4. Puissances et racines

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "4. Puissances et racines"

Transcription

1 PUISSANCES ET RACINES 4. Puissces et rcies 4.. Puissces à exposts etiers Défiitio L puissce ième d'u ombre réel est u produit de fcteurs tous égux à : =, =, etc. O dit que est l bse de l puissce et l'expost. Cette défiitio est vlble lorsque l'expost est u etier positif o ul. O remrque vite sur u exemple l propriété suivte : = = = 5 Plus géérlemet : m = m. Si o veut que cette propriété essetielle soit coservée pour tout ombre etier, o doit se poser les questios suivtes : 0 =? et =? (vec > 0) D'près l propriété ci-dessus, o k 0 = k 0 = k 0 = De même : = = 0 = = 0 = et = pour tout réel o ul. Propriétés Pour tous les réels et b o uls et tous les etiers et m o uls, o les propriétés suivtes :. m = m. m= m. m = m 4. b = b 5. b = b 6. = m = m Ci-cotre, les grphes de x (e oir), x (e rouge), x 4 (e vert), x 5 (e violet). Didier Müller - LCP - 06 Chier Foctios d'ue vrible

2 CHAPITRE 4 Exercice 4. Nottio : b = ( b ) Ss clcultrice, simplifiez l ottio et écrivez l répose sous l forme :. 6 b c d e Exercice 4. Simplifiez l'écriture :. 8 5 b. 8 4 c. m m d. 9 8 e. ( ) f. ( ) g. ( ) 0 h. ( 0 ) i. ( 5 ) Exercice 4. Résolvez les équtios suivtes (utilisez l propriété 6) :. x =9 x b. 7 x = 5x 8 c. 9 x x =6 Exercice 4.4 Dessiez les grphes des foctios suivtes : 4.. Bses rithmétiques. (x ) b. x 4 + c. x Nous utilisos le système déciml (bse 0) ds os ctivités quotidiees. Ce système est bsé sur dix symboles, de 0 à 9, vec ue uité supérieure (dizie, cetie, etc.) à chque fois que dix uités sot comptbilisées. C'est u système positioel, c'est-à-dire que l'edroit où se trouve le symbole défiit s vleur. Aisi, le de 5 ' ps l même vleur que le de. E fit, 5 est l'brévitio de L vleur d'u ombre est doc l somme des vleurs de chque chiffres multipliés pr leurs poids respectifs. Cette règle reste toujours l même quelque soit l bse cosidérée. O peut selo ce pricipe imgier ue ifiité de systèmes umériques fodés sur des bses différetes. E iformtique, outre l bse 0, o utilise très fréquemmet le système biire (bse ) puisque l'lgèbre booléee est à l bse de l'électroique umérique. Deux symboles suffiset : 0 et. O utilise ussi le système hexdéciml (bse 6). Il fut lors six symboles supplémetires pour représeter les chiffres u-delà de 9 : A (qui représete le 0), B (), C (), D (), E (4) et F (5). Le tbleu ci-dessous motre l représettio des ombres de 0 à 5 ds les bses 0, et 6. Déciml Biire Hexdéciml A B C D E F L bse vigt (système vigésiml) été utilisée pr les Mys (voir imge ci-cotre) et les Aztèques, isi que de mière ltertive e Frce (dot o grde e l'héritge ds le mot «qutre-vigts»). L bse soixte (système sexgésiml), ds l mesure du temps et des gles, été utilisée pr les Suméries, les Akkdies, puis les Bbyloies. Chier Foctios d'ue vrible Didier Müller - LCP - 06

3 PUISSANCES ET RACINES Coversio d'ue bse vers l bse 0 Covertir u ombre ds ue bse quelcoque vers l bse 0 est fcile. Comme o l' déjà dit, l vleur d'u ombre est l somme des vleurs de chque chiffres multipliés pr leurs poids respectifs, le poids étt l bse élevée à ue puissce etière idiqut l positio. Preos quelques exemples (l'idice idique l bse de déprt) : 54 6 = = = = = = 76 0B4 6 = = = 476 Remrquez que les positios sot umérotées de droite à guche et commecet à 0. Exercice 4.5 Covertissez e déciml :. 000 b c. AF 6 d. 4 6 e. A f. D45 Coversio de l bse 0 vers ue utre bse Méthode ituitive : de guche à droite Quelle est l plus grde puissce p de l bse B que l'o puisse retrouver ds N et combie de fois y retrouve-t-o l vleur de B p? Cel doe le premier chiffre à guche, e positio p. Exemple : Covertissos 45 e bse B = est supérieur à 6 6 = 56 v ue fois ds 45 le chiffre le plus à guche est. Reste à représeter 45 6 = = 69 O répète l même questio tt que le reste est supérieur à l bse. 69 est supérieur à 6 6 v 0 fois ds 69 chiffre suivt est A Reste = 9 Le ombre qui reste est iférieur à B et est le chiffre le plus à droite, utremet dit e positio 0 si les positios sot umérotées de droite à guche. Doc : 45 0 = A9 6 Méthode systémtique : de droite à guche Commeços pr rechercher l vleur du premier chiffre à droite. Ce chiffre, les uités, est le reste de l divisio du ombre N à covertir pr l bse B. Ce chiffre e positio 0 u poids égl à l bse expost zéro = B 0 = = l'uité. E divist à ouveu le quotiet de l divisio précédete pr l bse o obtiet le chiffre de positio dot le poids est B = l bse. Des divisios répétées pr l bse doet successivemet les chiffres de poids B 0, B, B, B, B 4, etc. ce qui ous permet d'écrire le ombre de droite à guche. Exemple : Covertissos à ouveu 45 e bse : 6 = 6 reste 9 6 : 6 = reste 0 (A) : 6 = 0 reste Doc, e list l derière coloe de bs e hut : 45 0 = A9 6 Didier Müller - LCP - 06 Chier Foctios d'ue vrible

4 4 CHAPITRE 4 Exercice 4.6 Covertissez ces ombres écrits e bse 0 vers l bse demdée, e utilist les deux méthodes ci-dessus :. 45 e bse b. 45 e bse 5 c. 004 e bse 6 d. 55 e bse 6 e. 65 e bse 4 f. 80 e bse Rcies Défiitio L rcie ième d'u ombre réel positif est le ombre réel positif r dot l puissce ième est égle à : r= =r O dit que est le rdicde, l'idice et le rdicl. Cette défiitio est vlble lorsque l'idice est u etier supérieur ou égl à. Ds le cs où =, o ote u lieu de. Deux remrques Pour tout réel, o : = Si est impir, il est possible de défiir l rcie d'u ombre égtif. Cette rcie est lors églemet u réel égtif. Exemple : 8= Propriétés Pour tous les réels positifs o uls et b, tous les etiers et p et tous les etiers m, o les propriétés suivtes : 7. m = m 8. b = b 9. b= b 0. p = p. m = p mp Attetio à ces erreurs fréquetes! x y x y x y x y Pr exemple : 5 5 Pr exemple : Ci-cotre, les grphes de x (e oir), x (e rouge), 4 x (e vert), 5 x (e violet). Chier Foctios d'ue vrible Didier Müller - LCP - 06

5 PUISSANCES ET RACINES 5 Exercice 4.7 Clculez ss clcultrice :. 0 b. 65 c. 5 6 f. 6 d. 5 6 e Exercice 4.8 Clculez ss clcultrice :. 000 b c d. 5 e. 4 6 Exercice 4.9 Simplifiez ss clcultrice :. b. 4 c. 5 4 d. 0 5 e. 6 f. 8 g. (>0) Exercice 4.0 Dessiez les grphes des foctios suivtes :. x b. x c. x Exercice 4. Le rpport etre l logueur et l msse d'u flét du Pcifique peut être doé pr l formule L=0.46 M où M est l msse e kg et L l logueur e mètres. Représetez grphiquemet l logueur d'u flét e foctio de s msse (le plus grd spécime cou pèse 0 kg). Exercice 4. Écrivez différemmet, e utilist l propriété 9. Pr exemple : = 4 =.. 4 b. 4 c. 00 d. 5 e. 47 f. 54 g. 80 h i Exercice 4. Clculez ss clcultrice :. b. 4 c. d Puissces à exposts rtioels Soiet m et des etiers,. Scht que tout ombre rtioel peut être écrit m, o éted l otio de puissce à des exposts rtioels e post : E effet : Et doc : termes m = m pour tout ombre réel positif. = = = m = m = m = m = = E restreigt les bses et b à des réels positifs o uls, les propriétés à 6 sot vlbles pour les puissces à exposts rtioels. Didier Müller - LCP - 06 Chier Foctios d'ue vrible

6 6 CHAPITRE 4 Exercice 4.4 Résolvez x x x x x x=x. Exercice 4.5 Écrivez à l'ide de rdicux : b. c. 6 d. 4 e. 7 f. 5 6 Exercice 4.6 Écrivez à l'ide d'exposts rtioels :. b. 5 6 c. 4 8 d. e. 5 6 f. Exercice 4.7 L'ire de l surfce S d'u corps humi (e m ) peut être doée pproximtivemet pr S = m 0.45 h 0.75 où l tille h est doée e cm et l msse m e kg.. Clculez S pour ue persoe de.8 m pest 79 kg. b. Quel est l'effet sur S d'ue ugmettio de l msse de 0%? 4.5. Ce qu'il fut bsolumet svoir Mîtriser les opértios vec les puissces Recoître les grphes des puissces Avoir compris les bses rithmétiques Svoir psse d'ue bse à ue utre Mîtriser les opértios vec les rcies Recoître les grphes des rcies Psser de l représettio vec des rdicux à celle vec des puissces rtioelles et vice vers Chier Foctios d'ue vrible Didier Müller - LCP - 06

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

1. Limites. Les limites dans la vie courante. Vitesse instantanée. Pente d'une courbe en un point LIMITES

1. Limites. Les limites dans la vie courante. Vitesse instantanée. Pente d'une courbe en un point LIMITES LIMITES. Limites.. Les ites ds l vie courte Vitesse isttée L otio de vitesse, et e prticulier l vitesse d'u objet à u istt précis, est, étommet, subtile et difficile à défiir précisémet. Cosidérez cette

Plus en détail

Les puissances à exposants négatifs

Les puissances à exposants négatifs CHAPITRE Les puissces à exposts égtifs. Itroductio : les puissces de Nous coissos bie l ottio où est u etier positif : E géérl : ( ) 0 8 6 N... fcteurs Rerquos qu'il y ue reltio évidete etre deux puissces

Plus en détail

2 Exercice 15 : les intégrales de Wallis

2 Exercice 15 : les intégrales de Wallis Exercice sur les itégrles Exercice 5 : les itégrles de Wllis O pose si xdx ) Clculer I et I ) Motrer que l suite ( ) coverge 3) Etblir ue formule de récurrece etre et 4) Motrer que le produit ( + ) + est

Plus en détail

Cours (Terminale S) Limite d une fonction

Cours (Terminale S) Limite d une fonction Cours (Termile S) Limite d ue octio Limite d ue octio e + ou Foctio déiie u voisige de + (resp ) Soit ue octio d esemble de déiitio D O dir que «l octio est déiie u voisige de + (resp )» s il eiste u réel

Plus en détail

Fiche 2 : les fonctions

Fiche 2 : les fonctions Nº : 300 Fice : les foctios Pl de l fice I - Limites, comportemet symptotique II - Dérivtio III - Cotiuité I - Limites, comportemet symptotique Défiitios Ue foctio f pour ite e lorsque : l foctio f est

Plus en détail

1 Convergence simple et convergence uniforme

1 Convergence simple et convergence uniforme Mster Métiers de l Eseigemet, Mthémtiques - ULCO, L Mi-Voi, 0/03 ANALYSE Fiche de Mthémtiques 5 - Suites et séries de foctios Soiet E et F deu espces métriques quelcoques et (f ) ue suite d pplictios de

Plus en détail

5. Puissances et racines

5. Puissances et racines - - Puissces et rcies. Puissces et rcies. Puissces d expost positif Il rrive souvet qu o multiplie u etier plusieurs fois ps lui-même. Pr exemple : est le produit de fcteurs égux à. L ottio «puissce» permet

Plus en détail

PRENDRE UN BON DÉPART EN SECONDE LES RÈGLES DE PRIORITÉ

PRENDRE UN BON DÉPART EN SECONDE LES RÈGLES DE PRIORITÉ LES RÈGLES DE PRIORITÉ Règle 1 Ds ue suite de clculs, il fut effectuer d bord les clculs etre prethèses. Exemple 1 + (1-4) 1-9 Règle Si, ds ue suite de clculs figuret plusieurs prethèses imbriquées, il

Plus en détail

Centrale PSI 1 un corrigé

Centrale PSI 1 un corrigé Cetrle PSI u corrigé L foctio Γ. I.A. f : t t e t est cotiue sur R + ; les seuls problèmes d itégrbilité sot u voisiges de et de +. - Au voisige de, f (t) t est itégrble si et seulemet si < (foctios de

Plus en détail

Chapitre 7: Calculs approchés d intégrale

Chapitre 7: Calculs approchés d intégrale Lycée Mssé Chpitre 7: Clculs pprochés d itégrle 1 Itroductio Les foctios usuelles qu o mipule possèdet souvet des primitives que l o peut exprimer à l ide des foctios usuelles. Cepedt, ce est ps le cs

Plus en détail

Chapitre 1 Calculs algébriques dans... 3. Chapitre 2 Logique... 27. Chapitre 3 Fonctions numériques... 41. Chapitre 4 Calcul intégral...

Chapitre 1 Calculs algébriques dans... 3. Chapitre 2 Logique... 27. Chapitre 3 Fonctions numériques... 41. Chapitre 4 Calcul intégral... Avt-propos Cet ouvrge est coçu pour permettre u étudits des clsses préprtoires ECE d order leur première ée ds les meilleures coditios e fcilitt l trsitio vec l eseigemet secodire Aisi, l ojectif est i

Plus en détail

32 Systèmes de numération ÉVOLUTION DU SYSTÈME DÉCIMAL

32 Systèmes de numération ÉVOLUTION DU SYSTÈME DÉCIMAL 32 Systèes de uértio ÉVOLUTION DU SYSTÈME DÉCIMAL QUELQUES NOTES HISTORIQUES Le systèe positioel que ous utilisos viet de l Ide, is d utres civilistios ot développé des systèes positioels et ot utilisé

Plus en détail

MATHÉMATIQUES. 3 ème. v.2.5 programme 2008 édition 2015

MATHÉMATIQUES. 3 ème. v.2.5 programme 2008 édition 2015 MATHÉMATIQUES 3 ème 1 er trimestre v..5 progrmme 008 éditio 015 Cours Pi Etblissemet privé hors cotrt d eseigemet à distce SARL u cpitl de 17 531,86 euros - RCS PARIS B 391 71 1 - APE 8559B siège socil

Plus en détail

Baccalauréat S Nouvelle - Calédonie Mars 2009

Baccalauréat S Nouvelle - Calédonie Mars 2009 Bcclurét S Nouvelle - Clédoie Mrs 009 Exercice Commu à tous les cdidts (5 poits) r r Le pl est rpporté à u repère orthoorml direct ( O, u, v) d uité grphique cm O cosidère les poits et B d ffixes respectives

Plus en détail

Augmentation de capital - Comptabilisation

Augmentation de capital - Comptabilisation Ctluppi & Hug AG Softwre d Augmettio de cpitl - Comptbilistio Descriptio Ue ugmettio de cpitl est ue ugmettio du cpitl ctio d'ue société oyme pr émissio de ouvelles ctios. Il existe différetes formes d'ugmettio

Plus en détail

Temps moyen de lecture par page (exercice compris) : 10 minutes

Temps moyen de lecture par page (exercice compris) : 10 minutes MOTS BINAIRES Mots biaires de logueur 2 Rappel : le logarithme e base b 3 Le choix de la logueur des mots biaires 4 Calculs avec les mots de logueur 5 Le poids d u mot biaire de logueur 6 La distace de

Plus en détail

Dérivées des fonctions de référence Du nombre dérivé à la fonction dérivée. 1 ère S. f a h f a k k h h. Objectifs : f a h f a lim 0

Dérivées des fonctions de référence Du nombre dérivé à la fonction dérivée. 1 ère S. f a h f a k k h h. Objectifs : f a h f a lim 0 ère S Objectifs : Dérivées des foctios de référece Du ombre dérivé à l foctio dérivée Poursuivre l objet d étude des deu cpitres précédets : l tgete à ue courbe Psser de l otio de ombre dérivé à l otio

Plus en détail

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006 Mjortions de l erreur dns les clculs clssiques de vleurs pprochées d intégrle Notes pour l préprtion u CAPES - Strsbourg- février 00 On trouve dns différents ouvrges élémentires des démonstrtions à coup

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

MECANIQUE QUANTIQUE Chapitre 6 : Oscillateur Harmonique Quantique

MECANIQUE QUANTIQUE Chapitre 6 : Oscillateur Harmonique Quantique MECANIQUE QUANTIQUE Cpitre 6 : Oscillteur Hroique Qutique Pr. M. ABD-LEFDIL Uiversité Moed V- Agdl Fculté des Scieces Déprteet de Pysique Aée uiversitire 6-7 Filières SM-SMI Itroductio L'oscillteur roique

Plus en détail

1.2 Signe de l exposant. (à ne pas confondre avec signe d une puissance!!) = a = a

1.2 Signe de l exposant. (à ne pas confondre avec signe d une puissance!!) = a = a CLASSE DE EME LES PUISSANCES.. Puissce d'u obre o ul.. Défiitio. Soit u obre reltif o ul et u etier Ds ce cs :... fcteurs Se souveir que : 0 ; Et que 0 0 ' ps de ses. Bie sûr : 0 'existe ps!. Sige de l

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

Déroulement de l épreuve de mathématiques

Déroulement de l épreuve de mathématiques Dérouleet de l épreuve de thétiques MATHÉMATIQUES Extrit de l ote de service 2012-029 du 24 février 2012 (BOEN 13 du 29-3-2012) Durée de l épreuve : 2 heures Nture de l épreuve : écrite pr le socle cou

Plus en détail

Exo7. Trigonométrie. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur

Exo7. Trigonométrie. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur Exo7 Trigoométrie Exercices de Je-Louis Rouget Retrouver ussi cette fiche sur wwwmths-frcefr * très fcile ** fcile *** difficulté moyee **** difficile ***** très difficile I : Icotourble T : pour trviller

Plus en détail

Dans ce cas de figure, on voit que f(x) prend des valeurs très proche de l quand x devient très grand.

Dans ce cas de figure, on voit que f(x) prend des valeurs très proche de l quand x devient très grand. Chpitre IV : Limites de foctios I. Limite d ue foctio et symptotes. Limite fiie e l ifii Eemple : C f est l courbe représettive de l foctio f. Ds ce cs de figure, o voit que f() pred des vleurs très proche

Plus en détail

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C. 16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

LES PUISSANCES. a n désigne le produit de n facteurs, tous égaux à a. a n = a a a. a a apparaît n fois Il y a donc n 1 multiplications

LES PUISSANCES. a n désigne le produit de n facteurs, tous égaux à a. a n = a a a. a a apparaît n fois Il y a donc n 1 multiplications LES PUISSANCES I) Défiitios : ) Défiitio : Soit u omre reltif Soit u omre etier positif o ul désige le produit de fcteurs, tous égux à.. pprît fois Il y doc multiplictios est ue puissce du omre et se lit

Plus en détail

LES PUISSANCES. a n désigne le produit de n facteurs, tous égaux à a. a n = a a a. a a apparaît n fois Il y a donc n 1 multiplications

LES PUISSANCES. a n désigne le produit de n facteurs, tous égaux à a. a n = a a a. a a apparaît n fois Il y a donc n 1 multiplications LES PUISSANCES I) Défiitios : ) Défiitio : Soit u omre reltif Soit u omre etier positif o ul désige le produit de fcteurs, tous égux à.. pprît fois Il y doc multiplictios est ue puissce du omre et se lit

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

Lois de probabilité à densité

Lois de probabilité à densité Lois de probbilité à densité Christophe ROSSIGNOL Année scolire 0/03 Tble des mtières Loi à densité sur un intervlle I. Deux exemples pour comprendre..................................... Densité de probbilité...........................................3

Plus en détail

Terminale S (2014-2015) Suites numériques

Terminale S (2014-2015) Suites numériques Termiale S (04-05) Suites umériques Raisoemet par récurrece. Itroductio E Mathématiques, u certai ombre de propriétés dépedet d u etier aturel. Par exemple, la ( + ) somme des etiers aturels de à est égale

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Mathématiques. On représente souvent la correspondance entre les deux suites par un tableau. Exemple : 5 12,

Mathématiques. On représente souvent la correspondance entre les deux suites par un tableau. Exemple : 5 12, PROPORTIONNALITE I. Suite de ombres proportioelles 1. Défiitio Deu suites de ombres réels (t le même ombre de termes) sot proportioelles si o peut psser de chque terme de l première suite u terme correspodt

Plus en détail

Automates 1 Présentation

Automates 1 Présentation Automates Présetatio Présetatio d u automate 2 Ue maière de désiger l automate de l exemple 3 Défiitio géérale 4 U exemple d automate 5 Mot costruit sur l alphabet C 6 L esemble de tous les mots das u

Plus en détail

Exercices d oraux de la banque CCP 2014-2015 - Corrigés BANQUE ALGÈBRE

Exercices d oraux de la banque CCP 2014-2015 - Corrigés BANQUE ALGÈBRE Exercices d orux de l bque CCP 4-5 - Corrigés BANQUE ALGÈBRE EXERCICE 59 extbf Si P, degfp degp P degp et e prticulier, fp Pr cotrpositio, P E, [fp P ] Doc le oyu de l edomorphisme f est {} Pr suite f

Plus en détail

[ Aire ] représente l aire algébrique comprise entre la courbe et l axe des temps sur un intervalle d une période. T : période en secondes (s)

[ Aire ] représente l aire algébrique comprise entre la courbe et l axe des temps sur un intervalle d une période. T : période en secondes (s) AIDE-MEMOIRE REGIME PERIODIQE Grdeur périodique : e grdeur périodique es ue grdeur qui se répèe ideiqueme à elle même e régulièreme ds le emps. Période : durée cose oée, exprimée e secode (s) qui sépre

Plus en détail

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de "Processus Stochastiques"

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de Processus Stochastiques Master ère aée spécialité IMIS et Mathématiques Cotrôle cotiu de "Processus Stochastiques" 8 octobre 00 - Durée h Calculatrices et documets autorisés Exercice Jacques va tous les jours à so travail e emprutat

Plus en détail

Intégrale de Riemann

Intégrale de Riemann IUT Orsy Mesures Pysiques Itégrle de Riem Berrd RIEMANN 86-866 (Allemge) Cours du er semestre No stisfit de l téorie de l itégrtio de Cucy ortt sur les foctios cotiues qui lui rît isuffiste our miuler

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

Puissances d un nombre relatif

Puissances d un nombre relatif Clsse de ème Chitre 5 I Puissces de Puissces d u ombre reltif I Puissce de d exost etier ositif O sit que Défiitio : ² = = 0 deux zéros 2 fcteurs = = 00 trois zéros fcteurs = = 000 qutre zéros fcteurs

Plus en détail

Séries de Fourier - Calculs fondamentaux

Séries de Fourier - Calculs fondamentaux Séries de Fourier - Clculs fodmetux I - Série de Fourier ssociée à ue foctio f L série de Fourier ssociée à ue foctio f, périodique de période T, s écrit : S(t) + + cos(ωt) + b si(ωt) où l pulstio ω est

Plus en détail

Calcul intégral. 1 Aire sous une courbe 2

Calcul intégral. 1 Aire sous une courbe 2 Clcul itégrl Tble des mtières Aire sous ue courbe 2 2 Défiitios 3 2. Foctio cotiue et positive sur u itervlle.............................. 3 2.2 Foctio cotiue de sige quelcoque..................................

Plus en détail

8. Applications des intégrales définies

8. Applications des intégrales définies APPLICATIONS DES INTÉGRALES DÉFINIES 57 8. Applictios des itégrles défiies 8.1. Aire etre deux coures Prolème Soiet f et g deux foctios cotiues ds l'itervlle [, ] telles que f(x) g(x), pour x. Clculer

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

Théorie de langages, TD3

Théorie de langages, TD3 Théorie de lngges, TD3 Octoer 6, 25 Automtes finis. Definitions Un utomte fini déterministe (DFA deterministic finite utomton) est une mchine de clcul A qui peut être définie pr les cinq éléments suivnts.

Plus en détail

Equations d'état, travail et chaleur

Equations d'état, travail et chaleur Equtions d'étt, trvil et chleur Exercice On donne R 8, SI. ) Quelle est l'éqution d'étt de n moles d'un gz prfit dns l'étt,,? En déduire l'unité de R. ) Clculer numériquement l vleur du volume molire d'un

Plus en détail

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie Exo7 Zéros des fonctions Vidéo prtie 1. L dichotomie Vidéo prtie. L méthode de l sécnte Vidéo prtie 3. L méthode de Newton Dns ce chpitre nous llons ppliquer toutes les notions précédentes sur les suites

Plus en détail

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b Les intégrles Introduction Etnt donnée une fonction positive f définie sur un intervlle borné [, b], on veut évluer l ire comprise entre l e des bscisses, l courbe représentnt f et les verticles = et =

Plus en détail

Intégration sur un intervalle compact de IR

Intégration sur un intervalle compact de IR PREMIERE PARTIE Itégrtio sur u itervlle compct de IR CHAPITRE I PSEUDO-MESURES, MESURES, FONCTIONNELLES SOMMABLES SUR [,b] Comme océ ds l itroductio, ce premier chpitre pour objectif de fourir le plus

Plus en détail

Recherche des paramètres de préréglage en injection. 1 COURS SUR LA RECHERCHE DES PARAMETRES POUR LE CHOIX ET LE PREREGLAGE DES PRESSES A INJECTER

Recherche des paramètres de préréglage en injection. 1 COURS SUR LA RECHERCHE DES PARAMETRES POUR LE CHOIX ET LE PREREGLAGE DES PRESSES A INJECTER Recherche des prmètres de préréglge en injection. 1 COURS SUR LA RECHERCHE DES PARAMETRES POUR LE CHOIX ET LE PREREGLAGE DES PRESSES A INJECTER Appliction et utilistion des préréglges : Les données de

Plus en détail

Théorème de convergence dominée

Théorème de convergence dominée [http://mp.cpgedupuydelome.fr] édité le juillet 4 Eocés Théorème de covergece domiée Eercice [ 9 ] [correctio] Clculer les ites des suites dot les termes gééru sot les suivts : ) u = π/4 t b) v = + e Eercice

Plus en détail

INTENTION LES PROCESSUS MATHÉMATIQUES

INTENTION LES PROCESSUS MATHÉMATIQUES INTENTION Adpttios u Cdre commu des progrmmes d études de mthémtiques M-9 telles que reflétées ds le documet Mthémtiques M-9 : Progrmme d études de l Albert (2007) Le coteu du documet Mthémtiques M-9 :

Plus en détail

(surface d'un cercle : S = pd2 4 )

(surface d'un cercle : S = pd2 4 ) Les cordes sont de dimètres vribles. Si on les remplce pr deux cordes de même dimètre, le dimètre moyen, le résultt devrit être le même. Ici le résultt, c est sns doute l résistnce qui est proportionnelle

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Chapitre 1 METHODES DE CALCUL NUMERIQUE

Chapitre 1 METHODES DE CALCUL NUMERIQUE Chpitre METHODES DE CALCUL NUMERIQUE Le clcul umérique, c'est vrimet le b..-b des mthémtiques et c'est pourquoi o vous e fit fire ps ml u collège. Comme il y eu les vcces, e ous leurros ps, il y u risque

Plus en détail

Outils de calcul pour la 3 ème

Outils de calcul pour la 3 ème Chpitre I Outils de clcul pour l Ce que nous connissons déjà :! Opértions sur les décimux, les reltifs et les quotients. Puissnces de dix. Nottions scientifiques. Clcul littérl simple. Objectifs de ce

Plus en détail

Intégration et primitives

Intégration et primitives DERNIÈRE IMPRESSIN LE 8 mrs 24 à 4:2 Itégrtio et primitives Tle des mtières Notio d itégrle 2. Défiitio................................. 2.2 Exemple de clcul d itégrle : l qudrture de l prole.... 3.3 Itégrle

Plus en détail

EXPOSE 73 : FORMULES DE TAYLOR. APPLICATIONS. Pré-requis : Intégrale, intégration par parties Théorème de Rolle Règle de L Hôpital.

EXPOSE 73 : FORMULES DE TAYLOR. APPLICATIONS. Pré-requis : Intégrale, intégration par parties Théorème de Rolle Règle de L Hôpital. ETIENNE Sylvi PLC, groupe EXPOSE 73 : FORMULES DE TAYLOR APPLICATIONS Niveu : Complémetire Pré-requis : Itégrle, itégrtio pr prties Théorème de Rolle Règle de L Hôpitl I INTRODUCTION Ett doé u polyôme

Plus en détail

Fonctions affines ; Equations et inéquations

Fonctions affines ; Equations et inéquations Fonctions ffines ; Equtions et inéqutions I. Fonctions ffines.. Définition Définition d une fonction ffine : on ppelle fonction ffine toute fonction définie sur pr f ( ) où et sont des réels tels que.

Plus en détail

Terminale S. Terminale S 1 F. Laroche

Terminale S. Terminale S 1 F. Laroche Termiale S exercices 1 Exercices de base 1 1 Divisio Euclidiee - 1 (c) 1 Divisio Euclidiee- 1 3 Divisio Euclidiee-3 (c) 1 4 Multiples - 1 1 5 PGCD - 1 (c) 3 1 6 PPCM et PGCD - 1 7 PPCM et PGCD - 3 3 3

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

Optimisation non linéaire

Optimisation non linéaire 8-1-003 Optimistio o liéire Nio Silerio Support e cours proisoire pour l uité e leur Mthémtiques et sttistiques estié ux clsses u BTS Comptbilité-Gestio e l ECG. Itrouctio Au lycée, ue gre prtie u cours

Plus en détail

Calcul d aire et intégrale

Calcul d aire et intégrale Clcul d ire et itégrle Tle des mtières I Activité d itroductio 1 II Défiitio de l itégrle 2 1 Itégrle d ue foctio cotiue et positive................................ 2 2 Itégrle d ue foctio cotiue et égtive...............................

Plus en détail

1. Justifier que l intégrale I est l aire d une partie du plan que l on hachurera sur le graphique donné en annexe (à rendre avec la copie).

1. Justifier que l intégrale I est l aire d une partie du plan que l on hachurera sur le graphique donné en annexe (à rendre avec la copie). Atilles-ue septembre 0 EXERCICE poits Commu à tous les cdidts O cosidère l foctio f défiie ] 0 ; + [ pr : f () = l Prtie A : Étude d ue foctio Détermier l limite de l foctio f e + b Détermier l limite

Plus en détail

Calcul littéral. Exemple : Déterminer l expression mathématique permettant de calculer: - le rayon du cylindre et la hauteur d un cylindre.

Calcul littéral. Exemple : Déterminer l expression mathématique permettant de calculer: - le rayon du cylindre et la hauteur d un cylindre. Clcul littérl I L essetiel : - Formule : Ue formule trduit ue reltio etre lusieurs grdeurs, c est ue exressio qui cotiet des lettres et les idictios des oértios ortt sur les lettres : o dit que c est ue

Plus en détail

Exemple 89. Définition 51. point d inflexion de Exemple Tracé du graphe d une fonction

Exemple 89. Définition 51. point d inflexion de Exemple Tracé du graphe d une fonction 59 Eemple 89. L foctio f : 2 est deu fois dérivle sur R, et pour dérivée et dérivée secode sur R : f ) = 2 et f ) = 2 Puisque s dérivée secode est positive sur R, l foctio f est covee sur R. E u poit 0

Plus en détail

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse Séquece Les suites umériques Sommaire Pré-requis Le raisoemet par récurrece 3 Notios de limites 4 Sythèse Das cette séquece, il s agit d ue part d approfodir la otio de suites umériques permettat la modélisatio

Plus en détail

Exo7. Intégrale de Riemann. 1 Rappel. 2 Propriétés de l intégrale de Riemann. 3 Quelles sont les fonctions Riemann-intégrables?

Exo7. Intégrale de Riemann. 1 Rappel. 2 Propriétés de l intégrale de Riemann. 3 Quelles sont les fonctions Riemann-intégrables? Exercices : Brbr Tumpch Relecture : Frçois Lescure Exo7 Itégrle de Riem Rppel Soiet ue octio borée et = { = < < < = b} ue subdivisio de [,b]. O ote : m k = i{ (x), x ] k, k [} et M k = sup{ (x), x ] k,

Plus en détail

COMPARAISON DE PROPORTIONS. Éric Taillard, Ph. Wälti, J. Zuber EIVD. Haute École spécialisée de Suisse occidentale, Yverdon-les-Bains, Suisse

COMPARAISON DE PROPORTIONS. Éric Taillard, Ph. Wälti, J. Zuber EIVD. Haute École spécialisée de Suisse occidentale, Yverdon-les-Bains, Suisse UN NOUVEAU TEST STATISTIQUE POUR LA COMPARAISON DE PROPORTIONS Éric Tillrd, Ph. Wälti, J. Zuber EIVD Hute École spécilisée de Suisse occidetle, Yverdo-les-Bis, Suisse FRANCORO04, Fribourg, Suisse, 8.2004

Plus en détail

FAQ sur l utilisation d Ecoline-solo

FAQ sur l utilisation d Ecoline-solo FAQ sur l utilistion d Ecoline-solo De quel mtériel i-je esoin pour compléter les informtions demndées dns Ecoline-solo? Pour remplir rpidement toutes les informtions demndées dns Ecoline-solo, vous devez,

Plus en détail

La puissance nième d une matrice 2X2

La puissance nième d une matrice 2X2 L puissce ième d ue mtrice X L puissce ième d ue mtrice (détils)... Le théorème de CLEY-HMILTON (pour les mtrices x)... lgorithme de clcul de l puissce ième...6 Suite umérique ssociée à l puissce ième...7

Plus en détail

Limite et continuité d une fonction

Limite et continuité d une fonction Limite et cotiuité d ue octio 1 Limites iies Soit ue octio et D so domie de déiitio. Déiitio 1 : O dit que le ombre réel est u poit dhéret de D si >, D et tel que - < ( - < < + ). Le ombre est dit isolé

Plus en détail

Chapitre 3: Réfraction de la lumière

Chapitre 3: Réfraction de la lumière 2 e B et C 3 Réfractio de la lumière 16 Chapitre 3: Réfractio de la lumière 1. Expériece 1 : tour de magie avec ue pièce de moaie a) Dispositio Autour d'ue petite boîte coteat ue pièce de 1 de ombreux

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Dénombrement. Le nombre de p-listes d éléments distincts d un ensemble à n éléments est Le nombre d injections de E p dans F n : (n p) :

Dénombrement. Le nombre de p-listes d éléments distincts d un ensemble à n éléments est Le nombre d injections de E p dans F n : (n p) : Filière E Deis Pasquigo Résumé du cours : 1. Esembles fiis Déombremet Défiitios E et F sot équiotets si il existe ue bijectio de E sur F. E est déombrable si E est équiotet à N. E est u esemble fii si

Plus en détail

Calcul approché des intégrales définies

Calcul approché des intégrales définies Clcul pproché des itégrles défiies Pour ce chpitre, I = [, b] est u segmet réel vec < b, C I est l espce vectoriel réel des foctios défiies sur I à vleurs réelles et cotiues et pour toute foctio f C I,

Plus en détail

LES SUITES. u n = 1 n, pour n 1. u n = n 3

LES SUITES. u n = 1 n, pour n 1. u n = n 3 LES SUITES. Défiitio.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique et u désige l'image de l'etier (appelé

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

Calculs d intégrales

Calculs d intégrales Bibliothèque d eercices Éocés L Feuille 5 Clculs d itégrles Utilistio de l défiitio Eercice Soit f l foctio défiie sur [, 3] pr si = si < < f() = 3 si = si < 4 si < 3 Clculer 3 f(t)dt Soit [, 3], clculer

Plus en détail

CORRIGE DE L'EXAMEN DU 4 DECEMBRE 2002

CORRIGE DE L'EXAMEN DU 4 DECEMBRE 2002 CORRIGE DE L'EXAMEN DU 4 DECEMBRE EXERCICE. Notos X la variable aléatoire décrivat l'idetificatio des pièces défectueuses. Le ombre de valeurs possibles de X correspod au ombre de cofiguratios possibles

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

Informatique TP2 : Calcul numérique d une intégrale CPP 1A

Informatique TP2 : Calcul numérique d une intégrale CPP 1A Iformatique TP : Calcul umérique d ue itégrale CPP 1A Romai Casati, Wafa Johal, Frederic Deveray, Matthieu Moy Avril - jui 014 1 Zéro de foctio O doe le code suivat (vu e cours), qui permet de calculer

Plus en détail

Intégration. Calcul d intégrales. Calcul de primitives. [http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

Intégration. Calcul d intégrales. Calcul de primitives. [http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [hp://mp.cpgedupuydelome.r] édié le juille 4 Eocés Iégrio Clcul d iégrles Clcul de primiives Eercice [ 96 ] [correcio] Déermier les primiives suives : e b l c l Eercice [ 79 ] [correcio] Déermier les primiives

Plus en détail

Théorie des Langages Épisode 2 Automates finis

Théorie des Langages Épisode 2 Automates finis AFD AFN Opértions Lemme de pompge 1/ 36 Théorie des Lngges Épisode 2 Automtes finis Thoms Pietrzk Université Pul Verline Metz AFD AFN Opértions Lemme de pompge Reconnisseur Définition Configurtion Accepttion

Plus en détail

Chapitre 18 : Intégration

Chapitre 18 : Intégration PCSI 2 Préprtio des Khôlles 23-24 Chpitre 8 : Itégrtio Eercice type Soit f :[,] R cotiue d itégrle ulle sur[,]. O pose m= if f et M =sup f (justifier l eistece de m et [,] [,] M). Que dire de l foctio

Plus en détail

Université Joseph Fourier, Grenoble. Séries numériques. Luc Rozoy, Bernard Ycart

Université Joseph Fourier, Grenoble. Séries numériques. Luc Rozoy, Bernard Ycart Uiversité Joseph Fourier, Greoble Maths e Lige Séries umériques Luc Rozoy, Berard Ycart Disos-le tout et, ce chapitre est pas idispesable : d ailleurs, vous e verrez pas vraimet la différece avec les suites.

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Transformations géodésiques en France Métropolitaine

Transformations géodésiques en France Métropolitaine Trnsformtions géodésiques en Frnce Métropolitine 1 Processus de chngement de système... 1.1 Définitions... 1. Similitude 3D à 7 prmètres... 1.3 Modèle «à 7 prmètres»... 3 1.4 Coordonnées géogrphiques (,,h)

Plus en détail

Résumé sur les Intégrales Impropres & exercices supplémentaires

Résumé sur les Intégrales Impropres & exercices supplémentaires L-MATH II-(25-26). Résumé sur les Intégrles Impropres & eercices supplémentires Une fonction définie sur un intervlle I est dite loclement intégrble sur I si f est Riemnnintégrble sur tout intervlle [,

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

Intégration et calcul de primitives

Intégration et calcul de primitives École polytechique Itégrtio et clcul de primitives Tble des mtières Les foctios usuelles. Foctios primitives et foctios réciproques................... Les foctios logrithme et epoetielle......................3

Plus en détail

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations UPMC 1M001 Aalyse et algèbre pour les scieces 013-014 Feuille : dérivabilité, théorème de Rolle et des accroissemets fiis, étude des variatios Les eercices sas ( ) sot des applicatios directes du cours.

Plus en détail

Calculs financiers. Auteur : Philippe GILLET

Calculs financiers. Auteur : Philippe GILLET Clculs fcers Auteur : Phlppe GILLET Le tux d térêt Pour l empruteur qu e dspose ps des fods écessres, l représete le prx à pyer pour ue cosommto mmédte. Pour le prêteur, l représete le prx ecssé pour l

Plus en détail

Multiplication des nombres relatifs

Multiplication des nombres relatifs Multilictio des omres reltifs 1 Commet itroduire le roduit de omres reltifs e clsse de qutrième? L écriture ss rethèse et ss sige d u omre déciml ositif ermet d itroduire le roduit de deux omres ositifs,

Plus en détail

Suites géométriques suite géométrique suite géométrique de raison q

Suites géométriques suite géométrique suite géométrique de raison q Sites géométriqes Itrodctio : M. Fiace dispose d e somme de 5 FF et désire faire frctifier so pactole ; por cela il va voir so baqier qi li propose de optios : e agmetatios forfaitaire, aelle, de 5 F =

Plus en détail