Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Dimension: px
Commencer à balayer dès la page:

Download "Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ("

Transcription

1 Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est une constnte Conclusion : ϕt = Ot s lorsque t I- Soit t u voisinge de, t Alors ϕt ϕt = t C est le produit d une fonction bornée u voisinge de pr une tk t k ϕt fonction tendnt vers, et pr conséquent : lim = t tk I- Pr hypothèse, pour t, on At = + t + + k t k + t k+ ϕt vec ϕ une fonction bornée u voisinge de Pr suite, il vient lim t t k+ ϕt =, et donc lim t At = I- Soit t u voisinge de Alors : A t = ra t A rt r = + r r r t + Ot k+ cr d près I-, O rt k+ = Ot k+ = r + t + t + + Ot k+ + rt + r t + + Ort k+ r On en déduit : A t = r t + + Ot k+ En posnt, = r, on donc le résultt souhité I-3 Soit Pn l propriété pour n {,, k} : pour t, A n t = + n,n+ t n+ + n,n+ t n+ + + Ot k+ P est vrie d près l question précédente Supposons Pn vrie pour n {,, k } fixé Alors pour t, A n+ t = rn+ A n t A n rt r n+ = rn+ + n,n+t n+ + n,n+t n+ + +Ot k+ + n,n+ r n+ t n+ + n,n+r n+ t n+ + +Ort k+ r n+ On observe que le terme en t n+ s élimine, et qu il rester une expression de l forme + n+,n+ t n+ + + Ot k+, donc Pn + est vrie Conclusion : I-4 On : le développement limité de A n à l ordre k u voisinge de est de l forme A n t = + n,n+ t n+ + + Ot k lim m + rm t = cr r > Vu que lim t At =, pr composition de limites on donc lim m + Arm t = I-3 Soit p N Alors A p, = Ar p t Or, pour t u voisinge de, le développement limité de A à l ordre est At = + Ot Pr suite, vu que lim p + rp t =, on Ar p t = + Or p t D près I-, t étnt une constnte, on bien A p, = + Or p Microsoft free Powered by Linux, TEX, Gnu-Emcs

2 I-3 Soit q N Alors d près I-3, pour t, A q t = + Ot q+ Pr suite, pour p + et q {,, p}, A p,q = A q r p t = + Or pq+ t q+, d où A p,q = + Or pq+ On obtient donc αp, q = pq + I-33 Soit p N Alors A p, = A r p t = rarp t Ar r p t r = rarp t Ar p t r On donc bien A p, = ra p, A p, r I-34 Soit p N, soit q {,, p} Alors A p,q = A q r p t = rq A q r p t A q r r p t r q De plus, rq A p,q A p,q r q = rq + A p,q A p,q r q On obtient donc bien A p,q = rq A p,q A p,q r q = rq A p,q A p,q r q = A p,q + r q A p,q A p,q = A p,q + r q A p,q A p,q I-4 Pour q p m, on vu que αp, q = pq +, donc αp, q est mximum pour q = p = m et minimum pour p = q = L plus grnde vleur de αp, q est mm +, l plus petite vleur est D près I-, plus l puissnce de t est grnde dns Ot k, plus ce terme est petit qund t On peut donc ttendre à priori l meilleure pproximtion de pr A p,q lorsque A p,q = + Or αp,q ser tel que αp, q soit le plus grnd possible, donc il s git de l vleur A m,m, vec A m,m = + Or σm, et σm = mm + I-5 D près l formule de Tylor-Young, et pr unicité des coefficients d un développement limité, on : p {,, k}, c p = gp α I-5 Soit h R Alors Gh = G est donc pire gα h gα + h h = gα + h gα h h = Gh D près Tylor-Young, on pour h : gα + h = gα + hg α + oh gα + hg α + oh ] gα hg α + oh ] On en déduit, pour h : Gh = h = g α + o Pr suite, lim h Gh = g α, donc G est prolongeble pr continuité en pr l vleur g α I-53 Soit h u voisinge de Alors : gα + h gα h Gh = h = c +c h+c h + +c kh k +c kh k +Oh k+ ] c c h+c h + c kh k +c kh k +Oh k+ h On obtient donc : Gh = c + c 3 h + c 5 h c k h k + Oh k I-6 Posons r = 4 et t = h Alors on r >, et pour p {,, m}, Ar p t = A4 p h = G h 4 p h = G p Le choix r = 4 et t = h répond donc à l question I-6 Pour t u voisinge de +, on At = G t = c + c 3 t + c 5 t + + c k t k + Ot k d près I-53 D près I-3, on lim A p, = c p + Microsoft free Powered by Linux, TEX, Gnu-Emcs ]

3 D près I-5, on finlement lim A p, = l = g α p + I-7 Pour t >, on ici At = ln3 + t ln3 t t On trouve lors : A, , A, , A, , A 3, On obtient ensuite le tbleu : A, A, A, A, A, A, A 3, A 3, A 3, A 3, Remrque : le progrmme Mple utilisé pour obtenir ce résultt est le suivnt : # Initilistions G:=t->ln3+t-ln3-t//t; h:=8; for p from to 3 do Ap,]:=Gh/^p; # Clcul des termes for p from to 3 do for q from to p do Ap,q]:=r^q*Ap,q-]-Ap-,q-]/r^q-; # Affichge for p from to 3 do for q from to p do printf 5%f printf \n ;,Ap,q]; I-7 On l = g α, donc dns l exemple étudié on trouve l = 3 On voit clirement dns le tbleu que l meilleure pproximtion est obtenue pour A 3,3, ce qui correspond bien à l vleur trouvée u I-4 DEUXIÈME PARTIE II- B est tel que B = B, d où B = X + c c R, et On donc B = X B t dt = t ] t + c dt = + ct = + c, d où c = De même, B = B = X, d où B = X X + c c R, et On donc B = X X + 6 t 3 ] B t dt = 3 t + ct = 6 + c, d où c = 6 Enfin, B 3 = 3B = 3X 3X +, d où B 3 = X 3 3 X + X +c c R, et d où c = On donc B 3 = X 3 3 X + X B 3 t dt = t 4 4 t3 + ] 4 t +ct = c, Microsoft free Powered by Linux, TEX, Gnu-Emcs 3

4 II- On trouve à prtir des expressions précédentes : b =, b =, b = 6 et b 3 = De même, B =, B =, B = 6 et B 3 = On observe donc que b p = B p pour p {,, 3} II-3 Soit p N, p Alors B p t dt =, donc B pt p dt =, d où Bp t p ] = B p B p p =, et donc b p = B p II- Soit t R, lors B t = B = donc B p vérifie i p N Soit p N, soit t R Alors B pt = p B p t = p pb p t = p B p t De plus, On en déduit B p t dt = p B p t dt = p B p u du en effectunt le chngement de vrible u = t B p t dt =, et donc B p vérifie ii p N Les reltions i et ii définissnt clirement de mnière unique l suite B p p N, on donc : p N, Bp = B p II- Soit p N Alors b p+ = B p+ = B p+ D près I-3, on de plus b p+ = B p+ d où d près I- : b p+ = B p+ On obtient donc clirement : p N, b p+ = II-3 On ft dt = B tft dt = En intégrnt pr prties, on obtient donc : B tft dt pr définition de B et B Vu que B = X, on obtient : ft dt = ft dt = ] B tft II-3 L démonstrtion précédente prouve que l formule est vrie pour n = B tf t dt B tft dt = f + f B tf t dt Supposons l formule étblie pour n N fixé Alors : n f + f = ft dt + p b p f p f p + n+ = ft dt + p= p= B n t f n t dt n! n p b p f p f p + n+ B n+t n + n! f n t dt On intègre pr prtie l intégrle située à droite de l formule : B n+t ] n + n! f n Bn+ t t dt = n +! f n B n+ t t n +! f n+ t dt = b n+ f n f n B n+ t n +! n +! f n+ t dt cr b n+ = B n+ = B n+ d près I- En reportnt cette expression dns l formule précédente, on obtient l formule demndée u rng n +, d où : n, f + f = ft dt + II-33 Soit n, de l forme n = k, k N n p b p f p f p + n+ p= B n t f n t dt n! Microsoft free Powered by Linux, TEX, Gnu-Emcs 4

5 D près II-, tous les termes de l somme correspondnt à un indice p impir sont nuls, il reste donc en réindexnt l somme : f + f = ft dt + b p f p f p B k t k! f k t dt II-4 Soit t R, notons n = Et Alors n t < n +, d où n + t < n + et donc Et + = n + Pr suite, D p t + = B p t + n = B p t n = D p t et donc D p est périodique de période Soit, b R tel que < b Considérons l subdivision x i i n de, b] telle que, b] N = {x,, x n } x x x n x n b Alors pour i {,, n }, t ]x i, x i+, f ]xi,x i+ t = B pt x i pr définition L ppliction f ]xi,x i+ est donc clirement prolongeble à x i, x i+ ] en une fonction de clsse C sur x i, x i+ ], qui n est utre que t B p t x i, et pr suite D p est de clsse C pr morceux sur R II-4 Soit q {,, N} Alors f q est de clsse C sur, ] comme composée de telles pplictions Soit m N On clirement t, ], f t = ft, d où f m = f m Soit m N, soit q {,, N} Alors clirement t, ], f m q f q m = f m q De même, pour m N, f m N t = f m t + q, d où f q m = f m q = f m + q + et donc = f m + N et donc f m N = f m N II-43 Soit q {,, N} Alors l formule ppliquée à f q fournit : fq + f q b p = f q t dt + f p q f q p Compte tenu de l définition de f q et de II-4, on obtient donc : q fq + fq = fu du + q B k t k! f q k t dt b p f p q f p q q q on effectué le chngement de vrible u = t + q dns chcune des deux intégrles Pour tout t q, q, on de plus Et = q, d où t q, q, B k t q + = D k t Écrivons lors chcune de ces formules pour q N : b p f + f = ft dt + f p f p D k t k! f k t dt f + f = ft dt + b p f p f p D k t k! f k t dt B k u q + f k u du k! N fn + fn = N ft dt + b p f p N f p N N D k t N k! f k t dt En dditionnnt toutes ces reltions, et en utilisnt l reltion de Chsles, on obtient bien : N f + fq + N fn = ft dt + q= b p f p N f p N D k t k! f k t dt Microsoft free Powered by Linux, TEX, Gnu-Emcs 5

6 TROISIÈME PARTIE III- g est clirement de clsse C sur, N] comme composée de telles fonctions De plus, pr récurrence immédite, on : m N, t, N], g m t = h m f m + th Appliquons lors l formule à g : N g + gq + N gn = gt dt + q= b p g p N g p N D k t k! gk t dt On exploite lors l formule donnnt les dérivées successives de g, et on multiplie le tout pr h : ] N h f + f + qh + N fb =h f + th dt + h h p b p f p b f p q= N D k t h k! hk f k + ht dt On reconnît dns le membre de guche le terme T f h, et on effectue dns chque intégrle du membre de droite le chngement de vrible u = + th, du = h dt, on obtient bien insi : T f h = fu du + h p b p f p b f p h k D u k h f k u du k! III- L ppliction B k est continue sur, ] qui est compct, donc est bornée sur, ] Pr suite, M R + tel que t, ], Bk t M Or, pour tout t R, t Et, ], donc t R, D k t M D u k h On en déduit f k u du k! D u k h f k u du k! On donc h k D u k h f k u du = Oh k k! En posnt, pour p {,, k}, d p = T f h = k ft dt + d p h p + Oh k M f k u du k! } {{ } constnte indépendnte de h b p f p b f p, on obtient donc bien : III-3 D près III- et I-, on clirement lim t At = ft dt III-3 On est dns un cs similire à celui étudié u I-6, l fonction T f jount le rôle de G On obtient donc de l même fçon r = 4 et t = h h III-4 Pour p N, on d près ce qui précède : A p, = Ar p t = T f et donc A p p, = T f h p On obtient donc, pour p N, A p, = T f h p = T f h p III-4 Soit p N p Alors A p, = T f h p = h p f + f + qh p + ] fb q= On décompose l somme en deux : d un côté les indices q pirs q = r vec r p, de l utre les indices q impirs q = r + vec r p : Microsoft free Powered by Linux, TEX, Gnu-Emcs 6

7 A p, = h p p f + p f + rh p + f + r + h p + fb r= r= On remrque que, dns l première somme, chque terme f + rh p est égl à f + rh p, et de plus l deuxième somme est égle à A p, h p On donc finlement : A p, = A p, + A p, L intérêt de cette formule est de permettre le clcul de A p, en réutilisnt l vleur de A p,, donc en économisnt une prtie des clculs Plus précisément, l ppliction directe de l formule initile donnnt A p, oblige à clculer p termes de l forme f + qh p, lors que A p, ne fournit que p tels termes Le nombre de termes à clculer est donc divisé pr deux III-5 Soit t R L formule de Tylor, reste intégrl fournit pour l fonction x sin x sur l intervlle, t] : sin t = t costx dx Pr suite, on t R, ft = L ppliction, ] R R costx dx, et on remrque que cette formule reste vlble pour t = étnt clirement de clsse C sur, ] R, d près le théorème reltif à l x, t cosxt dérivtion des intégrles dépendnt d un prmètre, on en déduit que f C, ], R III-5 On clcule les sept vleurs dns l ordre suivnt : A,, A,, A,, A,, A,, A 3, et A 3, En effet, l formule du III-4 A p, = A p, + A p, permet d ccélérer les clculs On obtient insi : A, 57 ; A,, 785 ; A,, 835 ; A 3,, 847 et A, = ; A,, 94 ; A 3, 93 III-53 On obtient les vleurs suivntes : A,, A,, A,, A,, A,, A,, A 3,, A 3,, A 3,, A 3,3, De même qu u I-7, l meilleure pproximtion est à priori A 3,3 3 III-6 Si l fonction f est périodique de période b, lors il en est de même de chcune de ses dérivées successives, et donc l formule 4 s écrit : T f h = ft dt + Oh k Le procédé d extrpoltion de Richrdson ynt pour but de supprimer les termes de l forme p h p pprissnt dns le développement limité, il est donc inutile de l ppliquer ici Plus précisément, on obtiendr, pour q p : A p,q = A p, En bref, l méthode est dns ce cs un moyen ssez sophistiqué de consommer de l mémoire et du temps de clcul informtique 4 FIN Meuh!! Cette formule ser donc prticulièrement intéressnte dns un contexte informtique 3 Mple trouve l pproximtion :, Nous vons donc 6 décimles justes, ce qui n est ps ml 4 Mis dns le style, Windows NT fit beucoup mieux! Microsoft free Powered by Linux, TEX, Gnu-Emcs 7

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

ANALYSE NUMERIQUE NON-LINEAIRE

ANALYSE NUMERIQUE NON-LINEAIRE Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1 Tble des mtières Chpitre

Plus en détail

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1 Grenoble INP Pgor 1ère nnée Exercices corrigés Anlyse numérique NB : Les exercices corrigés ici sont les exercices proposés durnt les sénces de cours. Les corrections données sont des corrections plus

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

Le Calcul Intégral. niveau maturité. Daniel Farquet

Le Calcul Intégral. niveau maturité. Daniel Farquet Le Clcul Intégrl niveu mturité Dniel Frquet Eté 8 Tble des mtières Introduction Intégrle indéfinie 3. Définitions et générlités................................ 3.. Déf. d une primitive..............................

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

Licence M.A.S.S. Cours d Analyse S4

Licence M.A.S.S. Cours d Analyse S4 Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,

Plus en détail

REGLEMENT DU CLASSEMENT NATIONAL

REGLEMENT DU CLASSEMENT NATIONAL REGLEMET DU CLASSEMET ATIOAL / Les règles indiquées ici sont celles utilisées pour clculer les ttributions de points de l sison -. I. PRICIPES DE BASE Le clssement ntionl de l F.F.B. est le seul uquel

Plus en détail

Cours d Analyse IV Suites et Séries de fonctions

Cours d Analyse IV Suites et Séries de fonctions Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet pujo@mth.univ-lyon1.fr Cours d

Plus en détail

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Jen-Pierre Dedieu, Jen-Pierre Rymond ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Institut de Mthémtiques Université Pul Sbtier 31062 Toulouse cedex 09 jen-pierre.dedieu@mth.univ-toulouse.fr jen-pierre.rymond@mth.univ-toulouse.fr

Plus en détail

Séquence 8. Probabilité : lois à densité. Sommaire

Séquence 8. Probabilité : lois à densité. Sommaire Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit

Plus en détail

Les règles de Descartes et de Budan Fourier

Les règles de Descartes et de Budan Fourier Ojectifs de ce chpitre Mthémtiques ssistées pr ordinteur Chpitre 4 : Rcines des polynômes réels et complexes Michel Eisermnn Mt49, DLST LS4, Année 8-9 www-fourierujf-grenolefr/ eiserm/cours # mo Document

Plus en détail

Chapitre 1 : Fonctions analytiques - introduction

Chapitre 1 : Fonctions analytiques - introduction 2e semestre 2/ UE 4 U : Abrégé de cours Anlyse 3: fonctions nlytiques Les notes suivntes, disponibles à l dresse http://www.iecn.u-nncy.fr/ bertrm/, contiennent les définitions et les résultts principux

Plus en détail

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE 1GEN ciences et Techniques Industrielles Pge 1 sur 7 Automtique et Informtiques Appliquées Génie Énergétique Première 1 - LA VARIABLE BINAIRE L électrotechnique, l électronique et l mécnique étudient et

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

Influence du milieu d étude sur l activité (suite) Inhibition et activation

Influence du milieu d étude sur l activité (suite) Inhibition et activation Influence du milieu d étude sur l ctivité (suite) Inhibition et ctivtion Influence de l tempérture Influence du ph 1 Influence de l tempérture Si on chuffe une préprtion enzymtique, l ctivité ugmente jusqu

Plus en détail

Systèmes logiques combinatoires

Systèmes logiques combinatoires «'enseignement devrit être insi : celui qui le reçoit le recueille comme un don inestimle mis jmis comme une contrinte pénile.» Alert Einstein Systèmes logiques comintoires Définitions. es vriles inires

Plus en détail

gfaubert septembre 2010 1

gfaubert septembre 2010 1 Notes de cours Pour l e secondire Compiltion et/ou crétion Guyline Fuert Septemre 00 gfuert septemre 00 Géométrie------------------------------------------------------------------------------------------------------------------------

Plus en détail

Chapitre VI Contraintes holonomiques

Chapitre VI Contraintes holonomiques 55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce

Plus en détail

/HVV\VWqPHVFRPELQDWRLUHV

/HVV\VWqPHVFRPELQDWRLUHV /HVV\VWqPHVFRPELQDWRLUHV I. Définition On ppelle système combintoire tout système numérique dont les sorties sont exclusivement définies à prtir des vribles d entrée (Figure ). = f(x, x 2,,, x n ) x x

Plus en détail

CAP PRO E SCHEMA : LE MOTEUR

CAP PRO E SCHEMA : LE MOTEUR CAP PRO E SCHEMA : E MOTEUR folio folio folio folio folio folio folio 7 folio 8 folio 9 plque signlétique d un moteur puissnce sorée pr un moteur plque à ornes d un moteur triphsé e couplge étoile e couplge

Plus en détail

MATHEMATIQUES GENERALES partim A

MATHEMATIQUES GENERALES partim A Fculté des Sciences MATHEMATIQUES GENERALES prtim A Première nnée de bchelier en Biologie, Chimie, Géogrphie, Géologie, Physique et Informtique, Philosophie Année cdémique 04-05 Frnçoise BASTIN Introduction

Plus en détail

Intégrale et primitives

Intégrale et primitives Chpitre 5 Intégrle et primitives 5. Ojetif On herhe dns e hpitre à onstruire l opérteur réiproue de l opérteur de dérivtion. Les deux uestions suivntes sont lors nturelles. Question : Soit f une pplition

Plus en détail

Préparation à l'examen écrit de maturité Mathématiques 2013

Préparation à l'examen écrit de maturité Mathématiques 2013 Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir

Plus en détail

Microéconomie de l Incertitude M1 Banque et Marchés Financiers

Microéconomie de l Incertitude M1 Banque et Marchés Financiers Microéconomie de l Incertitude M1 Bnque et Mrchés Finnciers Emmnuel DUGUET Notes de Cours, V1 2 1 Concepts de bse 5 1.1 Les loteries................................ 6 1.2 Le critère d espérnce mthémtique..................

Plus en détail

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2 GLMA -4 GLMA - ALGÈBRE LINÉAIRE ET ANALYSE - -4 CONTRÔLE CONTINU Durée : h Tout doument ou lultrie est interdit Il ser tenu ompte de l lrté et de l préision de l rédtion Il est importnt de justifier hune

Plus en détail

SYSTEMES LOGIQUES LOGIQUE COMBINATOIRE

SYSTEMES LOGIQUES LOGIQUE COMBINATOIRE Ch.I Commnde des systèmes logiques ogique comintoire - p1 SYSTEMES OGIQUES OGIQUE COMBINATOIRE I Commnde des systèmes logiques 1. Structure des systèmes utomtisés Reprenons l structure étlie dns le cours

Plus en détail

STI2D Logique binaire SIN. L' Algèbre de BOOLE

STI2D Logique binaire SIN. L' Algèbre de BOOLE L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.

Plus en détail

3- Les taux d'intérêt

3- Les taux d'intérêt 3- Les tux d'intérêt Mishkin (2007), Monnie, Bnque et mrchés finnciers, Person Eduction, ch. 4 et 6 Vernimmen (2005), Finnce d'entreprise, Dlloz, ch. 20 à 22 1- Mesurer les tux d'intérêt comprer les différents

Plus en détail

Techniques d analyse de circuits

Techniques d analyse de circuits Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre

Plus en détail

Menu outils de navigation mennavi.htm

Menu outils de navigation mennavi.htm Pge de lncement index.htm Voici l représenttion schémtique de l structure du site Wllonie, toutes les crtes en mins... Pge d ccueil win.htm nevs générl menwin.htm À propos de l structure des données :

Plus en détail

Notes de révision : Automates et langages

Notes de révision : Automates et langages Préprtion à l grégtion de mthémtiques 2011 2012 Notes de révision : Automtes et lngges Benjmin MONMEGE et Sylvin SCHMITZ LSV, ENS Cchn & CNRS Version du 24 octore 2011 (r66m) CC Cretive Commons y-nc-s

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Choix binaires avec influences sociales : mode d emploi et conséquences économiques

Choix binaires avec influences sociales : mode d emploi et conséquences économiques Choix binires vec influences sociles : mode d emploi et conséquences économiques Denis Phn * * CREM UMR CNRS 6, Université de Rennes /3/5 Résumé : Cette note propose une synthèse de quelques trvux conscrés

Plus en détail

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels Etb=MK2, Timbre=G430, TimbreDnsAdresse=Vri, Version=W2000/Chrte7, VersionTrvil=W2000/Chrte7 Direction des Études et Synthèses Économiques Déprtement des Comptes Ntionux Division des Comptes Trimestriels

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

LANGAGES - GRAMMAIRES - AUTOMATES

LANGAGES - GRAMMAIRES - AUTOMATES LANGAGES - GRAMMAIRES - AUTOMATES Mrie-Pule Muller Version du 14 juillet 2005 Ce cours présente et met en oeuvre quelques méthodes mthémtiques pour l informtique théorique. Ces notions de bse pourront

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Partie 4 : La monnaie et l'inflation

Partie 4 : La monnaie et l'inflation Prtie 4 : L monnie et l'infltion Enseignnt A. Direr Licence 2, 1er semestre 2008-9 Université Pierre Mendès Frnce Cours de mcroéconomie suite 4.1 Introduction Nous vons vu dns l prtie introductive que

Plus en détail

Détermination des épaisseurs Formule générale

Détermination des épaisseurs Formule générale Formule générle Hors le cs des vitrges pour le bâtiment, trité pr l NF DTU 39 P4, on peut clculer à l ide des formules de Timoshenko : - l épisseur minimle à donner ux vitrges plns monolithiques soumis

Plus en détail

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1 Lngges Automtes Non-déterminisme Grmmires Attiuées et Génértives Expressions régulières Correction Prtielle de Progrmmes Ceci n'est ps un cours de Lngge C++ 2.1 Comment implnter en C un reconnisseur de

Plus en détail

Algorithmes sur les mots (séquences)

Algorithmes sur les mots (séquences) Introduction Algorithmes sur les mots (séquences) Algorithmes sur les mots (textes, séquences, chines de crctères) Nomreuses pplictions : ses de données iliogrphiques ioinformtique (séquences de iomolécules)

Plus en détail

Créer des jeux avec GLUP

Créer des jeux avec GLUP Créer des jeux vec GLUP GLUP (générteur ludopédgogique) est un service en ligne du CRDP de l cdémie de Versilles. Il permet de trnsformer des exercices à se de texte en mini-jeux téléchrgeles. Les jeux

Plus en détail

edatenq est une application qui permet aux entreprises de compléter et d'envoyer leurs déclarations statistiques par internet.

edatenq est une application qui permet aux entreprises de compléter et d'envoyer leurs déclarations statistiques par internet. Sttistique mensuelle tourisme et hôtellerie Introduction edatenq est une ppliction qui permet ux entreprises de compléter et d'envoyer leurs déclrtions sttistiques pr internet. Il s'git d'une ppliction

Plus en détail

Sommaire. 6. Tableau récapitulatif... 10. Sophos NAC intégré Vs. NAC Advanced - 17 Février 2009 2

Sommaire. 6. Tableau récapitulatif... 10. Sophos NAC intégré Vs. NAC Advanced - 17 Février 2009 2 Sommire 1. A propos de Sophos... 3 2. Comprtif des solutions Sophos NAC... 4 3. Sophos NAC pour Endpoint Security nd Control 8.0... 4 3.1. Administrtion et déploiement... 4 3.2. Gestion des politiques

Plus en détail

Devoir de physique-chimie n 4bis (2H)

Devoir de physique-chimie n 4bis (2H) TS jn 2014 Devoir de physique-chimie n 4bis (2H) Nom:...... LES EXERIES SNT INDEPENDANTS ALULATRIE AUTRISEE PHYSIQUE : ETILE BINAIRE /20 1. Le télescope 8 Les 3 prties sont indépendntes. Document 1 : L

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Baccalauréat S Nouvelle - Calédonie Mars 2009

Baccalauréat S Nouvelle - Calédonie Mars 2009 Bcclurét S Nouvelle - Clédoie Mrs 009 Exercice Commu à tous les cdidts (5 poits) r r Le pl est rpporté à u repère orthoorml direct ( O, u, v) d uité grphique cm O cosidère les poits et B d ffixes respectives

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Modification simultanée de plusieurs caractéristiques d un bien hédonique : une nouvelle méthode de calcul de la variation de bien-être des ménages

Modification simultanée de plusieurs caractéristiques d un bien hédonique : une nouvelle méthode de calcul de la variation de bien-être des ménages Modifiction simultnée de plusieurs crctéristiques d un bien hédonique : une nouvelle méthode de clcul de l vrition de bien-être des ménges Trvers Muriel * Version provisoire Résumé : De nombreuses situtions

Plus en détail

Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances

Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances Turbine hydrulique Girrd simplifiée pour fibles et très fibles puissnces Prof. Ing. Zoltàn Hosszuréty, DrSc. Professeur à l'université technique de Kosice Les sites hydruliques disposnt de fibles débits

Plus en détail

4. PROTECTION À L OUVERTURE

4. PROTECTION À L OUVERTURE 42 4. PROTECTION À L OUVERTURE 4.1. Générlités Afin de lever l miguïté de l norme NF EN 16005 sur l exigence des prgrphes 4.6.2.1 et 4.6.3.1 (4) qunt à l définition de «lrge proportion», suf nlyse de risque

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES. Bruno BELHOSTE (*)

AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES. Bruno BELHOSTE (*) Revue d histoire des mthémtiques, 2 (1996), p. 1 66. AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES Bruno BELHOSTE (*) RÉSUMÉ. Dns cet rticle,

Plus en détail

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C. 16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Guide d'utilisation Easy Interactive Tools Ver. 2

Guide d'utilisation Easy Interactive Tools Ver. 2 Guide d'utilistion Esy Interctive Tools Ver. 2 Guide d'utilistion Esy Interctive Tools Ver.2 Présenttion de Esy Interctive Tools 3 Crctéristiques Fonction de dessin Vous pouvez utiliser Esy Interctive

Plus en détail

Logiciel pour le poste de travail Agilent MassHunter

Logiciel pour le poste de travail Agilent MassHunter Logiciel pour le poste de trvil Agilent MssHunter Anlyse qulittive Guide de fmiliristion pour CPG/SM Notices Agilent Technologies, Inc. 2012 Conformément ux lois interntionles reltives à l propriété intellectuelle,

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

VN-8700PC VN-8600PC VN-8500PC

VN-8700PC VN-8600PC VN-8500PC ENREGISTREUR VOCAL NUMÉRIQUE VN-8700PC VN-8600PC VN-8500PC FR MODE D EMPLOI Merci d voir porté votre choix sur cet enregistreur vocl numérique. Lisez ce mode d emploi pour les informtions concernnt l emploi

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

LITE-FLOOR. Dalles de sol et marches d escalier. Information technique

LITE-FLOOR. Dalles de sol et marches d escalier. Information technique LITE-FLOOR Dlles de sol et mrches d esclier Informtion technique Recommndtions pour le clcul et l pose de LITE-FLOOR Générlités Cette rochure reprend les règles de se à respecter pour grntir l rélistion

Plus en détail

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot I - PRECISION DES SYSTEMES ASSERVIS A. Poton du roblème 1. Préentton On vu que le rôle d un ytème erv et de fre uvre à l orte (t) une

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique : Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de

Plus en détail

EY-BU 292 : interface Ethernet novanet, modunet292

EY-BU 292 : interface Ethernet novanet, modunet292 Fiche technique 96.015 EY-BU 292 : interfce, Votre tout en mtière d'efficcité énergétique SAUTER EY-modulo 2 intégré dns l technologie IP connue Crctéristiques Produit de l fmille de systèmes SAUTER EY-modulo

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

- Phénoméne aérospatial non identifié ( 0.V.N.I )

- Phénoméne aérospatial non identifié ( 0.V.N.I ) ENQUETE PRELIMINAIRE ANALYSE ET REFEREWCES : Phénoméne érosptil non identifié ( 0VNI ) B8E 25400 DEF/GEND/OE/DOlRENS du 28/9/1992 Nous soussigné : M D L chef J S, OPJ djoint u commndnt de l brigde en résidence

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Couche réseau. Circuits virtuels. Modèle de service de la couche réseau. Circuits virtuels : protocoles de signalisation

Couche réseau. Circuits virtuels. Modèle de service de la couche réseau. Circuits virtuels : protocoles de signalisation ouche réseu Fonctionnlités de l couche réseu Objectifs : omprendre les principes sous-jcents de l couche réseu : routge (choix du chemin) Pssge à l échelle omment fonctionne un routeur escription du routge

Plus en détail

Commencer DCP-J4110DW

Commencer DCP-J4110DW Guide d instlltion rpide Commencer DCP-J40DW Veuillez lire le Guide de sécurité du produit vnt d'instller l'ppreil. Lisez ensuite ce Guide d'instlltion rpide pour connître l procédure de configurtion et

Plus en détail

Portes coupe feu EI 2 30 pour tout type de construction

Portes coupe feu EI 2 30 pour tout type de construction L nouvelle génértion de portes coupe feu élégntes Portes coupe feu EI 30 pour tout type de construction L nouvelle génértion de portes métlliques NovoPort Premio devient l référence dns l protection incendie

Plus en détail

Toyota Assurances Toujours la meilleure solution

Toyota Assurances Toujours la meilleure solution Toyot Assurnces Toujours l meilleure solution De quelle ssurnce vez-vous besoin? Vous roulez déjà en Toyot ou vous ttendez s livrison. Votre voiture est neuve ou d occsion. Vous vlez les kilomètres ou

Plus en détail

Caisse enregistreuse électronique CE-T300 GROCERY DAIRY H.B.A. FROZEN FOOD DELICATESSEN. Mode d emploi. Eu Di U.K.

Caisse enregistreuse électronique CE-T300 GROCERY DAIRY H.B.A. FROZEN FOOD DELICATESSEN. Mode d emploi. Eu Di U.K. Cisse enregistreuse électronique CE-T300 GROCERY DAIRY H.B.A. FROZEN FOOD DELICATESSEN Eu Di U.K. Mode d emploi Introduction et tle des mtières Introduction Toutes nos félicittions pour l cht de cette

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t 3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes

Plus en détail

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états. ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

Tableau d extension de mise en sécurité pour CMSI type B modulable Réf. : 322 001 Module deux lignes de mise en sécurité Réf.

Tableau d extension de mise en sécurité pour CMSI type B modulable Réf. : 322 001 Module deux lignes de mise en sécurité Réf. Tleu d extension de mise en sécurité pour CMSI type B modulle Réf. : 00 Module deux lignes de mise en sécurité Réf. : 00 DE MISE EN MISE EN 5 7 8 8 PROGRAM. SYSTEME Fus. F, 5H50V MANUEL DE MISE EN ŒUVRE

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

ManSafe. pour les Utilitiés. La Protection antichute pour les Industries de l'energie. Français. TowerLatch LadderLatch

ManSafe. pour les Utilitiés. La Protection antichute pour les Industries de l'energie. Français. TowerLatch LadderLatch MnSfe pour les Utilitiés L Protection ntichute pour les Industries de l'energie Frnçis TowerLtch LdderLtch Les questions de protection nti-chute Les chutes de huteur sont l cuse de mortlité l plus importnte

Plus en détail

Théorie spectrale. Stéphane Maingot & David Manceau

Théorie spectrale. Stéphane Maingot & David Manceau Théorie spectrale Stéphane Maingot & David Manceau 2 Théorie spectrale 3 Table des matières Introduction 5 1 Spectre d un opérateur 7 1.1 Inversibilité d un opérateur........................... 7 1.2 Définitions

Plus en détail

Magister en : Génie Mécanique

Magister en : Génie Mécanique الجمهورية الجزاي رية الديمقراطية الشعبية République Algérienne Démocrtique et Populire وزارة التعليم العالي و البحث العلمي Ministère de l enseignement supérieur et de l recherche scientifique Université

Plus en détail