TUTORAT UE Biostatistiques Concours Blanc

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "TUTORAT UE4 2010-2011 Biostatistiques Concours Blanc"

Transcription

1 TUTORAT UE Biostatistiques Concours Blanc Lorsque cela n est pas précisé (explicitement ou implicitement), les tests sont réalisés à 5% en bilatéral QCM n 1 : Généralités sur les probabilités : a) Soit A et B, 2 événements indépendants : P(A B)=P(A) +P(B) - P(A) x P(B). b) Le nombre de façon de tirer p objets simultanément parmi n est égal à : n! / (n-p)!. c) Si P(A) = 0,4, P(B) = 0,25 et P(A B) = 0,01 alors les événements A et B sont dits indépendants. d) Le nombre de combinaisons de 13 cartes dans un jeu de 52 cartes est égal au nombre de façon de tirer 13 cartes dans le jeu en tenant compte de l'ordre divisé par le nombre de permutations dans une couleur (trèfle par exemple). e) Dans un arbre de probabilité, la probabilité qu'un chemin particulier se produise est égale à la somme de chaque probabilité des branches du chemin. QCM n 2 : Une population est exposée à 50% à un facteur E, on s'intéresse à l'association de ce facteur sur l'incidence d'une maladie M. Parallèlement, on étudie un test T, mis au point pour détecter cette maladie. Données : Incidence de la maladie chez les exposés : 0,56 Chez les exposés, 60% on un test positif. P (M/ E ) = 0,4. VPP=0,9. a) La sensibilité du test est sa capacité à détecter tous les malades. b) E peut être considéré comme un facteur protecteur de la maladie. c) La probabilité d'être malade parmi les exposés sachant que le test est positif est de 0,9. d) La probabilité que le test soit négatif sachant que l'on n'est pas malade est un critère d'efficacité du test. e) Si on augmente la proportion d'exposés, P(M/E) va augmenter. QCM n 3 : Généralité sur les tests et les variables : a) Lors de ces tests, on cherche à rejeter une hypothèse qu'on appelle hypothèse nulle. b) Le rejet de cette hypothèse nulle lorsqu'elle est vraie est appelé "manque de puissance" c) Pour une comparaison d'une moyenne observée µ 1 à une moyenne théorique µ 0, t α correspond à l'écart maximal (dans un espace mathématique particulier) que l'on peut tolérer entre µ 0 et µ 1 en prenant un risque de α % d'erreur en tenant compte de l écart-type. d) Lors de la comparaison de 2 moyennes observées venant respectivement des échantillons n1 et n2, il suffit que n1 ou n2 soit supérieur ou égal à 30 pour utiliser le test de l'écart réduit e) Lors d'un test de Student apparié, on calcule la différence des valeurs entre 2 échantillons pour avoir un seul échantillon de différence avec sa propre moyenne et le comparer à la population référence dont la différence moyenne δ= Tutorat UE4 Biostatistiques CCB 1 / 5

2 QCM n 4 : Je cherche à savoir si les notes obtenues à l'internat à Montpellier sont représentatives de celles obtenues dans la population totale des étudiants passant le concours : a) Je vais chercher à comparer une moyenne observée à une moyenne théorique. b) Sachant que mon échantillon contient 150 étudiants, je réalise un test de l'écart réduit à n-1 ddl. c) Le t obs dépend uniquement de la moyenne calculée, de la moyenne de la population et de l'écarttype. d) Si je veux comparer mon échantillon à un échantillon d'une autre ville réalisé pour une étude similaire, je ferais un test de l'écart réduit et utiliserais la même formule que précédemment. e) Si je rejette H 0 dans mes 2 études, cela veut dire que l'échantillon de Montpellier est représentatif de la population générale mais que l'échantillon de Montpelier n'est pas similaire à celui de l'autre ville. QCM n 5 : On compare la taille du saut de 10 puces avant et après injection d une substance sensée démultiplier leur force musculaire. a) On utilise un test de Student classique. b) Il s agit d une comparaison entre une différence de moyenne observée et une différence de moyenne théorique. c) La différence de moyenne théorique susnommée est considérée comme égale à 0. d) On utilise donc un test de Student à N1+N2-2 ddl. e) Si on avait seulement comparé l échantillon post injection avec la population générale, on aurait utilisé un test de l écart réduit. QCM n 6 : Les résultats d une colle de physique montrent que la variable X, note obtenue, suit une loi Normale dont on ignore les paramètres. Mais on est certain que P(X>13) = 0,0228 et P(X<2,5) = 0,0668. a) µ = 7 b) µ = 9 c) σ = 2 d) σ = 3 e) Les deux paramètres de cette loi Normale sont impossibles à calculer avec les données fournies QCM n 7 : Le dosage de l urée sanguine chez 8 patients a donné les résultats suivants (en g/l) : 0,25 0,28 0,27 0,32 0,33 0,30 0,34 0,31 a) est une estimation sans biais de µ. b) L estimation de la variance de la population est S²=0,0311. c) Pour calculer un intervalle de confiance sur la moyenne de la population, on doit supposer que l échantillon suit une loi Normale. d) L intervalle de confiance de la moyenne de la population au risque de 5% est : [0,235 ; 0,365]. e) L intervalle de confiance de la moyenne de la population au risque de 5% est : [0,274 ; 0,326] Tutorat UE4 Biostatistiques CCB 2 / 5

3 QCM n 8 : On étudie chez différents individus la taille d un gène polymorphe, le gène Pec. On a démontré que la variable X, taille du gène Pec, suivait une loi Normale d écart-type 15kb (Kilobase). De plus, on a calculé que P(X>121) = 0,0808. a) suit une loi Normale centrée réduite de moyenne µ et d écart-type σ. b) µ = 110 kb. c) µ = 120 kb. d) P(X=100) = 0. e) P(88< X < 115) = 0,6294. QCM n 9 : Une maladie M a une prévalence de. Soit la variable aléatoire X, nombre de personnes atteintes par cette maladie. On considère le nombre de personnes malades dans une ville de habitants. a) X suit une loi Binomiale de paramètre n= et p=0,0001. b) On peut approximer cette loi Binomiale par une loi de Poisson. c) Si on peut approximer cette loi par une loi de poisson, alors λ=20. d) au millième près. e) au millième près. QCM n 10 : Geneviève de Fontenay a remarqué que certaines de ses miss ont un tour de taille «excessif». On désire alors comparer le tour de taille de ces miss en fonction d une répartition Nord/Sud. On a : effectif nord = 8 et effectif sud = 7. Les groupes sont les suivants : Nord 61 cm 58 cm 59 cm 62 cm 63 cm 61 cm 59 cm 64 cm Sud 60 cm 58 cm 57 cm 59 cm 61 cm 60 cm 62 cm Le test sera réalisé en bilatéral. a) On utilise un test de Wilcoxon-Mann-Whitney. b) L hypothèse nulle H O est la suivante : la loi de distribution du groupe nord est différente de la loi de distribution du groupe sud. c) On observe U min = 18. d) On peut rejeter H O au risque de 5%. e) On peut rejeter H O au risque de 2%. QCM n 11 : Les études épidémiologiques : a) L épidémiologie se divise en trois branches : descriptive, analytique, évaluative. b) Les études épidémiologiques peuvent concerner des sujets sains et des sujets malades. c) L épidémiologie descriptive identifie les facteurs de risque. d) L épidémiologie évaluative ne concerne que des sujets malades. e) Les études épidémiologiques permettent le calcul d indicateurs de santé ou d indicateurs de risque Tutorat UE4 Biostatistiques CCB 3 / 5

4 QCM n 12 : Concernant les biais dans les études épidémiologiques : a) Ce sont des erreurs aléatoires. b) On ne peut pas limiter ces biais. c) Il existe seulement deux types de biais : de sélection, d information. d) Le biais d information résulte d erreurs de mesure sur l exposition ou sur la maladie. e) Pour être facteur de confusion sur la relation entre l exposition E et une maladie M, un facteur X doit satisfaire trois conditions : être un facteur de risque pour M, être associé à E, être une conséquence de E. QCM n 13 : Concernant les essais thérapeutiques : a) Le double aveugle est indispensable lorsque le traitement de référence est un placebo. b) Le Nombre de Sujets Nécessaires à inclure dans l étude varie dans le sens inverse du risque α, de la puissance β, de la variabilité σ et de la différence que l on souhaite mettre en évidence. c) Dans une analyse en intention de traiter, les patients qui présentent des écarts au protocole sont exclus de l analyse. d) Le critère de jugement principal doit impérativement être objectif. e) La variabilité σ et la différence attendue sont estimées à partir d études antérieures. QCM n 14 : Généralités : a) Quelque soit la taille de l échantillon, un tirage au sort sans remise ne peut être assimilé à un test indépendant. b) L âge et la couleur des yeux sont des valeurs qualitatives ordinales. c) La variable «poids du patient» classée sous la forme : maigre, normal, surpoids et obèse est une variable qualitative nominale. d) Calculer la médiane d une population permet de moins tenir compte des valeurs extrêmes. e) Calculer la variance permet de tenir compte des valeurs extrêmes. QCM n 15 : Une étude est menée sur l ensemble des maisons de retraite de Montpellier. Nous voulons savoir si le vaccin de la grippe A protège contre la grippe saisonnière. Nous avons inclus 300 pensionnaires n ayant été vaccinés que pour la grippe A et 185 ayant refusé d être vaccinés. Voici le résultat de l étude : Vacciné Non Vacciné TOTAL Grippe Absence de Grippe TOTAL a) Nous pouvons utiliser le test de l écart réduit. b) La correction de Yates est nécessaire. c) Le t obs est de 2.23 avec le test de l écart réduit. d) Le vaccin contre la grippe A a un effet protecteur pour la grippe saisonnière à α = 0,02. e) Il est possible de démontrer un effet protecteur du vaccin de la grippe A contre la grippe saisonnière à α = 0, Tutorat UE4 Biostatistiques CCB 4 / 5

5 QCM n 16 : Une deuxième étude est menée en parallèle. Nous suivons une population de 400 personnes sur deux ans. La première année 200 personnes attrapent la grippe saisonnière. La deuxième année tous les patients sont vaccinés contre la grippe A. Cette même deuxième année 26 personnes ayant déjà contracté la grippe l année précédente l attrapent de nouveau. 31 personnes n ayant pas attrapé la grippe la première année contractent la maladie. a) Le degré de signification du test vaut p = 0,5. b) Il faut proposer une correction de continuité. c) T obs = 9,987 avec le chi-deux. d) Nous pouvons rejeter H0 au seuil α = 0,05. e) Nous pouvons rejeter H0 au seuil α = 0,001. QCM n 17 : Nous voulons savoir si le fait d avoir la drépanocytose a un effet sur les formes graves de paludisme (neuropaludisme). Soit trois échantillons : A : 50 personnes homozygotes pour la drépanocytose B : 50 personnes hétérozygotes pour la drépanocytose C : 70 personnes ne présentant pas d allèle du gène de la drépanocytose Echantillon Neuropaludisme Absence de Neuropaludisme TOTAL A B C a) L hypothèse clinique est : le caractère homozygote ou hétérozygote à la drépanocytose n a aucun facteur prédictif sur la possibilité ou non de faire un neuropaludisme. b) Nous pouvons utiliser le test de l écart réduit. c) Nous sommes obligés d utiliser la correction de Yates. d) T obs = 13,90. e) Il est possible de conclure au seuil α = 0, Tutorat UE4 Biostatistiques CCB 5 / 5

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq»

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Guy Perrière Pôle Rhône-Alpes de Bioinformatique 14 novembre 2012 Guy Perrière (PRABI) Tests statistiques 14 novembre 2012 1 / 40 Plan

Plus en détail

PREMIERE ANNEE COMMUNE DES ETUDES DE SANTE. Faculté de Médecine Lyon Est Année Universitaire 2010-2011 UE4. Epreuve du jeudi 16 décembre 2010

PREMIERE ANNEE COMMUNE DES ETUDES DE SANTE. Faculté de Médecine Lyon Est Année Universitaire 2010-2011 UE4. Epreuve du jeudi 16 décembre 2010 PREMIERE ANNEE COMMUNE DES ETUDES DE SANTE Faculté de Médecine Lyon Est Année Universitaire 2010-2011 UE4 Epreuve du jeudi 16 décembre 2010 Dr Claire BARDEL, Dr Marie-Aimée DRONNE, Dr Delphine MAUCORT-BOULCH

Plus en détail

Lois de probabilité (2/3) Anita Burgun

Lois de probabilité (2/3) Anita Burgun Lois de probabilité (2/3) Anita Burgun Contenu des cours Loi binomiale Loi de Poisson Loi hypergéométrique Loi normale Loi du chi2 Loi de Student Loi hypergéométrique La loi du tirage exhaustif Puce à

Plus en détail

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon PACES - APEMK UE 4 Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie

Plus en détail

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50 10. Estimation MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: estimation 1/50 Plan 1. Introduction 2. Estimation ponctuelle 3. Estimation par intervalles de confiance 4. Autres

Plus en détail

Lecture Critique d un essai thérapeutique dans la maladie d Alzheimer. Sandrine Andrieu Jean François Dartigues

Lecture Critique d un essai thérapeutique dans la maladie d Alzheimer. Sandrine Andrieu Jean François Dartigues Lecture Critique d un essai thérapeutique dans la maladie d Alzheimer Sandrine Andrieu Jean François Dartigues Histoire du dimebon Vous arrivez le matin à la consultation mémoire. Dans la voiture, sur

Plus en détail

TUTORAT UE 4 2015-2016 Biostatistiques Séance n 5 Semaine du 19/10/2015

TUTORAT UE 4 2015-2016 Biostatistiques Séance n 5 Semaine du 19/10/2015 TUTORAT UE 4 2015-2016 Biostatistiques Séance n 5 Semaine du 19/10/2015 Tests statistiques 2 M. Molinari. Séance préparée par Cécile JOURDAN, Charlotte SILVESTRE, Brice LAVABRE, Julie DUSSAUT, Mathilde

Plus en détail

PLACE DES STATISTIQUES DANS LA RECHERCHE MEDICALE

PLACE DES STATISTIQUES DANS LA RECHERCHE MEDICALE PLACE DES STATISTIQUES DANS LA RECHERCHE MEDICALE PLAN Définition des statistiques Échantillonnage Mise en place d une étude Interprétation des résultats Petits échantillons Analyse des bases de données

Plus en détail

Statistiques. IUT Biotechnologie 2ème année. Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008

Statistiques. IUT Biotechnologie 2ème année. Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008 Statistiques IUT Biotechnologie 2ème année Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008 version du 04 octobre 2008 Table des matières 1 Lois de probabilité usuelles 1 1.1 Dénombrement................................

Plus en détail

Statistiques et estimation

Statistiques et estimation DERNIÈRE IMPRESSION LE 23 juillet 2014 à 16:35 Statistiques et estimation Table des matières 1 Intervalle de fluctuation 2 1.1 Simulation................................. 2 1.2 Définition.................................

Plus en détail

INTRODUCTION A LA RECHERCHE QUANTITATIVE

INTRODUCTION A LA RECHERCHE QUANTITATIVE INTRODUCTION A LA RECHERCHE QUANTITATIVE Deuxième partie : de la base de données aux résultats Juin 2010 Julien Gelly, Caroline Huas, Josselin Le Bel Plan 2 1. Introduction 2. Saisie des données : Epi

Plus en détail

Principe des Tests Statistiques

Principe des Tests Statistiques Principe des Tests Statistiques Vocabulaire & Notions Générales Marc AUBRY Plateforme Transcriptome Biogenouest Rennes Askatu Les Étapes d un Test Statistique Question scientifique Choix d un test statistique

Plus en détail

Estimation. Anita Burgun

Estimation. Anita Burgun Estimation Anita Burgun Estimation Anita Burgun Contenu du cours Sondages Mesures statistiques sur un échantillon Estimateurs Problème posé Le problème posé en statistique: On s intéresse à une population

Plus en détail

Statistiques et essais cliniques

Statistiques et essais cliniques Hegel Vol. 3 N 1 2013 DOI : 10.4267/2042/49204 21 Statistiques et essais cliniques François Kohler Laboratoire SPI-EAO, Faculté de Médecine, Vandœuvre-les-Nancy francois.kohler@univ-lorraine.fr Introduction

Plus en détail

Chapitre 8: Inférence, échantillonnage et estimation

Chapitre 8: Inférence, échantillonnage et estimation Chapitre 8: Inférence, échantillonnage et estimation 1. Echantillonnage aléatoire simple 2. Inférence statistique 3. Estimation 4. Evaluation graphique de l adéquation d un modèle de distribution 1 L inférence

Plus en détail

2) Ecrire en utilisant la notation : 3+5+7+9+ 15+17

2) Ecrire en utilisant la notation : 3+5+7+9+ 15+17 STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES Exercice n. Les 5 élèves d'une classe ont composé et le tableau ci-dessous donne la répartition des diverses notes. Recopier et compléter ce tableau en calculant

Plus en détail

TUTORAT UE4 2010-2011 Biostatistiques Séance n 4 - Colle Semaine du 1/11/2010

TUTORAT UE4 2010-2011 Biostatistiques Séance n 4 - Colle Semaine du 1/11/2010 TUTORAT UE4 2010-2011 Biostatistiques Séance n 4 - Colle Semaine du 1/11/2010 Séance préparée par les tuteurs de l UE4 Sauf mention contraire, les tests sont réalisés en bilatéral avec α=5% QCM n 1 : Concernant

Plus en détail

Exercices de Statistique

Exercices de Statistique Université Joseph Fourier, Grenoble I Licence Sciences et Technologies e année STA30 : Méthodes Statistiques pour la Biologie Exercices de Statistique http ://ljk.imag.fr/membres/bernard.ycart/sta30/ Chaque

Plus en détail

STATISTICA Test d hypothèseshè

STATISTICA Test d hypothèseshè TEST D HYPOTHESES STATISTICA Test d hypothèseshè TEST D HYPOTHESES Les étapes : Problématique Revue de la littérature Formulation d une hypothèse théorique Construction de l expérience (méthodologie) Lister

Plus en détail

2. Formalisation ... Or les variables sont indépendantes. Donc si

2. Formalisation ... Or les variables sont indépendantes. Donc si L'estimation 1. Concrètement... Dernièrement un quotidien affichait en première page : en 30 ans les françaises ont grandi de... je ne sais plus exactement, disons 7,1 cm. C'est peut-être un peu moins

Plus en détail

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale MT8 A 0 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale. Fonction de répartition.. Variable aléatoire à valeurs réelles Définition : Soit un ensemble fondamental

Plus en détail

1. Calculer: P(Z<1.34); P(Z<-1.72); P(Z>2.41); P(Z>-1.53); P(1.12<Z<1.57); P(- 0.75<Z<0.36); P( Z >1.96)

1. Calculer: P(Z<1.34); P(Z<-1.72); P(Z>2.41); P(Z>-1.53); P(1.12<Z<1.57); P(- 0.75<Z<0.36); P( Z >1.96) EXERCICES SUR LA LOI NORMALE Exercice 1. Soit Z une V.A. de loi N(0,1). 1. Calculer: P(Z-1.53); P(1.12

Plus en détail

Interprétation d une enquête épidémiologique : type d enquête, notion de biais, causalité (72) Docteur José LABARERE Mars 2004 (Mise à jour mai 2005)

Interprétation d une enquête épidémiologique : type d enquête, notion de biais, causalité (72) Docteur José LABARERE Mars 2004 (Mise à jour mai 2005) Interprétation d une enquête épidémiologique : type d enquête, notion de biais, causalité (72) Docteur José LABARERE Mars 2004 (Mise à jour mai 2005) Pré-Requis : Test de comparaison de proportions (chi

Plus en détail

SONDAGE DANS LA MISSION D AUDIT UNITE MONETAIRE. Fethi NEJI & Mounir GRAJA

SONDAGE DANS LA MISSION D AUDIT UNITE MONETAIRE. Fethi NEJI & Mounir GRAJA SONDAGE DANS LA MISSION D AUDIT UNITE MONETAIRE Le sondage est une sélection d'éléments que l'auditeur décide d'examiner afin de tirer, en fonction des résultats obtenus, une conclusion sur les caractéristiques

Plus en détail

«Cours Statistique et logiciel R»

«Cours Statistique et logiciel R» «Cours Statistique et logiciel R» Rémy Drouilhet (1), Adeline Leclercq-Samson (1), Frédérique Letué (1), Laurence Viry (2) (1) Laboratoire Jean Kuntzmann, Dép. Probabilites et Statistique, (2) Laboratoire

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

Échantillonnage et estimation

Échantillonnage et estimation Échantillonnage et estimation Dans ce chapitre, on s intéresse à un caractère dans une population donnée dont la proportion est notée. Cette proportion sera dans quelques cas connue (échantillonnage),

Plus en détail

Eléments de stratégie d échantillonnage à l adresse des diagnostiqueurs amiante.

Eléments de stratégie d échantillonnage à l adresse des diagnostiqueurs amiante. Eléments de stratégie d échantillonnage à l adresse des diagnostiqueurs amiante. Essai de détermination du nombre de prélèvements à effectuer lors d un diagnostic amiante afin d assurer une représentativité

Plus en détail

LE TRAITEMENT STATISTIQUE. I. Les types de traitements statistiques en fonction des questions-problèmes (QP)

LE TRAITEMENT STATISTIQUE. I. Les types de traitements statistiques en fonction des questions-problèmes (QP) LE TRAITEMENT STATISTIQUE I. Les types de traitements statistiques en fonction des questions-problèmes (QP) Dans une recherche, on se pose toujours une ou plusieurs questions qu'il s'agira de résoudre.

Plus en détail

Tutorat du 22 0ctobre 2011

Tutorat du 22 0ctobre 2011 Tutorat du 22 0ctobre 2011 UE 4 : Evaluation des Méthodes d Analyses Appliquées aux Sciences de la Vie et de la Santé Durée : 1h Cette épreuve comprend 19 QCM : - 10 QCM à réponses multiples : il s agit

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2008/2009 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

Approche empirique du test χ 2 d ajustement

Approche empirique du test χ 2 d ajustement Approche empirique du test χ 2 d ajustement Alain Stucki, Lycée cantonal de Porrentruy Introduction En lisant des rapports, on rencontre souvent des raisonnements du style : «le premier groupe est meilleur

Plus en détail

1 - Probabilités et probabilités conditionnelles. PAES Faculté de Médecine P. et M. Curie V. Morice

1 - Probabilités et probabilités conditionnelles. PAES Faculté de Médecine P. et M. Curie V. Morice Probabilités et Biostatistique 1 - Probabilités et probabilités conditionnelles Evaluation ation d'un test diagnostique PAES Faculté de Médecine P. et M. Curie V. Morice Pourquoi la biostatistique : la

Plus en détail

Chapitre 7 Tests d hypothèse (partie 1)

Chapitre 7 Tests d hypothèse (partie 1) Chapitre 7 Tests d hypothèse (partie 1) I Qu est ce qu un test statistique? La philosophie est toujours la même : déterminer des informations sur une population à partir d informations sur un échantillon

Plus en détail

DIU Infirmières de Santé au Travail - IDF. Service Central de Santé au Travail de l AP-HP PLAN DE COURS

DIU Infirmières de Santé au Travail - IDF. Service Central de Santé au Travail de l AP-HP PLAN DE COURS DIU Infirmières de Santé au Travail - IDF Faculté de Médecine Paris VII - Denis Diderot Mardi 7 juin 2016 STATISTIQUES EN SANTE AU TRAVAIL : NOTIONS ESSENTIELLES Service Central de Santé au Travail de

Plus en détail

Niveau. Situations étudiées. Type d activité. Durée. Objectifs

Niveau. Situations étudiées. Type d activité. Durée. Objectifs Fourchettes, non réponses, fausses réponses et redressements... : la cuisine mathématique des sondages Niveau Exercice 1 : 3 ème 2 nde. Exercice 2 : 3 ème 2 nde. Exercice 3 : Seconde ou première. Exercice

Plus en détail

Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007. Introduction aux probabilités

Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007. Introduction aux probabilités Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007 Introduction aux probabilités Série n 3 Exercice 1 Une urne contient neuf boules. Quatre de ces boules portent le numéro

Plus en détail

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences

Plus en détail

ECGE 1224 - Statistiques en économie et gestion : TP 1

ECGE 1224 - Statistiques en économie et gestion : TP 1 ECGE 14 - Statistiques en économie et gestion : TP 1 Exercice 1 Un dé parfaitement équilibré est lancé. Soit X la variable aléatoire (v.a.) correspondant au résultat obtenu avec le dé. a) Justifer pourquoi

Plus en détail

RAPPORT DE LABORATOIRE DE PHYSIQUE Polarisation

RAPPORT DE LABORATOIRE DE PHYSIQUE Polarisation RAPPORT DE LABORATOIRE DE PHYSIQUE Polarisation Benjamin Frere & Pierre-Xavier Marique ème candidature en sciences physiques, Université de Liège Année académique 003-004 1 1 Objectifs Le but de cette

Plus en détail

Traitement statistique. des petits échantillons. Application avec JMP - 3 jours (*)

Traitement statistique. des petits échantillons. Application avec JMP - 3 jours (*) Traitement statistique Application avec JMP - 3 jours (*) Référence : STA-N1-SPECHAJMP Durée : 3 jours soit 21 heures (*) : La durée proposée est une durée standard. Elle peut être adaptée selon les besoins,

Plus en détail

Il existe 3 types d études en épidémiologie qui répondent à 3 questions différentes :

Il existe 3 types d études en épidémiologie qui répondent à 3 questions différentes : Fiche : Rappel des études en épidémiologie 1 L épidémiologie est l étude de l état de santé de la population, et des facteurs influant sur la santé des populations humaines. Il existe 3 types d études

Plus en détail

Exercice n 9 : Ne pas confondre observer et expérimenter

Exercice n 9 : Ne pas confondre observer et expérimenter Le pronostic des cancers du sein dépend de divers facteurs, dont la taille du cancer. En France, au cours d une étude, il a été observé un taux de survie plus important chez les femmes ayant un cancer

Plus en détail

VI. L APPORT DES MARQUEURS MOLECULAIRES. A. Définitions

VI. L APPORT DES MARQUEURS MOLECULAIRES. A. Définitions VI. L APPORT DES MARQUEURS MOLECULAIRES Comme nous l avons vu précédemment, l étude des caractères quantitatifs est fondée sur l analyse statistique des performances mesurées des individus. Il en est de

Plus en détail

Statistiques descriptives (1/2)

Statistiques descriptives (1/2) Statistiques descriptives (1/2) Anita Burgun 2011-2012 http://www.med.univ-rennes1.fr Introduction! Statistique: méthode scientifique qui consiste à réunir des données chiffrées sur des ensembles d individus

Plus en détail

Ressources pour le lycée technologique

Ressources pour le lycée technologique éduscol Enseignement de mathématiques Classe de première STMG Ressources pour le lycée technologique Échantillonnage : couleur des yeux au Canada Contexte pédagogique Objectifs Obtenir un intervalle de

Plus en détail

Fiche méthodologique Les pièges dans les dénombrements

Fiche méthodologique Les pièges dans les dénombrements Fiche méthodologique Les pièges dans les dénombrements BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Dans cette fiche, on résume quelques points techniques sur les dénombrements et la théorie des probabilités.

Plus en détail

Distance et classification. Cours 4: Traitement du signal et reconnaissance de forme

Distance et classification. Cours 4: Traitement du signal et reconnaissance de forme Distance et classification Cours 4: Traitement du signal et reconnaissance de forme Plan Introduction Pré-traitement Segmentation d images Morphologie mathématique Extraction de caractéristiques Classification

Plus en détail

Statistiques Appliquées Rôle des femmes dans la société

Statistiques Appliquées Rôle des femmes dans la société Statistiques Appliquées Rôle des femmes dans la société Denis Schelling Semestre d automne 2012 Résumé A partir de données concernant le rôle des femmes dans la société, nous avons effectué une analyse

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Dénombrement et probabilités Version du juillet 05 Enoncés Exercice - YouTube Sur YouTube, les vidéos sont identifiées à l aide d une chaîne

Plus en détail

TD1, sur la Régression Logistique (STA 2211)

TD1, sur la Régression Logistique (STA 2211) TD, sur la Régression Logistique STA 22) Exercice : Un sondage international cité dans un article de presse le 4 décembre 2004) rapportait le faible taux d approbation de la politique du Président des

Plus en détail

1 Variable aléatoire discrète... 1. 1.1 Rappels... 1. 1.2 Exemple... 2 2 Couples de variables aléatoires... 3. 2.1 Définition... 3

1 Variable aléatoire discrète... 1. 1.1 Rappels... 1. 1.2 Exemple... 2 2 Couples de variables aléatoires... 3. 2.1 Définition... 3 CHAPITRE : LOIS DISCRÈTES Sommaire Variable aléatoire discrète................................... Rappels........................................... Exemple......................................... Couples

Plus en détail

Points méthodologiques Adapter les méthodes statistiques aux Big Data

Points méthodologiques Adapter les méthodes statistiques aux Big Data Points méthodologiques Adapter les méthodes statistiques aux Big Data I. Répétition de tests et inflation du risque alpha II. Significativité ou taille de l effet? 2012-12-03 Biomédecine quantitative 36

Plus en détail

Statistique (MATH-F-315, Cours #1)

Statistique (MATH-F-315, Cours #1) Statistique (MATH-F-315, Cours #1) Thomas Verdebout Université Libre de Bruxelles 2015 Plan de la partie Statistique du cours 1. Introduction. 2. Théorie de l estimation. 3. Tests d hypothèses et intervalles

Plus en détail

Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire

Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire Julien JACQUES Polytech Lille - Université Lille 1 Julien JACQUES (Polytech Lille) Statistiques de base 1 / 48 Plan 1 Tests

Plus en détail

Tests statistiques élémentaires

Tests statistiques élémentaires Résumé Il serait vain de chercher à présenter l ensemble des tests statistiques, la littérature est très abondante sur le sujet. Cette vignette introduit les plus couramment calculés par les logiciels

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES Série S ÉPREUVE DU JEUDI 19 JUIN 2014 Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont

Plus en détail

geffray@math.unistra.fr Outils pour la statistique avancée Année 2015/2016 TD 1 : Bootstrap

geffray@math.unistra.fr Outils pour la statistique avancée Année 2015/2016 TD 1 : Bootstrap Université de Strasbourg Ségolen Geffray M2 - Statistique geffray@math.unistra.fr Outils pour la statistique avancée Année 2015/2016 TD 1 : Bootstrap Ces exercices seront effectués au moyen du logiciel

Plus en détail

Statistique (MATH-F-315, Cours #3)

Statistique (MATH-F-315, Cours #3) Statistique (MATH-F-315, Cours #3) Thomas Verdebout Université Libre de Bruxelles 2015 Plan de la partie Statistique du cours 1. Introduction. 2. Théorie de l estimation. 3. Tests d hypothèses et intervalles

Plus en détail

Test de sélection du 4 juin 2013

Test de sélection du 4 juin 2013 Test de sélection du 4 juin 2013 Vous étiez 270 candidat-e-s à ce test de sélection, et 62 d entre vous (23%) participeront au stage olympique de Montpellier, du 19 au 29 août 2013, dont 12 filles : la

Plus en détail

Validation d une méthode performante de dosage des steviols glycosides de Stevia Rebaudiana

Validation d une méthode performante de dosage des steviols glycosides de Stevia Rebaudiana Validation d une méthode performante de dosage des steviols glycosides de Stevia Rebaudiana J.M. Roussel, Consultant, Aix-en-Pce Prof. Dr. Gertrud Morlock, Chair of Food Science, JLU Giessen S. Meyer,

Plus en détail

Mathématiques pour les Sciences de la Vie CC3 Jeudi 4 juin 2015 Durée 60 minutes. Instructions. Identité. 3 4... Numéro d étudiant :

Mathématiques pour les Sciences de la Vie CC3 Jeudi 4 juin 2015 Durée 60 minutes. Instructions. Identité. 3 4... Numéro d étudiant : +//+ Mathématiques pour les Sciences de la Vie CC Jeudi juin Durée minutes Instructions Ce formulaire sera analysé par lecture optique, toute intervention manuelle rendue nécessaire par le non-respect

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A

2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 013 Lectures graphiques (9 points) Les parties sont indépendantes Partie A Tous les clients d un petit restaurant ont opté pour la formule

Plus en détail

Problèmes à propos des nombres entiers naturels

Problèmes à propos des nombres entiers naturels Problèmes à propos des nombres entiers naturels 1. On dispose d une grande feuille de papier, on la découpe en 4 morceaux, puis on déchire certains morceaux (au choix) en 4 et ainsi de suite. Peut-on obtenir

Plus en détail

partie a Introduction à la statistique 1

partie a Introduction à la statistique 1 table des matières F AVANT-PROPOS À L ÉDITION AMÉRICAINE Abréviations viii xiv partie a Introduction à la statistique 1 1. Statistique et probabilité ne sont pas intuitives 3 Nous avons tendance à passer

Plus en détail

Corrigé du baccalauréat ES Pondichéry 16 avril 2015

Corrigé du baccalauréat ES Pondichéry 16 avril 2015 Corrigé du baccalauréat ES Pondichéry 16 avril 2015 Exercice 1 Commun à tous les candidats 5 points Partie A On appelle B l événement «la batterie est défectueuse» ; l événement «le disque dur est défectueux».

Plus en détail

CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25

CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25 TABLE DES MATIÈRES Sommaire... 5 Avant- propos... 9 Remerciements... 19 À propos de l auteur... 23 CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25 1.1 Qu est- ce que

Plus en détail

Approche expérimentale en IHM

Approche expérimentale en IHM Plan Approche expérimentale en IHM Michel Beaudouin-Lafon, LRI Wendy Mackay, INRIA mbl@lri.fr mackay@lri.fr http://insitu.lri.fr Qu est-ce que l approche expérimentale Concevoir une expérience Un peu de

Plus en détail

Statistiques: rappels et compléments

Statistiques: rappels et compléments Statistiques: rappels et compléments I) Vocabulaire élémentaire Population: Ensemble étudié. Individus: Éléments de la population. Caractère étudié ou variable statistique: Propriété étudiée dans la population.

Plus en détail

0.1 Espace de probabilité

0.1 Espace de probabilité 0.1. ESPACE DE PROBABILITÉ 1 0.1 Espace de probabilité Exercice 1 La population d une ville compte 48% d hommes et 52% de femmes. Le 1er Janvier 2002 5% des hommes et 1% des femmes avaient la grippe. a)

Plus en détail

Rapport de stage Mise à plat d'un polygone

Rapport de stage Mise à plat d'un polygone Rapport de stage Mise à plat d'un polygone Stagiaire : Sejjil Olfa Tuteurs de stage: Luc BIARD et Bernard LACOLLE Laboratoire: Jean Kuntzmann (LJK) Equipe: Modélisation Géométrique & Multirésolution pour

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES BACCALAURÉAT TECHNOLOGIQUE Session 2015 Jeudi 18 juin 2015 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DE LABORATOIRE Spécialité : BIOTECHNOLOGIES Durée de l épreuve : 4 heures Coefficient : 4 Calculatrice

Plus en détail

Prof.É.D.Taillard. Classification automatique @Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre

Prof.É.D.Taillard. Classification automatique @Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre INFORMATIQUE ORIENTATION LOGICIELS CLASSIFICATION AUTOMATIQUE Prof.É.D.Taillard Classification automatique @Prof. E. Taillard EIVD, Informatique logiciel, 4 e semestre CLASSIFICATION AUTOMATIQUE But :

Plus en détail

TD : Microéconomie de l incertain. Emmanuel Duguet

TD : Microéconomie de l incertain. Emmanuel Duguet TD : Microéconomie de l incertain Emmanuel Duguet 2013-2014 Sommaire 1 Les loteries 2 2 Production en univers incertain 4 3 Prime de risque 6 3.1 Prime de risque et utilité CRRA.................. 6 3.2

Plus en détail

TUTORAT UE 4 2014-2015 Biostatistiques Séance n 3 Semaine du 06/10/2014

TUTORAT UE 4 2014-2015 Biostatistiques Séance n 3 Semaine du 06/10/2014 TUTORAT UE 4 2014-2015 Biostatistiques Séance n 3 Semaine du 06/10/2014 Séance d entrainement M. Dujols M. Sabatier Séance préparée par les TS de l ATM² QCM n 1 : Une population comporte 94750 individus

Plus en détail

Baccalauréat STG Mercatique Polynésie 8 juin 2012 Correction

Baccalauréat STG Mercatique Polynésie 8 juin 2012 Correction Baccalauréat SG Mercatique Polynésie 8 juin 2012 Correction La calculatrice (conforme à la circulaire N o 99-186 du 16-11-99) est autorisée. EXERCICE 1 4 points Cet exercice est un questionnaire à choix

Plus en détail

Exercices. Version du 7 janvier 2016 16:37. UE Mathématiques et statistiques appliquées AA Mathématiques et statistiques appliquées

Exercices. Version du 7 janvier 2016 16:37. UE Mathématiques et statistiques appliquées AA Mathématiques et statistiques appliquées Exercices Version du 7 janvier 2016 16:37 UE Mathématiques et statistiques appliquées AA Mathématiques et statistiques appliquées 1ère Bachelier en Informatique de Gestion Ludovic Kuty

Plus en détail

Chapitre 1 Mesure des phénomènes biologiques

Chapitre 1 Mesure des phénomènes biologiques Chapitre 1 Mesure des phénomènes biologiques 1. Quelle(s) proposition(s) parmi les suivantes est(sont) exacte(s)? A. Une variable nominale comporte des catégories qui peuvent être ordonnées. B. Une variable

Plus en détail

Essai de répétabilité et de reproductibilité : calculs à effectuer à la main pour comprendre la démarche générale.

Essai de répétabilité et de reproductibilité : calculs à effectuer à la main pour comprendre la démarche générale. 4. EXEMPLE N 4 Essai de répétabilité et de reproductibilité : calculs à effectuer à la main pour comprendre la démarche générale. 4.1. Objectif Le calcul de la répétabilité et de la reproductibilité implique

Plus en détail

UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans sa documentation) est autorisée.

UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans sa documentation) est autorisée. Université René Descartes- Paris V Licence de Psychologie Année L1, Semestre S1-2005 /2006 Page 1/5 UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

CODES CORRECTEURS D'ERREURS

CODES CORRECTEURS D'ERREURS CODES CORRECTEURS D'ERREURS Marc URO TABLE DES MATIÈRES DÉTECTION ET CORRECTION D'ERREURS... 6 CAS D'UN CANAL SANS SYMBOLE D'EFFACEMENT...6 CAS D'UN CANAL AVEC SYMBOLE D'EFFACEMENT...7 GÉNÉRATION ET DÉTECTION

Plus en détail

Test de Poisson à 1 échantillon et à 2 échantillons

Test de Poisson à 1 échantillon et à 2 échantillons Test de Poisson à 1 échantillon et à 2 échantillons Sous-menus de Minitab 15 : Stat>Statistiques élémentaires>test de Poisson à 1 échantillon Stat>Statistiques élémentaires>test de Poisson à 2 échantillons

Plus en détail

Chapitre 1 LE TEST DU KHI-DEUX

Chapitre 1 LE TEST DU KHI-DEUX Chapitre LE TEST DU KHI-DEUX I. Présentation de la statistique khi - carré ( χ²) Une somme de ν carré de variables indépendantes normalement distribuées de moyenne 0 et de variance suit une loi normale

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé Baccalauréat ES/L Amérique du Sud 2 novembre 2 Corrigé A. P. M. E. P. EXERCICE Commun à tous les candidats 5 points. Diminuer le budget de 6 % sur un an revient à multiplier par 6 =,94. Diminuer le budget

Plus en détail

Chapitre 6 TESTS STATISTIQUES

Chapitre 6 TESTS STATISTIQUES Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 6 TESTS STATISTIQUES Les tests statistiques sont des méthodes de la statistique inférentielle qui, comme

Plus en détail

Mesurer l incidence de BDC sur ses clients

Mesurer l incidence de BDC sur ses clients Équipe de la Recherche et de l analyse économique de BDC Juillet 213 DANS CE RAPPORT Le présent rapport est fondé sur une analyse statistique réalisée par Statistique Canada visant à évaluer l incidence

Plus en détail

T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013

T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013 T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

L espace virtuel de La Branche Cochrane-Québec

L espace virtuel de La Branche Cochrane-Québec L espace virtuel de La Branche Cochrane-Québec Bonjour cher(ère)s auditeurs et auditrices web! SVP prendre quelques secondes pour tester vos paramètres audio via l assistant situé au haut de la page: Outils

Plus en détail

Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30

Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30 Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30 I1 Connaissances préalables : Buts spécifiques : Outils nécessaires: Consignes générales : Test t de comparaison de moyennes pour

Plus en détail

Cours 9 08/11/2011. Les tableaux croisés et le test d indépendance du Chi-deux

Cours 9 08/11/2011. Les tableaux croisés et le test d indépendance du Chi-deux Cours 9 Les tableaux croisés et le test d indépendance du Chi-deux 1 Retour sur TP1 et Cours 8 Les tableaux croisés et le test du Chi-deux Utilité, postulats d utilisation et logique Exemple de calcul

Plus en détail

PSY C3 Eléments de statistique

PSY C3 Eléments de statistique PSY C3 Eléments de statistique Responsables : Amandine Penel & Fabrice Guillaume Maîtres de conférence en Psychologie Cognitive penel@up.univ-mrs.fr guillaume@isc.cnrs.fr semaine du 4 Sept semaine du oct

Plus en détail

Analyse des données 1: erreurs expérimentales et courbe normale

Analyse des données 1: erreurs expérimentales et courbe normale Analyse des données 1: erreurs expérimentales et courbe normale 1 Incertitude vs. erreur Une mesure expérimentale comporte toujours deux parties: la valeur vraie de la grandeur mesurée et l'erreur sur

Plus en détail

Exercice II. l offre de transport (en tonnes.kilomètres) l effectif le poids de la flotte (en tonnes) le caractère public ou privée de la compagnie

Exercice II. l offre de transport (en tonnes.kilomètres) l effectif le poids de la flotte (en tonnes) le caractère public ou privée de la compagnie 1 Exercice II II. On dispose de données (fichier «aviation87.xls», section Exemples pour Excel) concernant le transport aérien en 1987, et indiquant pour 50 compagnies occidentales : Q L K PP l offre de

Plus en détail

MATHÉMATIQUES ET SCIENCES HUMAINES

MATHÉMATIQUES ET SCIENCES HUMAINES MATHÉMATIQUES ET SCIENCES HUMAINES M. C. WEISS Variations pédagogiques sur le thème des échantillons systématiques Mathématiques et sciences humaines, tome 102 (1988), p. 39-45.

Plus en détail

[E1-2004S] EXERCICE N 1 (40 pts): Les questions 3 et 4 peuvent être traitées indépendamment des q. 1 et 2.

[E1-2004S] EXERCICE N 1 (40 pts): Les questions 3 et 4 peuvent être traitées indépendamment des q. 1 et 2. [E1-004S] EXERCICE N 1 (40 pts): Les questions 3 et 4 peuvent être traitées indépendamment des q. 1 et. QUESTION N 1 : On sait que la pharmacocinétique d un médicament A répond à un modèle monocompartimental.

Plus en détail

Sujet CCP MP 2011 Physique II

Sujet CCP MP 2011 Physique II Sujet CCP MP 2011 Physique II A Optique : Propriétés et applications de l appareil photographique. A I Etude de deux composants essentiels, l objectif et le pentaprisme. Note : Le pentaprisme ne fait l

Plus en détail

COURS DE DENOMBREMENT

COURS DE DENOMBREMENT COURS DE DENOMBREMENT 1/ Définition des objets : introduction Guesmi.B Dénombrer, c est compter des objets. Ces objets sont créés à partir d un ensemble E, formé d éléments. A partir des éléments de cet

Plus en détail