Algorithmique sur les automates. Recherche de motifs. On cherche toutes les occurrences

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Algorithmique sur les automates. Recherche de motifs. On cherche toutes les occurrences"

Transcription

1 Algorithmiqe r le tomte Recherche de motif O cherche tote le occrrece. Algorithme tilit de tomte Recherche de motif. Recherche de réglrité. Compreio.. Algorithme por l étde de tomte Compleité d étt : coût d pge d modèle à tre. Atomte et vriété de lgge : tet de propriété d lgge reco. d mot (le motif) de loger m d mot t (le tete) de loger. Recherche ïve por j de à -m+ comprer [..m] à t[j..j+m-] Propoitio Algorithme ïf : Epce pplémetire O(). Temp : miml m( m + ). e moyee i A. Tritemet prélble d motif o d tete = ccélértio de l recherche. Période et bord Ue période de A + : etier p tq. 0 < p i = i+p i i, i + p [, ] L période Per() = l pl petite période. U bord de A + : mot v A tq. v z, t A, = vz = tv Période et bord Propoitio Si A + et 0 < p, tfe : (i) p et e période. (ii) v A +, k > 0 tq v = p et p v k. (iii) v A +, k > 0 tq v = p et f v k. (iv) = (y) k où y = p, y ε et k > 0. (v), y, z, = y = p et = z = zy. Le bord Bord() de = le pl grd bord. Propoitio A +, A : Soit k = mi{l Bord l () = ε}. Le bord de ot Bord(), Bord (),..., Bord k (). Bord() i Bord() p Bord() = Bord(Bord()) io

2 L tomte de A f () = pl log v tq v et v p. Propoitio L tomte miiml de A et A () = (Pref(), ε,, δ : (p, ) f (p)) Propoitio L foctio δ e clcle pr p i p p p = Bord(p) = Bord(p) io Cotrctio de A () : + e lige, + temp de recherche O(), - temp de cotrctio O((m + ) A ), - epce pplémetire O((m + ) A ). Algorithme de Morri et Prtt Si [i l] = t[j l] (l ) et [i] t[j] décler le motif de i Bord[i ]. Repréettio compcte de A () : foctio de ppléce (cf. fig ). t j b i? i procédre MP(,t) i, j ; tt qe j tt qe i>m o (i et [i] t[j]) i SppMP[i]; i i+; j j+; i i = m+ occrrece de e j-m Algorithme de Morri et Prtt Le ombre de comprio [i] t[j] de l procédre MP et pl. Clcl de bord bé r Bord() i Bord() p Bord() = Bord(Bord()) io procédre Bord(,m) Bord[0] -; por j de à m i Bord[j-]; tt qe i 0 et [i+] [j] i Bord[i]; Bord[j] i+; Algorithme de Morri et Prtt Clcl de l foctio de ppléce SppMP : procédre SppMP(,m) SppMP[] 0; i 0; por j de à m- i SppMP[j]; // e fit itile tt qe i>0 et [i] [j] i SppMP[i]; i i+; SppMP[j+] i; C et l lgorithme MP (t =, = [..m]) Le clcl de l foctio de ppléce fit pl (m ) = m comprio. E jott d MP le tet j i + m, Coût(MP) = m Coût(MP+SppMP) = + m 7 8

3 Algorithme de Kth, Morri et Prtt Idée : pprimer le itértio por leqelle [i] = [SppMP(i)] Novelle foctio de ppléce SppKMP. BordDijoit[i ] : b c. t j b i Si k = SppMP[i], k i [i] [k] o i = m SppKMP[i] = SppKMP[k] io c i Algorithme de Kth, Morri et Prtt Déli : ombre miml de comprio r crctère de t. Le déli de l lgorithme de Kth, Morri et Prtt et log ϕ (m + ) où ϕ = + et cette bore et optimle. (Fie & Wilf, ) p, q et d = gcd(p, q). Si dmet p et q por période et i p + q d, lor dmet d por période. Corollire Si w et le bord trict de v et v et le bord trict de, lor > v + w Déli de KMP Fig. : comprio de lgorithme. Site de Fibocci : f 0 = ε, f = b, f =, f k+ = f k+ f k.. f k p f k+, b. f k f k+ =, c. Si k, f k = g k h k, h k =, lor h = b i (mod ) et h = b io. d. Si k, g k = g k h k g k et g k = f k g k. E prticlier, g k et bord dijoit de g k. e. Si k, g k = f k g k. Le mot g k p f k et g k p f k. f. g k et le bord (dijoit) de g k.,,, Simo 0, KMP 0 MP 0

4 Algorithme de Simo Idée : il y pe de tritio igifictive. Flèche vt : mèe de p à p. Flèche rrière : le tre e met p r ε. Propoitio D A (), il y pl flèche rrière. O pet doc repréeter l tomte de fço compcte, e oblit tote le tritio rmet r l étt iitil. O mémorie ii pl tritio. Algorithme de Kth, Morri et Prtt Idée : pprimer le itértio por leqelle [i] = [SppMP(i)] Novelle foctio de ppléce SppKMP. BordDijoit[i ] : b c. t j b i c i Si k = SppMP[i], k i [i] [k] o i = m SppKMP[i] = SppKMP[k] io Algorithme de Kth, Morri et Prtt Déli : ombre miml de comprio r crctère de t. Le déli de l lgorithme KMP et log ϕ (m + ) où ϕ = +. Cette bore et optimle. (Fie & Wilf, ) p, q et d = gcd(p, q). Si dmet p et q por période et i p + q d, lor dmet d por période. Corollire Si w et le bord trict de v et v et le bord trict de, lor > v + w +. Déli de KMP Site de Fibocci : f 0 = ε, f = b, f =, f k+ = f k+ f k.. f k p f k+, b. f k f k+ =, c. Si k, f k = g k h k, h k =, lor h = b i (mod ) h = b io. d. Si k, g k = g k h k g k et g k = f k g k. g k et bord dijoit de g k. e. Si k, g k = f k g k. Doc g k p f k et g k p f k. f. g k et le bord (dijoit) de g k.

5 Algorithme de Simo Idée : pe de tritio igifictive d A (). Flèche vt : mèe de p à p. Flèche rrière : le tre e met p r ε. Flèche igifictive : vt o rrière. A () pl flèche rrière. p q, q p p. N (q p) : b de flèche igifictive d A () prtt de r, q p r p p N (v) + (Bord() = ε) i v = N (v) = N (Bord(v)) i v = N (v) io i v = ε N (Bord(v)) i v = N (v) = N (Bord(v)) + (Bord(v v + ) = ε) io Algorithme de Simo Alye d ombre de flèche igifictive. Ch. Hcrt, If. Proc. Letter 7, (99) N (q p) p q + (q ε) + (p ) Corollire A () pl flèche igifictive. O pet le clcler e temp O( ). Propoitio L lgorithme de Simo fit moi de comprio qe l lgorithme KMP. 7 8 Clcl d déli (ε v p et Bord(v) v ) N (Bord(v)) = N (B (v)) Arbre de ffie t = t t $, où t = $ / {t,..., t }. Arbre de ffie : tomte détermiite rborecet recoit le ffie de t. E : Arbre de ffie d mot Propoitio v p N (v) + log (mi( v +, )) Corollire Le déli de l lgorithme de Simo et pl mi( + log ( ), A ). Étt fi : feille et rcie recoît le ffie de to le étt recoît le fcter de Tille qdrtiqe. t = b $ : O( ) étt. 9 0

6 Arbre de ffie compreé Compreio de l rbre précédet tille O() Ue rête et étiqetée pr fcter de t. t i t j et repréeté pr le cople (i, j). (,) (,) (,) (,) (,) (,) (,) (,) (,) Nœd eplicite = œd de l rbre. Nœd implicite : poitio blee de rête. Ne ot p de œd de l rbre compreé. Correpodet à de œd de l rbre o compreé. Cotrctio directe de l rbre compreé i : i ème ffie de t : i = t i t. Pricipe : iérer cceivemet,,..., T i : rbre obte prè iertio de i. : œd implicite o eplicite ocié à A Iertio de i+ d T i. Recherche de h i+ tel qe h i+ = pl log préfie de i+ d T i.. Si i+ = h i+ q i+, crétio d e o- q i+ velle rête h i+ i+. Chce de étpe pred temp cott. Algorithme de McCreight Bt : recherche de h,..., h e temp O() EI(T ) = {œd eplicite itere de T } Ivrit (lie ffie). A d l ite () Tot œd de EI(T i ) \ {ε} et brcht. () Si h i EI(T i ), o Sf() = Remrqe : h i EI(T i ) = EI(T i ). (preve : cotrctio de T i+ à prtir de T i ). Si h i = y i, A, lor h i+ = y i z i+. Si h i = ε, oit z i+ = h i+. O lor z j j Corollire Si o pet trover to le y i e temp liéire, o pet i trover to le h i e temp liéire. Algorithme de McCreight Bt : recherche de y,..., y e temp O(). Si o vit lie ffie prtt de h i, o ccéderit à y i à prtir de h i e temp cott. Mi ce lie et p grti pr l ivrit. Idée : tilier Sf(Père(h i )) [vec Sf(ε) = ε] Père(h i ) i v i h i Si i v i et implicite d T i, il ft le redre eplicite (e copt e rête) por mettre à jor le lie ffie de h i à i v i. Si i v i étit implicite d T i, lor h i = i v i. tot œd de EI(T i+ ) rete brcht. ε i y i v i

7 Algorithme de McCreight L recherche de y i à prtir de i e e fit p e lit v i lettre à lettre, mi e progret rête pr rête e e bt, à chqe œd eplicite, r l lettre ivte à lire. Temp d e étpe de recherche de y i : O( i ), i : b. de œd eplicite v e lit v i Soit w i le ffie de t l prè i. O : i w i w i+, d où i i =. Corollire L lgorithme de McCreight clcle l rbre de ffie e temp liéire. Algorithme d Ukkoe Nœd implicite (β, ) orml def miiml f[γ] clclé elemet por γ eplicite itere procedre Ierer ((β, ), t i+ ) {(β, ) et le poit ctif orml} α := root; (top, δ) := tet&plit((β, ), t i+ ) tt qe (!top) créer δ et tritio δ t i+ δ i α root, f[α] := δ α := δ (β, ) := ormlier(f[β],, t i+ ) (top, δ) := tet&plit((β, ), t i+ ) i α root, f[α] := δ Lgge tetble pr morce de Simo U o-mot d mot et mot dot le lettre formet e ite etrite de l ite de lettre de. Défiitio v i et elemet i et v ot même o-mot de loger. et d idice fii. Propoitio Soit L A. Alor L et io de -cle L et d l lgèbre de Boole egedrée pr le lgge de l forme A A k A. M(L): mooïde ytiqe d lgge L. L et tetble pr morce M(L) tifit (y) = (y) = y(y) por ( M(L) )!. M(L) tifit (y) ω = (y) ω = y(y) ω Corollire O pet décider i L et tetble pr morce. D ce c, L et tetble pr morce. 7 8

8 de Simo, y A, > 0 y = vec c(y) c( ) c( ). Soit défiie pr y ( = v et y = v et y), y A, > 0 Si y, il eite z tel qe z y Soit A. Alor y y = o y y Si M tifit (y) ω = (y) ω = y(y) ω, l reltio défiie pr y MM MyM et ordre (prtiel) r M. 9

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

La spirale de Théodore bis, et la suite «somme=produit».

La spirale de Théodore bis, et la suite «somme=produit». Etde d e vrite de l spirle de Théodore, dot issce à e site dot les sommes prtielles sot égles x prodits prtiels. Mots clés : spirle de Théodore, théorème de Pythgore, site, série, polyôme. L spirle de

Plus en détail

Estimation des incertitudes sur les erreurs de mesure.

Estimation des incertitudes sur les erreurs de mesure. Estmto des certtdes sr les errers de mesre. I. Itrodcto : E sceces epérmetles, l este ps de mesres ectes. Celle-c e pevet être q etchées d errers pls o mos mporttes selo le protocole chos, l qlté des strmets

Plus en détail

a g c d n d e s e s m b

a g c d n d e s e s m b PPrrooppoossiittiioo 22001111JJPP 22770055 000011 uu 0088 fféévvrriirr 22001111 VVlliiiittéé jjuussqquu uu 3300//0044//22001111 tim c ir tv é p g c h u i rè s G A Z iv lu s IC.G R é c lo y m ip s 9 r7

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Algorithmes sur les mots (séquences)

Algorithmes sur les mots (séquences) Introduction Algorithmes sur les mots (séquences) Algorithmes sur les mots (textes, séquences, chines de crctères) Nomreuses pplictions : ses de données iliogrphiques ioinformtique (séquences de iomolécules)

Plus en détail

A11 : La représentation chaînée (1ère partie)

A11 : La représentation chaînée (1ère partie) A11 : L représettio chîée (1ère prtie) - Défiitio et schéms de cosulttio - Schéms de mise à jour (isertio, suppressio) - Exemples J-P. Peyri - L représettio chîée (première prtie) 0 Pricipe de l représettio

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Liens entre fonction de transfert et représentations d'état d'un système (formes canoniques de la représentation d'état)

Liens entre fonction de transfert et représentations d'état d'un système (formes canoniques de la représentation d'état) oqe V oqe Cor e ere foco de rfer e repréeo dé d èe fore coqe de l repréeo dé SI Coe oqe! Irodco! e ere le dfféree decrpo d èe! Pge odèle dé " foco de rfer # C d èe oovrle # C d èe lvrle! Pge foco de rfer

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

TRANSLATION ET VECTEURS

TRANSLATION ET VECTEURS TRNSLTION ET VETEURS 1 sr 17 ctivité conseillée ctivités de grope La Translation (Partie1) http//www.maths-et-tiqes.fr/telech/trans_gr1.pdf La Translation (Partie2) http//www.maths-et-tiqes.fr/telech/trans_gr2.pdf

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

- Phénoméne aérospatial non identifié ( 0.V.N.I )

- Phénoméne aérospatial non identifié ( 0.V.N.I ) ENQUETE PRELIMINAIRE ANALYSE ET REFEREWCES : Phénoméne érosptil non identifié ( 0VNI ) B8E 25400 DEF/GEND/OE/DOlRENS du 28/9/1992 Nous soussigné : M D L chef J S, OPJ djoint u commndnt de l brigde en résidence

Plus en détail

l u N D I 15 M D I D I 3 17 J u D I N D D I I M N C h COuPE Du PrEsIDENT OPEN 104 FEuChErOllEs EAuBONNE s1 20h15 COuPE Du OPEN 104 EAuBONNE s2 20h15

l u N D I 15 M D I D I 3 17 J u D I N D D I I M N C h COuPE Du PrEsIDENT OPEN 104 FEuChErOllEs EAuBONNE s1 20h15 COuPE Du OPEN 104 EAuBONNE s2 20h15 6-boc caendie 220415_6 agenda 2006 p218-237 23/04/2015 15:36 Page 1 1 6-boc caendie 220415_6 agenda 2006 p218-237 23/04/2015 15:36 Page 2 36 31 août PTB 2015 37 38 7 14 1 8 15 OP 104 1 2015 OP PT Té BO

Plus en détail

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C. 16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires

Plus en détail

UNE AVENTVRE DE AGILE & CMMI POTION MAGIQUE OU GRAND FOSSÉ? AGILE TOVLOVSE 2011 I.VI VERSION

UNE AVENTVRE DE AGILE & CMMI POTION MAGIQUE OU GRAND FOSSÉ? AGILE TOVLOVSE 2011 I.VI VERSION UN AVNTVR D AGIL & CMMI POTION MAGIQU OU GRAND FOÉ? AGIL TOVLOV 2011 VRION I.VI @YAINZ AKARIA HT T P: / / W WW.MA RTVIW.F HT T P: / / W R WW.KIND OFMAG K.COM OT @ PAB L OP R N W.FR MARTVI. W W W / :/ P

Plus en détail

introduction Chapitre 5 Récursivité Exemples mathématiques Fonction factorielle ø est un arbre (vide) Images récursives

introduction Chapitre 5 Récursivité Exemples mathématiques Fonction factorielle ø est un arbre (vide) Images récursives introduction Chapitre 5 Images récursives http ://univ-tln.fr/~papini/sources/flocon.htm Récursivité http://www.poulain.org/fractales/index.html Image qui se contient elle-même 1 Exemples mathématiques

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation 1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus

Plus en détail

1 - Connexion au service de gestion des demandes informatiques du lycée

1 - Connexion au service de gestion des demandes informatiques du lycée 1 - Connexion au service de gestion des demandes informatiques du lycée http://support.e-lycee-paca.fr Adresse du service en ligne à partir de tout point d accès internet, 24h/24. 1 Les identifiants sont

Plus en détail

PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS J. L. NICOLAS

PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS J. L. NICOLAS PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS ET APPROXIMATIONS DIOPHANTIENNES J. L. NICOLAS Cet article expose sup 3 e quelques iter'f~reces etre les pr'obl~res dloptimisatio e hombres etiers et la th~or-ie

Plus en détail

Calendrier des collectes 2015

Calendrier des collectes 2015 N j t t hgé? O! g! Tz, t f! C t 2015 O mégè, mbg, mbt, éht t, t txt, éhtt D pt ptq Ctt bh t p m m tmt à, m pté q j pét tt q m jt hgé mt t. L tâh q m t fé t mpt mx hbtt t pépt mj t pmt é. E t ff à m té

Plus en détail

Chapitre 3 : Transistor bipolaire à jonction

Chapitre 3 : Transistor bipolaire à jonction Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

INTENTION LES PROCESSUS MATHÉMATIQUES

INTENTION LES PROCESSUS MATHÉMATIQUES INTENTION Adpttios u Cdre commu des progrmmes d études de mthémtiques M-9 telles que reflétées ds le documet Mthémtiques M-9 : Progrmme d études de l Albert (2007) Le coteu du documet Mthémtiques M-9 :

Plus en détail

OpenLDAP : retour d expérience sur l industrialisation d annuaires critiques

OpenLDAP : retour d expérience sur l industrialisation d annuaires critiques Intervention du 29 Avril 2004 9 h 15 10 h 45 M. Sébastien Bahloul Chef de projet Expert Annuaire LDAP bahloul@linagora.com OpenLDAP : retour d expérience sur l industrialisation d annuaires critiques Plan

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

Intégrales généralisées

Intégrales généralisées 3 Iégrles géérlisées Pour ce chpire, les focios cosidérées so priori défiies sur u iervlle réel I o rédui à u poi, à vleurs réelles ou complees e coiues pr morceu. L défiiio e les propriéés de l iégrle

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Je suis sous procédure Dublin qu est-ce que cela signifie?

Je suis sous procédure Dublin qu est-ce que cela signifie? FR Je suis sous procédure Dublin qu est-ce que cela signifie? B Informations pour les demandeurs d une protection internationale dans le cadre d une procédure de Dublin en vertu de l article 4 du Règlement

Plus en détail

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das

Plus en détail

! " # $ #% &!" # $ %"& ' ' $ (

!  # $ #% &! # $ %& ' ' $ ( !" #$%"& ! "#$#% &!" #$%"& ' '$( SOMMAIRE INTRODUCTION... 4 METHODE... 4 TAUX DE REPONSES ET VALIDITE DES POURCENTAGES... 4 RESULTATS... 6 I. Qui sont les étudiants ayant répondu?... 6 1.1. Répartition

Plus en détail

VILLE DE VILLEURBANNE CONSEIL MUNICIPAL 5 JUILLET 2010. -ooo-

VILLE DE VILLEURBANNE CONSEIL MUNICIPAL 5 JUILLET 2010. -ooo- VILLE DE VILLEURBANNE CONSEIL MUNICIPAL 5 JUILLET 2010 -ooo- La s é a n c e e s t o u v e r t e s o u s l a p r é s i d e n c e d e M o n s i e u r J e a n - P a u l BR E T, M a i r e d e V i l l e u r

Plus en détail

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars

Plus en détail

Compression Compression par dictionnaires

Compression Compression par dictionnaires Compression Compression par dictionnaires E. Jeandel Emmanuel.Jeandel at lif.univ-mrs.fr E. Jeandel, Lif CompressionCompression par dictionnaires 1/25 Compression par dictionnaire Principe : Avoir une

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

International : les références d Ineo Systrans

International : les références d Ineo Systrans International : les références d Ineo Systrans Ineo Systrans Références SAEIV* *Système d Aide à l Exploitation et d Information des Voyageurs ZONE EUROPE BELGIQUE Bruxe l les Liège Mons ROYAUME-UNI Edimbourg

Plus en détail

Le signal GPS. Les horloges atomiques à bord des satellites GPS produisent une fréquence fondamentale f o = 10.23 Mhz

Le signal GPS. Les horloges atomiques à bord des satellites GPS produisent une fréquence fondamentale f o = 10.23 Mhz Le signal GPS Les horloges atomiques à bord des satellites GPS produisent une fréquence fondamentale f o = 10.23 Mhz Deux signaux en sont dérivés: L1 (fo x 154) = 1.57542 GHz, longueur d onde = 19.0 cm

Plus en détail

Module 3 : Inversion de matrices

Module 3 : Inversion de matrices Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que

Plus en détail

Chapitre VI Contraintes holonomiques

Chapitre VI Contraintes holonomiques 55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce

Plus en détail

LES ESCALIERS. Du niveau du rez-de-chaussée à celui de l'étage ou à celui du sous-sol.

LES ESCALIERS. Du niveau du rez-de-chaussée à celui de l'étage ou à celui du sous-sol. LES ESCALIERS I. DÉF I NIT I O N Un escalier est un ouvrage constitué d'une suite de marches et de paliers permettant de passer à pied d'un niveau à un autre. Ses caractéristiques dimensionnelles sont

Plus en détail

La DGFiP AU SERVICE DES COLLECTIVITÉS TERRITORIALES ET DES USAGERS. Un nouveau service pour faciliter les paiements

La DGFiP AU SERVICE DES COLLECTIVITÉS TERRITORIALES ET DES USAGERS. Un nouveau service pour faciliter les paiements La DGFiP AU SERVICE DES COLLECTIVITÉS TERRITORIALES ET DES USAGERS TIPI Titres Payables par Internet Un novea service por faciliter les paiements Un moyen de paiement adapté à la vie qotidienne TIPI :

Plus en détail

Le présentoir virtuel. Paul FABING

Le présentoir virtuel. Paul FABING L préir virl Pl FABING L x L'ffi ri ' viié q pr fibl prpri ri éjr A i 80% r ifri ppr xi à l'ffi ri C ppr v b hz l prir ri 50% Frçi éqipé rph L û xi à ir vi l 3G pr l érgr prhibiif rriir è r ri i ff L'

Plus en détail

La santé de votre entreprise mérite notre protection.

La santé de votre entreprise mérite notre protection. mutuelle mclr La santé de votre entreprise mérite notre protection. www.mclr.fr Qui sommes-nous? En tant que mutuelle régionale, nous partageons avec vous un certain nombre de valeurs liées à la taille

Plus en détail

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement.

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement. Choix d ives i s s eme e cer iude 1 Chapire 1 Choix d ivesissemes e ceriude. Défiiio L es décisios d ivesissemes fo parie des décisios sraégiques de l erepris e. Le choix ere différes projes d ivesisseme

Plus en détail

Les structures de données. Rajae El Ouazzani

Les structures de données. Rajae El Ouazzani Les structures de données Rajae El Ouazzani Les arbres 2 1- Définition de l arborescence Une arborescence est une collection de nœuds reliés entre eux par des arcs. La collection peut être vide, cad l

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

La complémentaire santé. des 16-30 ans CHEZ NOUS PAS DE PROFIT SUR VOTRE SANTÉ. adaptée à vos besoins pour faciliter votre accès aux soins :

La complémentaire santé. des 16-30 ans CHEZ NOUS PAS DE PROFIT SUR VOTRE SANTÉ. adaptée à vos besoins pour faciliter votre accès aux soins : La complémentaire santé des 16-30 ans CHEZ NOUS PAS DE PROFIT SUR VOTRE SANTÉ la réponse santé adaptée à vos besoins por faciliter votre accès ax soins : avec le tiers payant por ne pls avancer vos frais

Plus en détail

Recherche dans un tableau

Recherche dans un tableau Chapitre 3 Recherche dans un tableau 3.1 Introduction 3.1.1 Tranche On appelle tranche de tableau, la donnée d'un tableau t et de deux indices a et b. On note cette tranche t.(a..b). Exemple 3.1 : 3 6

Plus en détail

Solutions particulières d une équation différentielle...

Solutions particulières d une équation différentielle... Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod

Plus en détail

Chapitre 3: TESTS DE SPECIFICATION

Chapitre 3: TESTS DE SPECIFICATION Chapitre 3: TESTS DE SPECIFICATION Rappel d u c h api t r e pr é c é d en t : l i de n t i f i c a t i o n e t l e s t i m a t i o n de s y s t è m e s d é q u a t i o n s s i m u lt a n é e s r e p o

Plus en détail

à la fonction remplie par la pièce. AMP 1200 est un système de ventilation décentralisée d'applications. AMP 1200 est une centrale

à la fonction remplie par la pièce. AMP 1200 est un système de ventilation décentralisée d'applications. AMP 1200 est une centrale 68 NOMBREUSES POSSIBILITÉS OFFERTES PAR AMP 1 69 INFORMATION PRODUIT AMP 1 Avec un Airmaster vous ne choisissez pas seulement une solution d'avenir durable - mais PLEINS FEUX SUR LA FONCTIONNALITÉ ET LE

Plus en détail

Réinterprétation par inversion bayésienne des sondages électriques sur le lac Tritrivakely (Madagascar)

Réinterprétation par inversion bayésienne des sondages électriques sur le lac Tritrivakely (Madagascar) Colloq GOFCAN Gohyiq d ol t d fotio f i c i l l 11-12 t 1997, Body, Fc BRGM, INRA, ORSTOM, UMC Atct t R td Ritttio ivio yi d odg lctiq l lc Titivkly (Mdgc) Hiti Rkoto 1, Flvi Rivo-Nojhy 1, J-Bo Rtizfy

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

Étudier si une famille est une base

Étudier si une famille est une base Base raisonnée d exercices de mathématiqes (Braise) Méthodes et techniqes des exercices Étdier si ne famille est ne base Soit E n K-espace vectoriel. Comment décider si ne famille donnée de vecters de

Plus en détail

Accueil Events, l accueil personnalisé des touristes d affaires Informations, bonnes adresses, réservations et découvertes!

Accueil Events, l accueil personnalisé des touristes d affaires Informations, bonnes adresses, réservations et découvertes! Lyon City Card 1 jour 2 jours 3 jours Ta xis et M inibus - Tarifs forfaitaires Jour : 7h - 19h Nuit : 19h - 7h Lyon/ Villeurbanne - Aéroport St Exupéry 59 81 Lyon 5ème et 9ème excentrés - Aéroport St Exupéry

Plus en détail

Montages à plusieurs transistors

Montages à plusieurs transistors etor a men! ontages à plsiers transistors mplificaters à plsiers étages Dans de nombrex amplificaters, on cerce à obtenir n grand gain, ne impédance d entrée élevée (afin de ne pas pertrber la sorce d

Plus en détail

Algorithmes pour la planification de mouvements en robotique non-holonome

Algorithmes pour la planification de mouvements en robotique non-holonome Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

Licence ST Université Claude Bernard Lyon I LIF1 : Algorithmique et Programmation C Bases du langage C 1 Conclusion de la dernière fois Introduction de l algorithmique générale pour permettre de traiter

Plus en détail

ANALYSE NUMERIQUE NON-LINEAIRE

ANALYSE NUMERIQUE NON-LINEAIRE Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1 Tble des mtières Chpitre

Plus en détail

Lenovo S5000. Guide de démarrage rapide v1.0

Lenovo S5000. Guide de démarrage rapide v1.0 Lenovo S5000 Guide de démarrage rapide v1.0 Lisez attentivement ce guide avant d utiliser votre tablette. Toutes les informations accompagnées d un * dans ce guide s appliquent uniquement au modèle WLAN

Plus en détail

Informations techniques et questions

Informations techniques et questions Journée Erasmus Appel à propositions 2015 Informations techniques et questions Catherine Carron et Amanda Crameri Coordinatrices de projet Erasmus Contenu Call solution transitoire 2015 : remarques générales

Plus en détail

O p é r a t i o n s i m m o b i l i è r e s. I n f r a s t r u c t u r e s. C P E R

O p é r a t i o n s i m m o b i l i è r e s. I n f r a s t r u c t u r e s. C P E R O p é t i o n i m m o b i l i è e. I n f t u c t u e. C P E R 9 Opétion immobilièe. Inftuctue. CPER OPERATIONS IOBILIERES Cinq opétion ont à ignle en : Réhbilittion et mie ux nome de l'immeuble de l'venue

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

TRIGONOMETRIE Algorithme : mesure principale

TRIGONOMETRIE Algorithme : mesure principale TRIGONOMETRIE Algorithme : mesure principale Déterminer la mesure principale d un angle orienté de mesure! 115" Problèmatique : Appelons θ la mesure principale, θ et! 115" sont deux mesures du même angle,

Plus en détail

MINISTERE DE L EDUCATION NATIONALE ACADEMIE DE MONTPELLIER

MINISTERE DE L EDUCATION NATIONALE ACADEMIE DE MONTPELLIER MINISTERE E L EUTION NTIONLE EMIE E MONTPELLIER ELEVE Nom :.. Prénom :.. ETLISSEMENT SOLIRE Nom : dresse : Préfecture de la Lozère irection des services départementaux de l éducation nationale - atégorie

Plus en détail

SYSTEME DE TELEPHONIE

SYSTEME DE TELEPHONIE YTEME DE TELEPHOIE LE OUVEUTE PTIE MOITEU COULEU Le système de téléphonie comporte un moniteur vec un écrn couleurs de intégré u téléphone. Cette prtie est disponile en lnc, nthrcite et Tech. TLE DE MTIEE

Plus en détail

!" #$#% #"& ' ( &)(*"% * $*' )#""*(+#%(' $#),")- '(*+.%#"'#/* "'") $'

! #$#% #& ' ( &)(*% * $*' )#*(+#%(' $#),)- '(*+.%#'#/* ') $' !" #$#% #"& ' ( &)(*"% * $*' )#""*(+#%(' $#),")- '(*+.%#"'#/* "'") $' &!*#$)'#*&)"$#().*0$#1' '#'((#)"*$$# ' /("("2"(' 3'"1#* "# ),," "*(+$#1' /&"()"2$)'#,, '#' $)'#2)"#2%#"!*&# )' )&&2) -)#( / 2) /$$*%$)'#*+)

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

Cohérence des données dans les environnements d édition collaborative

Cohérence des données dans les environnements d édition collaborative 1 / 66 Cohérence des données dans les environnements d édition collaborative Pascal Molli Nancy-Université Habilitation à diriger des recherches 26 avril 2007 2 / 66 Introduction Édition Collaborative

Plus en détail

Programmation en Caml pour Débutants

Programmation en Caml pour Débutants Programmation en Caml pour Débutants Arthur Charguéraud 6 Ju 2005 Ceci est une version léaire imprimable du cours, mais il est fortement conseillé d utiliser la version teractive, sur laquelle la plupart

Plus en détail

Guide SEPA Paramétrage Experts Solutions SAGE depuis 24 ans

Guide SEPA Paramétrage Experts Solutions SAGE depuis 24 ans Guide SEPA Paramétrage Axe Informatique Experts Solutions SAGE depuis 24 ans Installation Paramétrage Développement Formation Support Téléphonique Maintenance SEPA Vérification du paramétrage des applications

Plus en détail

JE LÈGUE À L ŒUVRE DES VOCATIONS POUR FORMER NOS FUTURS PRÊTRES NOS RÉPONSES À VOS QUESTIONS SUR LES LEGS, DONATIONS, ASSURANCES VIE

JE LÈGUE À L ŒUVRE DES VOCATIONS POUR FORMER NOS FUTURS PRÊTRES NOS RÉPONSES À VOS QUESTIONS SUR LES LEGS, DONATIONS, ASSURANCES VIE Diocèses de Paris, Nanterre, Créteil et Saint-Denis JE LÈGUE À L ŒUVRE DES VOCATIONS POUR FORMER NOS FUTURS PRÊTRES NOS RÉPONSES À VOS QUESTIONS SUR LES LEGS, DONATIONS, ASSURANCES VIE FAITES DE VOS BIENS

Plus en détail

Marché à procédure adaptée (Article 28 du CMP)

Marché à procédure adaptée (Article 28 du CMP) Marché à procédre adaptée (Article 28 d CMP) Rénovation de la salle Egène DELACROIX Marché 08/203 02/05/203 Nom et adresse de l organisme acheter Chambre de Métiers et de l Artisanat d Val d Oise avene

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

Glendinning propose depuis plus de trente ans des solutions innovantes d une qualité exceptionnelle pour l industrie nautique.

Glendinning propose depuis plus de trente ans des solutions innovantes d une qualité exceptionnelle pour l industrie nautique. Glendinning propose depuis plus de trente ans des solutions innovantes d une qualité exceptionnelle pour l industrie nautique. Cablemaster, le produit distribué par Saim Marine, est un enrouleur automatique

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Gestion de données incertaines et de leur provenance

Gestion de données incertaines et de leur provenance Gestion de données incertaines et de leur provenance Pierre Senellart Séminaire INSERM & Institut TELEOM 7 octobre 2008 P. Senellart (TELEOM ParisTech) Données incertaines et provenance 07/10/2008 1 /

Plus en détail

NOEUD HERRINGBONE-PINEAPPLE STANDARD TYPE and PASS

NOEUD HERRINGBONE-PINEAPPLE STANDARD TYPE and PASS CopyrightCharles HAMEL aka Nautile 2012 Oct16th page 1 on 10 NOEUD HERRINGBONE-PINEAPPLE STANDARD TYPE and PASS Le sujet PASS a été traité ailleurs par moi alors consultez les pdf et les pages appropriées

Plus en détail

L apport du HPC pour l optimisation. Eric Jacquet-Lagrèze. FORUM TERATEC 28 juin 2011

L apport du HPC pour l optimisation. Eric Jacquet-Lagrèze. FORUM TERATEC 28 juin 2011 L apport du HPC pour l optimisation Eric Jacquet-Lagrèze FORUM TERATEC 28 juin 2011 Sommaire 1 / Recherche Opérationnelle et calcul scientifique 2 / Où se trouve la complexité et quels enjeux pour le HPC?

Plus en détail

Algorithmique et Programmation, IMA

Algorithmique et Programmation, IMA Algorithmique et Programmation, IMA Cours 2 : C Premier Niveau / Algorithmique Université Lille 1 - Polytech Lille Notations, identificateurs Variables et Types de base Expressions Constantes Instructions

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

Intégrale et primitives

Intégrale et primitives Chpitre 5 Intégrle et primitives 5. Ojetif On herhe dns e hpitre à onstruire l opérteur réiproue de l opérteur de dérivtion. Les deux uestions suivntes sont lors nturelles. Question : Soit f une pplition

Plus en détail

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1 Aalyse des doées Statistiques appliquées à la gestio Cours d aalyse de doés Master F. SEYTE : Maître de coféreces HDR e scieces écoomiques Uiversité de Motpellier I M. TERRAZA : Professeur de scieces écoomiques

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

L exclusion mutuelle distribuée

L exclusion mutuelle distribuée L exclusion mutuelle distribuée L algorithme de L Amport L algorithme est basé sur 2 concepts : L estampillage des messages La distribution d une file d attente sur l ensemble des sites du système distribué

Plus en détail

Déroulement de l épreuve de mathématiques

Déroulement de l épreuve de mathématiques Dérouleet de l épreuve de thétiques MATHÉMATIQUES Extrit de l ote de service 2012-029 du 24 février 2012 (BOEN 13 du 29-3-2012) Durée de l épreuve : 2 heures Nture de l épreuve : écrite pr le socle cou

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail