Statistique. Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information

Dimension: px
Commencer à balayer dès la page:

Download "Statistique. Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7."

Transcription

1 Statistique Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information Cours Statistique, 2010 p. 1/52

2 Plan du cours Chapitre 1 : Estimation Modèle statistique, qualités d un estimateur, exemples Inégalité de Cramér Rao Maximum de vraisemblance Méthode des moments Estimation Bayésienne Intervalles de confiance Chapitre 2 : Tests Statistiques Cours Statistique, 2010 p. 2/52

3 Bibliographie B. Lacaze, M. Maubourguet, C. Mailhes et J.-Y. Tourneret, Probabilités et Statistique appliquées, Cépadues, Athanasios Papoulis and S. Unnikrishna Pillai, Probability, Random Variable and Stochastic Processes, McGraw Hill Higher Education, 4th edition, Cours Statistique, 2010 p. 3/52

4 Modèle Statistique Observations x 1,...,x n Échantillon X 1,...,X n n va iid associées aux observations Estimateur θ(x 1,...,X n ) ou θ n ou θ Cours Statistique, 2010 p. 4/52

5 Qualités d un estimateur θ R Biais (erreur systématique) : b n (θ) = E Variance v n (θ) = E [ ( θn E ( θn )) 2 ] = E ( θn ) [ θ 2 n ] E Erreur quadratique moyenne (précision) [ ) ] 2 e n (θ) = E ( θn θ = v n (θ) + b 2 n(θ) θ ( θn ) 2 CS de convergence : θ n est un estimateur convergent si lim b n(θ) = lim v n(θ) = 0 n + n + Cours Statistique, 2010 p. 5/52

6 Qualités d un estimateur θ R p Biais b n (θ) = E ( θn ) θ R p Matrice de covariance E [ ( θn E ( θn )) ( θn E ( θn )) T ] Cours Statistique, 2010 p. 6/52

7 Exemples Exemple 1 : X i N(m,σ 2 ), θ = m et σ 2 connue Moyenne empirique θ n = 1 n X i n Autre estimateur θ n = i=1 2 n(n + 1) n ix i i=1 Exemple 2 : X i N(m,σ 2 ), θ = σ 2, m connue ou inconnue Exemple 3 : X i N(m,σ 2 ), θ = (m,σ 2 ) T Cours Statistique, 2010 p. 7/52

8 Plan du cours Chapitre 1 : Estimation Modèle statistique, qualités d un estimateur, exemples Inégalité de Cramér Rao Maximum de vraisemblance Méthode des moments Estimation Bayésienne Intervalles de confiance Chapitre 2 : Tests Statistiques Cours Statistique, 2010 p. 8/52

9 Inégalité de Cramér Rao Vraisemblance L(x 1,...,x n ;θ) = { X i va discrète : P[X 1 = x 1,...,X n = x n ] X i va continue : p(x 1,...,x n ) Inégalité pour θ R Définition ) Var ( θn E [1 + b n(θ)] 2 [ 2 ln L(X 1,...,X n ;θ) θ 2 ] = BCR(θ) BCR(θ) est appelée Borne de Cramér Rao de θ Hypothèses Log-vraisemblance deux fois dérivable et support de la loi indépendant de θ (contre-exemple : loi U[0,θ]) Cours Statistique, 2010 p. 9/52

10 Inégalité de Cramér Rao Estimateur ) Efficace : estimateur sans biais tel que Var ( θn = BCR(θ) (Il est unique!) Exemple : X i N(m,σ 2 ), θ = m et σ 2 connue Cas où (X 1,...,X n ) est un échantillon Var ( θn ) ne [1 + b n(θ)] 2 [ 2 ln L(X 1 ;θ) θ 2 ] = BCR(θ) Cours Statistique, 2010 p. 10/52

11 Cas multivarié Inégalité pour un estimateur non biaisé de θ R p ) Cov ( θ I 1 n (θ) [ ] avec I ij = E 2 ln L(X 1,...,X n ;θ) θ i θ j pour i,j = 1,...,p et A B signifie A B matrice semi définie positive x T (A B)x 0, x R p On en déduit Var ( θi ) [ I 1 n (θ) ] ii Exemple : X i N(m,σ 2 ), θ = (m,σ 2 ) T. Cours Statistique, 2010 p. 11/52

12 Plan du cours Chapitre 1 : Estimation Modèle statistique, qualités d un estimateur, exemples Inégalité de Cramér Rao Maximum de vraisemblance Méthode des moments Estimation Bayésienne Intervalles de confiance Chapitre 2 : Tests Statistiques Cours Statistique, 2010 p. 12/52

13 Méthode du Maximum de Vraisemblance Définition θ MV = arg max θ L(X 1,...,X n ;θ) Recherche du maximum pour θ R Si L(X 1,...,X n ;θ) est deux fois dérivable et si les bornes de la loi de X i sont indépendantes de θ L(X 1,...,X n ;θ) θ = 0 ou ln L(X 1,...,X n ;θ) θ = 0 On vérifie qu on a bien un maximum en étudiant ln L(X 1,...,X n ;θ) θ 0 ou 2 ln L(X 1,...,X n ; θ MV ) θ 2 < 0 Cours Statistique, 2010 p. 13/52

14 Méthode du Maximum de Vraisemblance Recherche du maximum pour θ R p L(X 1,...,X n ;θ) = 0 ou ln L(X 1,...,X n ;θ i ) θ i θ = 0 pour i = 1,...,p Exemples Exemple 1 : X i P(λ), θ = λ Exemple 2 : X i N(m,σ 2 ), θ = (m,σ 2 ) T Cours Statistique, 2010 p. 14/52

15 Propriétés Estimateur asymptotiquement non biaisé Estimateur convergent ] lim [ θmv E n + θ = 0 Estimateur asymptotiquement efficace ) ( θi lim n + Normalité Asymptotique Var [ I 1 n (θ) ] ii = 1 Cours Statistique, 2010 p. 15/52

16 Propriétés Invariance Fonctionnelle Si µ = h(θ), où h est une fonction bijective d un ouvert O R p dans un ouvert V R p, alors ) µ MV = h ( θmv Conclusions L estimateur du maximum de vraisemblance θ MV possède beaucoup de bonnes propriétés asymptotiques mais peut être difficile à étudier car il est la solution d un problème d optimisation. Cours Statistique, 2010 p. 16/52

17 Plan du cours Chapitre 1 : Estimation Modèle statistique, qualités d un estimateur, exemples Inégalité de Cramér Rao Maximum de vraisemblance Méthode des moments Estimation Bayésienne Intervalles de confiance Chapitre 2 : Tests Statistiques Cours Statistique, 2010 p. 17/52

18 Méthode des moments Définition : supposons que X 1,...,X n ont la même loi de paramètre inconnu θ R p. En général, le vecteur paramètre à estimer θ est lié aux premiers moments de la loi commune des va X i par une relation notée θ = h(m 1,...,m q ) avec m k = E[Xi k ] et q p. Un estimateur des moments de θ est défini par n θ Mo = h( m 1,..., m q ) avec m k = 1 n Exemple : X i N(m,σ 2 ), θ = (m,σ 2 ) T i=1 X k i Cours Statistique, 2010 p. 18/52

19 Propriétés Estimateur convergent Normalité Asymptotique Conclusion : peu de propriétés mais cet estimateur est généralement facile à étudier. Cours Statistique, 2010 p. 19/52

20 Plan du cours Chapitre 1 : Estimation Modèle statistique, qualités d un estimateur, exemples Inégalité de Cramér Rao Maximum de vraisemblance Méthode des moments Estimation Bayésienne Intervalles de confiance Chapitre 2 : Tests Statistiques Cours Statistique, 2010 p. 20/52

21 Estimation Bayésienne Principe : l estimation Bayésienne consiste à estimer un vecteur paramètre inconnu θ R p à l aide de la vraisemblance de X 1,...,X n (paramétrée par θ) et d une loi a priori ( p(θ). Pour cela, on minimise une fonction de coût c θ, θ ) qui représente l erreur entre θ et θ. Estimateur MMSE : l estimateur qui minimise l erreur ( quadratique moyenne c θ, θ ) [ ( = E θ θ ) ] 2 est θ MMSE = E (θ X 1,...,X n ) Remarque : p (θ x 1,...,x n ) est la loi a posteriori de θ Preuve : voir cours Cours Statistique, 2010 p. 21/52

22 Estimation Bayésienne Estimateur MAP : l estimateur du maximum a posteriori (MAP) est défini par θ MAP = arg max θ p(θ X 1,...,X n ) Cet estimateur minimise la fonction de coût ( c θ, θ ) 1 si θ θ > = 0 si θ θ < avec arbitrairement petit. Preuve : voir livre de H. Van Trees Cours Statistique, 2010 p. 22/52

23 Exemple Vraisemblance Loi a priori Loi a posteriori X i N(θ,σ 2 ) θ N(µ,ν 2 ) θ X 1,...,X n N ( m p,σp 2 ) Estimateurs Bayésiens θ MAP = θ MMSE = m p = X ( nν 2 nν 2 + σ 2 ) + µ ( σ 2 ) σ 2 + nν 2 Cours Statistique, 2010 p. 23/52

24 Plan du cours Chapitre 1 : Estimation Modèle statistique, qualités d un estimateur, exemples Inégalité de Cramér Rao Maximum de vraisemblance Méthode des moments Estimation Bayésienne Intervalles de confiance Chapitre 2 : Tests Statistiques Cours Statistique, 2010 p. 24/52

25 Intervalles de confiance Principe : un intervalle de confiance [a,b] pour le paramètre θ R est un intervalle tel que P[a < θ < b] = α, où α est le paramètre de confiance (en général α = 0.99 ou α = 0.95). Détermination pratique de l intervalle : on cherche un estimateur de θ noté θ (par la méthode des moments, du maximum de vraisemblance,...), on en déduit une statistique T(X 1,...,X n ) qui dépend de θ de loi connue, on cherche c(θ) et d(θ) tels que P[c(θ) < T(X 1,...,X n ) < d(θ)] = α On en déduit l intervalle [a, b]. Cours Statistique, 2010 p. 25/52

26 Exemples Exemple 1 : X i N(m,σ 2 ), m inconnue, σ 2 connue. T = 1 n n i=1 X i m σ/ n N(0, 1) Exemple 3 : X i N(m,σ 2 ), IC pour m, σ 2 inconnue. donc T N(0, 1) et U = 1 n ( Xi σ 2 X ) 2 χ 2 n 1 T U n 1 i=1 t n 1 suit une loi de Student à n 1 degrés de liberté. Cours Statistique, 2010 p. 26/52

27 Plan du cours Chapitre 1 : Estimation Chapitre 2 : Tests Statistiques Généralités, exemple Courbes COR Théorème de Neyman Pearson Test du rapport de vraisemblance généralisé Test du χ 2 Test de Kolmogorov Cours Statistique, 2010 p. 27/52

28 Généralités Principe : un test statistique est un mécanisme qui permet de décider entre plusieurs hypothèses H 0,H 1,... à partir de n observations x 1,...,x n. On se limitera dans ce cours à deux hypothèses H 0 et H 1. Effectuer un test, c est déterminer une statistique de test T(X 1,...,X n ) et un ensemble tel que H 0 rejetée si T(X 1,...,X n ) H 0 acceptée si T(X 1,...,X n ) /. (1) Vocabulaire H 0 est l hypothèse nulle H 1 est l hypothèse alternative {(x 1,...,x n ) T(x 1,...,x n ) } : région critique Cours Statistique, 2010 p. 28/52

29 Définitions Tests paramétriques et non paramétriques Hypothèses simples et hypothèses composites Risque de première espèce = probabilité de fausse alarme α = PFA = P[Rejeter H 0 H 0 vraie] Risque de seconde espèce = probabilité de non-détection β = PND = P[Rejeter H 1 H 1 vraie] Puissance du test = probabilité de détection : π = 1 β Cours Statistique, 2010 p. 29/52

30 Exemple Hypothèses X i N(m,σ 2 ), σ 2 connue Stratégie du test H 0 : m = m 0, H 1 : m = m 1 > m 0 Rejet de H 0 si X = 1 n n i=1 X i > S α Problèmes Déterminer le seuil S α, le risque β et la puissance du test π. Cours Statistique, 2010 p. 30/52

31 Plan du cours Chapitre 1 : Estimation Chapitre 2 : Tests Statistiques Généralités, exemple Courbes COR Théorème de Neyman Pearson Test du rapport de vraisemblance généralisé Test du χ 2 Test de Kolmogorov Cours Statistique, 2010 p. 31/52

32 Courbes COR Caractéristiques opérationnelles du récepteur PD = h(pfa) Exemple : X i N(m,σ 2 ), σ 2 connue H 0 : m = m 0, H 1 : m = m 1 > m 0 Probabilité de fausse alarme S α = m 0 + σ F 1 (1 α) n Probabilité de détection PD = π = F ( ) S α m 1 σ n Cours Statistique, 2010 p. 32/52

33 Représentation graphique ROC s for iid and correlated sequences Probability of Detection iid sequence λ 1 =22 correlated sequence λ 1 =22 iid sequence λ 1 =23 correlated sequence λ 1 = Probability of False Alarm Cours Statistique, 2010 p. 33/52

34 Plan du cours Chapitre 1 : Estimation Chapitre 2 : Tests Statistiques Généralités, exemple Courbes COR Théorème de Neyman Pearson Test du rapport de vraisemblance généralisé Test du χ 2 Test de Kolmogorov Cours Statistique, 2010 p. 34/52

35 Théorème de Neyman-Pearson Test paramétrique à hypothèses simples H 0 : θ = θ 0 et H 1 : θ = θ 1 (2) Variables aléatoires continues Théorème : à α fixé, le test qui minimise β (ou maximise π) est défini par Rejet de H 0 si L(x 1,...,x n H 1 ) L(x 1,...,x n H 0 ) > S α Remarque : L(x 1,...,x n H i ) = f(x 1,...,x n θ i ) Exemple : X i N(m,σ 2 ), σ 2 connue H 0 : m = m 0, H 1 : m = m 1 > m 0 Cours Statistique, 2010 p. 35/52

36 Résumé Effectuer un test de Neyman-Pearson, c est 1) Déterminer la statistique et la région critique du test 2) Déterminer la relation entre le seuil S α et le risque α 3) Calculer le risque β et la puissance π du test (ou la courbe COR) 4) Application numérique : on accepte ou rejette l hypothèse H 0 en précisant le risque α donné Cours Statistique, 2010 p. 36/52

37 Théorème de Neyman-Pearson Variables aléatoires discrètes Théorème : parmi tous les tests de risque de première espèce α fixé, le test de puissance maximale est défini par Remarque : Rejet de H 0 si L(x 1,...,x n H 1 ) L(x 1,...,x n H 0 ) > S α L(x 1,...,x n H i ) = P [X 1 = x 1,...,X n = x n θ i ] Exemple : X i P(λ), H 0 : λ = λ 0, H 1 : λ = λ 1 > λ 0 Loi asymptotique : quand n est suffisamment grand, utilisation du théorème de la limite centrale Cours Statistique, 2010 p. 37/52

38 Plan du cours Chapitre 1 : Estimation Chapitre 2 : Tests Statistiques Généralités, exemple Courbes COR Théorème de Neyman Pearson Test du rapport de vraisemblance généralisé Test du χ 2 Test de Kolmogorov Cours Statistique, 2010 p. 38/52

39 Test du rapport de vraisemblance généralisé Test paramétrique à hypothèses composites H 0 : θ Θ 0 et H 1 : θ Θ 1 (3) Définition (Test GLR) Rejet de H 0 si L L ) (x 1,...,x n θ MV 1 (x 1,...,x n θ MV 0 ) > S α MV MV où θ 0 et θ 1 sont les estimateurs du maximum de vraisemblance de θ sous les hypothèses H 0 et H 1. Remarque L ) (x 1,...,x n θ MV i = sup θ Θ i L (x 1,...,x n θ) Cours Statistique, 2010 p. 39/52

40 Plan du cours Chapitre 1 : Estimation Chapitre 2 : Tests Statistiques Généralités, exemple Courbes COR Théorème de Neyman Pearson Test du rapport de vraisemblance généralisé Test du χ 2 Test de Kolmogorov Cours Statistique, 2010 p. 40/52

41 Test du χ 2 Le test du χ 2 est un test non paramétrique d ajustement (ou d adéquation) qui permet de tester les deux hypothèses suivantes H 0 : L = L 0, H 1 : L L 0 où L 0 est une loi donnée. Le test consiste à déterminer si (x 1,...,x n ) est de loi L 0 ou non. On se limitera dans ce cours au cas simple où x i R. Définition Rejet de H 0 si φ n = K k=1 (Z k np k ) 2 np k > S α Remarque : L 0 peut être une loi discrète ou continue Cours Statistique, 2010 p. 41/52

42 Test du χ 2 Statistique de test Z k : nombre d observations x i appartenant à la classe C k, k = 1,...,K p k : probabilité qu une observation x i appartienne à la classe C k sachant X i L 0 P [X i C k X i L 0 ] n : nombre total d observations Loi de la statistique de test φ n L n χ 2 K 1 Cours Statistique, 2010 p. 42/52

43 Remarques Interprétation de φ φ n = K k=1 n p k ( ) 2 Zk n p k Distance entre probabilités théoriques et empiriques Loi asymptotique de φ n : voir notes de cours ou livres Nombre d observations fini Une heuristique dit que la loi asymptotique de φ n est une bonne approximation pour n fini si 80% des classes vérifient np k 5 et si p k > 0, k = 1,...,K Classes équiprobables Cours Statistique, 2010 p. 43/52

44 Remarques Correction Lorsque les paramètres de la loi L 0 sont inconnus φ n L n χ 2 K 1 n p où n p est le nombre de paramètres inconnus estimés par la méthode du maximum de vraisemblance Puissance du test Non calculable Cours Statistique, 2010 p. 44/52

45 Exemple Est-il raisonnable de penser que ces observations sont issues d une population de loi N (1, 4)? Solution Classes C 1 : ], 0.34],C 2 : ] 0.34, 1],C 3 : ]1, 2.34],C 4 : ]2.34, [ Nombres d observations Z 1 = 7, Z 2 = 12, Z 3 = 10, Z 4 = 11 Cours Statistique, 2010 p. 45/52

46 Exemple Statistique de test φ n = 1.4 Seuils χ 2 2 χ 2 3 S S donc on accepte l hypothèse H 0 avec les risques α = 0.01 et α = Cours Statistique, 2010 p. 46/52

47 Plan du cours Chapitre 1 : Estimation Chapitre 2 : Tests Statistiques Généralités, exemple Courbes COR Théorème de Neyman Pearson Test du rapport de vraisemblance généralisé Test du χ 2 Test de Kolmogorov Cours Statistique, 2010 p. 47/52

48 Test de Kolmogorov Le test de Kolmogorov est un test non paramétrique d ajustement (ou d adéquation) qui permet de tester les deux hypothèses suivantes H 0 : L = L 0, H 1 : L L 0 où L 0 est une loi donnée. Le test consiste à déterminer si (x 1,...,x n ) est de loi L 0 ou non. On se limitera dans ce cours au cas simple où x i R. Définition Rejet de H 0 si D n = sup F(x) F 0 (x) > S α x R Remarque : L 0 doit être une loi continue Cours Statistique, 2010 p. 48/52

49 Remarques Statistique de test F 0 (x) est la fonction de répartition théorique associée à L 0 et F(x) est la fonction de répartition empirique de (x 1,...,x n ) Loi asymptotique de D n : voir livres P[ nd n < y] n + k= ( 1) k exp( 2k 2 y) = K(y) Détermination du seuil S α : S α = 1 n K 1 (1 α) Le seuil dépend de α et de n. Cours Statistique, 2010 p. 49/52

50 Remarques Calcul de D n E + i = F ( x + i D n = max i {1,...,n} max{e+ i,e i } ) F0 (x i), E i = F ( x i ) F0 (x i) Rq : x 1,...,x n est la statistique d ordre de x 1,...,x n. Rq : F ( x + ) ( ) i = i/n et F x i = (i 1)/n. Puissance du test Non calculable Cours Statistique, 2010 p. 50/52

51 Exemple Est-il raisonnable de penser que ces observations sont issues d une population de loi uniforme sur [0, 1]? x i E i E + i Max(E + i, E i ) x i E i E + i e 3 Max(E + i, E i ) Cours Statistique, 2010 p. 51/52

52 Exemple Statistique de test D n = 0.17 Seuils pour n = 20 S S donc on accepte l hypothèse H 0 avec les risques α = 0.01 et α = Cours Statistique, 2010 p. 52/52

Méthodes de Simulation

Méthodes de Simulation Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents

Plus en détail

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

Master 1 Informatique Éléments de statistique inférentielle

Master 1 Informatique Éléments de statistique inférentielle Master 1 Informatique Éléments de statistique inférentielle Faicel Chamroukhi Maître de Conférences UTLN, LSIS UMR CNRS 7296 email: chamroukhi@univ-tln.fr web: chamroukhi.univ-tln.fr 2014/2015 Faicel Chamroukhi

Plus en détail

choisir H 1 quand H 0 est vraie - fausse alarme

choisir H 1 quand H 0 est vraie - fausse alarme étection et Estimation GEL-64943 Hiver 5 Tests Neyman-Pearson Règles de Bayes: coûts connus min π R ( ) + ( π ) R ( ) { } Règles Minimax: coûts connus min max R ( ), R ( ) Règles Neyman Pearson: coûts

Plus en détail

Cours d introduction à la théorie de la détection

Cours d introduction à la théorie de la détection Olivier J.J. MICHEL Département EEA, UNSA v1.mars 06 olivier.michel@unice.fr Laboratoire LUAN UMR6525-CNRS Cours d introduction à la théorie de la détection L ensemble du document s appuie très largement

Plus en détail

Théorie de l estimation et de la décision statistique

Théorie de l estimation et de la décision statistique Théorie de l estimation et de la décision statistique Paul Honeine en collaboration avec Régis Lengellé Université de technologie de Troyes 2013-2014 Quelques références Decision and estimation theory

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65 Sommaire Chapitre 1 Variables et vecteurs aléatoires............... 5 A. Généralités sur les variables aléatoires réelles.................... 6 B. Séries doubles..................................... 9

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

Analyse des données individuelles groupées

Analyse des données individuelles groupées Analyse des données individuelles groupées Analyse des Temps de Réponse Le modèle mixte linéaire (L2M) Y ij, j-ième observation continue de l individu i (i = 1,, N ; j =1,, n) et le vecteur des réponses

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

Cours brique ISAT Filtrage et extraction de caractéristiques sur les images RSO Florence Tupin Année 2005-2006

Cours brique ISAT Filtrage et extraction de caractéristiques sur les images RSO Florence Tupin Année 2005-2006 Cours brique ISAT Filtrage et extraction de caractéristiques sur les images RSO Florence Tupin Année 2005-2006 1 Plan Filtrage des images radar Rappels sur les statistiques Maximisation a posteriori Minimisation

Plus en détail

l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab

l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab scilab à l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab Tests de comparaison pour l augmentation du volume de précipitation 13 février 2007 (dernière date de mise à jour) Table

Plus en détail

Introduction à la Statistique Inférentielle

Introduction à la Statistique Inférentielle UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014 Télécom Physique Strasbourg Module 2101 STATISTIQUES Cours I : Test d hypothèses Fabrice Heitz Octobre 2014 Fabrice Heitz (Télécom PS) Statistiques 2014 1 / 75 Cours I TESTS D HYPOTHÈSES Fabrice Heitz

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives

Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives Examen Décembre 00. C. Hurlin Exercice 1 (15 points) : Politique de Dividendes On considère un problème de politique de

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

Cours de Statistiques, M1. Université de Cergy Pontoise

Cours de Statistiques, M1. Université de Cergy Pontoise Cours de Statistiques, M1 Estimation et introduction aux tests Université de Cergy Pontoise Paul Doukhan 2 Table des matières 1 Modèle de Bernoulli 7 1.1 Résumer l information........................ 8

Plus en détail

11. Tests d hypothèses (partie 1/2)

11. Tests d hypothèses (partie 1/2) 11. Tests d hypothèses (partie 1/2) MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v1) MTH2302D: tests d hypothèses 1/30 Plan 1. Introduction 2. Hypothèses et erreurs 3. Tests d hypothèses

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun

Plus en détail

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens.

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. . Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. Benoîte de Saporta Université de Nantes Université de Nantes - 9 juin 2005 p. 1/37 Plan de l exposé 1.

Plus en détail

Soutenance de stage Laboratoire des Signaux et Systèmes

Soutenance de stage Laboratoire des Signaux et Systèmes Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud

Plus en détail

Normalité des rendements?

Normalité des rendements? Normalité des rendements? Daniel Herlemont 31 mars 2011 Table des matières 1 Introduction 1 2 Test de Normalité des rendements 2 3 Graphiques quantile-quantile 2 4 Estimation par maximum de vraisemblance

Plus en détail

Modèles GARCH et à volatilité stochastique Université de Montréal 14 mars 2007

Modèles GARCH et à volatilité stochastique Université de Montréal 14 mars 2007 Université de Montréal 14 mars 2007 Christian FRANCQ GREMARS-EQUIPPE, Université Lille 3 Propriétés statistiques des modèles GARCH Outline 1 Identification 2 Test de bruit blanc faible Test d homoscédaticité

Plus en détail

Probabilités et inférence statistique (STAT-S202)

Probabilités et inférence statistique (STAT-S202) Probabilités et inférence statistique (STAT-S202) Partie 2: Inférence statistique Catherine Dehon 2014-2015 (2e édition) Université libre de Bruxelles Solvay Brussels School of Economics and Management

Plus en détail

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires CHAPITRE I. SIMULATION DE VARIABLES ALÉATOIRES 25 Chapitre I Simulation de variables aléatoires La simulation informatique de variables aléatoires, aussi complexes soient elles, repose sur la simulation

Plus en détail

Initiation à la Statistique IS-Math314

Initiation à la Statistique IS-Math314 Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées Bât. M2, F-59655 Villeneuve d Ascq Cedex Initiation à la Statistique IS-Math314 Chapitres 1 4 Charles SUQUET

Plus en détail

Projet TER - Master 1 SITN La statistique Bayésienne

Projet TER - Master 1 SITN La statistique Bayésienne Projet TER - Master 1 SITN La statistique Bayésienne Artemis TOUMAZI Encadré par Mme Anne Perrut 0.0 0.5 1.0 1.5.0.5 0.0 0. 0.4 0.6 0.8 1.0 1. 7 juin 013 À ma mère et mon père. Table des matières Introduction

Plus en détail

Cours STAT 2150. "Statistique non paramétrique: Méthodes de lissage"

Cours STAT 2150. Statistique non paramétrique: Méthodes de lissage Cours STAT 2150 "Statistique non paramétrique: Méthodes de lissage" Année académique 2008-2009 Séance 1 1 Table de matière du cours 1. Introduction (Fonction de répartition, histogramme, propriétés d un

Plus en détail

Détection de ruptures offline et online pour des processus causaux

Détection de ruptures offline et online pour des processus causaux Détection de ruptures offline et online pour des processus causaux Travaux avec W. Kengne (Paris 1, Yaoundé) et O. Wintenberger (Paris IX) Jean-Marc Bardet bardet@univ-paris1.fr Trimestre du Laboratoire

Plus en détail

Introduction à la statistique non paramétrique

Introduction à la statistique non paramétrique Introduction à la statistique non paramétrique Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry http://stat.genopole.cnrs.fr/ cmatias Atelier SFDS 27/28 septembre 2012 Partie 2 : Tests non

Plus en détail

S. Zozor Information, inégalités et relations d incertitude

S. Zozor Information, inégalités et relations d incertitude Information, inégalités et relations d incertitude Steeve Zozor GIPSA-Lab CNRS Grenoble INP, Grenoble, France 17-21 Mai 2010 Plan du cours 1 Entropie mesure d incertitude Axiomes, entropie de Shannon et

Plus en détail

Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux

Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux hétérogènes Laurent Déjean Thales Airborne Systems/ENST-Bretagne Le 20 novembre 2006 Laurent Déjean Détection en

Plus en détail

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction

Plus en détail

Analyse des données «Hamburgers» à l aide de SPSS (v2, janvier 2011) Auteur : André Berchtold

Analyse des données «Hamburgers» à l aide de SPSS (v2, janvier 2011) Auteur : André Berchtold Analyse des données «Hamburgers» à l aide de SPSS (v2, janvier 2011) Auteur : André Berchtold Le site web «The Fast Food Explorer» (www.fatcalories.com) propose des données relatives à la composition des

Plus en détail

Contrôle du False Discovery Rate en tests multiples: conditions suffisantes et adaptivité.

Contrôle du False Discovery Rate en tests multiples: conditions suffisantes et adaptivité. Contrôle du False Discovery Rate en tests multiples: conditions suffisantes et adaptivité. G. Blanchard 1 1 Weierstrass Institut Berlin, Germany Journées Statistiques du Sud, Porquerolles 18/06/09 G. Blanchard

Plus en détail

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL La régression logistique Par Sonia NEJI et Anne-Hélène JIGOREL Introduction La régression logistique s applique au cas où: Y est qualitative à 2 modalités Xk qualitatives ou quantitatives Le plus souvent

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

Cours de mathématiques ECS 1 ère année. BÉGYN Arnaud

Cours de mathématiques ECS 1 ère année. BÉGYN Arnaud Cours de mathématiques ECS 1 ère année BÉGYN Arnaud 12/11/2012 2 Introduction Ce manuscrit regroupe des notes de cours de mathématiques pour une classe d ECS première année. J ai écris ces notes lors de

Plus en détail

Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil

Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil Séverine Demeyer, Frédéric Jenson, Nicolas Dominguez CEA, LIST, F-91191

Plus en détail

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013 Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de

Plus en détail

Introduction à la simulation de Monte Carlo

Introduction à la simulation de Monte Carlo Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues

Plus en détail

Emmanuel Jeandel MÉTHODES STATISTIQUES EN INFORMATIQUE

Emmanuel Jeandel MÉTHODES STATISTIQUES EN INFORMATIQUE Emmanuel Jeandel MÉTHODES STATISTIQUES EN INFORMATIQUE ii TABLE DES MATIÈRES iii iv TABLE DES MATIÈRES INTRODUCTION Voici une liste de livres dont je m inspire pour le cours v vi INTRODUCTION Chapitre

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

Econométrie Appliquée Séries Temporelles

Econométrie Appliquée Séries Temporelles Chapitre 1. UFR Economie Appliquée. Cours de C. Hurlin 1 U.F.R. Economie Appliquée Maîtrise d Economie Appliquée Cours de Tronc Commun Econométrie Appliquée Séries Temporelles Christophe HURLIN Chapitre

Plus en détail

Chapitre 10 Algorithmes probabilistes

Chapitre 10 Algorithmes probabilistes Chapitre 10 Algorithmes probabilistes Jouent à pile ou face Se comportent différemment lorsque exécutés deux fois sur un même exemplaire Défient parfois l intuition 1 Première surprise: le hasard peut

Plus en détail

Cours de méthodes de scoring

Cours de méthodes de scoring UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Lot Quality Assurance Sampling. Elise Naoufal EVARISQ 15 septembre 2011

Lot Quality Assurance Sampling. Elise Naoufal EVARISQ 15 septembre 2011 Lot Quality Assurance Sampling LQAS Elise Naoufal EVARISQ 15 septembre 2011 1 LQAS Une question d efficacité? LQAS et santé Méthode et Fondements théoriques Détermination du couple (n,d n,d) Conclusion

Plus en détail

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7.

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7. BACCALAURÉAT GENÉRAL Session 2011 MATHÉMATIQUES Série ES Enseignement de Spécialité Durée de l épreuve : 3 heures Coefficient : 7 Ce sujet comporte 7 pages numérotées de 1 à 7. L utilisation d une calculatrice

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Exercices de simulation 1

Exercices de simulation 1 Licence MIA 2ème année Année universitaire 2009-2010 Simulation stochastique C. Léonard Exercices de simulation 1 Les simulations qui suivent sont à effectuer avec Scilab. Le générateur aléatoire de Scilab.

Plus en détail

Modèle probabiliste: Algorithmes et Complexité

Modèle probabiliste: Algorithmes et Complexité Modèles de calcul, Complexité, Approximation et Heuristiques Modèle probabiliste: Algorithmes et Complexité Jean-Louis Roch Master-2 Mathématique Informatique Grenoble-INP UJF Grenoble University, France

Plus en détail

Statistique descriptive et prévision

Statistique descriptive et prévision Statistique descriptive et prévision Année 2010/2011 L. Chaumont Contents 1. Étude d une variable 5 1.1. Définitions................................ 5 1.2. Représentations graphiques usuelles................

Plus en détail

Les données manquantes en statistique

Les données manquantes en statistique Les données manquantes en statistique N. MEYER Laboratoire de Biostatistique -Faculté de Médecine Dép. Santé Publique CHU - STRASBOURG Séminaire de Statistique - 7 novembre 2006 Les données manquantes

Plus en détail

Introduction à l Optimisation Numérique

Introduction à l Optimisation Numérique DÉPARTEMENT STPI 3ÈME ANNÉE MIC Introduction à l Optimisation Numérique Frédéric de Gournay & Aude Rondepierre Table des matières Introduction 5 Rappels de topologie dans R n 7 0.1 Ouverts et fermés de

Plus en détail

Université d Orléans - Licence Economie et Gestion Statistique Mathématique

Université d Orléans - Licence Economie et Gestion Statistique Mathématique Université d Orléans - Licence Economie et Gestion Statistique Mathématique C. Hurlin. Correction du Contrôle de Décembre 00 Exercice Barème : 7 points Partie I : Test d hypothèses simples (0 points) Question

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES Durée de l épreuve : 3 heures Coefficient : 7 (ES) ES : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques de poche sont autorisées conformément

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Économétrie 2 : données qualitatives, probit et logit

Économétrie 2 : données qualitatives, probit et logit URCA Hugo Harari-Kermadec 2008-2009 harari@ecogest.ens-cachan.fr Économétrie 2 : données qualitatives, probit et logit I Un modèle pour données qualitatives Cette section est fortement inspirée du cours

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

Correction du bac blanc CFE Mercatique

Correction du bac blanc CFE Mercatique Correction du bac blanc CFE Mercatique Exercice 1 (4,5 points) Le tableau suivant donne l évolution du nombre de bénéficiaires de minima sociaux en milliers : Année 2002 2003 2004 2005 2006 2007 2008 2009

Plus en détail

5 Méthodes algorithmiques

5 Méthodes algorithmiques Cours 5 5 Méthodes algorithmiques Le calcul effectif des lois a posteriori peut s avérer extrêmement difficile. En particulier, la prédictive nécessite des calculs d intégrales parfois multiples qui peuvent

Plus en détail

Tests du χ 2. on accepte H 0 bonne décision erreur de seconde espèce on rejette H 0 erreur de première espèce bonne décision

Tests du χ 2. on accepte H 0 bonne décision erreur de seconde espèce on rejette H 0 erreur de première espèce bonne décision Page n 1. Tests du χ 2 une des fonctions des statistiques est de proposer, à partir d observations d un phénomène aléatoire (ou modélisé comme tel) une estimation de la loi de ce phénomène. C est que nous

Plus en détail

Modélisation stochastique des données à partir d essais sur matériaux. Pr. Denys Breysse Université Bordeaux 1

Modélisation stochastique des données à partir d essais sur matériaux. Pr. Denys Breysse Université Bordeaux 1 Modélisation stochastique des données à partir d essais sur matériaux Pr. Denys Breysse Université Bordeaux 1 Hasard cause fictive de ce qui arrive sans raison apparente ou explicable (Petit Robert). Ce

Plus en détail

CARACTÉRISATION DES DISTRIBUTIONS À QUEUE LOURDE POUR L ANALYSE DES CRUES

CARACTÉRISATION DES DISTRIBUTIONS À QUEUE LOURDE POUR L ANALYSE DES CRUES CARACTÉRISATION DES DISTRIBUTIONS À QUEUE LOURDE POUR L ANALYSE DES CRUES Rapport de recherche No R-929 Mars 27 CARACTÉRISATION DES DISTRIBUTIONS À QUEUE LOURDE POUR L ANALYSE DES CRUES Par Salaheddine

Plus en détail

Mémoire de n d'étude: Etudes statistiques. Mémoire de n d'étude: Etudes statistiques. Nicolas Sutton-Charani. Université Montpellier 1 1/31

Mémoire de n d'étude: Etudes statistiques. Mémoire de n d'étude: Etudes statistiques. Nicolas Sutton-Charani. Université Montpellier 1 1/31 1/31 Mémoire de n d'étude: Etudes statistiques Nicolas Sutton-Charani Université Montpellier 1 Plan Rappels de cours La base La Statistique Types des variables Outils mathématiques Statistiques descriptives

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique Télécom ParisTech, 09 mai 2012 http://www.mathematiquesappliquees.polytechnique.edu/ accueil/programmes/cycle-polytechnicien/annee-1/

Plus en détail

Analyse discriminante

Analyse discriminante Analyse discriminante Christine Decaestecker & Marco Saerens ULB & UCL LINF2275 1 Analyse Discriminante Particularités: 2 formes/utilisations complémentaires: méthode factorielle: description "géométrique"

Plus en détail

Théorie de l information : historique

Théorie de l information : historique Théorie de l information : historique Développée dans les années quarante par Claude Shannon. Objectif : maximiser la quantité d information pouvant être transmise par un canal de communication imparfait.

Plus en détail

Économetrie non paramétrique I. Estimation d une densité

Économetrie non paramétrique I. Estimation d une densité Économetrie non paramétrique I. Estimation d une densité Stéphane Adjemian Université d Évry Janvier 2004 1 1 Introduction 1.1 Pourquoi estimer une densité? Étudier la distribution des richesses... Proposer

Plus en détail

Provisionnement face au risque de défaut des emprunteurs

Provisionnement face au risque de défaut des emprunteurs Provisionnement face au risque de défaut des emprunteurs Geoffrey Nichil et Pierre Vallois Institut Elie Cartan de Lorraine. 6-11 Avril 2014 1/12 Geoffrey Nichil et Pierre Vallois Provisionnement face

Plus en détail

TD2 Fonctions mesurables Corrigé

TD2 Fonctions mesurables Corrigé Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : Rappels collège/seconde Partie STAV 1/3 Partie STAV 2/3 Partie STAV

Plus en détail

Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale. 15 novembre 2010

Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale. 15 novembre 2010 Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale 15 novembre 2010 Table des matières 1 Rappel sur les Processus Gaussiens 2 Théorie du chaos multiplicatif gaussien de

Plus en détail

Modèles matriciels pour la gestion de population naturelle structurée en taille

Modèles matriciels pour la gestion de population naturelle structurée en taille Modèles matriciels pour la gestion de population naturelle structurée en taille Application à la gestion forestière en Afrique centrale Nicolas Picard, Sylvie Gourlet-Fleury, Frédéric Mortier, Vivien Rossi,

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2 UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 Master d économie Cours de M. Desgraupes MATHS/STATS Document 4 : Les tests statistiques 1 Généralités sur les tests

Plus en détail

ECRICOME 2004. Voie Eco. 1 1 + x. f (x) dx n N, u n = 1. 0 xn f (x) dx

ECRICOME 2004. Voie Eco. 1 1 + x. f (x) dx n N, u n = 1. 0 xn f (x) dx ECRICOME 2004 Voie Eco 1 EXERCICE 1 EXERCICE Soient f la fonction numérique de la variable réelle définie par : x R, f (x = 1 2 et (u n la suite de nombres réels déterminée par : { u 0 = 1 f (x dx 0 n

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Cours de probabilités, ECS deuxième année. Alain TROESCH

Cours de probabilités, ECS deuxième année. Alain TROESCH Cours de probabilités, ECS deuxième année Alain TROESCH 10 janvier 2012 Table des matières 1 Rappels de probabilités générales et discrètes 5 1.1 Principes généraux du calcul des probabilités.....................

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

Méthodes de sondage Echantillonnage et Redressement

Méthodes de sondage Echantillonnage et Redressement Méthodes de sondage Echantillonnage et Redressement Guillaume Chauvet École Nationale de la Statistique et de l Analyse de l Information 27 avril 2015 Guillaume Chauvet (ENSAI) Echantillonnage 27 avril

Plus en détail