Dénombrement. Le nombre de p-listes d éléments distincts d un ensemble à n éléments est Le nombre d injections de E p dans F n : (n p) :

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Dénombrement. Le nombre de p-listes d éléments distincts d un ensemble à n éléments est Le nombre d injections de E p dans F n : (n p) :"

Transcription

1 Filière E Deis Pasquigo Résumé du cours : 1. Esembles fiis Déombremet Défiitios E et F sot équiotets si il existe ue bijectio de E sur F. E est déombrable si E est équiotet à N. E est u esemble fii si E est vide ou il existe N tel que E soit équiotet à {1,..., }. Das ce cas, le cardial de E, oté card(e, est 0 si E est vide, das l autre cas. card(e F carde + cardf card(e F, card(e F card(e card(f. Formule de Poicaré.. -listes d u esemble E à élémets Défiitio Ue -liste d élémets de E est u -uletde E. Le ombre de -listes d u esemble à élémets est. Le ombre d alicatios de E das F :. 3. -listes d élémets disticts de E à élémets Défiitio Ue -liste d élémets disticts de E est ue -liste (x 1,..., x d élémets de E telle que : x i x j our i j. Le ombre de -listes d élémets disticts d u esemble à élémets est Le ombre d ijectios de E das F : ( :! (! Ue ermutatio de E est toute -liste d élémets disticts de E. Le ombre de ermutatios est!. le ombre de bijectios de E das F ( :!. 4. Parties de E à élémets, Combiaisos! (! Défiitio Ue combiaiso à élémets d u esemble E toute artie de E coteat élémets. Le ombre de combiaisos à élémets de E se ote ( et l o a :! (!!. Pour 0, ( Formule de Pascal : our 1, ( ( 1 ( Biôme de Newto : N et (a, b C, (a + b ( 0 a b. Formule de Vadermode (A redémotrer das les roblèmes: our (, m, N 3, ( m ( i0 i( i +m (, cas articulier : ( i0 i, Soit E u esemble de cardial ( N. Soit P (E l esemble des arties de E, alors card[p (E].. Alicatios strictemet croissates de {1,..., } das {1,..., } Le ombre d alicatios strictemet croissates de E das F est (. Le ombre d alicatios croissates de E das F est

2 Exercice 1 1. Ue uce se délace sur ue droite. Elle art d u oit A et fait des sauts successifs d égale logueur soit à droite, soit à gauche. Quel est le ombre de trajets ossibles que la uce eut effectuer e sauts? Quel est le ombre de trajets ossibles lorsque au bout de sauts, elle est reveue e A?. Notre uce se délace maiteat das u la raorté à u reère orthoormé (O, i, j. Elle art de l origie 0, si arès le ième saut elle se trouve e M i (x i, y i, alors arès le (i + 1ème saut, elle se trouve e M i+1 (x i+1, y i+1 avec (x i+1, y i+1 (x i + 1, y i ou (x i+1, y i+1 (x i, y i + 1 : (a Quel est le ombre de chemis ossibles effectués e sauts? (b a et b sot deux etiers strictemet ositifs, M(a, b est le oit de coordoées (a, b. Quel est le ombre de chemis ossibles our aller de 0 à M(a, b? Exercice O cosidère ue oulatio de N idividus, o effectue rélèvemets successifs avec remise d u idividu das cette oulatio. La suite de ces rélèvemets costitue u résultat. 1. Combie existe-t-il de résultats différets our lesquels u idividu X est rélevé fois?. Combie existe-t-il de résultats différets our lesquels X est rélevé m fois au cours des r remiers tirages (m r? 3. Combie existe-t-il de résultats différets our lesquels X est rélevé our la sième fois au tième tirage (s t? Exercice 3 Soit E u esemble fii à élémets, et soiet X et Y deux arties de E. Calculer le ombre de coules (X, Y tels que X Y. Exercice 4 Oral HEC : Das u zoo, u gardie doit distribuer 8 baaes à ciq siges. O demade le ombre de faços de distribuer ces baaes si : les baaes et les siges sot discerables, chaque sige ouvat recevoir de 0 à 8 baaes. les baaes sot idiscerables, les siges sot discerables et chaque sige eut recevoir de 0 à 8 baaes. les baaes sot idiscerables, les siges sot discerables et chaque sige reçoit au mois ue baae. Exercice Soit N, o aelle mot de lettres toute -liste à valeurs das {0, 1}. Par exemle (0010 est u mot de 4 lettres et (111 est u mot de 3 lettres. O aellera M l esemble des mots de lettres. 1. a Quel est le ombre de mots de lettres? b Quel est le ombre de mots de lettres coteat fois la lettre 1 ( N,?. O aelle A l esemble des mots de lettres e comortat as deux 1 cosécutifs et a le cardial de A. O ote B l esemble des mots de A se termiat ar 1 et C l esemble des mots de A se termiat ar 0. a Calculer a 1, a, a 3. b E utilisat B et C, motrer que : N, a + a + a +1. c Détermier a e foctio de et trouver u équivalet de a lorsque ted vers ersoes ot articié à u cocours qui comortait vigt questios umérotées de 1 à 0. Au déouillemet, les orgaisateurs costatet qu aucu articiat a réodu juste à deux questios cosécutives. Peut-o affirmer que deux cadidats au mois ot réodu de la même maière au questioaire : c est-à-dire juste aux mêmes questios et faux aux mêmes questios? Exercice 6 Soit E et F deux esembles fiis tels que card(e et card(f et >. O désige ar S, le ombre d alicatios surjectives de E das F. 1. Calculer S,.. Motrer que our tout > 1 et tout > 0, S, (S 1, + S 1, Costruire u tableau doat S, our tous, comris etre 1 et Déombrer à l aide de la formule de Poicaré l esemble des alicatios o surjectives de E das F. E déduire S, ( 1 i ( i. i i0

3 Exercice 7 Soit E {1,,..., } avec N 1. Trouver le ombre de coules (i, j de E tels que i > j.. Trouver le ombre de coules (i, j de E tels que i j. 3. Trouver le ombre de trilets (i, j, de E 3 tels que i < j <. Exercice 8 Soiet (, N tels que 0 <. Motrer que : Exercice 9 Oral HEC : O disose d u alhabet de 3 lettres a, b, c. Combie y a-t-il de mots de lettres commeçat ar a et fiissat ar a, ayat jamais deux lettres idetiques cosécutives. Exercice 10 Oral HEC : Soit N, o cosidère les suites de termes à valeurs das {0, 1,..., 9}. O ote : a le ombre de ces suites e comortat as trois chiffres idetiques cosécutifs, b le ombre de suites e comortat as trois chiffres idetiques cosécutifs et dot le derier et l avat derier chiffre sot différets, c le ombre de suites e comortat as trois chiffres idetiques cosécutifs et dot le derier et l avat derier chiffre sot égaux. 1. Calculer a 1, a et a 3.. Motrer que : b +1 9a et c +1 9a Motrer que our tout N, a + 9a a. E déduire la valeur de a. 4. Motrer ar u raisoemet de déombremet que : sol : a 3+ ( a 10 ( 1. E(/ Combie d aagrammes différetes eut-o comoser : a avec les lettres du mot BAL? b avec les lettres du mot BALKAN?. Ue multiatioale décide de lacer u detifrice our chie. Le om de cet idisesable roduit doit comorter trois lettres. (a Combie de oms eut-o théoriquemet former avec toutes les lettres de l alhabet? (b Combie de oms eut-o former comortat ue cosoe et deux voyelles? (c Combie de oms eut-o former comortat ue cosoe et deux voyelles différetes? 3. Vous devez orgaiser ue rode de efats. Combie y a-t-il de disositios ossibles? S il y a filles et garços, et si vous désirez resecter l alterace fille/garço, combie de ossibilités avez-vous alors? 4. Combie de ombres de trois chiffres tous disticts eut-o former à l aide des chiffres, 3, 4,, 6, 7 et 9. Combie de ces ombres sot iférieurs à 400? Combie sot des multiles de?. A u jeu télévisé, u cadidat doit réodre à 7 questios choisies armi dix. (a Combie de choix a-t-il? (b Combie de choix a-t-il sachat qu il doit réodre à au mois 3 des 4 remières? 6. Ciquate élèves ot le choix etre trois sectacles. Il y a 0 laces disoibles our le remier, 1 our le secod et 18 our le derier. De combie de faços eut-o faire la distributio? 7. De combie de maières eut-o réartir 30 étudiats e groues de trois? 8. Poer : O tire d u seul cou ciq cartes armi les 3 cartes d u jeu. Combie y a-t-il de résultats ossibles? Parmi ceux-ci, combie y e a-t-il qui corresodet à : a ue aire, b ue double aire, c u brela, d u full, e u carré. 3

4 9. Bridge : Combie u joueur doé au bridge eut-il recevoir de mais différetes? Parmi cellesci, combie y e a-t-il où il reçoit : a u as exactemet, b au mois u as, c u as et u roi exactemet, d au mois u as et au mois u roi. 10. (a Ue uce se délace sur ue droite. Elle art d u oit A et fait des sauts successifs d égale logueur soit à droite, soit à gauche. Quel est le ombre de trajets ossibles que la uce eut effectuer e sauts? Quel est le ombre de trajets ossibles lorsque au bout de sauts, elle est reveue e A? (b Notre uce se délace maiteat das u la raorté à u reère orthoormé (O, i, j. Elle art de l origie 0, si arès le ième saut elle se trouve e M i (x i, y i, alors arès le (i + 1ème saut, elle se trouve e M i+1 (x i+1, y i+1 avec (x i+1, y i+1 (x i + 1, y i ou (x i+1, y i+1 (x i, y i + 1 : a Quel est le ombre de chemis ossibles effectués e sauts? b a et b sot deux etiers strictemet ositifs, M(a, b est le oit de coordoées (a, b. Quel est le ombre de chemis ossibles our aller de 0 à M(a, b? 11. O cosidère ue oulatio de N idividus, o effectue rélèvemets successifs avec remise d u idividu das cette oulatio. La suite de ces rélèvemets costitue u résultat. (a Combie existe-t-il de résultats différets our lesquels u idividu X est rélevé fois? (b Combie existe-t-il de résultats différets our lesquels X est rélevé m fois au cours des r remiers tirages (m r? (c Combie existe-t-il de résultats différets our lesquels X est rélevé our la sième fois au tième tirage (s t? 1. O cosidère u esemble E de ersoes (. Chacue d elles evoie u cadeau de Noel et u seul à l ue quelcoque des ( 1 autres ersoes. a De combie de maières différetes les cadeaux euvet-ils être adressés? b Julie fait artie de l esemble des ersoes. O ote f(j le ombre de maières d evoyer les cadeaux de telle sorte qu elle reçoive exactemet j cadeaux (0 j. Calculer f(j. 13. Soit E u esemble fii à élémets, et soiet X et Y deux arties de E. Calculer le ombre de coules (X, Y tels que X Y. 14. Soit E {1,,..., } avec N (a Trouver le ombre de coules (i, j de E tels que i > j. (b Trouver le ombre de coules (i, j de E tels que i j. (c Trouver le ombre de trilets (i, j, de E 3 tels que i < j <. 1. Calculer : S 1, S, S3 ( (a Calculer S 1 E(/ etière. ( ( et S1 E(( 1/ (b Calculer de même : R E(/ ( 1 ( 17. Soiet (, N tels que 0 <. Motrer que : ( ( +1 où E désige la foctio artie et T E(( 1/ ( 1 ( ( égalité de Va der Mode Soiet (,, m (N 3 tels que + m. Motrer que : m + m. a e écrivat que (x + 1 m+ (x + 1 m (x + 1. b e utilisat le déombremet. 1. Oral HEC : O cosidère l esemble E des oits d abscisses 1,,..., sur ue droite. (a a Quel est le ombre de faços de lacer 3 barres verticales divisat E e 4 sous-esembles tels qu aucu e soit vide? b Quel est le ombre de solutios das (N 4 de l équatio : x + y + z + t. (b a Quel est le ombre de faços de lacer 3 barres verticales divisat E e 4 sous-esembles, u ou lusieurs d etre eux ouvat être vide. b Quel est le ombre de solutios das N 4 de l équatio : x + y + z + t. 4

5 (c O aelle u(, card{(x 1,..., x (N tel que x 1 + x x } et v(, card{(x 1,..., x (N tel que x 1 + x x < }. Motrer que : v(, u(,. Motrer que :,, u(, v( 1, 1 1, uis que : v(, v( 1, + v( 1, 1. E déduire v(, et u(,.. Oral HEC : Das u zoo, u gardie doit distribuer 8 baaes à ciq siges. O demade le ombre de faços de distribuer ces baaes si : les baaes et les siges sot discerables, chaque sige ouvat recevoir de 0 à 8 baaes. les baaes sot idiscerables, les siges sot discerables et chaque sige eut recevoir de 0 à 8 baaes. les baaes sot idiscerables, les siges sot discerables et chaque sige reçoit au mois ue baae. Gééraliser les questios 1 à 3 lorsqu il y a baaes et m siges. 3. Soit N, o aelle mot de lettres toute -liste à valeurs das {0, 1}. Par exemle (0010 est u mot de 4 lettres et (111 est u mot de 3 lettres. O aellera M l esemble des mots de lettres. (a a Quel est le ombre de mots de lettres? b Quel est le ombre de mots de lettres coteat fois la lettre 1 ( N,? (b O aelle A l esemble des mots de lettres e comortat as deux 1 cosécutifs et a le cardial de A. O ote B l esemble des mots de A se termiat ar 1 et C l esemble des mots de A se termiat ar 0. a Calculer a 1, a, a 3. b E utilisat B et C, motrer que : N, a + a + a +1. c Détermier a e foctio de et trouver u équivalet de a lorsque ted vers +. (c 1771 ersoes ot articié à u cocours qui comortait vigt questios umérotées de 1 à 0. Au déouillemet, les orgaisateurs costatet qu aucu articiat a réodu juste à deux questios cosécutives. Peut-o affirmer que deux cadidats au mois ot réodu de la même maière au questioaire : c est-à-dire juste aux mêmes questios et faux aux mêmes questios? 4. Oral HEC : O disose d u alhabet de 3 lettres a, b, c. Combie y a-t-il de mots de lettres commeçat ar a et fiissat ar a, ayat jamais deux lettres idetiques cosécutives.. Oral HEC : Soit N, o cosidère les suites de termes à valeurs das {0, 1,..., 9}. O ote : a le ombre de ces suites e comortat as trois chiffres idetiques cosécutifs, b le ombre de suites e comortat as trois chiffres idetiques cosécutifs et dot le derier et l avat derier chiffre sot différets, c le ombre de suites e comortat as trois chiffres idetiques cosécutifs et dot le derier et l avat derier chiffre sot égaux. (a Calculer a 1, a et a 3. (b Motrer que : b +1 9a et c +1 9a 1. (c Motrer que our tout N, a + 9a a. E déduire la valeur de a. (d Motrer ar u raisoemet de déombremet que : sol : a 3+ ( a 10 ( 1 E(/. 9 1.

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Déombremet Exercice 1 [ 01529 ] [correctio] Soiet E et F deux esembles fiis de cardiaux resectifs et. Combie y a-t-il d ijectios de E das F?

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4 1 Déombremet Table des matières 1 Déombrer des listes 2 1.1 Permutatio................................ 2 1.2 Arragemet............................... 3 1.3 -liste.................................... 4

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

I - ENSEMBLES FINIS ET CARDINAL

I - ENSEMBLES FINIS ET CARDINAL Séciales PSI LYCÉE BUFFON COURS Probabilités 1 Déombremet I - ENSEMBLES FINIS ET CARDINAL 1 DÉFINITION DÉFINITION 1 U esemble E o vide est dit fii s il existe u etier aturel o ul et ue bijectio de 1, sur

Plus en détail

Série d'exercices *** 3 ème M Lycée Secondaire Ali Zouaoui Dénombrement " Hajeb Laayoun "

Série d'exercices *** 3 ème M Lycée Secondaire Ali Zouaoui Dénombrement  Hajeb Laayoun Série d'exercices *** 3 ème M Lycée Secodaire Ali Zouaoui Déombremet " Hajeb Laayou " I / -ulet : Défiitio : Soit E u esemble o vide et * ;O aelle -ulet d élémet de E toute écriture de la forme : a a a

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

Cours VII. Tests de randomisation - Tests de contingence P. Coquillard 2015

Cours VII. Tests de randomisation - Tests de contingence P. Coquillard 2015 1 TESTS DE RANDOMISATION Cours VII. Tests de radomisatio - Tests de cotigece P. Couillard 2015 Das ue majorité de cas e biologie o cosidèrera certaies hyothèses comme des alteratives à l hyothèse ulle.

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

Dénombrement. ECE3 Lycée Carnot. 30 novembre 2011

Dénombrement. ECE3 Lycée Carnot. 30 novembre 2011 Déombremet ECE Lycée Carot 0 ovembre 2011 Itroductio La combiatoire, sciece du déombremet, sert comme so om l idique à comter Il e s agit bie etedu as de reveir au stade du CP et d aredre à comter sur

Plus en détail

Exercices. Dénombrement 1 5! 42 6! 3! 3! 9! 5! 4! 9! 6! 3! 2) En utilisant la notation factorielle, donner une autre écriture des nombres suivants

Exercices. Dénombrement 1 5! 42 6! 3! 3! 9! 5! 4! 9! 6! 3! 2) En utilisant la notation factorielle, donner une autre écriture des nombres suivants Exercices Déombremet Exercice Calcul sur les factorielles ) Simlifier les écritures sas utiliser la calculette. a)! 0! b) 7! 5! c) 6! 5! 5! d) 6 4! 5! e) 7! 5! 0! f) 5! 4 7! g) 6! 3! 3! h) 9! 5! 4! i)

Plus en détail

PROBABILITES EXERCICES CORRIGES

PROBABILITES EXERCICES CORRIGES PROBABILITES EXERCICES CORRIGES Vocabulaire des probabilités Exercice. Das chacue de situatios décrites ci-dessous, éocer l évéemet cotraire de l évéemet doé. ) Das ue classe, o choisit deux élèves au

Plus en détail

Seconde année - Semestre 3 PROBABILITÉS

Seconde année - Semestre 3 PROBABILITÉS 1 UNIVERSITÉ DE CERGY Aée 2012-2013 LICENCE d ÉCONOMIE et GESTION Secode aée - Semestre 3 PROBABILITÉS Feuille d exercices N 3 : Variables aléatoires - Lois discrètes 1. Calculez 3 2 + 2 5 Exercice I (

Plus en détail

II. Permutations sans répétitions et notation factorielle

II. Permutations sans répétitions et notation factorielle février 2012 ORRIGE II. Permutatios sas répétitios et otatio factorielle Aalyse combiatoire 4 ème - 1 I. Itroductio Les différets modèles mathématiques costruits pour étudier les phéomèes où iterviet le

Plus en détail

Le loto : on tire, au hasard, 6 boules parmi 49. Combien de tirages possibles?

Le loto : on tire, au hasard, 6 boules parmi 49. Combien de tirages possibles? B1 ESH Exercices de déombremet Corrigé Exercice 1 A la catie du lycée, o a le choix etre 3 etrées, 2 plats et 4 desserts. Combie de meus (composés d'ue etrée, d'u plat et d'u dessert) sot possibles? Soit

Plus en détail

MATHEMATIQUES Terminale Scientifique

MATHEMATIQUES Terminale Scientifique MATHEMATIQUES Termiale Scietifique Fiches PROGRAMME 22 (v24) Sylvie LAMY Agrégée de Mathématiques Dilômée de l École Polytechique Cours Pi e-mail : lescoursi@cours-icom site : htt://wwwcours-icom siège

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

Licence 1 Mathématiques

Licence 1 Mathématiques Licece Mathématiques 204 205 Algèbre et Arithmétique Feuille o 3 : combiatoire. Exercices à savoir faire.. Réuio, itersectio, artitio. Exercice Au mois de javier, Aatole a ris ses reas de midi au Restau

Plus en détail

Questions pour un champion en ligne

Questions pour un champion en ligne Questios pour u champio e lige Le jeu télévisé QPUC préseté sur FR3 et aimé par Julie Lepers existe aussi e variate «e lige». U jeu «e lige» se déroule aisi : Six iterautes disputet ue première mache dite

Plus en détail

PROBABILITES EXERCICES CORRIGES

PROBABILITES EXERCICES CORRIGES PROBABILITES EXERCICES CORRIGES Vocabulaire des probabilités Exercice. Das chacue de situatios décrites ci-dessous, éocer l évéemet cotraire de l évéemet doé. ) Das ue classe, o choisit deux élèves au

Plus en détail

LEÇON N 3 : Coefficients binomiaux, dénombrement des combinaisons, formule du binôme. Applications.

LEÇON N 3 : Coefficients binomiaux, dénombrement des combinaisons, formule du binôme. Applications. LEÇON N : Coefficiets biomiaux, déombremet des combiaisos, formule du biôme Alicatios Pré-requis : Cardial d u esemble fii, arragemets ; Raisoemet ar récurrece 1 Défiitios et roriétés Défiitio 1 : Soit

Plus en détail

Université de Picardie Jules Verne 2006-2007 Faculté de Mathématiques et d Informatique

Université de Picardie Jules Verne 2006-2007 Faculté de Mathématiques et d Informatique Uiversité de Picardie Jules Vere 006-007 Faculté de Mathématiques et d Iformatique Licece metio Mathématiques - Deuxième aée - Semestre 4 Probabilités Elémetaires Exame du ludi 4 jui 007 Durée h00 Documet

Plus en détail

Cours Dénombrement Analyse combinatoire 1 / 11 A Chevalley

Cours Dénombrement Analyse combinatoire 1 / 11 A Chevalley 2016 Déombremet, aalyse combiatoire leth Chevalley 1. Rael sur les esembles : 1.1. Défiitio Soiet E, des esembles x sigifie «x est u élémet de» ou «x aartiet à». O désige ar l esemble vide qui a aucu élémet.

Plus en détail

DERNIÈRE IMPRESSION LE 27 février 2017 à 16:47. Dénombrement. En utilisant la notation factorielle, donner une autre écriture des nombres suivants

DERNIÈRE IMPRESSION LE 27 février 2017 à 16:47. Dénombrement. En utilisant la notation factorielle, donner une autre écriture des nombres suivants DERNIÈRE IMPRESSION LE 7 février 07 à 6:47 Déombremet Calcul sur les factorielles EXERCICE Simlifier les écritures sas utiliser la calculette. )! 0! ) 7! 5! 3) 6! 5! 5! 4) 6 4! 5! 5) 7! 5! 0! 6) 7) 8)

Plus en détail

TD1. Dénombrements, opérations sur les ensembles.

TD1. Dénombrements, opérations sur les ensembles. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD1. Déombremets, opératios sur les esembles. 1. Combie de faços y a-t-il de classer 10 persoes à

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

Temps moyen de lecture par page (exercice compris) : 10 minutes

Temps moyen de lecture par page (exercice compris) : 10 minutes MOTS BINAIRES Mots biaires de logueur 2 Rappel : le logarithme e base b 3 Le choix de la logueur des mots biaires 4 Calculs avec les mots de logueur 5 Le poids d u mot biaire de logueur 6 La distace de

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

Leçon 3 : Coefficients binomiaux, dénombrement des combinaisons, formule du binome. Applications.

Leçon 3 : Coefficients binomiaux, dénombrement des combinaisons, formule du binome. Applications. Leço 3 : Coefficiets biomiaux, déombremet des combiaisos, formule du biome. Alicatios. Prérequis : Nombres de listes, arragemets. Pricies de la somme et de la multilicatio. Cadre : O cosidèrera das la

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Chapitre 1. Dénombrement

Chapitre 1. Dénombrement Chapitre Déombremet Itroductio Lorsque l o compte les objets d ue collectio, o attribue à la collectio so cardial, c est à dire le ombre d objets qu elle cotiet. Par exemple u Picasso, u Rembrat et u Degas

Plus en détail

Statistiques de Base. Chapitre 1. Analyse combinatoire. Ce cours est basé sur les notes de cours de D. Mouchiroud Lyon 1

Statistiques de Base. Chapitre 1. Analyse combinatoire. Ce cours est basé sur les notes de cours de D. Mouchiroud Lyon 1 Statistiques de Base haitre. Aalyse combiatoire e cours est basé sur les otes de cours de D. Mouchiroud Lyo Itroductio L aalyse combiatoire est ue brache des mathématiques qui étudie commet comter les

Plus en détail

Séries d exercices Denombrement { } Maths au lycee *** Ali AKIR Site Web : 3 ème Maths

Séries d exercices Denombrement { } Maths au lycee *** Ali AKIR Site Web :  3 ème Maths Séries d exercices Deomremet 3 ème Maths Maths au lycee *** Ali AKIR Site We : htt://maths-akir.midilogs.com/ EXERCICE N Soit E l esemle des etiers tels ue. Pour tout etier, o ote ar M ( ) l esemle M(

Plus en détail

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations UPMC 1M001 Aalyse et algèbre pour les scieces 013-014 Feuille : dérivabilité, théorème de Rolle et des accroissemets fiis, étude des variatios Les eercices sas ( ) sot des applicatios directes du cours.

Plus en détail

Partie I. Les données qualitatives

Partie I. Les données qualitatives Variables qualitatives : aalyse des corresodaces Jea-Marc Lasgouttes htt://www-rocqiriafr/~lasgoutt/aa-doees L aalyse factorielle des corresodaces But O cherche à décrire la liaiso etre deux variables

Plus en détail

1 Dénombrement. 1.1 Principe. Définition : 1.2 Combinaisons. Définition :

1 Dénombrement. 1.1 Principe. Définition : 1.2 Combinaisons. Définition : Probabilités : coditioemet et idéedace Termiale S Déombremet. Pricie O raelle que le cardial d u esemble fii E, oté Card(E), rerésete so ombre d élémets. Si E 0,0 alors Card(E). Notre but est de détermier

Plus en détail

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités.

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités. PROBABILITÉS I. PROBABILITÉS ( RAPPELS) a. Expérieces aléatoires et modèles Le lacer d ue pièce de moaie, le lacer d u dé sot des expérieces aléatoires, car avat de les effectuer, o e peut pas prévoir

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

P : Dénombrements / Probabilités en univers fini

P : Dénombrements / Probabilités en univers fini P : Déombremets / Probabilités e uivers fii Déombremet & Combiatoire P.1 O tire les cartes! O tire 5 cartes das u jeu de 32 cartes usuel. Combie y a-t-il de tirages possibles vérifiat les coditios suivates

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

Séries d exercices Denombrement { } Maths au lycee *** Ali AKIR Site Web : 3 ème sciences

Séries d exercices Denombrement { } Maths au lycee *** Ali AKIR Site Web :  3 ème sciences Séries d exercices Deomremet 3 ème scieces Maths au lycee *** Ali AKIR Site We : htt://maths-akir.midilogs.com/ EXERCICE N Soit E l esemle des etiers tels que. Pour tout etier, o ote ar M ( ) l esemle

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

Probabilité conditionnelle 4 ème Sciences Avril 2010

Probabilité conditionnelle 4 ème Sciences Avril 2010 Probabilité coditioelle 4 ème Scieces vril 200 LTOUI Raels { e e e } Ω=, 2,, est l uivers des ossibles (esemble des évetualités) associé à ue éreuve, exériece, u jeu, Exemles : Lacer d ue ièce de moaie

Plus en détail

Dénombrement - Analyse combinatoire

Dénombrement - Analyse combinatoire S4 Maths 2011-2012 Probabilités 1 Déombremet - Aalyse combiatoire Uiversité de Picardie Jules Vere 2011-2012 UFR des Scieces Licece metio Mathématiques - Semestre 4 Probabilités 1 Déombremet - Aalyse combiatoire

Plus en détail

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de "Processus Stochastiques"

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de Processus Stochastiques Master ère aée spécialité IMIS et Mathématiques Cotrôle cotiu de "Processus Stochastiques" 8 octobre 00 - Durée h Calculatrices et documets autorisés Exercice Jacques va tous les jours à so travail e emprutat

Plus en détail

Terminale S. Terminale S 1 F. Laroche

Terminale S. Terminale S 1 F. Laroche Termiale S exercices 1 Exercices de base 1 1 Divisio Euclidiee - 1 (c) 1 Divisio Euclidiee- 1 3 Divisio Euclidiee-3 (c) 1 4 Multiples - 1 1 5 PGCD - 1 (c) 3 1 6 PPCM et PGCD - 1 7 PPCM et PGCD - 3 3 3

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

Informatique TP2 : Calcul numérique d une intégrale CPP 1A

Informatique TP2 : Calcul numérique d une intégrale CPP 1A Iformatique TP : Calcul umérique d ue itégrale CPP 1A Romai Casati, Wafa Johal, Frederic Deveray, Matthieu Moy Avril - jui 014 1 Zéro de foctio O doe le code suivat (vu e cours), qui permet de calculer

Plus en détail

- diagramme de Caroll. Exemple 1 : On lance 2 dés. 2 e dé 1 er dé

- diagramme de Caroll. Exemple 1 : On lance 2 dés. 2 e dé 1 er dé TS Le déombremet est l art de compter (Il y e a souvet aux cocours) (cardial d u esemble fii : ombre de ses élémets Exemple : si E est u esemble fii à élémets, o dit que le cardial de E est égal à et o

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

L hebdo Finance de la MACS

L hebdo Finance de la MACS - DU 2 AU 9 OCTOBRE 2006 - Numéro DÉFINITION DE LA SEMAINE : Stock otio Idice boursier DOSSIER DE LA SEMAINE : Simulatio d u rêt immobilier 2 LES COURS DU JOUR Le jeudi 2 octobre 7 L hebdo Fiace de la

Plus en détail

Terminale S (2014-2015) Suites numériques

Terminale S (2014-2015) Suites numériques Termiale S (04-05) Suites umériques Raisoemet par récurrece. Itroductio E Mathématiques, u certai ombre de propriétés dépedet d u etier aturel. Par exemple, la ( + ) somme des etiers aturels de à est égale

Plus en détail

Analyse combinatoire

Analyse combinatoire Mathématiques : Outils our la Biologie Deug SV1 UCBL D. Mouchiroud (10/10/2002) Chaitre 1 Aalyse combiatoire Sommaire 1. Itroductio 2 2. Arragemets..2 2.1. Itroductio..2 2.2. Arragemets avec réétitios

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

est la probabilité cherchée est donc :

est la probabilité cherchée est donc : Lycée Secodaire Ali Zouaoui Probabilités 4 Sc-T Loi iomiale: Ue ure cotiet des boules blaches et des boules oires.la - robabilité de tirer ue boule blache au hasard est égale à ; q Aée Scolaire 007/008

Plus en détail

2. Espace de probabilité fini équilibré

2. Espace de probabilité fini équilibré 36 2. Esace de robabilité fii équilibré Esace de robabilités fii équilibré (résumé)...37 Esace de robabilités fii équilibré (défiitio)...38 Le modèle de Maxwell-Boltzma...39 Les ragemets de objets discerables

Plus en détail

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH R O Y A U M E D U M A R O C Miistère de l Educatio Natioale et de la Formatio Professioelle Cetre Régioal des Métiers de l Éducatio et de la Formatio Académie Régioale de l Éducatio et de la Formatio Marrakech-Tesift

Plus en détail

Intervalles de fluctuation et de confiance

Intervalles de fluctuation et de confiance Chapitre 9 Itervalles de fluctuatio et de cofiace Sommaire 9.1 Itervalle de fluctuatio................................... 157 9.1.1 Quelques rappels..................................... 157 9.1.2 Itervalle

Plus en détail

Probabilités. Table des matières. Université Paris XI PCS0 Probabilités 2011/2012

Probabilités. Table des matières. Université Paris XI PCS0 Probabilités 2011/2012 Uiversité Paris XI PCS0 Probabilités 2011/2012 Probabilités Table des matières 1 Combiatoire 2 1.1 Choix............................................ 2 1.2 Les foctios cruciales du déombremet........................

Plus en détail

Enoncés. Soit n un entier naturel non nul et E un ensemble à n éléments. En utilisant des raisonnements combinatoires:

Enoncés. Soit n un entier naturel non nul et E un ensemble à n éléments. En utilisant des raisonnements combinatoires: Le raisoemet combiatoire Eocés Exercice. Das cet exercice, o evisage des codages biaires (successios de et de ). Pour tout N *, o ote U le ombre de codages biaires à chiffres se termiat par et e comportat

Plus en détail

Tradition, la culture, les obstacles en mathématiques de la Roumanie

Tradition, la culture, les obstacles en mathématiques de la Roumanie Traditio, la culture, les obstacles e mathématiques de la Roumaie Prof. Aleadru Marcel Florescu Docteur e scieces mathématiques Lycée C.F.R. Craiova / Romaia La Roumaie, fodatrice e 959 de l Olympiade

Plus en détail

Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski

Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski Dossier : Actualité de l Aalyse e Lycée 447 Qu est-ce qu u bo éocé de bac? Aalyse de l exercice de spécialité de TS de Podichéry 2013 Jacques Lubczaski «Podichéry est tombé!» : cela ressemble à l aoce

Plus en détail

Concours de l Iscae. Épreuve Commune de Mathématiques (2015)

Concours de l Iscae. Épreuve Commune de Mathématiques (2015) Mohiieddie Beayad Cocours de l Iscae Épreuve Commue de Mathématiques (5) Voici l éocé de l épreuve commue de Mathématiques du cocours d etrée à l ISCAE de l aée 5, aisi que l itégralité du corrigé. Les

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

Corrigé du Devoir Libre n 2

Corrigé du Devoir Libre n 2 Corrigé du Devoir Libre Exercice 1 : Aagrammes 1. Combie les mots suivats ossèdet-ils d aagramme : a. BRETON U aagramme du mot BRETON est u réarragemet des lettres qui comoset ce mot. Par exemle NORBET

Plus en détail

Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan.

Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan. Foctio réciproque d'ue octio cotiue, d'ue octio dérivable FNCTIN RECIPRQUE D'UNE FNCTIN CNTINUE, D'UNE FNCTIN DERIVABLE EXEMPLES N SE LIMITERA AUX FNCTINS NUMERIQUES DEFINIES SUR UN INTERVALLE DE R Notatios

Plus en détail

Séries entières. Chap. 09 : cours complet.

Séries entières. Chap. 09 : cours complet. Séries etières Chap 9 : cours complet Rayo de covergece et somme d ue série etière Défiitio : série etière réelle ou complee Théorème : lemme d Abel Théorème : itervalle des valeurs positives où ue série

Plus en détail

Exercices de Khôlles de Mathématiques, second trimestre

Exercices de Khôlles de Mathématiques, second trimestre Exercices de Khôlles de Mathématiques, secod trimestre Lycée Louis-Le-Grad, Paris, Frace Igor Kortchemski HX 2-2005/2006 Exercices particulièremet itéressats : - Exercices 2., 2.2 - Exercice 3. - Exercice

Plus en détail

Dénombrement. Chapitre 1. Objectifs du chapitre. 1.1 Entiers naturels et raisonnement par récurrence

Dénombrement. Chapitre 1. Objectifs du chapitre. 1.1 Entiers naturels et raisonnement par récurrence Chapitre 1 Déombremet Objectifs du chapitre 1. A travers l axiomatisatio de Peao de N, rappeller les pricipes de récurrece forte et faible. 2. Défiir la otio de cardial et les opératios sur les cardiaux.

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

Suites géométriques suite géométrique suite géométrique de raison q

Suites géométriques suite géométrique suite géométrique de raison q Sites géométriqes Itrodctio : M. Fiace dispose d e somme de 5 FF et désire faire frctifier so pactole ; por cela il va voir so baqier qi li propose de optios : e agmetatios forfaitaire, aelle, de 5 F =

Plus en détail

DENOMBRER INTRODUCTION II L'UNIVERS III LE PRODUIT CARTESIEN 1 3 6 10 LES NOMBRES TRIANGULAIRES CONNUS DES BABYLONIENS 2000 ANS AVANT J.C.

DENOMBRER INTRODUCTION II L'UNIVERS III LE PRODUIT CARTESIEN 1 3 6 10 LES NOMBRES TRIANGULAIRES CONNUS DES BABYLONIENS 2000 ANS AVANT J.C. 1 3 6 10 LES NOMBRES TRIANGULAIRES CONNUS DES BABYLONIENS 2000 ANS AVANT J.C. I INTRODUCTION Les problèmes de déombremet semblet avoir été abordés vers les deriers siècles de l'atiquité. Dès le début de

Plus en détail

IUT de Saint-Etienne - département Techniques de Commercialisation M. Ferraris Promotion /05/2015

IUT de Saint-Etienne - département Techniques de Commercialisation M. Ferraris Promotion /05/2015 IUT de Sait-Etiee - déartemet Techiques de Commercialisatio M. Ferraris Promotio 2014-2016 28/05/2015 Semestre 2 - MATHEMATIQUES DEVOIR 2 durée : 2 heures coefficiet 2/3 La calculatrice grahique est autorisée.

Plus en détail

Construire des polygones connaissant les milieux des côtés.

Construire des polygones connaissant les milieux des côtés. Costruire des olygoes coaissat les milieux des côtés Costruire u triagle ABC dot les milieux des côtés soiet trois oits doés I J K deux à deux disticts Aalyse : La symétrie cetrale de cetre le milieu d

Plus en détail

Loi de Bernoulli et loi binomiale, cours, première S

Loi de Bernoulli et loi binomiale, cours, première S Loi de Beroulli et loi biomiale, cours, classe de première S Loi de Beroulli et loi biomiale, cours, première S 1 Loi de Beroulli Déitio : Soit p u ombre réel tel que p [0; 1]. Soit X ue variable aléatoire.

Plus en détail

Plan du cours. 1 Jeux à deux joueurs à somme nulle. 4 Théorème du MINIMAX en stratégies mixtes. 3 stratégies mixtes

Plan du cours. 1 Jeux à deux joueurs à somme nulle. 4 Théorème du MINIMAX en stratégies mixtes. 3 stratégies mixtes Pla du cours Cours 8 : Alicatios ratiques de la rograatio liéaire Christohe Gozales LIP6 Uiversité Paris 6, Frace 1 Jeux à deux joueurs à soe ulle 2 Théorèe du MINIMAX e stratégies ures 3 stratégies ixtes

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

Dénombrement et probabilités ( révisions de 6 ème) Combien de nombres à 5 chiffres peut-on écrire à l aide des trois chiffres 1,2,3?

Dénombrement et probabilités ( révisions de 6 ème) Combien de nombres à 5 chiffres peut-on écrire à l aide des trois chiffres 1,2,3? I. Déombremet :. Exemles : Exemle : Déombremet et robabilités ( révisios de 6 ème) ombie de ombres à 5 chiffres eut-o écrire à l aide des trois chiffres,,? Ecrire u ombre à 5 chiffres à l aide des trois

Plus en détail

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f.

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f. Chapitre 14 Itervalle de fluctuatio des fréqueces. Estimatio Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Itervalle de fluctuatio Estimatio Itervalle de cofiace (*). Niveau

Plus en détail

Exercices de dénombrement

Exercices de dénombrement DOMAINE : Combiatoire AUTEUR : Atoie TAVENEAUX NIVEAU : Itermédiaire STAGE : Grésillo 0 CONTENU : Exercices Exercices de déombremet Exercice Combie y a-t-il de sous-esembles d u esemble de cardial? Exercice

Plus en détail

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

Promenades aléatoires : vers les chaînes de Markov

Promenades aléatoires : vers les chaînes de Markov AME Dossier : Matrices et suites 545 romeades aléatoires : vers les chaîes de Markov ierre Griho (*) Cet article propose ue mise e perspective de la otio de promeade ou de marche aléatoire itroduite das

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

Probabilités, MATH 424 Feuille de travaux dirigés 2. Solutions.

Probabilités, MATH 424 Feuille de travaux dirigés 2. Solutions. Probabilités, MATH 44 Feuille de travaux dirigés. Solutios. 1 Exercices Exercice 1. O jette trois dés o pipés. 1. Calculer la probabilité d obteir au mois u 1.. Que vaut la probabilité d obteir au mois

Plus en détail

1 Intervalles de confiance. 2 Tests d hypothèses. 3 La loi du χ 2. X N (µ; σ 2 ) n très grand = la valeur observée x de X µ

1 Intervalles de confiance. 2 Tests d hypothèses. 3 La loi du χ 2. X N (µ; σ 2 ) n très grand = la valeur observée x de X µ Pla du cours 3 RFIDEC cours 3 : Itervalles de cofiace, tests d hypothèses, loi du χ Christophe Gozales LIP6 Uiversité Paris 6, Frace 1 Itervalles de cofiace Tests d hypothèses 3 La loi du χ Itervalles

Plus en détail

Onzième Aventure DÉNOMBREMENTS A - PERMUTATIONS

Onzième Aventure DÉNOMBREMENTS A - PERMUTATIONS Ozième Aveture DÉNOMBREMENTS A - PERMUTATIONS Le Père Noël a offert à ma etite cousie Josette u jeu de cubes où sot iscrits les lettres de l alhabet. Très édagogue, je lui doe d abord les trois cubes A,

Plus en détail

On admet que l ensemble des nombres des réels est inclus dans un ensemble plus grand constitué de nombres complexes.

On admet que l ensemble des nombres des réels est inclus dans un ensemble plus grand constitué de nombres complexes. Chapitre 1 Nombres complexes Le buts du chapitres sot : Cosolider les aquis de termiale, Savoir maipuler les ombres complexes, e particulier la factorisatio par l agle de moitié. Avoir des otios sur le

Plus en détail

DÉNOMBREMENT - COMBINATOIRE - LOIS DE PROBABILITÉS DISCRÈTES

DÉNOMBREMENT - COMBINATOIRE - LOIS DE PROBABILITÉS DISCRÈTES DÉNOMBREMENT - COMBINATOIRE - LOIS DE PROBABILITÉS DISCRÈTES Das tout ce qui suit, ous oteros! le roduit 3..., ce roduit s'aelle "factorielle ". O coviet que! =. Exercices sur les factorielles : Démotrer

Plus en détail

GRAPHES - EXERCICES CORRIGES Compilation réalisée à partir d exercices de BAC TES

GRAPHES - EXERCICES CORRIGES Compilation réalisée à partir d exercices de BAC TES GRAPHES - EXERCICES CORRIGES Compilatio réalisée à partir d exercices de BAC TES Exercice. U groupe d amis orgaise ue radoée das les Alpes. O a représeté par le graphe ci-dessous les sommets B, C, D, F,

Plus en détail

Culture disciplinaire

Culture disciplinaire CONCOURS DE RECRUTEMENT AU PROFESSORAT DE L'ENSEIGNEMENT DU SECOND DEGRE AGRICOLE CAPESA SESSION 2011 Cocours : Sectio : EXTERNE MATHEMATIQUES PREMIERE EPREUVE ECRITE D'ADMISSIBILITE Culture discipliaire

Plus en détail

Devoir de Mathématiques numéro 1

Devoir de Mathématiques numéro 1 Lycée La Prat's Classe de PT Pour le Vedredi setembre Devoir de Mathématiques uméro Correctio Eercice CAPES itere 7) Partie Majoratios, mioratios, ecadremets) ) ch ) + et sh ) ) Pour ces deu foctios, le

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter

Plus en détail

Introduction aux tests statistiques

Introduction aux tests statistiques Itroductio aux tests statistiques Philippe Boeau 27 septembre 2006 Chapitre 1 Élémets de probabilités Exercice 1 O ote E l esemble des etiers aturels iférieurs ou égaux à 12 et A (respectivemet B et C)

Plus en détail

EXERCICES PROBABILITES

EXERCICES PROBABILITES EXERCICE : Calculer, pour EXERCICES PROBABILITES Soit,,3, 4,5,6, ( ) x, l itégrale I dx. 0 x ; détermier le réel pour que l o défiisse ue probabilité p sur * e posat, pour tout etier,6 p I Quelle est la

Plus en détail

1 Programme de l agrégation interne

1 Programme de l agrégation interne Séries umériques Programme de l agrégatio itere Partie 0b : Séries de ombres réels ou complexes Séries à termes positifs La série coverge si et seulemet si la suite des sommes partielles est borée Étude

Plus en détail