CHAPITRE VI : Le potentiel électrique

Dimension: px
Commencer à balayer dès la page:

Download "CHAPITRE VI : Le potentiel électrique"

Transcription

1 CHPITRE VI : Le potentiel électiue VI. 1 u chapite III, nous avons vu ue losu'une foce est consevative, il est possible de lui associe une énegie potentielle ui conduit à une loi de consevation de l'énegie. Nous allons voi ue la foce de Coulomb ente chages électiues est consevative. On peut pa conséuent défini une énegie potentielle électiue, ui dépend de la position des chages électiues, et appliue la loi de consevation de l'énegie aux poblèmes d'électicité. L'énegie potentielle électiue caactéise un ensemble de chages. En électicité, on péfèe souvent tavaille avec le potentiel électiue ui caactéise un point de l'espace, tout comme le champ électiue : le champ électiue donne la foce de Coulomb pa unité de chage en un point donné, le potentiel électiue est défini comme l'énegie potentielle pa unité de chage. VI.1 : La foce de Coulomb est consevative La foce de Coulomb ui existe ente deux chages électiues (voi IV. 6)) dépend de la distance ente les deux chages et est diigée suivant la ligne ui joint les positions des deux chages. C'est ce u'on appelle une foce centale. En oute, elle ne dépend d'aucune aute vaiable cinématiue telle ue la vitesse, pa exemple. La foce execée pa la chage 2 su la chage 1 peut donc s'écie sous la fome : F12 = F()1 (VI.1) où 1 1 F() = 2 4 πε 0 2 (VI.2) et 1 est un vecteu de longueu unité, diigé suivant la ligne ui joint les positions des chages 1 et 2, diigé de 2 ves 1. Pou monte u'une telle foce est consevative, nous allons monte ue son tavail ente deux points uelconues de l'espace, et, ne dépend pas du chemin suivi, seulement des positions de dépat et d'aivée (voi figue VI.1).

2 VI. 2 W = F 12.dl = F() 1. dl Figue VI.1. Le vecteu de longueu infinitésimale dl, tangent à la tajectoie peut ête décomposé en un vecteu de longueu infinitésimale d, diigé suivant 1 et un vecteu de longueu infinitésimale dt g, pependiculaie à 1 (voi figue VI.2) : Figue VI.2.

3 VI. 3 Dès los le tavail de F 12 de à devient : W = F() 1. (d + dt g ) = F() d (VI.3) où d est la longueu du vecteu d. En effet, 1.dt g = 0 ca dt g est pependiculaie à 1 et 1. d = d 1. 1 = d. L'expession du tavail ente et ci-dessus (VI.3), se éduit à une intégale simple dont le ésultat ne dépend ue de et et pas du chemin paticulie pou alle de à. Ceci monte ue la foce de Coulomb est bien consevative, comme toute foce centale ui ne dépend ue de. VI.2 : L'énegie potentielle électiue La foce électiue étant consevative (voi VI.1), nous pouvons défini l'énegie potentielle de la même manièe u'au chapite III (voi (III.2)) : U= U() U() = F E.dl, (VI.4) où F E est la ésultante des foces électiues dues à un ensemble de chages, ui s'execeaient su une chage électiue ui seait déplacée de à suivant n'impote uel chemin. Dans le cas où seules deux chages électiues 1 et 2 sont concenées les elations (VI.3) et (VI.2) s'appliuant à la situation décite pa la figue VI.1, pemettent d'écie : 12 d 12 1 U = = 4πε 0 2 4πε = 4πε 0 (VI.5) Regadons uel est le contenu physiue de la elation (VI.5). Supposons ue les chages 1 et 2 soient de même signe. La foce de Coulomb est alos épulsive. Si <, cela veut die ue l'on éloigne les deux chages l'une de l'aute, le tavail à founi est négatif puisue les

4 VI. 4 chages tendent à s'éloigne d'elles-mêmes. Le tavail de la foce, lui, est positif et la vaiation 1 1 d'énegie potentielle est négative. En effet > et U < 0 (voi VI.5)). Donc U() < U(). Losu'on éloigne deux chages de même signe, leu énegie potentielle électiue diminue. Si on les appoche, il faut founi un tavail conte la foce électiue. Le tavail de cette denièe est négatif et l'énegie potentielle électiue augmente, comme pou un oche ue l'on amèneait au sommet d'une montagne. En épétant le aisonnement ci-dessus dans le cas de deux chages de signes opposés, ui conduisent à une foce de Coulomb attactive, on constate ue losu'on les éloigne, leu énegie potentielle augmente, losu'on les appoche, elle diminue, comme pou un oche ui dévaleait la pente d'une montagne. Losu'il n'y a pas d'autes foces ue la foce électiue ui entent en jeu, la loi de consevation de l'énegie (III.10) nous dit ue si les chages gagnent de l'énegie potentielle électiue, elles pedent de l'énegie cinétiue : elles alentissent comme une piee lancée en l'ai; si elles pedent de l'énegie potentielle électiue, elles gagnent de l'énegie cinétiue : elles accélèent, comme une piee ui tombe. Nous avons vu au chapite III u'une elation telle ue (VI.4) définit la difféence d'énegie potentielle ente deux points. Pou connaîte l'énegie potentielle en un point, il faut choisi abitaiement la valeu de celle-ci en un point de éféence. En électicité, il est souvent commode de choisi comme niveau de éféence d'énegie potentielle nulle, l'infini : lim U() 0 (VI.6) Dès los si dans l'expession (VI.5), on fait tende et =, on obtient : lim U = U() lim U( ) = lim 4πε0 Et : 1 U() = 2 4πε0 (VI.7) La elation (VI.7) ci-dessus donne l'énegie potentielle électiue d'un système de deux chages électiues 1 et 2 distantes de. On emaue u'elle est positive si les chages 1 et 2 sont de même signe, négative si elles sont de signe opposés.

5 VI. 5 VI.3 : Le potentiel électiue et les difféences de potentiel La foce de gavitation univeselle, vue au chapite II (II.7), et la foce de Coulomb, vue au chapite IV (IV. 6) ont la même fome mathématiue : toutes deux sont en 1/ 2 ; elles dépendent de l'invese du caé de la distance ente les masses m 1 et m 2 ou ente les chages 1 et 2 ; dans la loi de Coulomb, le ôle des masses m 1 et m 2 est joué pa les chages 1 et 2, celui de la constante de gavitation G pa le facteu 1/4π ε 0. Cette similitude a pemis de défini une énegie potentielle dans les deux cas et de faie des compaaisons ente situations "mécaniues" et situations "électiues". Il y a toutefois une difféence ente les deux foces : la foce gavitationnelle est toujous attactive tandis ue la foce électiue est tantôt attactive, tantôt épulsive, suivant le signe espectif des chages électiues. Cela a pou conséuence u'en électicité, l'énegie potentielle électiue n'est pas tès patiue à utilise, ca elle change de signe avec le signe de la chage ue l'on considèe (voi elation VI.7). Voyons ce ue cette paticulaité impliue comme complication dans un exemple, celui de deux plaues conductices paallèles, infinies, distantes de d et chagées de manièe unifome d'électicité de signes contaies (voi figue VI.3). Figue VI.3. Nous avons vu ue dans une telle situation, le champ électiue égnant ente les deux plaues σ est unifome, E = où σ est la chage pa unité de suface, et ue le champ E est ε 0

6 VI. 6 pependiculaie aux plaues, diigé de la plaue positive ves la plaue négative (voi figue V. 5). Dès los, si on place une chage électiue n'impote où ente les deux plaues elle subit une foce électiue F = E. Supposons u'on amène cette chage depuis un point, situé conte la plaue positive, ves un point, situé conte la plaue négative. La difféence d'énegie potentielle ente ces positions et est donnée pa : U= U() U() = F.dl = E.dl La foce électiue étant consevative, le chemin choisi pou alle de à n'impote pas et nous allons le choisi pou facilite le calcul de l'intégale ci-dessus, soi = P + P, où P est un tajet pependiculaie aux plaues et P, paallèle à celles-ci. Le long de P, dl est paallèle à Eet E.dl Dès los : = Edl, tandis ue su le tajet P, dl est pependiculaie à E et E. dl = 0. l P U= Edl= E dl l = E ( l l) = Ed (VI.8) Remauons tout d'abod ue la difféence d'énegie potentielle U est la même uel ue soit l'endoit où le point est situé su la plaue positive et uel ue soit l'endoit où est situé su la plaue négative : tous les points d'une plaue sont à la même énegie potentielle. Pou une chage positive : Pou une chage négative : > 0 U < 0 U() < U() < 0 U > 0 U() > U(). Donc pou une chage positive, c'est en ue l'énegie potentielle est la plus élevée, tandis ue pou une chage négative, c'est en u'elle est la plus élevée. Pou évite ce changement de signe avec la chage considéée, on tavaille plus volonties avec le potentiel électiue V(), défini comme étant l'énegie potentielle électiue pa unité de chage : U() V() (VI.9)

7 VI. 7 Le potentiel électiue en un point de l'espace, dû à un ensemble de chages, est égal à l'énegie électiue de cet ensemble de chages auuel on adjoint une petite chage d'essai, de signe uelconue, située au point considéé, divisée pa cette chage. De même, la difféence de potentiel ente deux points de l'espace est donnée pa la difféence d'énegie potentielle divisée pa la chage : U V (VI.10) ppliuons cette notion de potentiel et de difféence de potentiel à l'exemple ci-dessus des deux plaues chagées. Pou une chage positive : U > 0 U < 0 V = < 0 V() < V() Pou une chage négative : < 0 U > 0 U V = < 0 V() < V() C'est la plaue positive ui est au potentiel le plus élevé, uelle ue soit la chage ue l'on envisage de place ente les plaues. Il n'en este pas moins ue si on place une chage positive ente les deux plaues, elle va alle du point de potentiel le plus élevé ves le point de potentiel le plus bas, comme une piee ui tombe d'une montagne. En effet, la foce électiue u'elle subit, F = E, a même sens ue le champ électiue, c'est-à-die de la plaue positive ves la plaue négative (voi figue VI.3). Une chage négative, uant à elle, va alle du point de potentiel le plus bas ves le point de potentiel le plus haut. En effet, la foce électiue u'elle subit, F de la plaue négative ves la plaue positive. = E, est de sens opposé à E et est donc diigée Le compotement de la chage négative est comme le seait celui d'un objet de masse négative, s'il en existait, ou celui d'un tou dans le sol ui se combleait pa la chute de oches depuis le sommet d'une montagne. La chute des oches cée un tou au sommet de la montagne et fait dispaaîte le tou au pied de la montagne : le tou, considéé comme un objet, de masse négative, a emonté la pente de la montagne!

8 VI. 8 En fait, la notion de potentiel électiue a l'avantage de caactéise de manièe uniue un point de l'espace pa appot aux chages ui l'entouent, sans u'il soit besoin d'y place une chage, tout comme le champ électiue est défini en un point de l'espace sans u'il y ait nécessaiement une chage à cet endoit. Mais attention, le champ électiue est une uantité vectoielle alos ue le potentiel électiue est une uantité scalaie. L'unité d'énegie potentielle électiue du SI est la même ue celle de l'énegie potentielle mécaniue et ue celle du tavail, soit le joule (voi III.2). L'unité de potentiel électiue du SI est le volt (V) : 1V 1 J/C (VI.11) VI.4 : La elation ente le potentiel et le champ électiue pati des elations (VI.4) et (VI.10), on établit aisément la elation ui existe ente potentiel et champ électiue : F E.dl (E).dl U V = = = D'où l'on tie : V = V() V() = E. dl (VI.12) VI.5 : L'électonvolt Losu'on étudie les énegies ui entent en jeu au niveau moléculaie et atomiue, on découve ue celles-ci sont extêmement petites pa appot à l'unité d'énegie du SI, le joule. Comme il est peu patiue d'avoi à manipule des puissances de 10, pou ce gene d'étude, on péfèe tavaille avec une aute unité d'énegie, plus petite, l'électon volt (ev). Un électonvolt se définit comme l'énegie cinétiue acuise pa un électon accéléé pa une difféence de potentiel de 1 V. Etant donné ue la chage d'un électon vaut 1, C (voi IV.1) et ue U = V (elation (VI.9)), on a : 1 ev = 1, C 1 V = 1, J (VI.13)

9 VI. 9 Même si l'électonvolt peut s'avée ête une unité plus patiue à utilise au niveau des paticules, il ne faut pas oublie ue ce n'est pas une unité du SI. Quand on effectue des calculs, il faut d'abod la conveti en Joule à l'aide du facteu de convesion ci-dessus. VI.6 : Le potentiel électiue attibuable à une chage ponctuelle Replaçons-nous dans le cas de la figue VI.1 et calculons le potentiel électiue V() à une distance de la chage 2 : U() V() = = 2, 1 4π ε0 en utilisant la elation (VI.7) ui impliue u'on ait choisi, comme niveau de éféence, une énegie potentielle et un potentiel nuls à l'infini. Effectivement : lim V() = lim 2 0 4πε0 = Dès los, avec cette convention, le potentiel électiue à une distance d'une chage ponctuelle Q, vaut : Q V() = (VI.14) 4πε0 Remauons u'il est positif si Q > 0, négatif dans le cas contaie. VI.7 : Execices 1. Un électon acuiet une énegie cinétiue de 6, J losu'il subit une accéléation due à un champ électiue en passant d'une plaue à une plaue. Quelle est la difféence de potentiel ente les deux plaues? Lauelle possède le potentiel le plus élevé? (R : 4000 V ; V() > V()) 2. Le potentiel à une cetaine distance d'une chage ponctuelle est de 600 V et le champ électiue de 200NC 1. a) Quelle est cette distance? (R: 3 m)

10 VI. 10 b) Que vaut cette chage? (R : C ) 3. La distance moyenne des potons dans un noyau atomiue est d'envion m. Estime l'ode de gandeu de l'énegie potentielle électiue de deux potons dans le noyau. Expime le ésultat en J et en ev. (R : 2, J ; 1, ev ) 4. Une tès gande ( infinie) plaue métalliue plane est à un potentiel V 0. Elle pote une chage unifomément épatie d'une densité sufaciue σ(c /m 2 ). Déteminez le potentiel à une distance x de la plaue (R: V 0 σ x ). 2ε 0 5. Une paticule alpha (2 potons, 2 neutons) est envoyée avec une énegie cinétiue de 4 MeV su un noyau d'atome de mecue dont le nombe de potons est 80. a) Quelle est la distance d'appoche minimale? (R : 5, m) b) Compae avec la valeu du ayon nucléaie ( m ). 6. (Examen de mai 2004) Soit deux chages électiues Q 1 = 2,5 µc et Q 2 = 2,5 µc situées espectivement aux points de coodonnées P 1 = (-3 m, 0), P 2 = (+3 m, 0). a. Calcule le champ électiue dû à ces deux chages au point P 3 de coodonnées P 3 = (0, 4 m), gandeu et diection. b. Quelle seait l'accéléation initiale subie pa un électon placé en P 3 (m e = 9,11 x kg, e = 1,6 x C), gandeu et diection. c. Quel est le potentiel électiue dû aux chages Q 1 et Q 2 au point P 3 et en un point P 4 de coodonnées, P 4 = (6 m, 0), gandeu et signe. d. Quel est le tavail de la foce électiue losu'on déplace l'électon de P 3 en P 4, gandeu et signe. (R: (a) E 3 = 1440 N/C, le long de l'axe y, sens positif (b) a = 2,5 x m/s², le long de l'axe y, sens négatif (c) V 3 = 9 kv; V 4 = 10 kv (d) W 34 = +1,6 x J ) 7. La difféence de potentiel ente deux plaues paallèles de 2 cm de long, sépaées de 1 cm, est de 100 V.

11 VI. 11 e v 0 1 cm 2 cm Un électon est pojeté avec une vitesse initiale v 0 de 10 7 ms. 1 dans une diection pependiculaie au champ. Quelle est la vitesse de l'électon (gandeu et diection) losu'il émege des plaues (m e = kg)? (R : 1, m/s ; 19,6 pa appot à l'hoizontale)

Chapitre 6: Moment cinétique

Chapitre 6: Moment cinétique Chapite 6: oment cinétique Intoduction http://www.youtube.com/watch?v=vefd0bltgya consevation du moment cinétique 1 - angula momentum consevation 1 - Collège éici_(360p).mp4 http://www.youtube.com/watch?v=w6qaxdppjae

Plus en détail

TRAVAUX DIRIGÉS DE M 6

TRAVAUX DIRIGÉS DE M 6 D M 6 Coection PCSI 1 013 014 RVUX DIRIGÉS DE M 6 Execice 1 : Pemie vol habité (pa un homme) Le 1 avil 1961, le commandant soviétique Y Gagaine fut le pemie cosmonaute, le vaisseau spatial satellisé était

Plus en détail

M F. F O Unité: [m. N] La norme du moment de force peut se calculer en introduit le bras de levier d

M F. F O Unité: [m. N] La norme du moment de force peut se calculer en introduit le bras de levier d Chapite 2: But: connaîte les lois auxquelles doit obéi un cops solide en équilibe. Ceci pemet de décie la station debout ainsi que les conditions nécessaies pou teni une tasse dans la main, souleve une

Plus en détail

Mécanique du point : forces Newtoniennes (PCSI)

Mécanique du point : forces Newtoniennes (PCSI) écanique du oint : foces Newtoniennes (PCSI Question de cous On admet que, losqu'il est soumis à une foce Newtonienne F K u, la tajectoie d'un cos est lane et décite a mc K +e cosθ où C θ est une constante

Plus en détail

11.5 Le moment de force τ (tau) : Production d une accélération angulaire

11.5 Le moment de force τ (tau) : Production d une accélération angulaire 11.5 Le moment de foce τ (tau) : Poduction d une accéléation angulaie La tige suivante est soumise à deux foces égales et en sens contaie: elle est en équilibe N La tige suivante est soumise à deux foces

Plus en détail

Chapitre I. Description des milieux continus

Chapitre I. Description des milieux continus Chapite I Desciption des milieu continus OBJET Ce chapite est consacé à la desciption des milieu continus. On intoduia les notions fondamentales de desciption du mouvement au sens de Lagange et d Eule,

Plus en détail

INITIATION A LA MESURE ----

INITIATION A LA MESURE ---- INITIATION A LA MSUR ---- Le but de ce TP est : - de mesue la foce électomotice et la ésistance intene d'une pile, - d'évalue, en tenant compte des incetitudes de mesue et des caactéistiques de l'appaeil

Plus en détail

Voyez la réponse à cette question dans ce chapitre. www.retronaut.com/2013/01/rotor-rides/

Voyez la réponse à cette question dans ce chapitre. www.retronaut.com/2013/01/rotor-rides/ Dans un manège tel que celui monté su la figue, quelle est la péiode de otation maximale que doit aoi le manège pou que les pesonnes ne glissent pas es le bas de la paoi si le coefficient de fiction ente

Plus en détail

CONSTANTES DIELECTRIQUES

CONSTANTES DIELECTRIQUES 9 E7 CONTANTE DIELECTRIQUE I. INTRODUCTION Dans cette expéience, nous étuieons es conensateus et nous éiveons les popiétés e iélectiques tels que l'ai et le plexiglas. II. THEORIE A) Conensateus et iélectiques

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé y 2004-2005 Devoi n 6 CONVERSION DE PUISSANCE Une alimentation de d odinateu de bueau est assez paticulièe, elle doit founi des tensions de +5, +12, 5 et 12 volts avec une puissance moyenne de quelques

Plus en détail

Modélisation des actions mécaniques Statique des solides indéformables Puissance et rendement

Modélisation des actions mécaniques Statique des solides indéformables Puissance et rendement Modélisation des actions mécaniques, statique des solides indéfomables, puissance et endement Les actions mécaniques. Définition On appelle action mécanique toute cause susceptible de : 4modifie le mouvement

Plus en détail

Système d ouverture de porte de TGV

Système d ouverture de porte de TGV Le sujet se compose de : TD MP-PSI REVISION CINEMATIQUE Système d ouvetue de pote de TGV 6 pages dactylogaphiées ; 2 pages d annexe ; 2 pages de document éponse Objet de l étude Le tanspot feoviaie, concuencé

Plus en détail

où «p» représente le nombre de paramètres estimés de la loi de distribution testée sous H 0.

où «p» représente le nombre de paramètres estimés de la loi de distribution testée sous H 0. 7- Tests d austement, d indépendance et de coélation - Chapite 7 : Tests d austements, d indépendance et de coélation 7. Test d austement du Khi-deux... 7. Test d austement de Kolmogoov-Sminov... 7.. Test

Plus en détail

FINANCE Mathématiques Financières

FINANCE Mathématiques Financières INSTITUT D ETUDES POLITIQUES 4ème Année, Economie et Entepises 2005/2006 C.M. : M. Godlewski Intéêts Simples Définitions et concepts FINANCE Mathématiques Financièes L intéêt est la émunéation d un pêt.

Plus en détail

Gérard Debionne dimanche 20 mai 2012. Quasar 95. La Mesure de G. Présentation : 18 mai 2012

Gérard Debionne dimanche 20 mai 2012. Quasar 95. La Mesure de G. Présentation : 18 mai 2012 Géad Debionne dimanche 0 mai 01 Quasa 95 La Mesue de G Pésentation : 18 mai 01 La mécanique céleste pemet de calcule les mouvements des planètes autou d une étoile en unités elatives. Pou avoi des valeus

Plus en détail

Validation CFD axisymétrique de modèle zonal des écoulements gazeux de chambre de combustion de moteur Diesel

Validation CFD axisymétrique de modèle zonal des écoulements gazeux de chambre de combustion de moteur Diesel CONSERVATOIRE NATIONAL DES ARTS ET METIERS Cente d enseignement de Genoble Mémoie Mécanique des stuctues et des systèmes Validation CFD axisymétique de modèle zonal des écoulements gazeux de Auditeu: Jean-Michel

Plus en détail

A la mémoire de ma grande mère A mes parents A Mon épouse A Mes tantes et sœurs A Mes beaux parents A Toute ma famille A Mes amis A Rihab, Lina et

A la mémoire de ma grande mère A mes parents A Mon épouse A Mes tantes et sœurs A Mes beaux parents A Toute ma famille A Mes amis A Rihab, Lina et Remeciements e tavail a été effectué au sein du laboatoie optoélectonique et composants de l univesité Fehat Abbas (Sétif, Algéie) en collaboation avec le goupe MALTA consolido du Dépatement du Physique

Plus en détail

PHYSIQUE DES SEMI-CONDUCTEURS

PHYSIQUE DES SEMI-CONDUCTEURS Dépatement Mico-électonique et télécommunications Pemièe année 004/005 PHYSIQUE DES SEMI-CONDUCTEURS Rouge Violet Infa-Rouge Visible Ulta-Violet Cd x Hg 1-x Te InSb Ge Si GaAs CdSe AlAs CdS GaP SiC GaN

Plus en détail

Sébastien Charnoz & Adrian Daerr Université Paris 7 Denis Diderot CEA Saclay

Sébastien Charnoz & Adrian Daerr Université Paris 7 Denis Diderot CEA Saclay Algoithmes de minimisation Sébastien Chanoz & Adian Dae Univesité Pais 7 Denis Dideot CEA Saclay De nombeux poblèmes nécessitent de minimise une onction : -Minimise la distance (HI ente des points de mesues

Plus en détail

( Mecanique des fluides )

( Mecanique des fluides ) INSTITUT NTION GRONOMIUE ERTEMENT U GENIE RUR SECTION YRUIUE GRICOE YRUIUE GENERE ( Mecanique des fluides ) TRONC COMMUN ème NNEE atie : Statique des Fluides ( ydostatique ) atie : ynamique des Fluides

Plus en détail

CIRCULAIRE N 02/04. Elle précise les méthodes de valorisation des titres de capital et des titres de créances contenus dans les actifs de l OPCVM.

CIRCULAIRE N 02/04. Elle précise les méthodes de valorisation des titres de capital et des titres de créances contenus dans les actifs de l OPCVM. Rabat, le 02 juillet 2004 CIRCULIRE N 02/04 RELTIVE UX CONDITIONS D ÉVLUTION DES VLEURS PPORTÉES À UN ORGNISME DE PLCEMENT COLLECTIF EN VLEURS MOBILIÈRES OU DÉTENUES PR LUI La pésente ciculaie vient en

Plus en détail

Créer un observatoire de la concurrence. Créer un observatoire de la concurrence. Démarche. ntérêt. C aractéristiques.

Créer un observatoire de la concurrence. Créer un observatoire de la concurrence. Démarche. ntérêt. C aractéristiques. Cée un obsevatoie de la concuence poblématique I Quelle est l'étendue d'un maché? Quelle pat du maché, une entepise peut-elle espée pende? Quels sont les atouts des entepises pésentes su le maché? ntéêt

Plus en détail

Informations Techniques A7 A141. Roulements à Billes à Gorge Profonde. Roulements à Billes à Contact Oblique. Roulements à Billes Auto-Aligneurs

Informations Techniques A7 A141. Roulements à Billes à Gorge Profonde. Roulements à Billes à Contact Oblique. Roulements à Billes Auto-Aligneurs ROULEMENTS Pages Infomations Techniques A7 A141 Infos Tech. Roulements à Billes à Goge Pofonde B4 B45 Roulements à Billes à Contact Oblique Roulements à Billes Auto-Aligneus Roulements à Rouleaux Cylindiques

Plus en détail

Serveur vidéo IP. caméras analogiques PC serveur. PC Client 1. Serveur de stockage ( optionnel )

Serveur vidéo IP. caméras analogiques PC serveur. PC Client 1. Serveur de stockage ( optionnel ) Sony RealShot Manage V3 Info Poduit Mas 2005 RealShot Manage V3.0 Logiciel de gestion des caméas IP MJPEG, MPEG-4, Audio, il sait tout enegiste! Une nouvelle vesion du logiciel RealShot Manage de Sony

Plus en détail

SOMMAIRE F.1 SERVICES EXTERIEURS... 2 F.1.1 CATEGORIES DE SERVICES VISES... 2 F.2 FORMATION... 4 F.2.1 NATURE DES FORMATIONS... 4

SOMMAIRE F.1 SERVICES EXTERIEURS... 2 F.1.1 CATEGORIES DE SERVICES VISES... 2 F.2 FORMATION... 4 F.2.1 NATURE DES FORMATIONS... 4 F MODULE F PRESTATIONS ET MISSIONS SOMMAIRE F MODULE F PRESTATIONS ET MISSIONS... 1 F.1 SERVICES EXTERIEURS... 2 F.1.1 CATEGORIES DE SERVICES VISES... 2 F.1.2 SERVICES PERMANENTS... 2 F.1.3 SERVICES PONCTUELS...

Plus en détail

DEUXIEME ANNEE TRONC COMMUN TECHNOLOGIE TRAVAUX DIRIGES DE PHYSIQUE VIBRATIONS ONDES

DEUXIEME ANNEE TRONC COMMUN TECHNOLOGIE TRAVAUX DIRIGES DE PHYSIQUE VIBRATIONS ONDES UNIVERSITE DES SCIENCES ET DE A TECHNOOGIE HOUARI BOUMEDIENNE INSTITUT DE PHYSIQUE DEPARTEMENT DES ENSEIGNEMENTS DE PHYSIQUE DE BASE DEUXIEME ANNEE TRONC COMMUN TECHNOOGIE TRAVAUX DIRIGES DE PHYSIQUE VIBRATIONS

Plus en détail

ARBRES BINAIRES DE RECHERCHE

ARBRES BINAIRES DE RECHERCHE ARBRES BINAIRES DE RECHERCHE Table de smbole Recheche : opéation fondamentale données : éléments avec clés Tpe abstait d une table de smboles (smbol table) ou dictionnaie Objets : ensembles d objets avec

Plus en détail

Analyse et Conception d une Nouvelle Structure de Coupleur Squared-Coax-to-Microstrip pour des Applications Hautes Puissances en Télécommunications

Analyse et Conception d une Nouvelle Structure de Coupleur Squared-Coax-to-Microstrip pour des Applications Hautes Puissances en Télécommunications Communication Science & technologie N 9. Janvie 2011 COST Analyse et Conception d une Nouvelle Stuctue de Coupleu Squaed-Coax-to-Micostip pou des Applications Hautes Puissances en Télécommunications Naseddine

Plus en détail

CARACTERISTIQUES DES SECTIONS PLANES

CARACTERISTIQUES DES SECTIONS PLANES CRCTERITIQUE DE ECTION PLNE OENT TTIQUE D UNE ECTION PLNE oient une aie pane et une doite Le moment statiue de a section pa appot à m est défini pa intégae : m ( ) ( ) δ d (doénavant, on note e moment

Plus en détail

Le fabricant qui rend la piscine accessible à tous. ans. d ec en n a. is e. a n. i n e. piscines

Le fabricant qui rend la piscine accessible à tous. ans. d ec en n a. is e. a n. i n e. piscines Le fabicant qui end la piscine accessible à tous. ga antie 10 ans e d ec en n a l f fab ication a ç is e u di ect s i n e piscines w w w. p i s c i n e s - o p l u s. c o m DES PRODUITS INNOVANTS piscines

Plus en détail

Pour obtenir le grade de. Arrêté ministériel : 7 août 2006

Pour obtenir le grade de. Arrêté ministériel : 7 août 2006 THÈSE Pou obteni le gade de DOCTEUR DE L UNIVERSITÉ DE GRENOBLE Spécialité : Infomatique Aêté ministéiel : 7 août 2006 Pésentée pa Luc Michel Thèse diigée pa Fédéic Pétot et encadée pa Nicolas Founel pépaée

Plus en détail

MISSION INSTRUCTIONS : LIVRAISON DEMANDÉE LE A H SPECIMEN. Reproduction Interdite

MISSION INSTRUCTIONS : LIVRAISON DEMANDÉE LE A H SPECIMEN. Reproduction Interdite Valide en cochant la case intéessée A défaut de convention écite ente les paties au contat de tanspot ou de déclaation de valeu spécifiée pa le donneu d ode, la esponsabilité du tanspoteu, en cas de pete

Plus en détail

LA CONVERSION DE DONNÉES HISTORIQUES SELON UN NOUVEAU SYSTÈME DE CLASSIFICATION POUR L ENQUÊTE MENSUELLE SUR LE COMMERCE DE GROS ET DE DÉTAIL

LA CONVERSION DE DONNÉES HISTORIQUES SELON UN NOUVEAU SYSTÈME DE CLASSIFICATION POUR L ENQUÊTE MENSUELLE SUR LE COMMERCE DE GROS ET DE DÉTAIL Assemblée annuelle de la SSC, juin 2003 Recueil de la Section des méthodes d enquête LA CONVERSION DE DONNÉES HISTORIQUES SELON UN NOUVEAU SYSTÈME DE CLASSIFICATION POUR L ENQUÊTE MENSUELLE SUR LE COMMERCE

Plus en détail

Roulements à billes et à rouleaux

Roulements à billes et à rouleaux Fo New Technology Netwok R copoation Roulements à billes et à ouleaux CAT. NO. 222-VIII/F Manuel technique A- Roulements à billes à goges pofondes B- Roulements miniatues B- 1 Roulements à billes à contact

Plus en détail

ARBRES BINAIRES DE RECHERCHE

ARBRES BINAIRES DE RECHERCHE ARBRES BINAIRES DE RECHERCHE Table de smboles Recheche : opéation fondamentale données : éléments avec clés Tpe abstait d une table de smboles (smbol table) ou dictionnaie Objets : ensembles d objets avec

Plus en détail

AVERTISSEMENT. Contact SCD INPL: mailto:scdinpl@inpl-nancy.fr LIENS

AVERTISSEMENT. Contact SCD INPL: mailto:scdinpl@inpl-nancy.fr LIENS AVERTISSEMENT Ce document est le fuit d un long tavail appouvé pa le juy de soutenance et mis à disposition de l ensemble de la communauté univesitaie élagie. Il est soumis à la popiété intellectuelle

Plus en détail

Chapitre 1.5a Le champ électrique généré par plusieurs particules

Chapitre 1.5a Le champ électrique généré par plusieurs particules hapte.5a Le chap électque généé pa pluseus patcules Le chap électque généé pa pluseus chages fxes Le odule de chap électque d une chage ponctuelle est adal, popotonnel à la chage électque et neseent popotonnel

Plus en détail

Préface. Le programme d électricité du S2 se compose de deux grandes parties :

Préface. Le programme d électricité du S2 se compose de deux grandes parties : Péface. Ce cus d électicité a été édigé à l intentin des étudiants qui pépaent, dans le cade de la éfme L.M.D 1, une licence dans les dmaines des Sciences de la Matièe et des Sciences et Technlgies. Il

Plus en détail

Po ur d o nne r un é lan à vo tre re traite

Po ur d o nne r un é lan à vo tre re traite Po u d o nne un é lan à vo te e taite ez a p é P aite t e e vot joud'hui dès au E N EN T TR RE E N NOOUUSS,, CC EESSTT FFAA CC I I LL EE DD EE SS EE O M M PP RR EE NN DDRRE E CC O Toutes les gaanties de

Plus en détail

Permis de feu. Travail par point chaud. r Soudage r Brasage. r Découpage r Tronçonnage. r Meulage r Autres. r Poste à souder r Tronçonneuse

Permis de feu. Travail par point chaud. r Soudage r Brasage. r Découpage r Tronçonnage. r Meulage r Autres. r Poste à souder r Tronçonneuse Pemis de feu Tavail pa point chaud Patage vote engagement Ce document doit ête établi avant tout tavail pa point chaud (soudage, découpage, meulage, ) afin de péveni les isques d incendie et d explosion

Plus en détail

SOMMAIRE. ATRACOM-Centrafrique Manuel de Procédures Administratives Financiers et Comptables

SOMMAIRE. ATRACOM-Centrafrique Manuel de Procédures Administratives Financiers et Comptables ATRACOM-Centafique Manuel de Pocédues Administatives Financies et Comptables G MODULE G GESTION DE LA TRESORERIE SOMMAIRE G MODULE G GESTION DE LA TRESORERIE... 1 G.1 COMPOSANTES DE LA TRESORERIE... 2

Plus en détail

S. BEN RAMDANE, T. DAMAY, F. HAUVILLE, F. DENISET, J.-A. ASTOLFI

S. BEN RAMDANE, T. DAMAY, F. HAUVILLE, F. DENISET, J.-A. ASTOLFI 1 èmes JOURNÉES E L HYROYNAMIQUE Nantes, 7, 8 et 9 mas 5 ETUE E L ECOULEMENT SUR UN HYROFOIL EN MOUVEMENTS FORCES : APPLICATION A LA PROPULSION CYCLOIALE STUY OF FLOW ON HYROFOIL UNERGOING UNSTEAY FORCE

Plus en détail

EXAMEN #1 ÉLECTRICITÉ ET MAGNÉTISME 20% de la note finale

EXAMEN #1 ÉLECTRICITÉ ET MAGNÉTISME 20% de la note finale EXAMEN #1 ÉLECTRICITÉ ET MAGNÉTISME 20% de la note finale Hiver 2009 Nom : Chaque question à choix multiples vaut 3 points 1. Dans quelle direction est le potentiel au centre du carré dans la figure suivante?

Plus en détail

E G A E E M. e v i t e. i t. Guide méthodologique à destination des chefs cuisiniers, des intendants, des acheteurs, de toute personne ayant un projet

E G A E E M. e v i t e. i t. Guide méthodologique à destination des chefs cuisiniers, des intendants, des acheteurs, de toute personne ayant un projet E G A L L I P S A E G R I e l A e T i N u E M Red I e v i t AL collec e n e n o i t a stau Guide méthodologique à destination des chefs cuisinies des intendants des acheteus de toute pesonne ayant un pojet

Plus en détail

Quelques éléments d écologie utiles au forestier

Quelques éléments d écologie utiles au forestier BTSA Gestion Foestièe Module D41 V.1.1. Avil 1997 Quelques éléments d écologie utiles au foestie Paysage vosgien : un exemple d écocomplexe divesifié. Sylvain Gaudin CFPPA/CFAA de Châteaufaine E 10 ue

Plus en détail

Quantité de mouvement et moment cinétique

Quantité de mouvement et moment cinétique 6 Quantité de mouvement et moment cinétique v7 p = mv L = r p 1 Impulsion et quantité de mouvement Une force F agit sur un corps de masse m, pendant un temps Δt. La vitesse du corps varie de Δv = v f -

Plus en détail

Mouvement d'une particule chargée dans un champ magnétique indépendant du temps

Mouvement d'une particule chargée dans un champ magnétique indépendant du temps Moueent d'une patiule hagée dans un hap agnétique indépendant du teps iblio: Pee elat Gaing Magnétise Into expéientale: Dispositif: On obsee une déiation du faseau d'életons losqu'il aie ae une itesse

Plus en détail

SOMMAIRE B.1 CADRE REGLEMENTAIRE... 2 B.1.1 RAPPEL DES TEXTES DE REFERENCE... 2

SOMMAIRE B.1 CADRE REGLEMENTAIRE... 2 B.1.1 RAPPEL DES TEXTES DE REFERENCE... 2 B MODULE B GESTION DU PERSONNEL SOMMAIRE B MODULE B GESTION DU PERSONNEL... 1 B.1 CADRE REGLEMENTAIRE... 2 B.1.1 RAPPEL DES TEXTES DE REFERENCE... 2 B.1.2 ORGANISMES SOCIAUX... 2 B.1.3 ORGANISMES DE CONTROLE...

Plus en détail

Plan du cours sur le magnétisme

Plan du cours sur le magnétisme Plan du cours sur le magnétisme. ntroduction historiue Aimants, pôle nord, pôle sud, l'expérience de Hans Christian Oersted, représentation du champ magnétiue terrestre... V. La découverte de Oersted Lien

Plus en détail

Dimensionnement optimal de machines synchrones pour des applications de véhicules hybrides

Dimensionnement optimal de machines synchrones pour des applications de véhicules hybrides Dimensionnement optimal de machines synchones pou des applications de véhicules hybides Sulivan Küttle o cite this vesion: Sulivan Küttle. Dimensionnement optimal de machines synchones pou des applications

Plus en détail

( Codes : voir verso du feuillet 3 ) SPECIMEN

( Codes : voir verso du feuillet 3 ) SPECIMEN Aide demandeu d emploi Pojet pesonnalisé d accès à l emploi Pesciption de Pô emploi RFPE AREF CRP - CTP ou d un patenaie de Pô emploi Pécisez : N d AIS Concene de naissance Pénom Né(e) Inscit(e) depuis

Plus en détail

SOMMAIRE. ATRACOM-Centrafrique Manuel de Procédures Administratives Financiers et Comptables

SOMMAIRE. ATRACOM-Centrafrique Manuel de Procédures Administratives Financiers et Comptables E MODULE E GESTION DES BIENS SOMMAIRE E MODULE E GESTION DES BIENS... 1 E.1 DEFINITIONS... 2 E.2 PRINCIPES DE GESTION... 3 E.2.1 OBJECTIFS POURSUIVIS... 3 E.2.2 DESTINATION FINALE DES BIENS MIS A DISPOSITION...

Plus en détail

Système d ouverture de TGV

Système d ouverture de TGV Centale MP 2008 Coigé du sujet de SII souce UPSTI Systèe d ouvetue de TGV Pésentation du systèe Q Diagae FAST Peette l accès à la voitue et ne as ette le assage en dange Taite les infoations et élaboe

Plus en détail

Évaluation de l'incertitude de mesure par une méthode statistique ("méthode de type A") Voir cours d'instrumentation

Évaluation de l'incertitude de mesure par une méthode statistique (méthode de type A) Voir cours d'instrumentation G. Pinson - Physique ppliquée Mesues - 16 / 1 16 - Instuments de mesues Eeu et incetitude su la mesue d'une gandeu Ce qui suit découle des pesciptions du IPM (ueau Intenational des Poids et Mesues, Fance),

Plus en détail

Microfondements du canal étroit du crédit bancaire : le motif de précaution

Microfondements du canal étroit du crédit bancaire : le motif de précaution Micofondements du canal étoit du cédit bancaie : le motif de pécaution Modèle de compotement d une banque confontée à un isque de liquidité et à une offe de financement extene impafaitement élastique Julio

Plus en détail

tudes & documents ÉCONOMIE ET ÉVALUATION L assurance habitation dans les départements d Outre Mer n 24 Juin 2010

tudes & documents ÉCONOMIE ET ÉVALUATION L assurance habitation dans les départements d Outre Mer n 24 Juin 2010 COMMISSARIAT GÉNÉRAL AU DÉVELOPPEMENT DURABLE n 24 Juin 2010 É tudes & documents L assuance habitation dans les dépatements d Oute Me RISQUES ÉCONOMIE ET ÉVALUATION Sevice de l économie, de l évaluation

Plus en détail

Gestion dynamique de contexte pour l informatique diffuse * Dynamic context management for pervasive computing

Gestion dynamique de contexte pour l informatique diffuse * Dynamic context management for pervasive computing Gestion dynamique de pou l infomatique diffuse * Dynamic context management fo pevasive computing Jéôme Euzenat 1 Jéôme Pieson 2 Fano Rampaany 2 1 INRIA Rhône-Alpes 2 Fance Telecom R&D Jeome.Euzenat@inialpes.f,

Plus en détail

Association Presse Purée - 58 rue Castetnau - 64 000 Pau pressepuree64@orange.fr / www.pressepuree64.fr 05 59 30 90 30 / 06 83 51 66 92

Association Presse Purée - 58 rue Castetnau - 64 000 Pau pressepuree64@orange.fr / www.pressepuree64.fr 05 59 30 90 30 / 06 83 51 66 92 Dossie d insciption Association Pesse Puée - 58 ue Castetnau - 64 000 Pau pessepuee64@oange.f / www.pessepuee64.f 05 59 30 90 30 / 06 83 51 66 92 Identification de la stuctue exposante SOUSCRIPTEUR Etes-vous

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

VALORISATION D INVESTISSEMENTS ET D ACTIONS PAR OPTIONS REELLES

VALORISATION D INVESTISSEMENTS ET D ACTIONS PAR OPTIONS REELLES CLUB FINANCE ALORISATION D INESTISSEMENTS ET D ACTIONS PAR OPTIONS REELLES LES ETUDES DU CLUB N 98 DECEMBRE 03 ALORISATION D INESTISSEMENTS ET D ACTIONS PAR OPTIONS REELLES LES ETUDES DU CLUB N 98 DECEMBRE

Plus en détail

DiaDent Group International

DiaDent Group International www.diagun.co.k DiaDent Goup Intenational Dispositif de compactage sans fil à chaleu intégée Copyight 2010 DiaDent Goup Intenational www.diadent.com Dispositif de compactage sans fil à chaleu intégée w

Plus en détail

Magister en : Electrotechnique

Magister en : Electrotechnique انج س ت انجضائش ت انذ مشاط ت انشعب ت République Algéienne Démocatique et Populaie صاسة انتعه ى انعان انبحث انعه Minitèe de l Eneignement Supéieu et de la Recheche Scientifique Univeité Mohamed Khide Bika

Plus en détail

Moments partiels crédibilistes et application à l évaluation de la performance de fonds spéculatifs

Moments partiels crédibilistes et application à l évaluation de la performance de fonds spéculatifs Moments patiels cédibilistes et application à l évaluation de la pefomance de fonds spéculatifs Alfed MBAIRADJIM M. 1 & Jules SADEFO K. 2 & Michel TERRAZA 3 1 LAMETA- Univesité Montpellie 1 et moussa alf@yahoo.f

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Amélioration des performances des aérogénérateurs

Amélioration des performances des aérogénérateurs N d ode : Séie : الجمهورية الجزاي رية الديمقراطية الشعبية REPUBIQUE AGERIENNE DEMOCRATIQUE ET POPUAIRE MINISTERE DE ENSEIGNEMENT SUPERIEUR ET DE A RECHERCHE SCIENTIFIQUE UNIERSITE CONSTANTINE I Faculté

Plus en détail

MÉTHODE ÉTABLISSEMENT DES TABLEAUX. 4,55 e. Les Guides pratiques de La FFt

MÉTHODE ÉTABLISSEMENT DES TABLEAUX. 4,55 e. Les Guides pratiques de La FFt D Les Guides pratiues de La FFt MÉTHODE ÉTABLISSEMENT DES TABLEAUX 2013 FFT/Dir. de la Compétition e/dir. Communication et du Marketing Imprimé sur papier recyclé 4,55 e ISBN 2-907 267-65-5 Méthode d établissement

Plus en détail

Algorithmique quantique : de l exponentiel au polynômial

Algorithmique quantique : de l exponentiel au polynômial Algorithmiue uantiue : de l onentiel au polynômial Novembre 008 Résumé L informatiue uantiue, même si elle n en est encore u à ses premiers pas, porte en elle des promesses ui lui ont valu un engouement

Plus en détail

Principes du traitement pharmacologique Dix-sept considérations dans le choix du traitement pharmacologique du TDAH 209

Principes du traitement pharmacologique Dix-sept considérations dans le choix du traitement pharmacologique du TDAH 209 Chapite 7: TRAITEMENT PHARMACOLOGIQUE DU TDAH Pincipes du taitement phamacologique Dix-sept considéations dans le choix du taitement phamacologique du TDAH 209 1. Âge et vaiations individuelles 2. Duée

Plus en détail

CONDUCTEURS EN EQUILIBRE ELECTROSTATIQUE

CONDUCTEURS EN EQUILIBRE ELECTROSTATIQUE Chapit II CONDUCTEURS EN EQUILIRE ELECTROSTTIQUE En élcticité, un conductu st un miliu matéil dans lqul ctains chags élctiqus, dits «chags libs», sont suscptibls d s déplac sous l action d un champ élctiqu.

Plus en détail

Mémoire de DEA. Modélisation opérationnelle des domaines de référence

Mémoire de DEA. Modélisation opérationnelle des domaines de référence Mémoie e DEA Ecole octoale IAEM Loaine / DEA Infomatique e Loaine Univesité Heni Poincaé, Nancy 1 LORIA Moélisation opéationnelle es omaines e éféence soutenu le Mai 22 juin 2004 pa Alexane Denis membes

Plus en détail

Annexe II. Les trois lois de Kepler

Annexe II. Les trois lois de Kepler Annexe II es tois lois de Keple écnique & 4 èe - Annexe II es tois lois de Keple Johnnes Keple (57-6), pulie en 596 son peie ouge, ysteiu Cosogphicu Teize nnées plus td, en 69, il pulie Astonoi No, dns

Plus en détail

Guide de l acheteur de logiciel de Paie

Guide de l acheteur de logiciel de Paie Note pespicacité Pivilégie les essouces humaines Guide de l acheteu de logiciel de Paie Table des matièes Intoduction Tendances écentes de Paie L automation de Paie avec libe-sevice pou employés Analyse

Plus en détail

est proportionnel à B, lui même proportionnel au courant i. On a donc

est proportionnel à B, lui même proportionnel au courant i. On a donc INDUCTION ÉLCTROMGNÉTIQU DNS UN CIRCUIT FIX INDUCTION ÉLCTROMGNÉTIQU DNS UN CIRCUIT FIX : CS D NUMNN I Descipion des cicuis dans le cade de l RQS 1 ) Inducances popes e inducances muuelles de cicuis filifomes

Plus en détail

Guide du système. Logiciel Navios tetra. Réf. 774541AA (Septembre 2009) Beckman Coulter, Inc. 4300 N. Harbor Blvd. Fullerton, CA 92835

Guide du système. Logiciel Navios tetra. Réf. 774541AA (Septembre 2009) Beckman Coulter, Inc. 4300 N. Harbor Blvd. Fullerton, CA 92835 CLEAR WATER Logiciel Navios teta Guide du système CAROUSEL CLEANING: PREPARE A SOLUTION OF 11 PART HOUSHOLD BLEACH (5% SOLUTIONOF SODIUM HYPOCHLORITE) AND 99 PARTS WATER, RINSE CAROUSEL WITH SOLUTION,

Plus en détail

2. De la Grâce à l action de Grâces Ph 1.3-7

2. De la Grâce à l action de Grâces Ph 1.3-7 De la Gâce à l action de Gâces Philippiens 1.3-7 2. De la Gâce à l action de Gâces Ph 1.3-7 Intoduction Cette semaine, j ai eu l occasion de emecie Dieu pou avoi pu appécie sa gâce en action. En fait,

Plus en détail

DEMANDE D OUVERTURE D UN COMPTE EPARGNE REMUNERE (Réservé aux particuliers) Exemplaire Client (à conserver)

DEMANDE D OUVERTURE D UN COMPTE EPARGNE REMUNERE (Réservé aux particuliers) Exemplaire Client (à conserver) GE Money Bank DEMANDE D OUVERTURE D UN COMPTE EPARGNE REMUNERE (Résevé aux paticulies) Exemplaie Client (à conseve) Vote Conseille Cachet du Conseille Le (date de l offe) O l'offe. N de poposition : N

Plus en détail

GESTION DE LA SAUVEGARDE DES DONNÉES (SÉCURITÉ ET STOCKAGE)

GESTION DE LA SAUVEGARDE DES DONNÉES (SÉCURITÉ ET STOCKAGE) GESTION DE LA SAUVEGARDE DES DONNÉES (SÉCURITÉ ET STOCKAGE) SAUVEGARDE DES DONNÉES DEMANDE D INFORMATION Vous souhaitez ecevoi de l infomation elative aux solutions de la thématique Gestion de la sauvegade

Plus en détail

SYSTÈME D ALARME ET PRODUITS TRANSMETTEURS

SYSTÈME D ALARME ET PRODUITS TRANSMETTEURS SYSTÈME D ALARME ET PRODUITS TRANSMETTEURS NOTICE D UTILISATION Vous venez d acquéi un système de sécuité DAITEM adapté à vos besoins de potection et nous vous en emecions. Quelques pécautions L'installation

Plus en détail

Roulements à rotule sur deux rangées de rouleaux en deux parties

Roulements à rotule sur deux rangées de rouleaux en deux parties Roulements à otule su deux angées de ouleaux en deux paties Réduction des coûts gâce au changement apide du oulement difficilement accessible Contenu Changement apide du oulement 2 Réduction des coûts

Plus en détail

CHAPITRE VIII : Les circuits avec résistances ohmiques

CHAPITRE VIII : Les circuits avec résistances ohmiques CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On

Plus en détail

BoxInternet :choisir le bon forfait

BoxInternet :choisir le bon forfait Au-delà En Tout Chez En D Aute Ce BoxIntenet :choisi le bon fofait Lesoffes «tiple play se» démocatisent gâce aux boîties d opéateus délivant l accès à Intenet dans tout le foye avec des communications

Plus en détail

THÈSE. présentée pour obtenir le titre de. DOCTEUR de L ÉCOLE NATIONALE SUPÉRIEURE D ARTS ET MÉTIERS. Spécialité: Génie Electrique.

THÈSE. présentée pour obtenir le titre de. DOCTEUR de L ÉCOLE NATIONALE SUPÉRIEURE D ARTS ET MÉTIERS. Spécialité: Génie Electrique. N d ode: 005-7 ECOLE DOCTORALE 43 Ecole Nationale Supéieue d At et Métie Cente de Lille THÈSE péentée pou obteni le tite de DOCTEUR de L ÉCOLE NATIONALE SUPÉRIEURE D ARTS ET MÉTIERS Spécialité: Génie Electique

Plus en détail

Cours 1. Bases physiques de l électronique

Cours 1. Bases physiques de l électronique Cours 1. Bases physiques de l électronique Par Dimitri galayko Unité d enseignement Élec-info pour master ACSI à l UPMC Octobre-décembre 2005 1 Champ électrique et ses propriétés Ce premier cours introduit

Plus en détail

I. Présentation de l'atelier. Lecture de l'engagement pédagogique.

I. Présentation de l'atelier. Lecture de l'engagement pédagogique. IMEP. Cous : Méthodologie spécialisée pou l enseignement de la fomation musicale (MD1& MD2 FM, AESI 1&2 option FM, AESI3, AESS FM). ATELIER CHANSON Année 2011-2012. Michel Jaspa. Séance 1 (4/10/11) I.

Plus en détail

ANNALES SCIENTIFIQUES DE L É.N.S.

ANNALES SCIENTIFIQUES DE L É.N.S. ANNALES SCIENTIFIQUES DE L É.N.S. HERVÉ ACQUET Su un ésultat de Waldspuge Annales scientifiques de l É.N.S. 4 e séie, tome 19, n o 2 (1986), p. 185-229.

Plus en détail

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie Cours d électricité Introduction Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Le terme électricité provient du grec ἤλεκτρον

Plus en détail

3ème CORRECTION L6-fiche d'exercices-approche DE LA NOTION DE FONCTION 2010-2011

3ème CORRECTION L6-fiche d'exercices-approche DE LA NOTION DE FONCTION 2010-2011 3ème CORRECTION L6-fiche d'exercices-approche DE LA NOTION DE FONCTION 200-20 Exercice Lire un tableau Voici un tableau de valeurs d'une fonction f: x 3 0 2 4 5 f(x) 7 2 3 5 3 6 En utilisant les données

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Gestion de projet - contraintes, chevauchement, attente entre 2 tâches, jalons

Gestion de projet - contraintes, chevauchement, attente entre 2 tâches, jalons Gestion de projet - contraintes, chevauchement, attente entre 2 tâches, jalons GÉRARD CASANOVA - DENIS ABÉCASSIS Paternité - Pas d'utilisation Commerciale - Pas de Modification : http://creativecommons.org/licenses/by-nc-nd/2.0/fr/

Plus en détail

LE LOGEMENT AU NUNAVIK

LE LOGEMENT AU NUNAVIK SOCIÉTÉ D HABITATION DU QUÉBEC LE LOGEMENT AU NUNAVIK DOCUMENT D INFORMATION WWW.HABITATION.GOUV.QC.CA Coodination du contenu et édaction Diection des affaies integouvenementales et autochtones Coodination

Plus en détail

Transformations nucléaires

Transformations nucléaires I Introduction Activité p286 du livre Transformations nucléaires II Les transformations nucléaires II.a Définition La désintégration radioactive d un noyau est une transformation nucléaire particulière

Plus en détail

GÉOMÉTRIQUES REPRÉSENTATIONS ET TRANSFORMATIONS MAT-2102-3. Activité notée 2. Date de remise :... Nom :...

GÉOMÉTRIQUES REPRÉSENTATIONS ET TRANSFORMATIONS MAT-2102-3. Activité notée 2. Date de remise :... Nom :... REPRÉSENTATIONS ET TRANSFORMATIONS GÉOMÉTRIQUES MAT-2102-3 Activité notée 2 Date de remise :... Identification de l'élève Nom :... Adresse :...... Tél :... Courriel :... Note :... /100 Juillet 2012 Code

Plus en détail

Méthodes de catégorisation : Réseaux bayesiens naïfs. Olivier Aycard E-Motion group. Université Joseph Fourier. http://emotion.inrialpes.

Méthodes de catégorisation : Réseaux bayesiens naïfs. Olivier Aycard E-Motion group. Université Joseph Fourier. http://emotion.inrialpes. Méthodes de atégosaton : éseau aesens naïfs le Aad E-Moton goup Unesté Joseph Foue http://emoton.nalpes.f/aad le.aad@mag.f lan du ous Intéêts éseau aesens naïfs Appentssage de éseau aesens naïfs ésentaton

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Cours de. Point et système de points matériels

Cours de. Point et système de points matériels Abdellah BENYOUSSEF Amal BERRADA Pofesseus à la Faculté des Scences Unvesté Mohammed V Rabat Cous de Pont et système de ponts matéels A L USAGE DES ETUDIANTS DU 1 ER CYCLE UNIVERSITAIRE FACULTES DES SCIENCES,

Plus en détail

5 ème Chapitre 4 Triangles

5 ème Chapitre 4 Triangles 5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du

Plus en détail

LA FORCE CENTRIFUGE. En effet, cette force tend à expulser les voitures en dehors d un virage serré.

LA FORCE CENTRIFUGE. En effet, cette force tend à expulser les voitures en dehors d un virage serré. LA ORCE CENTRIUGE Introduction La force centrifuge est assez connue du public, elle fait d ailleurs l objet d une question pouvant être posée pour l obtention du permis de conduire. En effet, cette force

Plus en détail

LINÉARISATION D'UNE THERMISTANCE PAR LA MÉTHODE DU POINT D'INFLEXION

LINÉARISATION D'UNE THERMISTANCE PAR LA MÉTHODE DU POINT D'INFLEXION L.T. 1 LINÉAISATION D'UNE THEMISTANCE PA LA MÉTHODE DU POINT D'INFLEXION BUT Utilisation d'une thermistance pour réaliser un capteur de température linéaire au voisinage d'une température donnée. La thermistance

Plus en détail

Année scolaire 2012-2013

Année scolaire 2012-2013 Année scolaie 2012-2013 Pogammes des études (Fomation sous statut étudiant) ommaie Pogamme de 1 e année (L3) 3 Pogamme de 2 e année (M1) 4 Pogamme de 3 e année (M2) 5 Domaines d appofondissement - Éco-Activités

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction élctomagnétiqu Intoduction : pésntation qualitativ du phénomèn d induction élctomagnétiqu A - Cas d un cicuit fix dans un champ magnétiqu dépndant du tmps Cas d Numann : I Ciculation du champ

Plus en détail