Dérivation. 1 Dérivées des fonctions usuelles : 2 Etude forme par forme des opérations sur les fonctions dérivables :

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Dérivation. 1 Dérivées des fonctions usuelles : 2 Etude forme par forme des opérations sur les fonctions dérivables :"

Transcription

1 Dérivation Dérivées des onctions usuelles : Pour savoir dériver, il aut d abord connaître les dérivées des onctions de base que vous pouvez retrouver dans le tableau cidessous. Fonction Fonction dérivée pour tout de Eemples a 0 R 3 0 a + b a R n (n N) n n R R n (n N) n n+ R ]0; + [ sin cos R cos sin R 2 Etude orme par orme des opérations sur les onctions dérivables : Nous allons voir maintenant comment dériver une somme, un produit, un quotient... Il est indispensable de bien comprendre comment onctionne les ormules suivantes pour savoir dériver. Pour inir, nous verrons comment dériver les onctions les plus diverses en repérant les ormules à utiliser. Vous pourrez ensuite, avec les tests de ce chapitre, apprendre progressivement à utiliser ces ormules orme par orme (le meilleur moyen d apprendre à dériver est de passer à la pratique). Avertissement : Nous utiliserons par souci de simpliication le traditionnel et areu abus de langage qui consiste par eemple à dire que la dérivée de 2 est égale à 2 (alors que nous devrions dire en ait que la dérivée de la onction qui à associe 2 est la Dérivation c P.Brachet -

2 onction qui à associe 2). Il ne aut jamais oublier que l on ne doit pas conondre une onction avec () (l image de par qui est un réel) et que la dérivée est elle-même une onction qui à tout associe () (le nombre dérivé de en, qui est un réel). Toujours par souci de simpliication, nous ne nous préciserons pas dans les eemples les intervalles où les onctions sont dérivables ain de nous concentrer sur l utilisation des ormules. 2- Forme + g Propriété Si et g sont deu onctions dérivables sur un intervalle I alors la onction + g est aussi dérivable sur I et ( + g) = + g. ) La dérivée de la onction déinie par 2 + est déinie par : 2 + dérivée de 2 dérivée de 2) La dérivée de la onction déinie par est déinie par : dérivée de 3 dérivée de 4 3) La dérivée de la onction déinie par + est déinie par : dérivée de dérivée de 2-2 Forme k (k réel) Propriété 2 Si est une onction dérivable sur un intervalle I et si k est un réel alors la onction k est aussi dérivable sur I et (k ) = k. ) La dérivée de la onction déinie par 3 2 est déinie par : 3 2 = 6 dérivée de 2 2) La dérivée de la onction déinie par 5 3 est déinie par : dérivée de 3 = 5 2 3) La dérivée de la onction déinie par 2 = 2 est déinie par : 2 2 = 2 2 dérivée de 2-3 Forme g Propriété 3 Si et g sont deu onctions dérivables sur un intervalle I alors la onction g est aussi dérivable sur I et ( g) = g + g. ) La dérivée de la onction déinie par est déinie par : + 2 dérivée de dérivée de 2) La dérivée de la onction déinie par 2 sin est déinie par : 2 sin + 2 cos } {{ } dérivée de 2 dérivée de sin 2 c P.Brachet - Dérivation

3 2-4 Forme 2 Propriété 4 Si est une onction dérivable sur un intervalle I alors la onction 2 est aussi dérivable sur I et ( 2) = 2. ) La dérivée de la onction déinie par (3 + ) 2 est déinie par : 2 3 dérivée de 3+ (3 + ) = 6(3 + ) 2) La dérivée de la onction déinie par (cos ) 2 est déinie par : 2 ( sin ) dérivée de cos (cos ) = 2 sin cos 2-5 Forme Propriété 5 Si est une onction dérivable sur un intervalle I (où () ne s annule pas) alors la onction ( ) = 2. ) La dérivée de la onction déinie par est déinie par : 5 dérivée de 5 5 (5 ) 2 2) La dérivée de la onction déinie par 2 est déinie par : + 3 dérivée de ( 2 + 3) 2 3) La dérivée de la onction déinie par est déinie par : sin dérivée de sin { }} { cos (sin ) 2 est aussi dérivable sur I et 2-6 Forme g Propriété 6 Si et g sont deu onctions dérivables sur un intervalle I (où g() ne s annule pas) alors la onction ( ) g et = g g g g 2. ) La dérivée de la onction déinie par 7 est déinie par : dérivée de 7 dérivée de 2+3 (7) (2 + 3) (7) (2) (2 + 3) 2 = (2 + 3) 2 = 2 (2 + 3) 2 est aussi dérivable sur I 2) La dérivée de la onction déinie par 2 est déinie par : 3 + dérivée de 2 dérivée de 3+ (2) (3 + ) ( 2 ) (3) (3 + ) 2 = (3 + ) 2 = (3 + ) 2 Dérivation c P.Brachet - 3

4 2-7 Forme (a + b) (a et b réels) Propriété 7 Soit déinie sur un intervalle I, a et b deu réels et J un intervalle tel que, pour tout de J, a + b I. Si est dérivable sur I alors la onction g déinie par g (a + b) est dérivable sur J et g a (a + b). ) La dérivée de la onction déinie par (4 + 5) 3 est déinie par : 4 dérivée de 4+5 3(4 + 5) 2 on dérive comme 3 mais avec 4+5 = 2(4 + 5) 2 2) La dérivée de la onction déinie par 3 + est déinie par : = dérivée de 3+ on dérive comme mais avec 3+ 3) La dérivée de la onction déinie par sin( 2) est déinie par : 2 dérivée de 2 cos( 2) on dérive comme sin mais avec 2 = 2 cos( 2) 3 Tableau récapitulati des opérations sur les onctions dérivables : Fonction Fonction dérivée + g + g k (k R) k g g + g g (a + b) (a et b réels) g g g 2 a (a + b) 4 Eemples de dérivation nécessitant l utilisation de plusieurs ormes : La première chose à aire avant de dériver une onction est de déterminer sa structure (somme, produit, quotient...) ain de déterminer quelles sont les ormes à utiliser. Eemples : ) Dérivée de la onction déinie par : La onction se présente d abord comme une somme de termes, on utilise donc la orme + g (de dérivée + g ) et pour dériver 2 3 et 5 2 on utilise la orme k. Ce qui donne : 2 (3 2 ) dérivée de 3 +5 (2) + (7) dérivée de 2 dérivée de 7 5 = c P.Brachet - Dérivation

5 2) Dérivée de la onction déinie par ( ) : La onction se présente sous la orme d un produit, on utilise donc la orme g (de dérivée g + g ). La dérivée de 8 2 (orme k ) est égale à 8 ( dérivée de 2 ) = 8 (2) = 6. La dérivée de 5 est elle égale à 0. Donc la dérivée de est égale à 6. D où le résultat inal : = ( ) dérivée de dérivée de 3) Dérivée de la onction déinie par : La onction se présente sous la orme d un inverse, on va donc utiliser la orme (de dérivée ). On aura donc besoin 2 de la dérivée de : La dérivée de 7 2 (orme k ) est égale à 7 ( dérivée de 2 ) = 7 (2) = 4. La dérivée de 4 étant nulle, la dérivée de sera donc égale à 4. D où le résultat inal : dérivée de 4 7 { }} { 2 ( 4) 4 (4 7 2 ) 2 = (4 7 2 ) 2 5 Calcul d une équation de la tangente à une courbe en un point : Propriété 8 Si est une onction déinie et dérivable sur un intervalle I contenant le réel a, alors une équation de la tangente à la courbe représentative de au point d abscisse a est : y = (a) + (a)( a). Eemples : ) Soit T la tangente à la courbe représentative de la onction déinie par au point d abscisse 2. Une équation de T est : y = (2) + (2)( 2) - on calcule d abord (2) : (2) = = =. - on dérive : on en déduit la valeur de (2) : (2) = =. Une équation de T est donc : y = + ()( 2) y = 3 2) Soit T la tangente à la courbe représentative de la onction déinie par 2 au point d abscisse. + 3 Une équation de T est : y = ( ) + ( ) ( ( )) y = ( ) + ( ) ( + )) - on calcule d abord ( ) : ( ) = 2( ) = on dérive : 2 ( + 3) (2 ) ( + 3) 2 = ( + 3) 2 = ( + 3) 2. - on en déduit la valeur de ( ) : 7 ( ) = ( + 3) 2 = 7 4. Une équation de T est donc : y = ( + ) y = y = Dérivation c P.Brachet - 5

Dérivation : Résumé de cours et méthodes

Dérivation : Résumé de cours et méthodes Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers

Plus en détail

Dérivation : Résumé de cours et méthodes 1 Nombre dérivé - Fonction dérivée :

Dérivation : Résumé de cours et méthodes 1 Nombre dérivé - Fonction dérivée : Dérivation : Résumé de cours et méthodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + h) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si lim

Plus en détail

Fonctions Nombre Dérivé Fonction dérivée

Fonctions Nombre Dérivé Fonction dérivée Fonctions Nombre Dérivé Fonction dérivée Ce chapitre est le chapitre central de la classe de Terminale STG. Il permet (en partie) de clore ce qui avait été entamé dés le collège avec les fonctions affines

Plus en détail

5) Une équation de la tangente à la courbe représentative de la fonction exponentielle au point d abscisse 0 est de la forme ( )( ) ( )

5) Une équation de la tangente à la courbe représentative de la fonction exponentielle au point d abscisse 0 est de la forme ( )( ) ( ) Amérique du Nord Eercice ) Le coeicient multiplicateur associé à une hausse de % est égal à + =, Le coeicient multiplicateur associé à une hausse de % est égal à + =, Donc le coeicient multiplicateur associé

Plus en détail

TD Dérivation n 2 : étude des variations de fonctions

TD Dérivation n 2 : étude des variations de fonctions 1) f (x) = 7x+3 TD Dérivation n : étude des variations de fonctions Étude de variations f est une fonction affine, de coefficient directeur négatif, on sait donc qu elle est décroissante surê. Le calcul

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/200 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 6 : PRIMITIVES ET INTEGRATION - COURS + ENONCE EXERCICE - 39 . Tableau

Plus en détail

Chapitre I : Continuité et dérivabilité des fonctions réelles

Chapitre I : Continuité et dérivabilité des fonctions réelles ENIHP1 mathématiques continuité et dérivabilité p 1/10 Chapitre I : Continuité et dérivabilité des fonctions réelles Le cours sera illustré à l'aide du logiciel de calcul formel gratuit Maima. Les commandes

Plus en détail

Synthèse d analyse Avril 2011

Synthèse d analyse Avril 2011 Snthèse d analse Avril 20 Cette snthèse d analse a été rédigée suite à une suggestion de M le Professeur E Delhez Elle est destinée à aider les étudiants à préparer l eamen d admission au études d ingénieur

Plus en détail

LIMITES EXERCICES CORRIGES

LIMITES EXERCICES CORRIGES ours et eercices de mathématiques LIMITES EXERIES ORRIGES M UAZ, http://mathscyrreer Eercice n Déterminer la ite éventuelle en de chacune des onctions suivantes : ) ) ) 4 ( ) Déterminer la ite éventuelle

Plus en détail

Séquence 6. Fonctions dérivées. Sommaire

Séquence 6. Fonctions dérivées. Sommaire Séquence 6 Fonctions dérivées Sommaire Pré-requis Définition Dérivées des fonctions usuelles Dérivation et opérations algébriques Applications de la dérivation Synthèse de la séquence Eercices d approfondissement

Plus en détail

Cours de mathématiques. Chapitre 4 : Dérivabilité. Terminale S1. Année scolaire 2008-2009 mise à jour 22 novembre 2008. Fig.

Cours de mathématiques. Chapitre 4 : Dérivabilité. Terminale S1. Année scolaire 2008-2009 mise à jour 22 novembre 2008. Fig. Cours de matématiques Terminale S1 Capitre 4 : Dérivabilité Année scolaire 008-009 mise à jour novembre 008 Fig. 1 Jean Dausset Fig. alliday Fig. 3 Joann Radon Il y a des gens connus et des gens importants-idée

Plus en détail

Généralités sur les fonctions ( En seconde )

Généralités sur les fonctions ( En seconde ) Généralités sur les fonctions ( En seconde ) Dernière mise à jour : Dimanche 31 Octobre 2010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2010-2011) Lycée Stendhal, Grenoble ( Document

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année.

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année. MATHÉMATIQUES TERMINALE ES A. YALLOUZ Ce polcopié conforme au programme 00, regroupe les documents distribués au élèves en cours d année. Année 0-0 Année 0-0 T le ES A. YALLOUZ (MATH@ES) TABLE DES MATIÈRES

Plus en détail

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4 Chapitre Convexité TABLE DES MATIÈRES page -1 Chapitre Convexité Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Bac Blanc de Mathématiques Correction Durée : 3 heures

Bac Blanc de Mathématiques Correction Durée : 3 heures Terminale STG Mercatique Jeudi 1 avril 2010 Bac Blanc de Mathématiques Correction Durée : 3 heures L usage de la calculatrice est autorisé. Le sujet comporte 6 pages. EXERCICE 1 3 points Cet eercice est

Plus en détail

Dérivées et applications. Equation

Dérivées et applications. Equation Dérivées et applications. Equation I) Dérivée d une fonction strictement monotone 1) Exemples graphiques Soit une fonction dérivable sur un intervalle I. Pour tout I, (x) est le coefficient directeur de

Plus en détail

Équations différentielles en physique

Équations différentielles en physique Fiche Mathématiques pour la Physique - Équations différentielles en physique - MPSI 1 Lycée Chaptal - 2012 Équations différentielles en physique On ne considère en physique en prépa (quasiment) que des

Plus en détail

L exercice proposé au candidat

L exercice proposé au candidat «Oral» du Capes Externe de Mathématiques (6 Juin 5 Énoncé Thème : Intégration Cet énoncé est tiré de l exercice-jury proposé aux candidat(es le 6 Juin 5, lors de la deuxième épreuve orale (épreuve sur

Plus en détail

Plans projectifs, arithmétique modulaire et Dobble

Plans projectifs, arithmétique modulaire et Dobble Plans projectifs, arithmétique modulaire et Dobble M. Deléglise 27 février 2013 Résumé Le jeu de Dobble édité par Asmodée est une excellente occasion d introduire des objets mathématiques importants :

Plus en détail

Nombre dérivé, interprétations géométrique et cinématique

Nombre dérivé, interprétations géométrique et cinématique CHAPITRE 4 DÉRIVATION ET PRIMITIVATION Nombre dérivé, interprétations géométrique et cinématique 08. Nombre dérivé Soit f une fonction numérique, définie sur un intervalle ou une réunion d intervalles,

Plus en détail

3e degré professionnel MINISTÈRE DE LA COMMUNAUTE FRANÇAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE

3e degré professionnel MINISTÈRE DE LA COMMUNAUTE FRANÇAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE 3e degré professionnel MINISTÈRE DE LA COMMUNAUTE FRANÇAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE Administration Générale de l Enseignement et de la Recherche Scientifique Service général des Affaires

Plus en détail

CH1 : Langages de la continuité Limites

CH1 : Langages de la continuité Limites CH : Langages de la continuité Limites I. Continuité- Théorème des valeurs intermédiaires. Définition : Soit f une fonction définie sur un intervalle I de R. Lorsque la courbe représentative de f ne présente

Plus en détail

Transformée de Fourier Discrète Convolution Circulaire

Transformée de Fourier Discrète Convolution Circulaire BE Traitements Numériques des Signaux n 2 Filière SICOM 2A PHELMA-ENSE 3 Année 2015-2016 Pascal PERRIER Transformée de Fourier Discrète Convolution Circulaire 1. Analyse d un signal périodique Dans cette

Plus en détail

Cours/TD n 3bis : les boucles

Cours/TD n 3bis : les boucles Cours/TD n 3bis : les boucles Découpons le problème Nous avons plusieurs utilisations des boucles C est précisément ce qui rend difficile leur création. Vu la difficulté, nous allons séparer les différentes

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Note liminaire Programme selon les sections : - fonctions de références, représentations graphiques, dérivées, tableau de variations : toutes sections - opérations sur les limites, asymptotes : STI2D,

Plus en détail

T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013

T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013 T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Fonctions - Continuité Cours maths Terminale S

Fonctions - Continuité Cours maths Terminale S Fonctions - Continuité Cours maths Terminale S Dans ce module, introduction d une nouvelle notion qu est la continuité d une fonction en un point. En repartant de la définition et de l illustration graphique

Plus en détail

Compléments de trigonométrie

Compléments de trigonométrie IUT Orsay Mesures Physiques Cours du er semestre Compléments de trigonométrie A. Les outils A-I. Notion de bijection, bijection réciproque Une application de E vers F est une bijection lorsque : tout élément

Plus en détail

La fonction racine carrée. Document B. Table des matières

La fonction racine carrée. Document B. Table des matières 1 La fonction racine carrée Document B Table des matières - Résolution algébriques d équations avec racine carrée, p.2 à 8; - Règles sous la forme canonique avec b 1 et b = 1, p.9-10; - Équation axe de

Plus en détail

Module 26 : Techniques de modélisation

Module 26 : Techniques de modélisation Module 26 : Techniques de modélisation 26.0 Introduction Ce module enseigne une série de techniques qui constituent une trousse à outils bien pratique quand il s agit de construire des modèles dans Excel

Plus en détail

GÉNÉRALITÉS SUR LES FONCTIONS

GÉNÉRALITÉS SUR LES FONCTIONS . Qu'est-ce qu'une fonction? Vocabulaire GÉNÉRALITÉS SUR LES FONCTIONS Définition Notion de fonction À chaque fois que l'on associe à une quantité une (autre) quantité, on dit que que l'on définit une

Plus en détail

La dérivation dans R

La dérivation dans R S La dérivation dans R Introduction Activité sur la cute libre d un corps. 2 Nombre dérivé Définition du nombre dérivé Soit f une fonction définie sur un intervalle I de R et soit a un réel de l intervalle

Plus en détail

Chapitre 1. Le marché, lieu de rencontre entre l offre et la demande

Chapitre 1. Le marché, lieu de rencontre entre l offre et la demande Chapitre 1. Le marché, lieu de rencontre entre l offre et la demande La notion de marché, dans les économies industrialisées contemporaines, est devenue pour une large majorité d économistes la référence

Plus en détail

Variations des fonctions

Variations des fonctions CH2-1er S Variations des fonctions Rédacteur : Yann BANC Le mot du prof : Ce chapitre vous permet de revoir les fonctions usuelles et de découvrir de nouvelles fonctions usuelles : valeur absolue et racine

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

RAPPORT DE LABORATOIRE DE PHYSIQUE Polarisation

RAPPORT DE LABORATOIRE DE PHYSIQUE Polarisation RAPPORT DE LABORATOIRE DE PHYSIQUE Polarisation Benjamin Frere & Pierre-Xavier Marique ème candidature en sciences physiques, Université de Liège Année académique 003-004 1 1 Objectifs Le but de cette

Plus en détail

Groupe : (h, k) ( 5, 12)

Groupe : (h, k) ( 5, 12) Fiche de soutien Les propriétés de la fonction racine carrée PROPRIÉTÉ FONCTION SOUS FORME CANONIQUE f(x) = a + k (ou f(x) = a 1 + k et a 1 = a ) EXEMPLE f(x) = 2 12 (ou f(x) = 6 12) Coordonnées du sommet

Plus en détail

Cours de Mathématiques Seconde. Généralités sur les fonctions

Cours de Mathématiques Seconde. Généralités sur les fonctions Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini

Plus en détail

CHAPITRE 6 LES OPÉRATIONS SUR LES FONCTIONS. 6.1 QUATRE OPÉRATIONS (+,, x, ) SUR LES FONCTIONS

CHAPITRE 6 LES OPÉRATIONS SUR LES FONCTIONS. 6.1 QUATRE OPÉRATIONS (+,, x, ) SUR LES FONCTIONS CHAPITRE 6 LES OPÉRATIONS SUR LES FONCTIONS 6.1 QUATRE OPÉRATIONS (+,, x, ) SUR LES FONCTIONS On peut effectuer les quatre opérations de base sur des fonctions, c est-à-dire les additionner, les soustraire,

Plus en détail

Préparation aux épreuves écrites du CAPES Conseils de rédaction

Préparation aux épreuves écrites du CAPES Conseils de rédaction Préparation aux épreuves écrites du CAPES Conseils de rédaction Claire Debord Le texte qui suit est une libre compilation de plusieurs textes sur le même thème, notamment ceux de Christophe Champetier

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques 7 Généralités sur les fonctions numériques Une fonction numérique est, de manière générale, une fonction d une variable réelle et à valeurs réelles. 7.1 Notions de base sur les fonctions Si I, J sont deux

Plus en détail

Jeu par les arrières

Jeu par les arrières Jeu par les arrières Le jeu des lignes arrières que l on associe le plus souvent aux lancements de jeu derrière les phases de conquête (touche et mêlée) est un jeu que l on complexifie énormément par la

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

Chapitre. Chapitre 12. Fonctions de plusieurs variables. 1. Fonctions à valeurs réelles. 1.1 Définition. 1.2 Calcul de dérivées partielles

Chapitre. Chapitre 12. Fonctions de plusieurs variables. 1. Fonctions à valeurs réelles. 1.1 Définition. 1.2 Calcul de dérivées partielles 1 Chapitre Chapitre 1. Fonctions e plusieurs variables La TI-Nspire CAS permet e manipuler très simplement les onctions e plusieurs variables. Nous allons voir ans ce chapitre comment procéer, et éinir

Plus en détail

119 exercices de mathématiques pour 1 re S

119 exercices de mathématiques pour 1 re S mai 06 9 exercices de mathématiques pour re S Stéphane PASQUET Sommaire Disponible sur http: // www. mathweb. fr mai 06 I Le second degré.................................. I. Calcul de discriminant et

Plus en détail

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION Eemple Le responsable d une maison de retraite a réalisé une enquête concernant les résidents de son établissement : - L activité

Plus en détail

I Open Résa. Sommaire :

I Open Résa. Sommaire : I Open Résa Sommaire : I Open Résa... 1 Définition :... 2 Identification... 3 Création d un nouveau dossier :... 8 Première méthode :... 10 Seconde méthode :... 10 Ajout d éléments à la proposition :...

Plus en détail

Suites numériques. Sommaire :

Suites numériques. Sommaire : Suites numériques I Activité n o 2 page 295 Sommaire : II Généralités sur les suites numériques III Variations et bornes IV Suites arithmétiques V Suites géométriques VI Suites convergentes VII Représentation

Plus en détail

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités Sujet Métropole 01 EXERIE 1. [4 pts] Probabilités Une jardinerie vend de jeunes plants d arbres qui proviennent de trois horticulteurs : 5% des plants proviennent de l horticulteur H 1, 5% de l horticulteur

Plus en détail

Baccalauréat ES Polynésie 10 juin 2016

Baccalauréat ES Polynésie 10 juin 2016 Baccalauréat ES Polynésie 0 juin 06 EXERCICE Les parties A et B sont indépendantes On s intéresse à l ensemble des demandes de prêts immobiliers auprès de trois grandes banques. Une étude montre que %

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x [ttp://mp.cpgedupuydelome.fr] édité le 29 décembre 205 Enoncés Dérivation Dérivabilité Eercice [ 0354 ] [Correction] Étudier la dérivabilité des fonctions suivantes : a) 2 3 b) 2 ) arccos 2 ) Eercice 2

Plus en détail

Fonction dérivée. Dans ce chapitre, C désigne la courbe représentative d une fonction f et A est un point de C.

Fonction dérivée. Dans ce chapitre, C désigne la courbe représentative d une fonction f et A est un point de C. Fonction dérivée Dans ce chapitre, C désigne la courbe représentative d une fonction f et A est un point de C ) La tangente : Soit M un point mobile sur C Alors, la tangente à la courbe au point A est

Plus en détail

Créer sa première base de données Access Partie 2/4 - Création d une requête

Créer sa première base de données Access Partie 2/4 - Création d une requête Créer sa première base de données Access Partie 2/4 - Création d une requête Ce tutoriel est la suite de l article sur la création d une table Access. Une requête permet de filtrer les informations d une

Plus en détail

Etude des fonctions trigonométriques

Etude des fonctions trigonométriques Chapitre Dans ce chapitre, nous continuons le travail sur les fonctions usuelles en introduisant les fonctions trigonométriques. Si celles sont définies à partir de la géométrie euclidienne, elles permettent

Plus en détail

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Résumé : A partir du problème de la représentation des droites sur un écran d ordinateur,

Plus en détail

COURS : FONCTIONS LINÉAIRES & AFFINES

COURS : FONCTIONS LINÉAIRES & AFFINES CHAPITRE CURS : FNCTINS LINÉAIRES & AFFINES Etrait du programme de la classe de troisième : CNTENU CMPÉTENCES EXIGIBLES CMMENTAIRES Fonction linéaire. Connaître la notation a, pour une valeur numérique

Plus en détail

Les Réseaux de Neurones avec

Les Réseaux de Neurones avec Les Réseaux de Neurones avec Au cours des deux dernières décennies, l intérêt pour les réseaux de neurones s est accentué. Cela a commencé par les succès rencontrés par cette puissante technique dans beaucoup

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Mais que devrions-nous appeler "contradiction cachée"? Où serait-elle cachée? Quand est-elle cachée, et quand cesse-t-elle de l être?

Mais que devrions-nous appeler contradiction cachée? Où serait-elle cachée? Quand est-elle cachée, et quand cesse-t-elle de l être? Mais que devrions-nous appeler "contradiction cachée"? Où serait-elle cachée? Quand est-elle cachée, et quand cesse-t-elle de l être? CFM Quel sens à t-il à parler d une liste infinie, par exemple "la

Plus en détail

Un cercle trigonométrique est un cercle de rayon 1 sur lequel on définit un sens de

Un cercle trigonométrique est un cercle de rayon 1 sur lequel on définit un sens de Première S Chapitre 7 : Angles orientés. Trigonométrie. Année scolaire 01/013 I) Rappels de seconde : 1) Définition d'un cercle trigonométrique Un cercle trigonométrique est un cercle de rayon 1 sur lequel

Plus en détail

MATHÉMATIQUES 3 PÉRIODES

MATHÉMATIQUES 3 PÉRIODES BACCALAURÉAT EUROPÉEN 006 MATHÉMATIQUES 3 PÉRIODES DATE : 8 juin 006 (matin) DURÉE DE L'EXAMEN : 3 heures (180 minutes) MATÉRIEL AUTORISÉ : Formulaire européen Calculatrice non graphique et non programmable

Plus en détail

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01 Eo7 Dérivée d une fonction Vidéo partie. Définition Vidéo partie. Calculs Vidéo partie 3. Etremum local, théorème de Rolle Vidéo partie 4. Théorème des accroissements finis Eercices Fonctions dérivables

Plus en détail

Courbes représentatives de fonctions

Courbes représentatives de fonctions Courbes représentatives de fonctions I) Définitions. Soit une fonction définie sur un intervalle, à valeurs dans. 1) Graphe de la fonction. a) Définition. Le graphe de la fonction est l ensemble des couples

Plus en détail

Configuration d une politique de sauvegarde

Configuration d une politique de sauvegarde Configuration d une politique de sauvegarde Pré-requis à cette présentation La lecture de ce guide suppose que vous avez installé l agent SFR Backup sur l équipement que vous souhaitez sauvegarder. Il

Plus en détail

Résumé du commentaire audio : Lesdipôles que vous avez couramment utilisez sont par

Résumé du commentaire audio : Lesdipôles que vous avez couramment utilisez sont par 1 2 Résumé du commentaire audio : Lesdipôles que vous avez couramment utilisez sont par exemples des lampes, des piles (générateurs), des résistors (ou conducteurs ohmiques) etc 3 Résumé du commentaire

Plus en détail

ÉCOLE POLYTECHNIQUE ÉCOLE NORMALE SUPÉRIEURE DE CACHAN ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES FILIÈRE MP HORS SPÉCIALITÉ INFO

ÉCOLE POLYTECHNIQUE ÉCOLE NORMALE SUPÉRIEURE DE CACHAN ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES FILIÈRE MP HORS SPÉCIALITÉ INFO ÉCOLE POLYTECHNIQUE ÉCOLE NORMALE SUPÉRIEURE DE CACHAN ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION 2012 FILIÈRE MP HORS SPÉCIALITÉ INFO FILIÈRE PC COMPOSITION D INFORMATIQUE

Plus en détail

Comment construire un diagramme de Henry avec Excel et comment l interpréter

Comment construire un diagramme de Henry avec Excel et comment l interpréter Comment construire un diagramme de Henry avec Ecel et comment l interpréter Kathy Chapelain et Emmanuel Grenier emmanuel.grenier@lasalle-beauvais.fr Relu par Henry P. Aubert, Jacques Goupy et Jacques Vaillé

Plus en détail

Chapitre 5 Le logarithme néperien

Chapitre 5 Le logarithme néperien A) La fonction ln(x) Chapitre 5 Le logarithme néperien ) Définition Nous avons vu que nous ne savions pas exprimer la primitive de la fonction inverse avec des fonctions connues. Alors inventons cette

Plus en détail

MESURES ET INCERTITUDES

MESURES ET INCERTITUDES MESURES ET INCERTITUDES OBJECTIFS DE CE CHAPITRE : Savoir exprimer une mesure avec le bon nombre de chiffres significatifs. Savoir arrondir le résultat d un calcul avec le bon nombre de chiffres significatifs.

Plus en détail

4. ASTUCES PRATIQUES À CONNAÎTRE POUR UTILISER EFFICACEMENT GOOGLE ANALYTICS

4. ASTUCES PRATIQUES À CONNAÎTRE POUR UTILISER EFFICACEMENT GOOGLE ANALYTICS Formations > Nouveau - Analysez votre trafic efficacement avec Google Analytics 4. ASTUCES PRATIQUES À CONNAÎTRE POUR UTILISER EFFICACEMENT GOOGLE ANALYTICS Maintenant que vous vous êtes familiarisé avec

Plus en détail

Linéarité proportionnalité Discipline

Linéarité proportionnalité Discipline Cours 3a-1 Linéarité proportionnalité Discipline Sommaire 1 Fonctions affines et linéaires........................................... 2 1.1 Représentation graphique 2 1.2 Linéarité et proportionnalité

Plus en détail

DIRIS Digiware Mise à jour des produits

DIRIS Digiware Mise à jour des produits NOTICE D UTILISATION DIRIS Digiware Mise à jour des produits FR www.socomec.com FR SOMMAIRE 1. Téléchargement du logiciel et des firmwares sur le site internet SOCOMEC..3 2. Installation du logiciel et

Plus en détail

Cours/TD n 3 : les boucles

Cours/TD n 3 : les boucles Cours/TD n 3 : les boucles Où on se rendra compte qu il est normal de rien comprendre Pour l instant, on a vu beaucoup de choses. Les variables, les Si Alors Sinon, les tests avec les ET, les OU et les

Plus en détail

Fiche PanaMaths Introduction au tracé de courbes avec Scilab

Fiche PanaMaths Introduction au tracé de courbes avec Scilab Fiche PanaMaths Introduction au tracé de courbes avec Scilab Introduction Ce document présuppose un certain niveau de connaissance du logiciel Scilab de la part du lecteur (de la lectrice) : calcul matriciel,

Plus en détail

Annexe A. Herbier de fonctions réelles. Les fonctions continues

Annexe A. Herbier de fonctions réelles. Les fonctions continues Annee A Herbier de fonctions réelles Rappelons que lorsque les domaines de définition et d arrivée d une fonction f sont des sous-ensembles de R, on parle de fonctions réelles. Les mathématiciens ont classé

Plus en détail

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin.

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin. Exo7 Développements ités Corrections d Arnaud Bodin. Calculs Exercice Donner le développement ité en 0 des fonctions :. cosx expx à l ordre 2. ln + x)) 2 à l ordre 4 shx x. x à l ordre 6 4. exp sinx) )

Plus en détail

Volume et température d un gaz

Volume et température d un gaz Volume et température d un gaz Par Pascal Rebetez Janvier 7 Introduction Après avoir étudié expérimentalement la relation entre le volume et la température d un gaz (de l air), nous comparons les données

Plus en détail

Chapitre 6 La dérivation

Chapitre 6 La dérivation Capitre 6 La dérivation A) Nombre dérivé et tangente 1) Tangente en un point à une courbe et nombre dérivé Soit f(x) la fonction dont la courbe est représentée ci-dessus, et prenons deux points A et B

Plus en détail

Suites et Convergence

Suites et Convergence Suites et Convergence Une suite c est se donner une valeur (sans ambigüité) pour chaque N sauf peutêtre les premiers n. Donc une suite est une fonction : I R où I = N: = N. Notation : On note ( ) I R pour

Plus en détail

Classe : TES1 Le 11/03/2003 MATHEMATIQUES Devoir N 6 Calculatrice et formulaire autorisés. Durée : 3h

Classe : TES1 Le 11/03/2003 MATHEMATIQUES Devoir N 6 Calculatrice et formulaire autorisés. Durée : 3h Classe : TES1 Le 11/03/003 MATHEMATIQUES Devoir N 6 Calculatrice et ormulaire autorisés Durée : 3h Exercice 1 : (5 points) (correction) Un magasin de distribution vend deux types de téléphones portables

Plus en détail

Enoncé : Planification agile et gestion des risques

Enoncé : Planification agile et gestion des risques Enoncé : Planification agile et gestion des risques Tout projet a besoin d'être planifié. La planification est une tâche véritablement complexe pour un chef de projet et ses membres de l équipe, surtout

Plus en détail

Mathématiques appliquées : Utilisation pratique des nombres complexes en Electricité et Electronique

Mathématiques appliquées : Utilisation pratique des nombres complexes en Electricité et Electronique Mathématiques appliquées : Utilisation pratique des nombres complexes en Electricité et Electronique Version.0.8 Sommaire - Forme algébrique (ou forme cartésienne) - Partie réelle et partie imaginaire

Plus en détail

Baccalauréat ES Amérique du Nord 4 juin 2009

Baccalauréat ES Amérique du Nord 4 juin 2009 Baccalauréat ES Amérique du Nord 4 juin 009 EXERCICE 4 points Commun à tous les candidats Cet exercice constitue un questionnaire à choix multiples. Les questions sont indépendantes les unes des autres.

Plus en détail

Dérivation Primitives

Dérivation Primitives Cours de Terminale STI2D Giorgio Chuck VISCA 27 septembre 203 Dérivation Primitives Table des matières I La dérivation 3 I Rappels 3 I. exemple graphique............................................. 3

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

Lentilles épaisses. reconnaître la nature (convergente ou divergente) d'une lentille épaisse. connaître la loi de propagation rectiligne de la lumière

Lentilles épaisses. reconnaître la nature (convergente ou divergente) d'une lentille épaisse. connaître la loi de propagation rectiligne de la lumière Lentilles épaisses Le but du module est de décrire les propriétés fondamentales des lentilles épaisses et d'en déterminer quelques éléments caractéristiques appelés éléments cardinaux du système optique.

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes

Plus en détail

MATÉRIEL D APPRENTISSAGE SERVANT D APPUI AU NOUVEAU TABLEAU DE CORRESPONDANCE DU CURRICULUM À : MATHÉMATIQUES 11 NO P-0-257

MATÉRIEL D APPRENTISSAGE SERVANT D APPUI AU NOUVEAU TABLEAU DE CORRESPONDANCE DU CURRICULUM À : MATHÉMATIQUES 11 NO P-0-257 MATÉRIEL D APPRENTISSAGE SERVANT D APPUI AU NOUVEAU CURRICULUM DE L ONTARIO : MATHÉMATIQUES, FONCTIONS, 11 e année, COURS PRÉUNIVERSITAIRE/PRÉCOLLÉGIAL (MCF3M) TABLEAU DE CORRESPONDANCE DU CURRICULUM À

Plus en détail

Devoir commun de Mathématiques 18 janvier 2014. Problème 1

Devoir commun de Mathématiques 18 janvier 2014. Problème 1 Lycée Jean Bart MPSI & PCSI Année 213-214 Devoir commun de Mathématiques 18 janvier 214 La clarté des raisonnements, la précision de la rédaction et la présentation entreront pour une part non négligeable

Plus en détail

Prise en main du logiciel R (2) durée : 1h30

Prise en main du logiciel R (2) durée : 1h30 Université de Nice Sophia-Antipolis Année Universitaire 2013/2014 L3 MASS Analyse de données Feuille de TD Prise en main du logiciel R (2) durée : 1h30 Remarque 1 Cette seconde feuille de TD est dans la

Plus en détail

TP4 : Développements limités

TP4 : Développements limités eric.lucon@etu.upmc.fr www.proba.jussieu.fr/pagesperso/eric (TP rédigés d'après C. Armana armana@math.jussieu.fr) CF2 "Calcul formel" Maple TP4 : Développements limités But du TP4 Nous allons utiliser

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

Introduction générale

Introduction générale Introduction générale L organisation d un événement est une formidable occasion de sortir de son train-train quotidien, que ce soit à la maison ou au travail. Il va falloir faire preuve de créativité,

Plus en détail

FICHES PRATIQUES WORDPRESS

FICHES PRATIQUES WORDPRESS FICHES PRATIQUES WORDPRESS Sauvegarde du site Avec le plugin BACKWPUP Objectif de cette fiche Sauvegarder les données Restaurer les données en cas de problème Présentation...2 Paramétrer la sauvegarde

Plus en détail

Remettre un devoir sur Moodle. La procédure. Sylvie Guérard, support technique 1/23/2014. Collège Éducacentre College 2014 Tous droits réservés.

Remettre un devoir sur Moodle. La procédure. Sylvie Guérard, support technique 1/23/2014. Collège Éducacentre College 2014 Tous droits réservés. Remettre un devoir sur Moodle La procédure Sylvie Guérard, support technique 1/23/2014 Message : En suivant un cours en ligne sur Moodle, vous devez déposer des devoirs et/ou des travaux. Voici la procédure

Plus en détail

Fiche n 2 : Création de tâches

Fiche n 2 : Création de tâches PlanningPME Planifiez en toute simplicité Fiche n 2 : Création de tâches I. Description... 2 II. Comment créer une tâche?... 2 III. Création de tâches multi ressources... 9 IV. Création de tâches périodiques...

Plus en détail

Second degré : Résumé de cours et méthodes

Second degré : Résumé de cours et méthodes Second degré : Résumé de cours et méthodes 1 Définitions : DÉFINITIN n appelle trinôme du second degré toute fonction f définie sur R par f () = a + b + c (a,b et c réels avec a 0). Remarque : Par abus

Plus en détail