Théorie des Langages Formels Chapitre 5 : Automates minimaux

Dimension: px
Commencer à balayer dès la page:

Download "Théorie des Langages Formels Chapitre 5 : Automates minimaux"

Transcription

1 1/29 Théorie des Lngges Formels Chpitre 5 : Automtes minimux Florence Levé Année

2 2/29 Introduction Les lgorithmes vus précédemment peuvent mener à des utomtes reltivement gros. On souhite otenir des utomtes les plus petits possile, en grdnt l vntge des utomtes déterministes. Nous nous intéressons donc ici à l utomte déterministe ynt le moins d étts possile : Nous llons voir qu il est unique. Nous verrons deux méthodes pour l otenir : une directement à prtir d une expression rtionnelle ; l utre à prtir d un utomte déjà connu.

3 3/29 Automte miniml Théorème : Tout lngge reconnissle est reconnu pr un unique (u renommge près des étts) utomte déterministe complet tel que tout utre utomte déterministe complet u moins utnt d étts que lui. L utomte décrit ci-dessus est ppelé utomte miniml complet ou plus simplement utomte miniml reconnissnt le lngge.

4 4/29 Résiduel Soient A un lphet, L A un lngge et u A un mot. Le résiduel (à guche ou quotient à guche) de L pr rpport à u est le lngge u 1 L = {v A uv L}. Exemple : L = {,, } 1 L = {, }, 1 L = {}, c 1 L = Méthode : u 1 L est l ensemle X tel que L ua = ux Pour clculer un résiduel u 1 L sur un exemple simple : 1. Trouver les mots de L commençnt pr u : L ua ; 2. Enlever les préfixes u u 1 L.

5 5/29 Lemme Soit L A un lngge reconnu pr un utomte déterministe complet Aut = <A, Q, {d}, F, δ >. Soit u un mot. Il existe un unique chemin dns Aut prtnt de d et étiqueté pr u : soit p l étt dns lequel outit ce chemin. Alors : u 1 L = L p Preuve : ul p L implique L p u 1 L Pour v pprtennt à u 1 L, uv L. Puisque l utomte est déterministe, l unique chemin reconnissnt uv dns Aut est un chemin qui près voir reconnu u rrive en p et donc v L p. Ainsi u 1 L L p. Corollire : Tout lngge reconnissle un nomre fini de résiduels.

6 6/29 Lemme Pour tous mots u et v et pour tout lngge L, (uv) 1 L = v 1 (u 1 L) Preuve : (uv) 1 L = {w uvw L} = {w vw u 1 L} = v 1 (u 1 L)

7 7/29 Approche On peut clculer les résiduels u 1 L pour les longueurs de u successives : 0, 1, 2,... Comme il y un nomre fini de résiduels, le clcul ne peut que s rrêter.

8 8/29 Clcul des résiduels Donnée : un lngge L ; Hypothèse : le lngge L un nomre fini de résiduels ; Résultts : les résiduels de L (notés L 0,..., L k 1 où k est le nomre de résiduels de L). Premier résiduel : ε 1 L = L (le noter L 0 ) tnt que de nouveux ensemles pprissent : clculer les résiduels pr rpport ux lettres de l lphet en prtnt des ensemles précédemment otenus ; numéroter u fur et à mesure les lngges distincts rencontrés.

9 9/29 Formules utiles Dns le formulire suivnt est une lettre, L, L 1 et L 2 sont des ensemles (L 1 L 2 ) = 1 L 1 1 L (L 1 L 2 ) = ( 1 L 1 )L 2 si ε L (L 1 L 2 ) = ( 1 L 1 )L 2 1 L 2 si ε L (L ) = ( 1 L)L 5. 1 (L 1 L 2 ) = 1 L 1 1 L (A \ L) = A \ ( 1 L) 7. 1 (L 1 \ L 2 ) = ( 1 L 1 ) \ ( 1 L 2 )

10 10/29 Exemple Résiduels du lngge A sur lphet {, }. L 0 = ε 1 L = L 1 L 0 = 1 (A ) = ( 1 A ) 1 {} = ( 1 A)A {} = εa {} = A + := L 1 1 L 0 = L 0 1 L 1 = L 1 1 L 1 = ε + A := L 2 1 L 2 = L 1 1 L 2 = L 0

11 11/29 Remrques L méthode de clcul précédente n est ps implémentle dns tous les cs : prolème 1. Comment est donné le lngge L? Ps nécessirement pr le iis d une expression rtionnelle? prolème 2. Comment tester l églité d un lngge pr rpport ux précédents déjà clculés, en prticulier si le lngge n est ps reconnissle... et même qund il l est. L hypothèse nomre de résiduels fini n est ps toujours évlule et, sns elle, le clcul précédent ne finit ps. Pr contre, qund elle est implémentle, elle donne directement un utomte déterministe (vec le moins d étts possiles).

12 12/29 Construction de l utomte miniml Proposition : 1. Un lngge L est reconnissle si et seulement si le nomre de ses résiduels est fini. 2. L utomte déterministe miniml complet reconnissnt L est l utomte tel que : les étts sont numérotés de 0 à n 1 où n est le nomre de résiduels de L ; chque résiduel Li correspond à un étt noté i ; l étt de déprt 0 correspond u résiduel de L pr rpport à ε, c est-à-dire L lui-même (L 0 = ε 1 L = L) ; il existe une trnsition (i,, j) si et seulement si L j = 1 L i ; i est un étt d ccepttion si et seulement si ε L i. L utomte défini insi est ppelé utomte des résiduels.

13 13/29 L 0 = L = A 1 L 0 = L 1 = A + 1 L 0 = L 0 1 L 1 = L 1 1 L 1 = L 2 = ε + A 1 L 2 = L 1 1 L 2 = L 0 Exemple (ε L 2 L 2 étt d ccepttion) L0 L1 L2

14 14/29 Preuve de l proposition 1. Un lngge L est reconnissle si et seulement si le nomre de ses résiduels est fini. on donne une construction de l utomte résiduel. Le premier lemme du chpitre implique que le nomre de résiduels d un lngge reconnu pr un utomte fini est fini puisqu il est mjoré pr le nomre d étts de cet utomte. 2. L utomte déterministe miniml complet reconnissnt L est l utomte des résiduels. Remrquons églement que le même lemme ssocie à chque résiduel u moins un étt. Ainsi, le nomre d étts d un utomte déterministe complet reconnissnt un lngge est minoré pr le nomre de résiduels (de ce fit, à un étt n est ssocié qu un seul résiduel). Donc l utomte des résiduels un nomre miniml d étt.

15 15/29 Preuve de l proposition 2. L utomte déterministe miniml complet reconnissnt L est l utomte des résiduels. L utomte des résiduels est déterministe et complet : pr construction, pour chque étt (un résiduel) on clcule une trnsition et une seule pr chque lettre. L utomte des résiduels reconnît le lngge L. Idée : Si u = 1... n est un mot, il existe un chemin (L 0, 1, 1 1 L), (1 1 L, 2, 2 1 ( 1 1 L) = ( 1 2 ) 1 L), (( 1 2 ) 1 L, 3, ( ) 1 L),..., ( n 1 ) 1 L, n, ( n 1 n ) 1 L dns l utomte des résiduels. On : 1... n L si et seulement si ε ( n 1 n ) 1 L.

16 16/29 Preuve de l proposition Il reste à vérifier que tout utomte miniml déterministe complet est isomorphe à l utomte des résiduels i.e. à un renommge des étts est l utomte des résiduels. Soit donc un utomte Aut ynt le même nomre d étts que l utomte des résiduels. On vu que chque résiduel est ssocié à un unique étt Le résiduel pr ε est nécessirement l étt initil. Les étts terminux correspondent nécessirement ux résiduels qui contiennent le mot vide. Considérons à présent une trnsition (Li,, L j ). Cette trnsition existe puisque l utomte est complet et est unique puisque l utomte est déterministe. Pr ssocition des lngges ux étt, L j L i et donc 1 L i L j. Soit v un mot dns L j, v est lors l étiquette d un chemin prtnt de L i llnt dns un étt finl : v L i. Ainsi L j 1 L i. Donc les trnsitions de l utomte Aut sont les mêmes que celles de l utomte des résiduels.

17 17/29 Une mnière de tester l minimlité Idée : nous vons vu que, pour tout utomte déterministe, tout étt étit ssocié à un unique résiduel. Mis l réciproque n est ps vrie : deux étts peuvent être ssociés à un même résiduel. Si c est le cs l utomte n est ps miniml.

18 18/29 Étts séprés Soit Aut = <A, Q, {d}, F, δ > un utomte fini déterministe complet. Deux étts s, t Q sont séprés pr le mot u A si l une des deux conditions suivntes est vérifiée : u Ls=init et u L t=init ; u L s=init et u L t=init. Autrement dit, deux étts sont séprés pr un mot si le chemin étiqueté pr ce mot et prtnt de l un des deux étts outit dns un étt d ccepttion, tndis que le chemin étiqueté pr ce mot et prtnt de l utre étt outit dns un étt qui n est ps d ccepttion. Exemple : < {, }, {1, 2, 3}, {1}, {2}, {(1,, 2), (1,, 1), (2,, 3), (2,, 2), (3,, 3), (3,, 1)} >. Le mot vide sépre les étts 1 et 2. Le mot ne les sépre ps.

19 19/29 Test de minimlité Proposition : Un utomte déterministe complet est miniml si et seulement si pour tout couple d étts (p, q) il existe un mot qui sépre p et q. Conséquence : Le résultt précédent donne un moyen de montrer qu un utomte est miniml. Il suffit d exhier pour chque couple d étt (p, q) un mot qui les sépre. Pr exemple, l utomte précédent est miniml : le mot vide sépre les étts 1 et 2 ; il sépre ussi les étts 2 et 3 ; le mot sépre les étts 1 et 3.

20 20/29 Équivlence de Nérode Définition : Étnt donnés un utomte Aut, des étts p et q et un entier n 0, notons : 1. p q le fit que p et q ne sont séprés pr ucun mot 2. p n q le fit que p et q ne sont séprés pr ucun mot de longueur inférieure ou égle à n. L reltion (définie sur les étts de Aut) est ppelée Reltion de Nérode. Lemme : Étnt donné un utomte Aut, les reltions et n (pour tout entier n 0) sont des reltions d équivlence (i.e. réflexive, symétrique et trnsitive).

21 21/29 Prtitionnement des étts d un utomte Lemme : Pour un utomte de k étts : 1. pour tout entier n 0, p n+1 q si et seulement si p n q et pour toute lettre, δ(p, ) n δ(q, ) ; 2. il existe un entier n vec 0 n k tel que n = n+1 (i.e. pour tous étts p et q, p n q si et seulement si p n+1 q) et pour tout entier m n, m = n = ; 3. Si n = n+1 lors n+1 = n+2.

22 22/29 Algorithme de Moore Donnée : un utomte complet déterministe ccessile Résultt : l équivlence de Nérode et l utomte miniml reconnissnt le lngge reconnu pr l utomte donné Principe générl : l lgorithme clcule lettre pr lettre les mots séprnt des étts (il clcule donc les clsses d équivlences des reltions n ). Après exmen de chque longueur de mot possile, un iln est fit : il consiste à ttriuer un numéro (en chiffre romin) à chque clsse de n.

23 23/29 Algorithme de Moore Construire un tleu dont les colonnes sont les différents étts de l utomte de déprt. L première ligne de iln s otient en séprnt (pr ε) les étts d ccepttion et les utres en deux clsses. Numéroter I l étt de l première colonne ; Numéroter I ou II les étts des utres colonnes de mnière que tous les étts d ccepttion soient numérotés de l même mnière, et que tous les étts non d ccepttion soient numérotées de l utre mnière. Les lignes suivntes du tleu sont construites une pr une en regrdnt, pour chque étt, dns quel étt mène l trnsition pr une lettre de A et en notnt l clsse à lquelle pprtient cet étt dns l ligne iln précédente. Cette opértion est rélisée à rison d une ligne pr lettre de A.

24 24/29 Algorithme de Moore Un nouveu iln est effectué qui prend en compte le iln précédent et toutes les lignes que l on vient de clculer : deux colonnes différentes donnent deux clsses différentes. L ligne otenue fit le iln de tout ce qui précède et c est vec elle que l on recommence. Là encore, les clsses sont numérotées en chiffres romins à prtir de l guche. On répète les deux opértions qui précèdent jusqu à otenir deux lignes de iln successives identiques.

25 25/29 Algorithme de Moore Les étts de l utomte miniml complet sont les clsses de l dernière ligne de iln. Les trnsitions se trouvent dns le tleu entre l vnt-dernière et l dernière ligne de iln. L étt de déprt est l clsse contennt l étt de déprt de l utomte déterministe. Les étts d ccepttion sont les clsses contennt des étts d ccepttion de l utomte initil ; puisque ε sépre les étts d ccepttion des utres, une clsse ne contient soit que des étts d ccepttion, soit ucun étt d ccepttion.

26 26/29 Exemple

27 Exemple ε I II II I I II I I II II I II II I II II II II II I I II I I iln I II III IV IV III IV IV III III IV III III IV III III II II III IV IV III IV IV iln I II III IV IV III IV IV On s rrête cr on deux fois le même iln. 27/29

28 Exemple : utomte miniml ε I II II I I II I I II II I II II I II II II II II I I II I I iln I II III IV IV III IV IV III III IV III III IV III III II II III IV IV III IV IV iln I II III IV IV III IV IV I III IV II 28/29

29 29/29 Remrques L ppliction de l lgorithme de Moore peut éventuellement mener à l conclusion que tous les étts sont séprés. Cel constitue une preuve que l utomte initil est miniml. Du point de vue complexité, il y plus n étpes dns l lgorithme. Chque étpe fit un clcul en Θ(n crd(a)) (si les trnsitions données pr une tle de trnsitions vec ccès direct). L lgorithme une complexité en Θ(n 2 ) (mis il peut être ppliqué sur des utomtes très grnd pr exemple issus d une déterministion.

CH.1 Automates finis

CH.1 Automates finis CH.1 Automtes finis 1.1 Les utomtes finis déterministes 1.2 Les utomtes finis non déterministes 1. Les utomtes vec -trnsitions 1.4 Les expressions régulières 1.5 L'équivlence des modèles Automtes ch1 1

Plus en détail

Chapitre 2 Les automates finis

Chapitre 2 Les automates finis Chpitre 2 Les utomtes finis 28 2.1 Introduction Automtes finis : première modélistion de l notion de procédure effective.(ont ussi d utres pplictions). Dérivtion de l notion d utomte fini de celle de progrmme

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

Théorie des Langages Formels Chapitre 5 : Automates minimaux

Théorie des Langages Formels Chapitre 5 : Automates minimaux Théorie des Langages Formels Chapitre 5 : Automates minimaux Florence Levé Florence.Leve@u-picardie.fr Année 2015-2016 1/29 Introduction Les algorithmes vus précédemment peuvent mener à des automates relativement

Plus en détail

Automates hyper-minimaux

Automates hyper-minimaux Université derouen UFR des sciences et techniques Projet nnuel de mster 1 Encdrnts : Pscl Cron et Ludovic Mignot Automtes hyper-minimux Jen-Bptiste PRIEZ Rouen, le 20 mi 2011 Résumé Deux lngges sont f-équivlents

Plus en détail

2.1 L'automate minimal

2.1 L'automate minimal CH.2 Minimistion 2.1 L'utomte miniml 2.2 L'lgorithme de minimistion Automtes ch2 1 2.1 L'utomte miniml Le lngge L définit sur Σ* l reltion d'équivlence R L : x R L y ssi ( z, xz L yz L). L'AFD M définit

Plus en détail

Cours d informatique théorique de M. Arfi. FMdKdD fmdkdd [à] free.fr

Cours d informatique théorique de M. Arfi. FMdKdD fmdkdd [à] free.fr Cours d informtique théorique de M. Arfi FMdKdD fmdkdd [à] free.fr Université du Hvre Année 2009 2010 Tle des mtières 1 Reltions et lois de composition internes 2 1.1 Reltions.....................................

Plus en détail

Automates à états fnis Damien Nouvel

Automates à états fnis Damien Nouvel Automtes Automtes à étts fnis Automtes à étts fnis Pln Représenttion des utomtes (FSA) Défnition formelle (DFA) Équivlence DFA / NFA / ε-nfa Licence Informtique L1 Automtes 2 / 30 Automtes à étts fnis

Plus en détail

Automates et langages

Automates et langages Automtes et lngges L exmen corrigé RICM 9 jnvier 22 Grmmire Automte Expression On considère l grmmire régulière G =(Γ,Σ,S,Π) vec Γ = {S,P,R}, Σ={,} et Π={S P,P R,P S,R,R P }.. Construire un utomte A cceptnt

Plus en détail

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1 Lngges Automtes Non-déterminisme Grmmires Attiuées et Génértives Expressions régulières Correction Prtielle de Progrmmes Ceci n'est ps un cours de Lngge C++ 2.1 Comment implnter en C un reconnisseur de

Plus en détail

Automates finis. porte

Automates finis. porte utomtes finis Il s git d un modèle très souple, qui s dpte à des domines très différents en informtique. D une fçon générle, il sert à représenter les divers étts d un système (mécnique, électronique ou

Plus en détail

Théorie des automates et langages formels

Théorie des automates et langages formels Fculté des sciences Déprtement de mthémtiques Théorie des utomtes et lngges formels 1 4 7, d c d 2 c c d 5 c d c d, 8 c d 3 6 9,c,d,c,d,,c,d Année cdémique 2009 2010 Michel Rigo Tle des mtières Chpitre

Plus en détail

Option informatique :

Option informatique : Option formtique : l deuxième nnée Lurent Chéno été 1996 Lycée Louis-le-Grnd, Pris Tle des mtières I Arres 13 1 Arres ires 15 1.1 Défitions et nottions... 15 1.1.1 Défition formelle d un rre ire... 15

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

Notes de révision : Automates et langages

Notes de révision : Automates et langages Préprtion à l grégtion de mthémtiques 2011 2012 Notes de révision : Automtes et lngges Benjmin MONMEGE et Sylvin SCHMITZ LSV, ENS Cchn & CNRS Version du 24 octore 2011 (r66m) CC Cretive Commons y-nc-s

Plus en détail

Algorithmique et Programmation. Automates finis. Chap. I/9

Algorithmique et Programmation. Automates finis. Chap. I/9 Algorithmique et Progrmmtion. Automtes finis. Chp. I/9 Jen-Eric Pin To cite this version: Jen-Eric Pin. Algorithmique et Progrmmtion. Automtes finis. Chp. I/9. J. Akok et I. Comyn-Wttiu. Encyclopédie de

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Systèmes logiques combinatoires

Systèmes logiques combinatoires «'enseignement devrit être insi : celui qui le reçoit le recueille comme un don inestimle mis jmis comme une contrinte pénile.» Alert Einstein Systèmes logiques comintoires Définitions. es vriles inires

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - Bc ES. Étude du signe d une expression ) Signe de x + Ü Ü ½ Ò µ¼ Ò ½ 0) On détermine l vleur de x qui nnule x +, puis on pplique l règle : «signe de près le 0». ) Signe de x + x + c ܾ

Plus en détail

STI2D Logique binaire SIN. L' Algèbre de BOOLE

STI2D Logique binaire SIN. L' Algèbre de BOOLE L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

Analyse statique et domaines abstraits symboliques

Analyse statique et domaines abstraits symboliques Anlyse sttique et domines strits symoliques Mémoire d hilittion à diriger des recherches Lurent Muorgne Hilittion soutenue le 12 février 2007 à l Université Pris-Duphine Jury : Ptrick Cousot (rpporteur)

Plus en détail

Automates d arbres avec visibilité : rapport de stage de licence (L3)

Automates d arbres avec visibilité : rapport de stage de licence (L3) Automtes d rbres vec visibilité : rpport de stge de licence (L3) Nicols Perrin ENS de Lyon Mître de stge : Hubert Comon-Lundh - LSV, ENS Cchn Autre encdrnt : Florent Jcquemrd - LSV, ENS Cchn Résumé Mon

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Chapitre 9: Primitives et intégrales

Chapitre 9: Primitives et intégrales PRIMITIVES ET INTEGRALES 7 Chpitre 9: Primitives et intégrles Prérequis: Limites, dérivées Requis pour: Emen de mturité 9. «À quoi ç sert?» Un peu d histoire Isc Newton (64-77) Les clculs d ire de figures

Plus en détail

Séquence 7. Intégration. Sommaire

Séquence 7. Intégration. Sommaire Séquence 7 Intégrtion Sommire. Prérequis. Aire et intégrle d une fonction continue et positive sur [ ; ]. Primitives 4. Primitives et intégrles d une fonction continue 5. Synthèse de l séquence Dns ce

Plus en détail

Séquence 8. Probabilité : lois à densité. Sommaire

Séquence 8. Probabilité : lois à densité. Sommaire Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit

Plus en détail

devant l Université de Rennes 1

devant l Université de Rennes 1 N o d ordre: 3708 THÈSE Présentée devnt devnt l Université de Rennes 1 pour otenir le grde de : Docteur de l Université de Rennes 1 Mention Informtique pr Thoms Gzgnire Équipe d ccueil : DistriCom - IRISA

Plus en détail

LANGAGES - GRAMMAIRES - AUTOMATES

LANGAGES - GRAMMAIRES - AUTOMATES LANGAGES - GRAMMAIRES - AUTOMATES Mrie-Pule Muller Version du 14 juillet 2005 Ce cours présente et met en oeuvre quelques méthodes mthémtiques pour l informtique théorique. Ces notions de bse pourront

Plus en détail

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn)

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn) Chpitre 7 Primitives et Intégrles 7. Primitive d une fonction Soit f une fonction définie sur un intervlle K de R. On ppelle primitive de f, une fonction F dont l dérivée est f : F (x) = f(x). On note

Plus en détail

Chimie Avancement d une réaction chimique Chap.8

Chimie Avancement d une réaction chimique Chap.8 ère S Thème : Couleurs et imges TP n 6 Chimie Avncement d une réction chimique Chp.8 Notions et contenus Réction chimique réctif limitnt stœchiométrie notion d vncement Compétences eigiles Identifier le

Plus en détail

Les règles de Descartes et de Budan Fourier

Les règles de Descartes et de Budan Fourier Ojectifs de ce chpitre Mthémtiques ssistées pr ordinteur Chpitre 4 : Rcines des polynômes réels et complexes Michel Eisermnn Mt49, DLST LS4, Année 8-9 www-fourierujf-grenolefr/ eiserm/cours # mo Document

Plus en détail

Exercices Mathématiques Discrètes : Relations

Exercices Mathématiques Discrètes : Relations Exeries Mthémtiques Disrètes : Reltions Reltions inires R1 Soient A = {0, 1, 2, 3, 4} et B = {0, 1, 2, 3} deux ensemles. Erire expliitement les ouples (, ) R où (, ) R si et seulement si : =, + = 4,

Plus en détail

Cours de «concepts avancés de compilation» Travaux pratiques. Auteur : F. Védrine

Cours de «concepts avancés de compilation» Travaux pratiques. Auteur : F. Védrine Cours de «onepts vnés de ompiltion» Trvux prtiques Auteur : F. Védrine Les utomtes et les expressions régulières Les utomtes sont onstitués d étts et de trnsitions. Un étt définit l vnée dns l reonnissne

Plus en détail

Continuité - Limites Asymptotes à une courbe

Continuité - Limites Asymptotes à une courbe Continuité - Limites Asymptotes à une cre Continuité - Théorème des vleurs intermédiires Notion de continuité Grphiquement, on peut reconnître une fonction continue sur un intervlle I pr le fit que le

Plus en détail

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE 1GEN ciences et Techniques Industrielles Pge 1 sur 7 Automtique et Informtiques Appliquées Génie Énergétique Première 1 - LA VARIABLE BINAIRE L électrotechnique, l électronique et l mécnique étudient et

Plus en détail

Table des matières Dénombrer et sommer Événements et Probabilités

Table des matières Dénombrer et sommer Événements et Probabilités Tble des mtières 1 Dénombrer et sommer 5 1.1 Rppels ensemblistes............................. 5 1.1.1 Opértions ensemblistes....................... 5 1.1.2 Bijections............................... 7 1.2

Plus en détail

Algorithmes sur les mots (séquences)

Algorithmes sur les mots (séquences) Introduction Algorithmes sur les mots (séquences) Algorithmes sur les mots (textes, séquences, chines de crctères) Nomreuses pplictions : ses de données iliogrphiques ioinformtique (séquences de iomolécules)

Plus en détail

Automates temporisés. Amal El Fallah Seghrouchni Amal.Elfallah@lip6.fr

Automates temporisés. Amal El Fallah Seghrouchni Amal.Elfallah@lip6.fr Automtes temporisés Aml El Fllh Seghrouchni Aml.Elfllh@lip6.fr Pln Introduction Définition d un utomte temporisé Composition d utomtes temporisés Automtes hybrides Conclusion Le problème à résoudre monde

Plus en détail

edatenq est une application qui permet aux entreprises de compléter et d'envoyer leurs déclarations statistiques par internet.

edatenq est une application qui permet aux entreprises de compléter et d'envoyer leurs déclarations statistiques par internet. Sttistique mensuelle tourisme et hôtellerie Introduction edatenq est une ppliction qui permet ux entreprises de compléter et d'envoyer leurs déclrtions sttistiques pr internet. Il s'git d'une ppliction

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

Strasbourg, 12 novembre 2013 (projet) T-CY (2013) 26. Comité de la Convention Cybercriminalité (T-CY)

Strasbourg, 12 novembre 2013 (projet) T-CY (2013) 26. Comité de la Convention Cybercriminalité (T-CY) www.coe.int/tcy Strsourg, 12 novemre 2013 (projet) T-CY (2013) 26 Comité de l Convention Cyercriminlité (T-CY) Note d orienttion n 8 du T-CY Otention, dns le cdre d une enquête pénle, de données reltives

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

Techniques d analyse de circuits

Techniques d analyse de circuits Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre

Plus en détail

Calcul int egral. 15 d ecembre 2008

Calcul int egral. 15 d ecembre 2008 Clcul intégrl. 15 décembre 2008 2 Tble des mtières I Intégrles multiples 5 1 Rppels sur l intégrle définie des fonctions d une vrible. 7 1.1 Motivtions................................ 7 1.1.1 Cs des fonctions

Plus en détail

6 apprentissages supplémentaires

6 apprentissages supplémentaires 6 pprentissges supplémentires pour être polybâtisseur étnchéité couverture construction de fçdes Construction d échfudges systèmes de protection solire Ferblntier T crrière! Polybâtisseur des métiers vec

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 28 novembre 2013 Lien vers l dernière mise à jour de ce document Lien vers les exercices de ce chpitre Chpitre 20 Intégrtion Sommire 20.1 Continuité uniforme.................................

Plus en détail

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

Systèmes de transitions Automates à états finis

Systèmes de transitions Automates à états finis M2P GLRE Génie Logiciel, logiciels Réprtis et Embrqués Systèmes de trnsitions Automtes à étts finis Z. Mmmeri 1. Comportement de système L description de comportement d un système désigne l expression

Plus en détail

Chapitre VI Contraintes holonomiques

Chapitre VI Contraintes holonomiques 55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce

Plus en détail

Créer des jeux avec GLUP

Créer des jeux avec GLUP Créer des jeux vec GLUP GLUP (générteur ludopédgogique) est un service en ligne du CRDP de l cdémie de Versilles. Il permet de trnsformer des exercices à se de texte en mini-jeux téléchrgeles. Les jeux

Plus en détail

gfaubert septembre 2010 1

gfaubert septembre 2010 1 Notes de cours Pour l e secondire Compiltion et/ou crétion Guyline Fuert Septemre 00 gfuert septemre 00 Géométrie------------------------------------------------------------------------------------------------------------------------

Plus en détail

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états. ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie

Plus en détail

Statuts ASF Association Suisse Feldenkrais

Statuts ASF Association Suisse Feldenkrais Sttuts ASF Assocition Suisse Feldenkris Contenu Pge I. Nom, siège, ojectif et missions 1 Nom et siège 2 2 Ojectif 2 3 Missions 2 II. Memres 4 Modes d ffilition 3 5 Droits et oligtions des memres 3 6 Adhésion

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

CAP PRO E SCHEMA : LE MOTEUR

CAP PRO E SCHEMA : LE MOTEUR CAP PRO E SCHEMA : E MOTEUR folio folio folio folio folio folio folio 7 folio 8 folio 9 plque signlétique d un moteur puissnce sorée pr un moteur plque à ornes d un moteur triphsé e couplge étoile e couplge

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

4. PROTECTION À L OUVERTURE

4. PROTECTION À L OUVERTURE 42 4. PROTECTION À L OUVERTURE 4.1. Générlités Afin de lever l miguïté de l norme NF EN 16005 sur l exigence des prgrphes 4.6.2.1 et 4.6.3.1 (4) qunt à l définition de «lrge proportion», suf nlyse de risque

Plus en détail

Automates temporisés

Automates temporisés Automtes temporisés introdution pr un néophyte Prtie I / II Mots et utomtes temporisés Merredi 30 otore 20002 ÉNS Lyon Jérôme DURAND-LOSE jerome.durnd-lose@ens-lyon.fr MC2 LIP - ÉNS Lyon Automtes temporisés

Plus en détail

3.8. 1 Estimation de l aire d une région curviligne. Exemple 1 Estimer l aire de la région sous une hyperbole. Solution

3.8. 1 Estimation de l aire d une région curviligne. Exemple 1 Estimer l aire de la région sous une hyperbole. Solution .8 Aperçu de l intégrle.8 APERÇU DE L INTÉGRALE Estimtion de l ire d une région curviligne Erreur d pproimtion Aire ecte d une région curviligne 4 Intégrle définie 5 Intégrle définie négtive 6 Propriétés

Plus en détail

Préparation à l'examen écrit de maturité Mathématiques 2013

Préparation à l'examen écrit de maturité Mathématiques 2013 Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir

Plus en détail

SESSION 2013 MPIN007! INFORMATIQUE. Durée : 3 heures!

SESSION 2013 MPIN007! INFORMATIQUE. Durée : 3 heures! SESSION 2013 MPIN007 EPREUVE SPECIFIQUE - FILIERE MP " INFORMATIQUE Durée : 3 heures " N.B. : Le cndidt ttcher l plus grnde importnce à l clrté, à l précision et à l concision de l rédction. Si un cndidt

Plus en détail

Assemblages angulaires de plans de travail de cuisine d'une largeur de 60 cm

Assemblages angulaires de plans de travail de cuisine d'une largeur de 60 cm N 529 Assemlges ngulires de plns de trvil de cuisine d'une lrgeur de 60 cm A Description Le grit de frisge APS 900 et une défonceuse Festool, p. ex. l défonceuse OF 1400, permettent de réliser rpidement

Plus en détail

Des extraits de cette norme seront présentés pour la compréhension de la démarche.

Des extraits de cette norme seront présentés pour la compréhension de la démarche. Estimtion de l incertitude de l mesure : Appliction à l incertitude sur le clcul de l concentrtion d EDTA lors de l détermintion de l dureté d une eu nturelle Pour cette démrche, nous nous ppuierons sur

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Mathématiques discrètes Chapitre 4 : relations binaires

Mathématiques discrètes Chapitre 4 : relations binaires U.P.S. I.U.T. A, Déprtement Informtique Année 2009-2010 Mthémtiques isrètes Chpitre 4 : reltions inires 1. Générlités Définition Soient E 1, E 2,...E n es ensemles. Une reltion n-ire est l onnée un sous-ensemle

Plus en détail

SYSTEMES LOGIQUES LOGIQUE COMBINATOIRE

SYSTEMES LOGIQUES LOGIQUE COMBINATOIRE Ch.I Commnde des systèmes logiques ogique comintoire - p1 SYSTEMES OGIQUES OGIQUE COMBINATOIRE I Commnde des systèmes logiques 1. Structure des systèmes utomtisés Reprenons l structure étlie dns le cours

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

Logiciel Anti-Spyware Enterprise Module

Logiciel Anti-Spyware Enterprise Module Logiciel Anti-Spywre Enterprise Module version 8.0 Guide Qu est-ce qu Anti-Spywre Enterprise Module? McAfee Anti-Spywre Enterprise Module est un module d extension qui permet d étendre les cpcités de détection

Plus en détail

Toyota Assurances Toujours la meilleure solution

Toyota Assurances Toujours la meilleure solution Toyot Assurnces Toujours l meilleure solution De quelle ssurnce vez-vous besoin? Vous roulez déjà en Toyot ou vous ttendez s livrison. Votre voiture est neuve ou d occsion. Vous vlez les kilomètres ou

Plus en détail

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1 Grenoble INP Pgor 1ère nnée Exercices corrigés Anlyse numérique NB : Les exercices corrigés ici sont les exercices proposés durnt les sénces de cours. Les corrections données sont des corrections plus

Plus en détail

Là où on s y attend le moins, des

Là où on s y attend le moins, des REGARDS LOGIQUE & CALCUL L conjecture du crré inscrit Plcer sur une coure fermée qutre points formnt les coins d un crré est presque toujours possile. C est ien, mis comment se dérrsser du «presque»? Jen-Pul

Plus en détail

LITE-FLOOR. Dalles de sol et marches d escalier. Information technique

LITE-FLOOR. Dalles de sol et marches d escalier. Information technique LITE-FLOOR Dlles de sol et mrches d esclier Informtion technique Recommndtions pour le clcul et l pose de LITE-FLOOR Générlités Cette rochure reprend les règles de se à respecter pour grntir l rélistion

Plus en détail

GUIDE DE POSE_Fib-Air 9/11/04 11:10 Page 1

GUIDE DE POSE_Fib-Air 9/11/04 11:10 Page 1 GUIDE DE POSE_Fi-Air 9/11/04 11:10 Pge 1 GUIDE DE POSE_Fi-Air 9/11/04 11:10 Pge 2 SOMMAIRE A/ PRÉSENTATION Rélistion de conduits utoportnts pré-isolés à prtir de pnneux de l gmme Fi-Air. A/ PRÉSENTATION

Plus en détail

Intégration sur un intervalle quelconque MP

Intégration sur un intervalle quelconque MP ntégrtion sur un intervlle quelconque MP 9 décembre 22 Dns ce chpitre, on définit l notion de fonction continue pr morceu et intégrble sur un intervlle quelconque. Cel nous permettr de donner un sens à

Plus en détail

ANALYSE NUMERIQUE NON-LINEAIRE

ANALYSE NUMERIQUE NON-LINEAIRE Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1 Tble des mtières Chpitre

Plus en détail

2006-2007 PARTIE I (VERSION 1.0) (VERSION 4.0)

2006-2007 PARTIE I (VERSION 1.0) (VERSION 4.0) INITIATION A SCILAB M1-M2 MODELISATION EN BIOLOGIE DES POPULATIONS ET DES ECOSYSTEMES MODELISATION DU FONCTIONNEMENT DES ECOSYSTEMES 2006-2007 PARTIE I (VERSION 1.0) (VERSION 4.0) Soudni Kmel (Mître de

Plus en détail

Calibration absolue par la mesure du faisceau direct

Calibration absolue par la mesure du faisceau direct DNPA Clibrtion 16-01-04 1 Clibrtion bsolue pr l mesure du fisceu direct 1- Introduction Les différentes méthodes permettnt de fire des mesures bsolues en diffusion de neutrons ux petits ngles (DNPA) sont

Plus en détail

Dossier de demande de subvention

Dossier de demande de subvention Assocition Demnde de subvention n 12156*01 Loi du 1 er juillet 1901 reltive u contrt d ssocition Dossier de demnde de subvention Vous trouverez dns ce dossier tout ce dont vous vez besoin pour étblir votre

Plus en détail

La notion d intégrale dans l enseignement des mathématiques au lycée : une étude comparative entre la France et le Vietnam

La notion d intégrale dans l enseignement des mathématiques au lycée : une étude comparative entre la France et le Vietnam L notion d intégrle dns l enseignement des mthémtiques u lycée : une étude comprtive entre l Frnce et le Vietnm Cong Khnh Trn Luong To cite this version: Cong Khnh Trn Luong. L notion d intégrle dns l

Plus en détail

Guide d utilisation EasyMP Multi PC Projection

Guide d utilisation EasyMP Multi PC Projection Guide d utilistion EsyMP Multi PC Projection Tble des mtières 2 À propos d EsyMP Multi PC Projection Types de réunions proposés pr EsyMP Multi PC Projection... 5 Réunions à plusieurs imges... 5 Réunions

Plus en détail

Calcul de la rugosité surfacique

Calcul de la rugosité surfacique VI èmes Journées d Etudes Techniques 200 The Interntionl congress for pplied mechnics L mécnique et les mtériux, moteurs du développement durble du 05 u 07 mi 200, Mrrkech Mroc Clcul de l rugosité surfcique

Plus en détail

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................

Plus en détail

Calcul intégral. II Intégrale d une fonction 4

Calcul intégral. II Intégrale d une fonction 4 BTS DOMOTIQUE Clcul intégrl 8- Clcul intégrl Tble des mtières I Primitives I. Définitions............................................... I. Clculs de primitives.........................................

Plus en détail

RECUEIL DE LEGISLATION. A N 110 22 mai 2009. A N 157 12 août 2014. S o m m a i r e CYBERCRIMINALITÉ LOI; CONVENTION ET PROTOCOLE

RECUEIL DE LEGISLATION. A N 110 22 mai 2009. A N 157 12 août 2014. S o m m a i r e CYBERCRIMINALITÉ LOI; CONVENTION ET PROTOCOLE MEMORIAL Journl Officiel du Grnd-Duché de Luxemourg 2405 1623 MEMORIAL Amtsltt des Großherzogtums Luxemurg RECUEIL DE LEGISLATION A N 110 22 mi 2009 A N 157 12 oût 2014 S o m m i r e CYBERCRIMINALITÉ LOI;

Plus en détail

Licence M.A.S.S. Cours d Analyse S4

Licence M.A.S.S. Cours d Analyse S4 Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,

Plus en détail

Menu outils de navigation mennavi.htm

Menu outils de navigation mennavi.htm Pge de lncement index.htm Voici l représenttion schémtique de l structure du site Wllonie, toutes les crtes en mins... Pge d ccueil win.htm nevs générl menwin.htm À propos de l structure des données :

Plus en détail

Site web de réservations de voyages mettant en relation des clients voyageurs, des prestataires de services leur gestionnaire de

Site web de réservations de voyages mettant en relation des clients voyageurs, des prestataires de services leur gestionnaire de Usger Gérer session utilisteur Client Système comptble Client fidélisé Gérer Suivi Rés Administrteur site de réservtion Gestionnire fidélité Gérer Fidélité Gestionnire Hotels Gérer Hotels Site web de réservtions

Plus en détail

Résumé du cours d analyse de maths spé MP

Résumé du cours d analyse de maths spé MP 1 TOPOLOGE Résumé du cours d nlyse de mths spé MP 1 Topologie 1) Normes, normes équivlentes Une norme sur l espce vectoriel E est une ppliction N de E dns R vérifint : x E, N(x). x E, (N(x) = x = ) (xiome

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mthémtiques 2 première prtie : Anlyse 2 DEUG MIAS 1 e nnée, 2 e semestre. Mximilin F. Hsler Déprtement Scientifique Interfcultire B.P. 7209 F 97275 SCHOELCHER CEDEX Fx : 0596 72 73 62 e-mil :

Plus en détail

TD : Arbres Binaires de Recherche (A.B.R.)

TD : Arbres Binaires de Recherche (A.B.R.) TD : Arres Binires de eherhe (A.B..) Olivier ynud rynud@isim.fr http ://www.isim.fr/rynud ésumé Dns e Td nous proposons trois exeries. Le premier est onsré à l implémenttion du T.D.A. Ensemles dynmiques

Plus en détail

S il ne peut être déterminé en raison d'excavations et de remblais antérieurs, la référence est le terrain naturel environnant.

S il ne peut être déterminé en raison d'excavations et de remblais antérieurs, la référence est le terrain naturel environnant. Annexe A MESSAGE TYPE 8. COMMENTAIRES DES DEFINITIONS DE L ANNEXE NOTIONS ET METHODES DE MESURE 1. TERRAIN DE RÉFÉRENCE 1.1 Terrin de référence Le terrin de référence équivut u terrin nturel. S il ne peut

Plus en détail

Adaptation spatio-temporelle et hypermédia de documents multimédia

Adaptation spatio-temporelle et hypermédia de documents multimédia Adpttion sptio-temporelle et hypermédi de documents multimédi Séstien Lorie Jérôme Euzent Nil Lyïd INRIA Rhône-Alpes - LIG 655 Avenue de l Europe Montonnot - Sint Mrtin 38334 Sint Ismier Cedex {Sestien.Lorie,Jerome.Euzent,Nil.Lyid}@inrilpes.fr

Plus en détail

UNIVERSITE PARIS 1 PANTHEON SORBONNE UFR DE GESTION

UNIVERSITE PARIS 1 PANTHEON SORBONNE UFR DE GESTION UNIVERSITE PRIS PNTHEON SORBONNE UFR DE GESTION MTHEMTIQUES PPLIQUEES L ECONOMIE ET L GESTION LICENCE nnée Cours de Thierry LFY TRVUX DIRIGES semestre 7-8 Thème n : Rppels Eercice Déterminez l ensemble

Plus en détail

Systèmes de détection Exemples académiques & commerciaux

Systèmes de détection Exemples académiques & commerciaux Systèmes de détection Exemples cdémiques & commerciux Système de détection: Propgtion de logiciels mlveillnts Exemple I: MIT, ICSI & Consentry Jen-Mrc Robert, ETS Protection contre les mences - Détection

Plus en détail

Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances

Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances Turbine hydrulique Girrd simplifiée pour fibles et très fibles puissnces Prof. Ing. Zoltàn Hosszuréty, DrSc. Professeur à l'université technique de Kosice Les sites hydruliques disposnt de fibles débits

Plus en détail

DEUG MIAS 1 Année 2002-2003 Premier et deuxième semestres Feuilles de Cours

DEUG MIAS 1 Année 2002-2003 Premier et deuxième semestres Feuilles de Cours Deug Mis 1 Année 2002-2003 J.-F. Burnol Université Lille 1 1 DEUG MIAS 1 Année 2002-2003 Premier et deuxième semestres Feuilles de Cours Toutes les fiches de cours distribuées ux étudints pendnt l nnée

Plus en détail