière La sortie est la fonction t e 3t. On cherche donc une solution particulière de la forme x p (t) : λe 3t où λ est une constante réelle à déterminer. On résout : ( λe 3t) λe 3t e 3t 3λe 3t λe 3t e 3t λe 3t e 3t. Ainsi, x p (t) : e 3t est une solution particulière de l équation. Résolution générale Les solutions générales de l équation sont donc de la forme x(t) e 3t + Ce t, C R. 7

18 Exercice 4 On considère la fonction f(x) : x 3 x Question Décomposer en éléments simples la fraction rationnelle Question Calculer une primitive de la fonction f. de la première question définie sur l intervalle ]; + [. X 3 X. Remarque : cette décomposition en éléments simples était dans la correction de l exercice 5 du dernier TD. On commence par factoriser X 3 X. On a X 3 X X(X )(X + ). La fraction rationnelle a donc trois pôles simples :, et. La X 3 X décomposition est donc de la forme X 3 X a X + b X + c X +, où a, b et c sont trois constantes réelles à déterminer. On commence par déterminer a en multipliant par X des deux côtés ce qui donne ( b X a + X X + c ). X + On fait tendre X vers et l on obtient a. Il fallait rédiger correctement le calcul d au moins l une des trois constantes. En procédant de même, on obtient b c. Ainsi, on a f(x) x + x + x +, 8

19 pour tout x >. Certains ont écrit f(x) x + x x. Ceci est juste, certes, mais il ne s agit pas de la décomposition en éléments simples. de la seconde question On sait intégrer en log u. Remarque : la notation ln est franco-française et u n est guère utilisée que dans les lycées et avatars. La littérature (de recherche ou d enseignement dans le supérieurcomme les maths en tête de Gourdon), les logiciels de calcul (comme maple ou matlab), les langages de programmation (comme C/C++), les autres pays utilisent la notation log. La notation ln est donc à oublier. L intervalle de définition est ]; + [. On a donc log x log(x), log x log(x ) et log x + log(x + ) pour tout x >. Par conséquent, on a ( f(x)dx x + x + x + dx x + dx x + ) dx dx x + log x + log x + log x + log(x) + log(x ) + log(x + ) ( log ). x Ainsi, la fonction x log ( x ) est une primitive de la fonction f sur l intervalle ]; + [. 9

20

21 Problème L objet du problème est de trouver le terme général de la suite (u n ) n définie par u n+3 6u n+ + u n+ 6u n ϕ n, () où (ϕ n ) n est une suite réelle quelconque. On impose de plus les conditions initiales suivantes : u, u et u. () Préliminaires On considère le polynôme P(X) : X 3 6X + X 6. Pour tout n N, on introduit la suite de vecteurs dans R 3, (V n ) n définie par Question V n : u n+ u n+ u n. Vérifier que l on a P(X) (X )(X )(X 3). On calcule comme suit : (X )(X )(X 3) (X )(X 5X + 6) X 3 5X + 6X X + 5X 6 X 3 6X + X 6 P(X). On a donc bien P(X) (X )(X )(X 3). Remarque : ceux qui ont commencé par P(X) (X )(X )(X 3) n ont évidemment pas eu tous les points.

22 Question Montrer qu il existe une matrice A à trois lignes et à trois colonnes et une suite de vecteurs dans R 3, (B n ) n telles que V n+ AV n + B n, (3) pour tout n N. On donnera les expressions exactes de A et de B n. Remarque : Cette question est dans les préliminaires. Elle est donc facile par essence et il suffisait de savoir manipuler les matrices. Par ailleurs, la méthode pour trouver la matrice A est exactement celle décrite dans la trentehuitième diapositive du sixième cours magistral. On se sert ici de l équation satisfaite par la suite (u n ) n à savoir On peut donc écrire Ceci se traduit comme suit V n+ u n+3 6u n+ + u n+ 6u n ϕ n. u n+3 6u n+ u n+ + 6u n + ϕ n. u n+3 u n+ u n+ 6u n+ u n+ + 6u n + ϕ n u n+ u n+ 6 u n+ u n+ + 6 u n + ϕ n u n+ + u n+ + u n u n+ + u n+ + u n 6 6 AV n + B n, u n+ u n+ u n+ + ϕ n

23 avec A : Question et B n : ϕ n On introduit la suite (V n ) n N définie par n : A n V.. Prouver que la suite (V n ) n N satisfait l équation Pour tout n N, on a n+ A n+ V V n+ AV n. (4) A A n AVn, ce qui achève de prouver que la suite (V n ) n N satisfait l équation (4). 3

24 4

25 Équation homogène associée L objet de cette section est de calculer le terme général de la suite (V n ) n N. Question Calculer le polynôme caractéristique de la matrice A. Notons χ A le polynôme caractéristique de la matrice A. Paar définition, on a χ A (X) : Det (A XI 3 ) où I 3 est la matrice identité. On a donc χ A (X) 6 X 6 X X Pour effectue ce calcul, on procède à un développement par rapport à la première colonne. On a alors χ A (X) ( ) + (6 X) X X (6 X)(X ) (X 6) 6X X 3 X + 6 P(X).. + ( )+ 6 X Le polynôme caractéristique de la matrice A est donc P. Remarque : certain(e)s futé(e)s qui n ont pas su trouver la matrice A ont annoncé χ A (X) P(X). Ceci ne peut pas être vrai car le coefficient dominant est forcément. 5

26 Question Donner les valeurs propres de la matrice A. Les valeurs propres de la matrice A sont les racines de son polynôme caractéristique.or,lesracinesde P sont, et 3,voirlaquestiondespréliminaires. Ainsi, le spectre de A est {; ; 3}. Remarque : certains ont deviné que les valeurs propres étaient, et 3 à partir des énoncés des questions trois, quatre et cinq. Question 3 Trouver un vecteur v R 3 de la forme tel que l on ait Av v. v : x y, Remarque : il s agit ici de calculer un vecteur propre de A associé à la valeur propre. L équation Av v se traduit ici par (A I 3 )v puis 5 6 x y. On a alors un système de trois équations à deux inconnues Remarque : (et, la matrice A I 3 est de rang deux vu que est une valeur propre de A) : 5x y + 6 x y y 6,

27 ce qui donne une unique solution : x y. Il vient ainsi : v. Question 4 Trouver un vecteur v R 3 de la forme tel que l on ait Av v. v : x y, La preuve est similaire à celle de la question précédente. Certains se sont 4 contentés d écrire On procède de même et l on obtient v. Ceci était suffisant pour avoir tous les points. Mais, il fallait rédiger la question trois. L équation Av v se traduit ici par (A I 3 )v puis 4 6 x y. On a alors un système de trois équations à deux inconnues Remarque : (et, la matrice A I 3 est de rang deux vu que est une valeur propre de A) : 4x y + 6 x y y ce qui donne une unique solution : x 4 et y. Il vient ainsi : 4 v., 7

28 Question 5 Trouver un vecteur v 3 R 3 de la forme tel que l on ait Av 3 3v 3. v 3 : x 3 y 3, La preuve est similaire à celle de la question trois. Certains se sont contentés 9 d écrire On procèdede même et l on obtient v 3 3. Ceci était suffisant pour avoir tous les points. Mais, il fallait rédiger la question trois. L équation Av 3 3v 3 se traduit ici par (A 3I 3 )v 3 puis x 3 y 3. On a alors un système de trois équations à deux inconnues Remarque : (et, la matrice A 3I 3 est de rang deux vu que 3 est une valeur propre de A) : 3x 3 y x 3 y 3 y 3 ce qui donne une unique solution : x 3 9 et y 3 3. Il vient ainsi : 9 v 3 3., 8

29 Question 6 Trouver une matrice inversible P à trois lignes et à trois colonnes telle que l on ait A P P. (5) 3 Il est demandé de justifier l égalité (5) et de ne pas se contenter de donner la matrice. On donnera l expression exacte de P mais l on ne calculera pas P. Remarque : il s agit ici de diagonaliser la matrice A. La matrice A est carrée avec trois lignes et trois colonnes. Elle admet trois valeurs propres distinctes :, et 3. On a donc dim Ker (A I 3 ), dim Ker (A I 3 ) etdim Ker (A 3I 3 ). Comme les valeurs propres sont distinctes, on peut écrire R 3 Ker (A I 3 ) Ker (A I 3 ) Ker (A 3I 3 ),. En d autres termes, la matrice A est diagonalisable : il existe une matrice carrée inversible P telle que A P 3 P. De plus, la matrice P est la matrice de passage de la base {v ; v ; v 3 } (dans l ordre) vers la base canonique. Les colonnes de la matrice P correspondent aux vecteurs propres v, v et v 3. On a donc P Remarque : il s agissait évidemment de la matrice à inverser dans la question huit. 9

30 Question 7 En utilisant l égalité (5), démontrer par récurrence que l on a A n P n P, 3 n pour tout n N. Il n est pas nécessaire d utiliser les expressions exactes de P et P pour résoudre cette question. Remarque : il n est pas nécessaire de le prouver par récurrence mais il était demandé d effectuer une récurrence. Initialisation. Prouvons d abord le résultat pour n. Pour n, on a A I 3. Or, P 3 P PI 3 P PP I 3. L hypothèse est donc vraie au rang n. Hérédité. Supposons l hypothèse vraie au rang n. Prouvons qu elle l est au rang n +. L associativité du produit matriciel donne A n+ A A n. Puis, l hypothèse de récurrence nous donne A n+ AP Enfin, l égalité (5) implique A n+ P Or, P P I 3. On a donc 3 A n+ P n 3 n P P n+ 3 n+ 3 P. n 3 n P. P.

31 L hypothèse est donc vraie au rang n +. Conclusion. Pour tout n N, on a A n P n P. 3 n Question 8 Calculer l inverse de la matrice en utilisant la méthode de votre choix. Plusieurs méthodes sont apparues sur les copies : trois exactement. commençons par la méthode qui a obtenu les meilleurs résultats à savoir celle du pivot de Gauss. Puis, l on présente la méthode utilisant la comatrice (beaucoup utilisée, mais mal utilisée) et enfin, on termine avec la méthode la moins efficace. Première méthode : le pivot de Gauss On met la matrice identité à droite et l on effectue des transformations sur les lignes des deux matrices. Remarque : on peut aussi utiliser des transformations sur les colonnes mais c est une très mauvaise habitude puisque la résolution des systèmes d équations linéaires se fait avec les ttransformations sur les lignes. 4 9 (L ) 3 (L ) (L 3 ) On choisit comme pivot. Il vient 4 9 (L ) 6 (L ) (L ) 3 8 (L 3 ) (L ) 3

32 On divise la ligne deux par : 4 9 (L ) 3 (L ) 3 8 (L 3 ) On prend maintenant comme pivot : 3 (L ) 4 (L ) 3 (L ) 3 (L 3 ) + 3 (L ) On prend maintenant comme pivot : On a donc 5 3 (L ) + 3 (L 3 ) 4 3 (L ) 3 (L 3 ) 3 (L 3 ) Deuxième méthode : la comatrice La formule à connaître est la suivante : P Det(P) Com(P)t, si le déterminant de P est non nul. On calcule d abord le déterminant de P : On calcule maintenant la comatrice de P. Par définition, on a Com(P) a, a, a,3 a, a, a,3 a 3, a 3, a 3,3, 3

33 avec a, ( ) + 3, a, ( ) + 3, a,3 ( ) +3, a, ( ) , a, ( ) + 9 8, a,3 ( ) , a 3, ( ) , a 3 3, ( ) , a 3,3 ( ) On a donc Com(P) On obtient immédiatement P Troisième méthode : le système linéaire Certains étudiants ont abordé la question de la façon suivante. On se donne une matrice M : a b c d e f g h i, et l on résout le système de neuf équations linéaires à neuf inconnues : a b c d e f g h i Cette méthode n a aucun intérêt. Oubliez-la.. 33

34 Question 9 En utilisant les expressions exactes de P et P, calculer le terme général V n. Par définition, on a Vn A n d après les questions 7 et 8, on a A n On peut ainsi calculer : V n La difficulté est ici de calculer A n. Or, n 3 n n 3 n n 3 n 3 n+ 3n 3 + n+3 3n+ 3 + n+ 3n+ 3 + n+ 3n

35 Question En déduire le terme général u n de la suite définie par u n+3 6u n+ + u n+ 6u n u u u. Cette équation correspond à l équation initiale () sans second membre (avec u ϕ n et donc avec B n ). Ainsi, on a Vn n+ u n+. Or, on vient u n de calculer Vn. Par conséquent, u n est égal à la dernière coordonnée de Vn. On a donc u n 3 + n+ 3n. 35

36 36

37 Résolution de l équation générale On cherche une solution à l équation (3), sous la forme V n+ AV n + B n, V n : A n W n, (6) où (W n ) n est une suite de vecteurs de R 3 que l on cherche à calculer. Question À quelle méthode utilisée dans le domaine des équations différentielles cela vous fait-il penser? Cette méthode ressemble à la méthode de la variation de la constante. Question On suppose dorénavant que la suite (A n W n ) n vérifie l équation (3). Montrer que l on a alors W n+ W n A (n+) B n, pour tout n N. Comme la suite (A n W n ) n vérifie l équation (3), on a A n+ W n+ AA n W n + B n A n+ W n + B n. Ilvientalors A n+ (W n+ W n ) B n.or,lamatrice Aestinversible(sondéterminant est non nul) donc la matrice A n+ est également inversible. Conséquemment, on obtient W n+ W n A (n+) B n. 37

38 Question 3 En déduire que l on a W n W + n k A (k+) B k, pour tout n N. On pourra prouver ce résultat par récurrence. Remarque : on peut prouver ce résultat par récurrence assez facilement. Montrons-le d une autre manière. On procède à une somme télescopique : W n W (W n W n ) + (W n W n ) + + (W W ) + (W W ) k n (W k+ W k ) n k A (k+) B k. Puis, l on achève la preuve en passant W de l autre côté. Question 4 Démontrer que ce résultat implique quel que soit n N. V n : A n W n A n V + n k A k B n k, Par définition, on a V A W I 3 W W. Conséquemment, on a n V n A n W n A n V + A n 38 k A (k+) B k.

39 On procède ensuite à un changement d indice dans la somme : k : n p. Il vient ce qui achève la preuve. Question 5 n V n A n V + A n A n V + n p p A (n p) B n p A p B n p, On suppose dans cette question que l on a ϕ n : 5 n. Calculer le terme général V n. En déduire le terme général u n de la suite définie par avec u, u et u. u n+3 6u n+ + u n+ 6u n 5 n, Le calcul de A n V a déjà été effectué dans la partie précédente, sur l équation homogène associée. Il reste donc à calculer la solution particulière à savoir n Vn A p B n p. p 39

40 Pour tout n N et pour tout p n, on calcule maintenant ϕ A p B n p 3 p n p p 3 On a donc n p 3 p p 3 p n Vn A p B n p p 5 n 5 n n+ 5 n p 5 n p p 5 n p 3 p ( p 5) ( ) p ( 5 p 3 5) n+ 5 n n p 5 n p 5 n p ( p n p 5) ( p n p 5) ( n p 3 p 5) ( ( 5) n ) ( ( 5) n ) ( ( 3 5) n ) 8 (5n ) 3 (5n n ) 4 (5n 3 n ) 3n n n n + n 3n n p

41 Par conséquent, on obtient V n A N V + Vn 3 + n+3 3n+ 3 + n+ 3n+ 3 + n+ 3n n n+ + 5n n n+ + 5n n 3 4 3n + 5n 4 Or, par définition, V n u n+ u n+ u n. + 5 n n+ 5 n+. Conséquemment, on a 3n n n n + n 3n u n n 3 4 3n + 5n 4. 4

42 4

43 Méthode directe de résolution Lorsque l on est confronté à une suite récurrente linéaire d ordre quelconque, on ne procède bien sûr pas ainsi. Ce passage par l algèbre linéaire justifie en fait l équation caractéristiue associée à savoir ici X 3 6X + X 6, dont les solutions sont X, X et X 3. On en déduit immédiatement que la solution à l équation homogène associée est u n α n +β n +γ3 n avec α, β, γ R. On cherche maintenant une solution particulière sous la forme u n C5 n où C R. On calcule C comme suit ce qui donne donc C5 n+3 6C5 n+ + C5 n+ 6C5 n 5 n, C ( ), d où C. On a donc u 4 n 5n + α + 4 βn + γ3 n. Or, on veut u, u et u. Pour calculer les constantes α, β et γ, on est ainsi amené à résoudre le système suivant : α β γ On retrouve naturellement la matrice P. La résolution nous donne α 3, 8 β 7 et γ 3. On retrouve ainsi, directement, le résultat du problème

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7.

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7. Mathématiques pour l informatique IMAC première année - Soutien - Nombres complexes Rappels. Un nombre complexe z admet plusieurs représentations : représentation vectorielle z = (a, b) où a, b R représentation

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007 ÉCOLE NATIONALE DE L AVIATION CIVILE Session 27 CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS DU CONTRÔLE DE LA NAVIGATION AÉRIENNE Épreuve commune obligatoire de MATHÉMATIQUES Durée : 4 Heures Coefficient

Plus en détail

Espaces vectoriels et applications linéaires

Espaces vectoriels et applications linéaires Espaces vectoriels et applications linéaires Exercice 1 On considère l'ensemble E des matrices carrées d'ordre 3 défini par,,, 1) Montrer que est un sous-espace vectoriel de l'espace vectoriel des matrices

Plus en détail

UNIVERSITÉ DE POITIERS

UNIVERSITÉ DE POITIERS UNIVERSITÉ DE POITIERS Faculté des Sciences Fondamentales et Appliquées Mathématiques PREMIÈRE ANNEE DE LA LICENCE DE SCIENCES ET TECHNOLOGIES UE L «algèbre linéaire» Plan du cours Exercices Enoncés des

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Cahier de textes Mathématiques

Cahier de textes Mathématiques Cahier de textes Mathématiques Mercredi 6 janvier : cours 2h Début du chapitre 12 - Convergence de suites réelles : 12.1 Convergence de suites : suites convergentes, limites de suites convergentes, unicité

Plus en détail

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre 1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Les deux modes de représentation des sous-espaces vectoriels Il existe deux modes

Plus en détail

La maison Ecole d ' Baccalauréat blanc Classe de terminale ES. Exercice 1 - sur 4 points

La maison Ecole d ' Baccalauréat blanc Classe de terminale ES. Exercice 1 - sur 4 points La maison Ecole d ' Baccalauréat blanc Classe de terminale ES Année scolaire 00-004 Copyright c 004 J.- M. Boucart GNU Free Documentation Licence On veillera à détailler et à rédiger clairement les raisonnements,

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme Cahier de vacances Exercices PCSI - PC, Lycée Dupuy de Lôme Votre année de PCSI a été bien remplie et il est peu probable que l année de PC qui arrive vous paraisse plus facile. C est pourquoi, je vous

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 Voici une fiche contenant 100 exercices de difficulté raisonable, plutôt techniques, qui recouvrent l ensemble du programme étudié cette année. A raison

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence

L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence Sommaire 1. Arithmétique 2 1.1. Division euclidienne......................... 2 1.2. Congruences.............................

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Première partie. Deuxième partie

Première partie. Deuxième partie PC 96-97 correction épreuve X97 Première partie. f étant convexe sur l intervalle [t, t 2 ], sa courbe représentative est en dessous la corde joignant les points (t, f(t )) et (t 2, f(t 2 )). Comme f(t

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Examen 2 Mathématiques L1S1 TD 1104 2015 2016 Université Paris 1

Examen 2 Mathématiques L1S1 TD 1104 2015 2016 Université Paris 1 Examen Mathématiques LS TD 04 05 06 Université Paris Nom : Prénom : Durée : heure. Calculatrice interdite. Aucun document autorisé. Chaque question de la partie QCM vaut un point. Identifiez toutes les

Plus en détail

Examen de l UE LM125 Janvier 2007 Corrigé

Examen de l UE LM125 Janvier 2007 Corrigé Université Pierre et Marie Curie Licence Sciences et Technologies MIME L énoncé est repris sur fond mauve. En prune : des commentaires. Examen de l UE LM15 Janvier 007 Corrigé Commentaires généraux barème

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Devoir surveillé n 1 : correction

Devoir surveillé n 1 : correction E1A-E1B 013-01 Devoir surveillé n 1 : correction Samedi 8 septembre Durée : 3 heures. La calculatrice est interdite. On attachera une grande importance à la qualité de la rédaction. Les questions du début

Plus en détail

MATHS VUIBERT. Rappels de cours Conseils de méthode Exercices guidés Exercices d approfondissement Problèmes de synthèse Tous les corrigés détaillés

MATHS VUIBERT. Rappels de cours Conseils de méthode Exercices guidés Exercices d approfondissement Problèmes de synthèse Tous les corrigés détaillés VUIBERT MÉTHODES EXERCICES PROBLÈMES MATHS ECE 2 e année Tout le programme Rappels de cours Conseils de méthode Exercices guidés Exercices d approfondissement Problèmes de synthèse Tous les corrigés détaillés

Plus en détail

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité?

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité? Université Paris Dauphine DEMIE e année Algèbre linéaire 3 Examen - septembre 01 Le sujet comporte pages. L épreuve dure heures. Les documents, calculatrices et téléphones portables sont interdits. Question

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE

CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE ÉCOLE NATIONALE DE L AVIATION CIVILE ANNÉE 2006 CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE ÉPREUVE DE MATHÉMATIQUES Durée : 2 Heures Coefficient : 1 Ce sujet comporte (dans l énoncé d origine, pas

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

ORDRE DE RÉACTION : MÉTHODES DE

ORDRE DE RÉACTION : MÉTHODES DE ORDRE DE RÉACTION : MÉTHODES DE RÉSOLUTION Table des matières 1 Méthodes expérimentales 2 1.1 Position du problème..................................... 2 1.2 Dégénérescence de l ordre...................................

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

CENTRALE PC 2000 ÉPREUVE DE MATH 2. Première partie

CENTRALE PC 2000 ÉPREUVE DE MATH 2. Première partie CENTRALE PC 2000 ÉPREUVE DE MATH 2 Première partie I. A. 1. La fonction x px kx 2 = x(p kx) présente un maximum pour toute valeur de p au point d abscisse x = p p2 et il vaut 2k 2k. Conclusion : J(f) =

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

Equations différentielles

Equations différentielles Maths PCSI Cours Table des matières Equations différentielles 1 Généralités 2 1.1 Solution d une équation différentielle................................ 2 1.2 Problème de Cauchy.........................................

Plus en détail

Cours Diagonalisation

Cours Diagonalisation Cours Diagonalisation par Pierre Veuillez 1 Objectif Pour une matrice A donnée, déterminer une matrice D diagonale et une matrice P inversible telle que A = P D P 1. Interprètation : Quelle relation reconnaît-on?

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques Cours de terminale S Suites numériques V. B. et S. B. Lycée des EK 13 septembre 2014 Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier

Plus en détail

X-ENS PSI - 2009 Un corrigé

X-ENS PSI - 2009 Un corrigé X-ENS PSI - 009 Un corrigé Première partie.. Des calculs élémentaires donnent χ A(α) = χ B(α) = X X + et χ A(α)+B(α) = X X + 4α + 4 On en déduit que Sp(A(α)) = Sp(B(α)) = {j, j } où j = e iπ 3 Sp(A(α)

Plus en détail

Les astuces de Maths. par Isabelle Blejean C OLLECTION LES MÉMENTOS DE L INSEEC MÉMENTO N 9

Les astuces de Maths. par Isabelle Blejean C OLLECTION LES MÉMENTOS DE L INSEEC MÉMENTO N 9 C OLLECTION LES MÉMENTOS DE L INSEEC CAHIERS MÉTHODOLOGIQUES POUR LES CLASSES PRÉPARATOIRES AUX GRANDES ÉCOLES DE COMMERCE Les astuces de Maths par Isabelle Blejean MÉMENTO N 9 Les Mémentos de l INSEEC

Plus en détail

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01 Eo7 Dérivée d une fonction Vidéo partie. Définition Vidéo partie. Calculs Vidéo partie 3. Etremum local, théorème de Rolle Vidéo partie 4. Théorème des accroissements finis Eercices Fonctions dérivables

Plus en détail

Cours 3: Inversion des matrices dans la pratique...

Cours 3: Inversion des matrices dans la pratique... Cours 3: Inversion des matrices dans la pratique... Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module complémentaire de maths, année 2012 1 Rappel de l épisode précédent

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES VINCENT GUEDJ 1. Notions fondamentales 1.1. Noyau, Image. On se donne E un K-espace vectoriel de dimension finie (K = R, C principalement) et f L(E) un

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

Bases mathématiques pour l économie et la gestion

Bases mathématiques pour l économie et la gestion Bases mathématiques pour l économie et la gestion Bases mathématiques Pour l économie et la gestion - Table des matières PREMIERE PARTIE : QUELQUES OUTILS Chapitre : Traitement de systèmes d'équations..

Plus en détail

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices Réduction pratique de matrices Exercice 1 - Diagonalisation - 1 - L1/L2/Math Spé - Diagonaliser les matrices suivantes : 0 2 1 A = 3 2 0 B = 2 2 1 0 3 2 2 5 2 2 3 0 On donnera aussi la matrice de passage

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

MATHEMATIQUES Option Economique

MATHEMATIQUES Option Economique Concours EDHEC 9 Classes Préparatoires MATHEMATIQUES Option Economique La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls.

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls. Diagonalisation des matrices http://www.math-info.univ-paris5.fr/~ycart/mc2/node2.html Sous-sections Matrices diagonales Valeurs propres et vecteurs propres Polynôme caractéristique Exemples Illustration

Plus en détail

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-201 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Polynômes 1 Fonctions polynômes & polynômes Définition 1. Soit

Plus en détail

Programme de Première

Programme de Première BAC TECHNO STAV 66 I. Algèbre Programme de Première Objectif 1 - Effectuer de manière autonome des calculs numériques ou algébriques, résoudre des équations ou inéquations en vue de résoudre des problèmes

Plus en détail

Notes de cours L1 MATH120. Hervé Le Dret

Notes de cours L1 MATH120. Hervé Le Dret Notes de cours L1 MATH120 Hervé Le Dret 18 octobre 2004 40 Chapitre 3 Vecteurs dans R m Dans ce chapitre, nous allons nous familiariser avec la notion de vecteur du point de vue algébrique. Nous reviendrons

Plus en détail

Fiche Méthode 11 : Noyaux et images.

Fiche Méthode 11 : Noyaux et images. Fiche Méthode 11 : Noyaux et images. On se place dans un espace vectoriel E de dimension finie n, muni d une base B = ( e 1,..., e n ). f désignera un endomorphisme de E 1 et A la matrice de f dans la

Plus en détail

Corrigés des épreuve de mathématiques s voies scientifique et

Corrigés des épreuve de mathématiques s voies scientifique et Mathématiques voies S et E Corrigés des épreuve de mathématiques s voies scientifique et François Delaplace (voie E), Pierre Girard (voie S) Professeurs de mathématiques en classes préparatoires économiques

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Cours de mathématiques Terminale S Enseignement obligatoire. Jean-Paul Widehem 2009-2010 Lycée Roland Garros

Cours de mathématiques Terminale S Enseignement obligatoire. Jean-Paul Widehem 2009-2010 Lycée Roland Garros Cours de mathématiques Terminale S Enseignement obligatoire Jean-Paul Widehem 2009-2010 Lycée Roland Garros Table des matières partie 1. Récurrence et suites 1 Chapitre 1. Raisonnement par récurrence

Plus en détail

Exercices classés par thèmes

Exercices classés par thèmes Hypokhâgne B/L 0/0 Exercices classés par thèmes Avec extraits de sujets et quelques corrigés... Introduction Table des matières Fonctionnement du document III Fonctions de R dans R 4 Table des matières

Plus en détail

Correction du baccalauréat S Liban juin 2007

Correction du baccalauréat S Liban juin 2007 Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau

Plus en détail

Polynômes. Motivation. 1. Définitions. Exo7. 1.1. Définitions

Polynômes. Motivation. 1. Définitions. Exo7. 1.1. Définitions Exo7 Polynômes Vidéo partie 1. Définitions Vidéo partie 2. Arithmétique des polynômes Vidéo partie 3. Racine d'un polynôme, factorisation Vidéo partie 4. Fractions rationnelles Exercices Polynômes Exercices

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

Sciences Po Paris 2012 Mathématiques Solutions

Sciences Po Paris 2012 Mathématiques Solutions Sciences Po Paris 202 athématiques Solutions Partie : Le modèle de althus odèle discret a Pour tout entier naturel n, on a P n+ P n = P n donc P n+ = +P n Par suite la suite P n est géométrique de raison

Plus en détail

Travaux dirigés avec SAGE (partie III)

Travaux dirigés avec SAGE (partie III) Math 3 Année 2010-2011 Sommaire 1 Vecteurs et matrices 2 1.1 Construction, opérations élémentaires............................. 2 1.1.1 Vecteurs.......................................... 2 1.1.2 Matrices..........................................

Plus en détail

Chapitre 4. Adjoints Opérateurs auto-adjoints et isométries

Chapitre 4. Adjoints Opérateurs auto-adjoints et isométries Chapitre 4 Adjoints Opérateurs auto-adjoints et isométries I. Adjoint : Cas général d une forme { bilinéaire symétrique sesquilinéaire hermitienne On suppose dans tout I que E est un espace vectoriel de

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Primitives Cours maths Terminale S

Primitives Cours maths Terminale S Primitives Cours maths Terminale S Dans ce module est introduite la notion de primitive d une fonction sur un intervalle. On définit cette notion puis on montre qu une fonction admet une infinité de primitives

Plus en détail

Fiche de révisions de première année pour une rentrée en PSI en toute sérénité!

Fiche de révisions de première année pour une rentrée en PSI en toute sérénité! PSI Septembre 0 MATHEMATIQUES Fiche de révisions de première année pour une rentrée en PSI en toute sérénité! Table des matières Nombres complexes 3. Cours...................................... 3. Exercices

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Cours de Mathématiques Seconde. Généralités sur les fonctions

Cours de Mathématiques Seconde. Généralités sur les fonctions Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Terminale ES Correction du bac blanc de Mathématiques (version spécialité).

Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Lycée Jacques Monod février 05 Exercice : Voici les graphiques des questions. et.. A 4 A Graphique Question. Graphique Question..

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

Problèmes de Mathématiques Noyaux et images itérés

Problèmes de Mathématiques Noyaux et images itérés Énoncé Soit E un espace vectoriel sur IK (IK = IR ou lc). Soit f un endomorphisme de E. On pose f 0 = Id E, et pour tout entier k 1, f k = f f k 1. 1. Montrer que (Im f k ) k 0 et (Ker f k ) k 0 forment

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Partie I - Valeurs propres de AB et BA

Partie I - Valeurs propres de AB et BA SESSION 9 Concours commun Centrale MATHÉMATIQUES. FILIERE PSI Partie I - Valeurs propres de AB et BA I.A - Cas de la valeur propre. I.A.) Sp(AB) Ker(AB) {} AB / G L n (R) det(ab) =. I.A.) Sp(AB) det(ab)

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Direction des Admissions et concours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail

Le raisonnement par récurrence

Le raisonnement par récurrence Le raisonnement par récurrence Nous notons N l ensemble des entiers naturels : N = {0,,, } Nous dirons naturel au lieu de entier naturel Le principe du raisonnement par récurrence Soit A une partie de

Plus en détail

3 2 Séries numériques

3 2 Séries numériques BCPST 9 5 3 Séries numériques I Généralités A) Dénition Soit (a n ) n N une suite à valeurs dans R. On appelle série de terme général a n, et on note a n la suite dénie par : S n = On dit que S n est la

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M.

PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M. PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M. Vienney 2 M. VIENNEY Vous trouverez dans ce document

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que :

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que : Il sera tenu compte de la présentation et de la rédaction de la copie lors de l évaluation finale. Les élèves n ayant pas la spécialité mathématique traiteront les exercices 1, 2,3 et 4, les élèves ayant

Plus en détail

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12 TS. 01/013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 0/11/1 Exercice 1 : ( 6,5 pts) Première partie : Démonstration à rédiger { Démontrer que si ( ) et (v n ) sont deux suites telles

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

Cours fonctions, expressions algébriques

Cours fonctions, expressions algébriques I. Expressions algébriques, équations a) Développement factorisation Développer Développer un produit, c est l écrire sous forme d une somme. Réduire une somme, c est l écrire avec le moins de termes possibles.

Plus en détail

Université Joseph Fourier Premier semestre 2009/10. Licence première année - MAT11a - Groupe CHB-1. Contrôle Continu 1, le 9/10/2009

Université Joseph Fourier Premier semestre 2009/10. Licence première année - MAT11a - Groupe CHB-1. Contrôle Continu 1, le 9/10/2009 Université Joseph Fourier Premier semestre 9/ Licence première année - MATa - Groupe CHB- Contrôle Continu, le 9//9 Le contrôle dure heure. Questions de cours. ) Soit f :]a, b[ ]c, d[ unefonctionbijectiveetdérivabletelleque,pourtoutx

Plus en détail

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Frédéric Messine Introduction Dans ce chapitre, nous allons étudier une application de la dérivation des fonctions de plusieurs variables

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

6.11 Bases de Lanczos bi-orthogonales pour des matrices non symétriques

6.11 Bases de Lanczos bi-orthogonales pour des matrices non symétriques Chapitre 6 Méthodes de Krylov 611 Bases de Lanczos bi-orthogonales pour des matrices non symétriques Dans le cas où la matrice A n est pas symétrique, comment peut-on retrouver une matrice de corrélation

Plus en détail