Stages de Formation en Statistique Appliquée et Logistique

Dimension: px
Commencer à balayer dès la page:

Download "Stages de Formation en Statistique Appliquée et Logistique"

Transcription

1 Stages de Formation en Statistique Appliquée et Logistique

2 Un aperçu de nos stages Titre Avec PC Durée Info Visualisation de données de laboratoire avec Excel oui 2 jours p. 3 Analyse de données de laboratoire avec Excel oui 2 jours p. 4 Validation de méthodes analytiques (NOUVEAUTÉ!) oui 2 jours p. 5 Introduction à la biostatistique avec Excel oui 2 jours p. 5 Analyse de mesures répétées oui 2 jours Web Introduction à la méthodologie Six Sigma non 1 jour p. 6 Formation Six Sigma Green Belt oui 5 jours p. 6 Optimisation et supervision de procédés dans le cadre de PAT oui 2 jours p. 7 Maîtrise statistique de la qualité et des procédés oui 1 jour p. 8 Utilisation avancée des cartes de contrôle oui 1 jour p. 8 Analyse de données dans les études de stabilité oui 2 jours p. 9 Analyse de données de durée de vie oui 1 jour Web Les plans d expériences et leur utilisation avec STAVEX : partie A oui 2 jours p Les plans d expériences et leur utilisation avec STAVEX : partie B oui 2 jours p Conception robuste & méthode de Taguchi oui 2 jours p. 12 Introduction au Data Mining non 1 jour p. 13 Introduction à l analyse de données multivariées non 1 jour p. 13 Data Mining avec des arbres de décision CART oui 2 jours p. 14 Réseaux de neurones et algorithmes génétiques en pratique non 1 jour p. 15 Analyse des flux de matière par simulation : partie A oui 2 jours p Analyse des flux de matière par simulation : partie B oui 2 jours p Dates : se référer au formulaire d inscription ou à notre site Internet. Stages orientés vers les applications et illustrés par divers exemples et exercices. L utilisation de formules mathématiques est réduite au minimum. Cours enseignés en français mais aussi disponibles en anglais et en allemand. Possibilité d organiser les cours «à domicile» pour une entreprise ou un département. Les enseignants sont des statisticiens ou mathématiciens titulaires d un doctorat et avec une expérience professionnelle, en particulier dans l industrie pharmaceutique et chimique mais aussi dans l industrie mécanique et automobile. Informations : Dr Philippe Solot, AICOS Technologies SA, Efringerstrasse 32, CH-4057 Bâle Pour de plus amples informations sur les dates de cours et nos activités, veuillez consulter notre site Internet

3 Visualisation de données de laboratoire avec Excel Par des techniques de visualisation appropriées, vous pourrez détecter et comprendre efficacement les dépendances existant dans vos données. Le cours permet de commencer sans peine à utiliser des méthodes statistiques. Il traite les techniques les plus importantes, leur utilisation judicieuse et l interprétation des résultats obtenus. Les méthodes sont essentiellement graphiques et se rattachent aux notions de base de la statistique. Leur apprentissage est facilité par des exercices effectués dans Excel avec une librairie complémentaire, EasyStat. Aux laborantins, aux responsables de laboratoire, aux chimistes, aux ingénieurs. À tous ceux qui travaillent avec Excel et qui souhaitent exploiter au maximum les informations contenues dans leurs données. Avoir des connaissances de base d Excel est un atout. Aucune connaissance préalable en statistique ou en mathématiques est nécessaire. Techniques pour une variable Techniques pour deux variables Diagramme arbre et feuilles Histogramme Moyenne, médiane, écart-type, variance Étendue Boîte à moustache Distributions, loi normale (gaussienne) Intervalles de confiance (idées de base) Graphique quantiles versus quantiles Carte de contrôle simple Graphique de nuage de points Coefficient de corrélation Régression linéaire simple (introduction) Quelques recommandations Diagramme de Pareto Diagramme d Ishikawa Traitement en couches Durée : 2 jours Nombre de participants : de 4 à 12 personnes (1 ordinateur par personne) Pour de plus amples informations : Philippe Solot, AICOS Technologies SA, Efringerstrasse 32, CH-4057 Bâle, - 3 -

4 Analyse de données de laboratoire avec Excel Le cours est destiné aux personnes soucieuses d exploiter efficacement des données de laboratoire pour, par exemple, assurer la qualité de leurs mesures. Les participants se familiarisent avec les outils les plus importants de la statistique, en principe disponibles sur Excel. Ces outils permettent une visualisation et une modélisation des données. Les notions de base et les méthodes de validation sont introduites. Le cours est orienté vers les applications pratiques. Des exercices sur PC traitant des données analytiques occupent une place centrale dans le cours. Excel et une librairie complémentaire, EasyStat, sont utilisés. Aux laborantins, aux responsables de laboratoire, aux chimistes, aux ingénieurs. Des connaissances préalables élémentaires en statistique sont requises (par exemple celles correspondant au cours «Visualisation de données de laboratoire avec Excel»). Des connaissances de base dans l utilisation d Excel sont requises. Rappel de notions de base Comparaison de plusieurs échantillons Expériences inter-laboratoires Régression linéaire Calibration Description de données par des graphiques simples (boîte à moustache, histogramme) Intervalles de confiance pour la moyenne Justesse, répétabilité Problématique des données aberrantes ou extrêmes et tests pour les détecter Graphiques simples de comparaison (boîte à moustache en parallèle) Tests statistiques de comparaison de deux échantillons Analyse de variance pour la comparaison de plusieurs échantillons Reproductibilité de méthodes de mesure Analyse de variance dans une expérience interlaboratoires Ajustement d une droite Intervalles de confiance pour la pente et l ordonnée à l origine Qualité d ajustement et analyse des résidus Transformations pour obtenir une relation linéaire Prédiction Régression forcée par l origine Calibration en tant qu inverse de la régression Intervalle de confiance Durée : 2 jours Nombre de participants : de 4 à 12 personnes (1 ordinateur par personne) Pour de plus amples informations : Philippe Solot, AICOS Technologies SA, Efringerstrasse 32, CH-4057 Bâle, Tél : , Fax : , Courriel : - 4 -

5 Validation de méthodes analytiques (NOUVEAUTÉ!) Suite à ce cours, vous comprendrez les diverses étapes et calculs de la validation de méthodes ainsi que leur fondement, et vous saurez sur quels aspects mettre l accent dans votre rapport. Outre la méthode classique de calcul de grandeurs caractéristiques, un graphique intuitif et aisément compréhensible, le profil d exactitude, est traité. Toutes les méthodes sont présentées sur la base d exemples et mises en application lors d exercices pratiques sur PC. Aux laborantins et aux chimistes qui souhaitent valider des méthodes d analyse. Des connaissances de base d Excel (mais pas de statistique) sont requises. Notions de base Procédure de validation Contexte pratique Limite de détection / de détermination Régression linéaire, analyse des résidus Signification des grandeurs caractéristiques (linéarité, LOQ, LOQ de la matrice, répétabilité, reproductibilité, justesse, exactitude, ) Méthodes : taux de recouvrement, spiking, profil d exactitude, rapport d Horwitz Recommandations (procédure, randomisation, quantification, reporting) Introduction à la biostatistique avec Excel Le cours présente les principales méthodes de tests statistiques pour la biologie, la médecine et la pharmacie. Outre les techniques de comparaison d échantillons, il traite la problématique des comparaisons multiples et celle des mesures répétées ainsi que différents aspects des plans d expériences. Les méthodes sont introduites avec un souci de simplicité, le formalisme mathématique étant réduit au minimum. L accent est mis sur des exercices pratiques sur PC pour lesquels Excel et une librairie complémentaire, EasyStat, sont utilisés. Aux scientifiques en R&D qui désirent exploiter statistiquement leurs données. Des connaissances préalables d Excel et en statistique élémentaire sont requises (par exemple celles du cours «Visualisation de données de laboratoire avec Excel»). Notions de base Comparaison d échantillons Intervalle de confiance pour la moyenne Notions générales sur les tests statistiques Problématique des données extrêmes et tests correspondants Tests statistiques : t, Wilcoxon-Mann-Whitney, analyse de variance (ANOVA) Comparaisons multiples, mesures répétées (cours spécifique : cf. Internet) Influence de la taille d échantillon, analyse de tableaux croisés (test χ 2 ) Durée : 2 jours (pour chacun des cours de cette page) Nombre de participants : de 4 à 12 personnes (1 ordinateur par personne) Pour de plus amples informations : Philippe Solot, AICOS Technologies SA, - 5 -

6 Introduction à la méthodologie Six Sigma & Formation Six Sigma Green Belt Vous êtes confronté à la nécessité d optimiser vos procédés et de réduire notablement les coûts et vous désirez utiliser à ces fins la stratégie Six Sigma qui a fait ses preuves? Vous souhaitez acquérir, sur la base de nombreux cas pratiques, les connaissances indispensables à un Green Belt pour bien maîtriser le déroulement du projet et les analyses statistiques qui en font partie? Ce cours propose tout d abord une introduction d une journée à la méthodologie Six Sigma et explique dans ce cadre les 5 étapes DMAIC (Définir Mesurer Analyser Améliorer (Improve) Maîtriser (Control)). Vous apprendrez ensuite à connaître les outils Six Sigma et à les mettre en oeuvre efficacement. Vous appliquerez immédiatement les connaissances acquises pour résoudre par vous-même une série d exercices issus de la pratique. Pour vous faciliter la tâche, vous utiliserez Excel ainsi qu un progiciel convivial pour Six Sigma. La formation Green Belt comprend, outre un examen final et une attestation correspondante, une licence annuelle de ce progiciel.... l introduction? Aux managers qui souhaitent s informer sur les possibilités d application de Six Sigma, aux responsables production et qualité et aux responsables Six Sigma.... la formation Green Belt? Aux ingénieurs, aux scientifiques et aux techniciens dans les secteurs du développement, du génie des procédés, de la production et de la qualité. Aucune connaissance préalable en statistique n est requise, mais des connaissances de base d Excel sont recommandées. Méthodologie Six Sigma (1 jour) Outils Six Sigma (3,5 jours) Conclusion (0,5 jour) Qu est-ce que Six Sigma? Droit au but en 5 étapes claires (DMAIC) Vue d ensemble des outils Six Sigma Mise en place du système en entreprise, gestion de projet Présentation de projets Six Sigma réussis Process Mapping, diagramme d Ishikawa Visualisation de données Concepts de base (statistiques élémentaires, capabilité du procédé,...) Maîtrise Statistique de la Qualité et des Procédés Tests statistiques pour comparer des groupes Introduction aux plans d expériences Exercices détaillés sur PC Examen (certificat «Six Sigma Green Belt AICOS Technologies») Durée : 1 jour (Introduction), resp. 5 jours (Formation Green Belt) Nombre de participants : de 4 à 12 personnes (1 ordinateur par personne pour la formation Green Belt) Pour de plus amples informations : Philippe Solot, AICOS Technologies SA, Efringerstrasse 32, CH-4057 Bâle, Tél : , Fax : , Courriel : - 6 -

7 Optimisation et supervision de procédés dans le cadre de PAT (Process Analytical Technology) Voulez-vous adapter votre production aux standards GMP ou y est-elle déjà conforme? Vous voulez aussi mieux comprendre et maîtriser vos procédés? PAT (Process Analytical Technology) est une approche systématique qui constitute un des points clés de l initiative «GMP pour le 21 e siècle» de la FDA et qui est également fortement suivie par l'emea. Dans le cadre de la supervision de procédés requise par PAT, on collecte souvent de grandes quantités de données. Vous apprendrez à concevoir, analyser et superviser systématiquement vos procédés de fabrication en vous fondant sur les mesures des paramètres de qualité critiques. La priorité est accordée ici aux méthodes fondamentales qui, utilisées à bon escient, permettent de mieux comprendre les procédés. Les applications sont illustrées par de nombreux exemples pratiques et par des démonstrations de logiciel. Vous aurez en outre l'occasion de mettre les connaissances acquises en application au cours de nombreux exercices sur PC. Aux ingénieurs, aux scientifiques et aux techniciens dans les secteurs du développement, du génie des procédés, de la production et de la qualité. Des connaissances élémentaires en statistique sont requises (par exemple celles correspondant au cours «Visualisation de données de laboratoire avec Excel»). Le projet PAT Notions de base Plans d expériences Maîtrise des procédés Analyse de données multivariées La philosophie de PAT Stratégies pour l amélioration des procédés Visualisation de données Régression linéaire (multiple) : modélisation de la structure de corrélation entre observations Concept des plans d expériences statistiques Spécifications de l utilisateur Stratégie : criblage, modélisation, optimisation Plans d expériences : plans factoriels (fractionnaires), plans d optimisation Méthodes d analyse utilisées Cartes de contrôle Cartes Cusum Capabilité du processus : indices C p et C pk Analyse en composantes principales (ACP) Analyse discriminante Application : réduction de la dimension et maîtrise des procédés multivariée Durée : 2 jours Nombre de participants : de 4 à 12 personnes (1 ordinateur par personne) Pour de plus amples informations : Philippe Solot, AICOS Technologies SA, Efringerstrasse 32, CH-4057 Bâle, - 7 -

8 Maîtrise statistique de la qualité et des procédés Quand un procédé est-il sous contrôle? Comment reconnaît-on un écart par rapport à une valeur spécifiée? Comment peut-on comparer les résultats d un procédé sous contrôle aux spécifications exigées? Dans ce cours, vous apprendrez les principales techniques de supervision, d amélioration et de validation des procédés. Les méthodes sont essentielles en développement et en production (BPF/GMP) afin d identifier rapidement des variations de qualité et de documenter le déroulement des procédés (par exemple selon l Annual Product Review). Le cours présente beaucoup d applications pratiques et évite le formalisme mathématique dans la mesure du possible. Toutes les méthodes sont illustrées par des démonstrations sur PC. Principalement à des techniciens et à des responsables du contrôle de qualité. Des connaissances élémentaires en statistique sont requises (par exemple celles correspondant au cours «Visualisation de données de laboratoire avec Excel»). Maîtrise statistique de la qualité Maîtrise statistique des procédés (MSP) Aperçu de quelques autres méthodes Contexte historique Plans d échantillonnage : concepts (caractéristique des opérations), exemples (MIL STD 105E) Cartes de contrôle pour des moyennes et des valeurs individuelles, limites de contrôle et de spécification Cartes Cusum Capabilité du procédé : indices C p et C pk Maîtrise des procédés multivariée Stratégies d amélioration des procédés (Quality by Design) Utilisation avancée des cartes de contrôle Pour construire une carte de contrôle, on admet souvent que les données sont distribuées normalement, mais ce n est souvent pas le cas. Vous apprendrez des techniques pour traiter de telles données (y.c. la norme ISO 21747) ainsi que des stratégies de maîtrise des procédés multivariée. En outre, des tests simples pour évaluer des changements du procédé (ex. : une tendance) seront présentés. Les diverses méthodes seront appliquées lors d exercices sur PC. À tous ceux qui souhaitent utiliser les cartes de contrôle dans des situations complexes. Notions de base Cartes de contrôle, tests sur le procédé (tendance?) Maîtrise des procédés multivariée Modèles linéaires, analyse en composantes principales Données non normales Transformation; norme DIN ISO 21747, indices P p et P pk ; cartes de contrôle pour comptages (cartes p et u) Durée : 1 jour (pour chacun des cours de cette page) Nombre de participants : de 4 à 12 personnes (1 ordinateur par personne) Pour de plus amples informations : Philippe Solot, AICOS Technologies SA, - 8 -

9 Analyse de données dans les études de stabilité Devez-vous veiller à ce que votre produit pharmaceutique, biotechnologique, cosmétique, chimique ou agro-alimentaire conserve les mêmes propriétés pendant une certaine période? Au moyen des méthodes présentées, vous apprendrez dans ce cours à analyser les données caractérisant la stabilité de votre produit et à estimer de manière plausible sa durée de conservation. L accent sera mis sur l utilisation de méthodes graphiques ainsi que sur l adaptation de modèles statistiques adéquats. Les méthodes seront illustrées par des exemples et des exercices pratiques issus de l industrie chimique, pharmaceutique et cosmétique, pour lesquels Excel et une librairie complémentaire validée, EasyStat, seront utilisés. Les exigences et la mise en oeuvre des normes de la ICH seront par ailleurs discutées en détail. Aux responsables qualité, aux chimistes, aux pharmaciens et aux scientifiques qui doivent garantir la stabilité de produits sur un certain horizon temporel. Des connaissances élémentaires en statistique sont requises (par exemple celles correspondant au cours «Visualisation de données de laboratoire avec Excel»). Introduction Modèles de données de stabilité (fondements) Modèles de données de stabilité (approfondissement) Situation des données Exigences des normes ICH pour l exécution et l analyse des études de stabilité Bases de statistique Régression linéaire Ajustement d une droite Intervalles de confiance Prédiction de la stabilité Prédiction de la durée de conservation Analyse de covariance «Pooling» des données Facteurs additionnels (p. ex. emballage) «Bracketing» et «matrixing» Réponses multiples Voyez aussi le cours spécifique «Analyse de données de durée de vie» Êtes-vous confronté à des problèmes similaires à ceux décrits ci-dessus, mais qui concernent la fiabilité de machines ou d équipements techniques? Dans ce cas, ce cours spécifique est mieux adapté à vos besoins. Vous trouverez des informations correspondantes sur Durée : 2 jours (cours spécifique «Analyse de données de durée de vie» : 1 jour) Nombre de participants : de 4 à 12 personnes (1 ordinateur par personne) Pour de plus amples informations : Philippe Solot, AICOS Technologies SA, Efringerstrasse 32, CH-4057 Bâle, - 9 -

10 Les plans d expériences et leur utilisation avec STAVEX Les plans d expériences statistiques permettent d obtenir un maximum d informations à un coût minimal. Les avantages bien connus des plans d expériences sont : L efficacité : seules les expériences indispensables sont réalisées! L exactitude : pour un effort expérimental donné, la plus grande exactitude possible sera atteinte. Les interactions : les synergies existant entre les paramètres sont identifiées et mieux comprises. Le cours s adresse aux scientifiques qui souhaitent utiliser les plans d expériences statistiques afin, par exemple, d optimiser des procédés ou des produits à l aide de STAVEX. STAVEX est un progiciel convivial pour PC. Il a été initialement développé par l ancienne multinationale Ciba-Geigy et fonctionne sous Windows. Conçu comme système-expert, il guide l utilisateur dans tout le processus d optimisation qui va de la planification à l analyse des données. À chaque étape, il offre des conseils et facilite l interprétation des résultats. La poursuite du développement de STAVEX et sa maintenance sont assurées par AICOS Technologies SA. D une part, le cours permet d acquérir les connaissances de base nécessaires à une utilisation aisée des plans d expériences statistiques. D autre part, il permet aux participants de se familiariser avec STAVEX au moyen de nombreux exemples et exercices pratiques. Le cours se divise en deux parties, A et B, chacune programmée sur deux jours. Elles peuvent être suivies indépendamment l une de l autre. Dans la seconde partie, les participants ont la possibilité de soumettre leurs propres jeux de données. Aux scientifiques dans les domaines de la chimie, de la physique, du génie des procédés,... dans les secteurs de la recherche, du développement et de la production. Aucune connaissance préalable en statistique ou en mathématiques n est requise. La partie A ne suppose pas forcément une utilisation ultérieure de STAVEX. La partie B présuppose les connaissances acquises dans la partie A ou des connaissances équivalentes. Il est souhaitable, mais pas indispensable, d avoir déjà utilisé STAVEX (traitement puis discussion d exemples issus de données soumises par les participants)

11 Les plans d expériences et leur utilisation avec STAVEX Partie A : Concepts des plans d expériences statistiques Motivation : Pourquoi les plans d expériences statistiques sont-ils supérieurs à la méthode par tâtonnements? Spécifications de l utilisateur : variables de réponse, facteurs, interactions Stratégie : criblage de facteurs modélisation optimisation d une variable de réponse Les plans d expériences : plans factoriels plans factoriels fractionnaires plans d optimisation Les méthodes d analyse utilisées : criblage : graphique semi-normal modélisation et optimisation : régression multiple Expérimentation séquentielle Partie B : Optimisation de plusieurs variables de réponse : fonction de profit fonction de désirabilité Aspects économiques Plans particuliers : plans Desperado plans D-optimaux plans pour facteurs qualitatifs Adaptation de plans : contraintes expérimentales, tendance Complétion de plans par des expériences spécifiques Prise en compte a posteriori d un réglage imprécis du niveau des facteurs Visualisation interactive des plans et des résultats de l analyse Variables de réponse qualitatives : spécification et plans méthode d analyse utilisée : analyse discriminante Facteurs de mélange : concepts et définition des contraintes plans analyse Discussion de problèmes rencontrés par les participants : chaque participant a la possibilité d analyser avec l enseignant ses propres exemples appliqués. Recommandations pratiques Durée : 2 jours (partie A) et 2 jours (partie B) Nombre de participants : de 4 à 12 personnes (1 ordinateur par personne) Pour de plus amples informations : Philippe Solot, AICOS Technologies SA, Efringerstrasse 32, CH-4057 Bâle,

12 Conception robuste & méthode de Taguchi Souhaitez-vous développer vos procédés de telle sorte qu ils soient peu sensibles aux variations des paramètres du système et ne s éloignent pas d un objectif? Et bien entendu à coût minimal en un laps de temps très court? Grâce à des applications innovatrices des plans d expériences, ces objectifs ambitieux et a priori contradictoires peuvent être atteints. D abord étudiées au Japon par Taguchi, elles constituent actuellement une partie reconnue de la méthodologie moderne d optimisation des procédés et des produits. Ces techniques ont fait leurs preuves dans plusieurs secteurs industriels (chimie, agro-alimentaire, automobile et électronique). Elles peuvent aussi être utilisées dans l industrie pharmaceutique, par exemple dans l optimisation d instruments de mesure analytiques (HPLC) ou pour l installation d appareils sophistiqués. Après un rappel des concepts de base des plans d expériences et de leur utilisation, la méthode de Taguchi sera exposée. Ses avantages et ses inconvénients ainsi que les récents résultats de l ingénierie robuste seront discutés. La dernière partie du cours est consacrée aux problèmes rencontrés par les participants (présentation puis discussion). Aux scientifiques, aux ingénieurs et aux responsables de la qualité dans les secteurs du développement, de la production ou du contrôle de qualité. Des connaissances élémentaires en statistique sont requises (par exemple celles du cours «Visualisation de données de laboratoire avec Excel»). Des connaissances en plans d expériences ne sont pas indispensables mais constituent un atout. Introduction Notions statistiques de base Méthode de Taguchi Raffinements Aspects pratiques Quelques problèmes industriels Deux visions : l optimisation de la quantité et celle de la qualité selon la stratégie de Taguchi (conception robuste) Idée de base des plans d expériences Plans d expériences : stratégie, effets et interactions, plans, modélisation, analyse Approche séquentielle Exemple Philosophie de Taguchi en vue d améliorer la qualité Principe classique de Taguchi et plans produits Rapports signal/bruit Plans d expériences de Taguchi Critique de la méthode de Taguchi Traitement commun des facteurs maîtrisables et des paramètres de perturbation Analyse des interactions Paramètres de perturbation non maîtrisables Discussion des problèmes soumis par les participants Recommandations pratiques Durée : 2 jours Nombre de participants : de 4 à 12 personnes (1 ordinateur par personne) Pour de plus amples informations : Philippe Solot, AICOS Technologies SA,

13 Introduction au Data Mining Soupçonnez-vous vos bases de données de receler des trésors d informations cachées? Le «Data Mining» désigne les procédés et les algorithmes permettant de découvrir les structures et relations se trouvant dans les grandes bases de données complexes. Ce cours présente un large aperçu des principales méthodes de Data Mining. Différents aspects de l organisation des données seront abordés, et quelques techniques statistiques choisies seront exposées et illustrées par des exemples concrets. Aux managers et aux scientifiques. Aucune connaissance en statistique n est requise. Introduction Qu est-ce que le Data Mining? Data Mining et analyse statistique des données Organisation des données Collecte, sources et qualité des données et concepts Stockage des données (Data Warehouse) Techniques statistiques choisies (aperçu) Traitement analytique en ligne (OLAP) Apprentissage, analyse par regroupement Modélisation, arbres de classification (CART) Réseaux de neurones, algorithmes génétiques Limites du Data Mining Introduction à l analyse de données multivariées Souhaitez-vous découvrir et examiner les dépendances entre plusieurs variables? Différentes méthodes de la statistique multivariée, aussi bien numériques que graphiques, peuvent vous permettre d identifier les principales structures existant dans vos données. Elles rendent possible une interprétation claire et rapide des dépendances. Ces méthodes et leur utilisation sont illustrées par de nombreux exemples pratiques (production de colorants, qualité de procédés, spectrographie). Le cours est complété par des démonstrations sur PC. À tous ceux qui souhaitent analyser de grands jeux de données multivariées (des connaissances de base en statistique selon le contenu du cours en page 3 sont nécessaires). Représentations graphiques Réduction de la dimension Discrimination et classification D autres questions? Durée : 1 jour (pour chacun des cours de cette page) Nombre de participants : de 4 à 12 personnes Matrice de nuages de points, trellis-display, graphiques interactifs à l aide de l ordinateur (Spin, Brush) Analyse en composantes principales (ACP), biplot Analyse discriminante, arbres de classification et de régression (CART), classification hiérarchique Pour de plus amples informations : Philippe Solot, AICOS Technologies SA,

14 Data Mining avec des arbres de décision CART Votre production est confrontée à de graves problèmes de qualité sans que la cause ait pu être identifiée? Ou êtes-vous plutôt dans le domaine commercial et perdez des clients sans raison apparente? Si vous disposez d une grande quantité de données inexploitées, alors la puissance des arbres de décision CART vous permettra de comprendre l influence des divers paramètres (température, concentration, durée,... ou âge du client, sexe,...) sur votre système. Vous pourrez ainsi l optimiser efficacement. Ce cours présente les concepts de base des arbres de classification et de régression et les illustre par des exemples pratiques issus de divers domaines. De nombreux exercices sur ordinateur vous permettront de comprendre comment la méthode présentée peut vous aider à prendre aisément de bonnes décisions. Vous vous familiariserez en outre avec le logiciel convivial CART qui a déjà permis à de nombreuses entreprises d augmenter notablement leur efficacité. Aux responsables de la qualité, de la production ou du développement qui souhaitent exploiter des jeux de données de grande taille. Aux responsables marketing qui désirent analyser des données client pour créer ou promouvoir des produits ciblés. Des connaissances élémentaires en statistique sont requises (par exemple celles correspondant au cours «Visualisation de données de laboratoire avec Excel»). Introduction Arbres de classification Arbres de régression Mise en oeuvre en pratique L analyse de données non paramétrique Automatiser l analyse de données Comment lire un arbre de décision Quelques exemples d applications Historique Division de la population en sous-groupes, règles de division, affectation aux classes Croissance et élagage des arbres de décision Visualisation et interprétation des résultats Classification ou régression? Paramètres de contrôle Exemple pratique Bases de la régression Règles de division Construire des fichiers adéquats Utiliser les données existantes Données d apprentissage, de test et de validation Votre modèle : construction automatique de l arbre, sélection des variables, interprétation des résultats Automatiser les rapports, exporter les graphiques Faire des prédictions et exporter les modèles pour la production Durée : 2 jours Nombre de participants : de 4 à 12 personnes (1 ordinateur par personne) Pour de plus amples informations : Philippe Solot, AICOS Technologies SA,

15 Réseaux de neurones et algorithmes génétiques en pratique Souhaitez-vous déceler les nombreuses informations inconnues que contient une grande base de données complexe? Désirez-vous faire des prédictions fiables à partir de données antérieures? Devez-vous trouver une combinaison optimale des divers paramètres d entrée d un système? Les réseaux de neurones et les algorithmes génétiques sont alors à même de vous aider. Les réseaux de neurones ont la faculté d apprendre les relations les plus complexes entre des données, en particulier là où les méthodes statistiques ne sont applicables que de manière limitée. Le cours présente les idées générales des réseaux de neurones qui ont été appliquées à différents domaines (l industrie chimique, la robotique, la prédiction d un changement de tendance en bourse, la reconnaissance d images, la médecine etc...). Les algorithmes génétiques, qui figurent parmi les méthodes les plus robustes d optimisation, sont ensuite présentés. Ils peuvent notamment être utilisés pour l apprentissage de réseaux de neurones. La méthodologie est exposée dans le cours tout comme quelques applications pratiques par l intermédiaire de démonstrations sur PC. Aux managers et aux scientifiques. Des connaissances préalables minimales en mathématiques sont souhaitées mais ne sont pas indispensables. Réseaux de neurones Algorithmes génétiques Logiciel Développement historique Le perceptron multicouches (feed-forward) L apprentissage par l algorithme de rétro-propagation Forces et faiblesses des réseaux de neurones Étude de cas Motivation par la biologie Notions de base : aptitude, sélection, recombinaison, mutation Avantages et inconvénients Exemples d utilisation Comparaison de quelques logiciels Démonstration avec Excel Durée : 1 jour Nombre de participants : de 4 à 12 personnes Pour de plus amples informations : Philippe Solot, AICOS Technologies SA, Efringerstrasse 32, CH-4057 Bâle,

16 Analyse de flux de matière par simulation Devez-vous optimiser l efficacité ou l utilisation d une installation de production existante ainsi que des procédés correspondants, par exemple suite à des changements dans la répartition de la demande entre les produits? Ou, en tant qu ingénieur, concevoir de manière optimale une nouvelle usine? Dans ce cours, vous apprendrez à identifier les goulots d étranglement au moyen de simulations de nature logistique et à effectuer des analyses de capacité, afin de réduire les coûts de production et d éviter tout investissement superflu. Ce cours s adresse aux personnes qui désirent utiliser la simulation, par exemple pour optimiser des procédés et des installations de production, et qui souhaitent utiliser SIMBAX dans ce cadre. SIMBAX est un progiciel convivial pour PC. Il a été développé initialement par l ancienne multinationale Ciba-Geigy et fonctionne sur Windows. SIMBAX a été conçu pour les besoins spécifiques de l industrie des procédés et permet à l ingénieur de modéliser facilement une multitude d opérations des procédés continus à la logistique des conteneurs en passant par les opérations batch usuelles. Le progiciel offre de nombreux résultats graphiques, par exemple un diagramme de Gantt animé et des représentations statistiques pour l analyse des résultats. La poursuite du développement de SIMBAX et sa maintenance sont assurées par AICOS Technologies SA. D une part, le cours permet d acquérir les connaissances de base nécessaires à une utilisation aisée de la simulation de flux de matière. D autre part, il permet aux participants de se familiariser avec SIMBAX au moyen de nombreux exemples et exercices pratiques. Le cours se divise en deux parties, A et B, chacune programmée sur deux jours. Elles peuvent être suivies indépendamment l une de l autre. Aux ingénieurs en développement des procédés et/ou en conception d usines qui souhaitent profiter des possibilités d optimisation existant au niveau logistique (élimination des goulots d étranglement). Aux ingénieurs chimistes et aux responsables de production qui souhaitent utiliser pleinement le potentiel de capacité d installations multi-produit existantes en évitant systématiquement les conflits entre flux de matière. Aux managers qui souhaitent s informer sur les possibilités d application de la simulation de flux de matière

17 Analyse de flux de matière par simulation Partie A : Partie B : Introduction Niveaux de conception et de planification dans l industrie des procédés Composantes d un modèle de simulation SIMBAX et son environnement Simulation d un procédé isolé Description et modélisation de l équipement Description et modélisation d un procédé Une première simulation Analyse des résultats de simulation (diagramme de Gantt, statistiques d utilisation,...) Simulation d une usine multi-produit Représentation des produits et des matières premières Description et modélisation d un plan de production Tour d horizon des fonctions de SIMBAX Description détaillée d une étape de procédé Aperçu des opérations disponibles (y.c. opérations parallèles et conditionnelles) Exercice récapitulatif Procédés semi-continus, y.c. opérations de séparation et réservoirs tampons Modélisation rapide de procédés semblables au moyen de paramètres et supervision de variables définies par l utilisateur Analyse graphique détaillée du diagramme de Gantt dans des installations multi-produit Trafic de conteneurs : remplissage, vidage, transport Synchronisation de plusieurs opérations Regroupement ou division de batchs en cours de procédé Contraintes temporelles : disponibilité des appareils et des ressources, y.c. consommation de ressources variable et modélisation de pannes Gestion des données procédé et produit à l aide d Excel Durée : 2 jours (partie A) et 2 jours (partie B) Nombre de participants : de 4 à 12 personnes (1 ordinateur par personne) Pour de plus amples informations : Philippe Solot, AICOS Technologies SA, Efringerstrasse 32, CH-4057 Bâle, Tél : , Fax : , Courriel :

18 Les chargés de cours Philippe Solot est directeur d AICOS Technologies. Il possède une expérience de plus de 20 ans dans le milieu industriel. Il s est principalement spécialisé dans le domaine de l optimisation mathématique et de son application pour améliorer les processus de développement et de production. Il donne régulièrement des cours dans de hautes écoles suisses et françaises et a publié plus de vingt articles dans des revues scientifiques internationales réputées telles que International Journal of Production Research et INFOR. Monsieur Solot possède un doctorat de l Ecole Polytechnique Fédérale de Lausanne. Il a reçu le prix Robert Faure de l AFCET (France) pour sa thèse. Il a été président de l Association Suisse de Recherche Opérationnelle de 2001 à Stefanie Feiler est consultante en statistique appliquée chez AICOS Technologies depuis Elle travaillait précédemment en tant qu assistante de recherche au département de statistique de l université de Heidelberg (Allemagne), où elle a participé à des modules d enseignement destinés à des praticiens de l industrie pharmaceutique ainsi qu à des médecins, et a conseillé des chercheurs de l hôpital universitaire de Heidelberg dans le domaine de l analyse de données. Elle se passionne particulièrement pour la diffusion des méthodes statistiques aux praticiens qui ont régulièrement besoin, dans leur travail quotidien, de procédures statistiques. Madame Feiler a étudié les mathématiques et la chimie à l université de Tübingen (Allemagne). Son cursus comprend une année à Besançon, dans le cadre d un programme d échange, où elle a obtenu une maîtrise en mathématiques pures. Elle a soutenu sa thèse à l Université de Heidelberg dans le domaine de l analyse des séries temporelles

19 Commentaires de participants Quelques commentaires spontanés extraits des formulaires d évaluation des cours : «Un cours très bien structuré» «Graphiques très simples pour découvrir les dépendances complexes» «Ce qui a été présenté se retrouve très bien dans les exercices» «Le chargé de cours était excellent et très compétent. Il a rendu compréhensibles des dépendances compliquées et les a représentées clairement» «De nombreux problèmes peuvent être résolus avec STAVEX» «En général, j ai trouvé les exercices pratiques sur PC très bons» «Un bon mélange entre la théorie et la pratique» «Très bon support de cours» «Très professionnel, EasyStat fut une agréable surprise!» «Mes attentes ont été dépassées : la statistique n était plus ennuyeuse. Un mélange agréable entre théorie et exercices» Nous offrons aussi des cours adaptés à vos besoins spécifiques! AICOS Technologies SA a déjà donné des cours «à domicile» dans les entreprises suivantes : Alcan BASF Plant Science Company B. Braun Medical Clariant CSL Behring Daiichi-Sankyo Europe Eckart Ems-Chemie F. Hoffmann-La Roche Ivoclar Vivadent Mettler-Toledo Novartis Pharma Oril Industrie Sanofi-Aventis Siegfried SPI Pharma Syngenta Crop Protection Synthron Vifor Pharma etc

20 Progiciels : Conseil ou réalisation de projets Solutions informatiques pour vos analyses de routine avec Excel, R, S-Plus, SAS STAVEX : Notre système-expert pour les plans d expériences EasyStat : Nos pratiques macros Excel validées SIMBAX : Notre solution pour la simulation de flux de matière CART : Notre progiciel convivial de Data Mining Des questions? Des problèmes? Appelez-nous sans hésiter : QuickGantt & Schedule++ : Nos solutions pour faciliter l ordonnancement Tél. : Fax : ou envoyez-nous un courriel à : AICOS Technologies SA Efringerstrasse 32 CH-4057 Bâle

Stages de Formation en Statistique Appliquée et Logistique

Stages de Formation en Statistique Appliquée et Logistique Stages de Formation en Statistique Appliquée et Logistique Un aperçu de nos stages Titre Avec PC Durée Info Visualisation de données de laboratoire avec Excel oui 2 jours p. 3 Analyse de données de laboratoire

Plus en détail

Utilisation des plans d expériences dans la recherche, le développement et la production

Utilisation des plans d expériences dans la recherche, le développement et la production Berne, Suisse, Septembre 2010 Utilisation des plans d expériences dans la recherche, le développement et la production Cours de 3 jours : du mercredi 13 au vendredi 15 avril 2011 ou du mercredi 7 au vendredi

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining.

Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. 2 jours : Mardi 15 et mercredi 16 novembre 2005 de 9 heures 30 à 17 heures 30 Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. Madame, Monsieur, On parle

Plus en détail

CATALOGUE DES FORMATIONS 2014

CATALOGUE DES FORMATIONS 2014 CATALOGUE DES FORMATIONS 2014 Introduction à la Statistique Techniques de modélisation Plans d expériences Méthodes et outils de la Fiabilité Maîtrise Statistique des Processus Analyse multi-variée Six

Plus en détail

CATALOGUE DES FORMATIONS STATISTIQUES 2015

CATALOGUE DES FORMATIONS STATISTIQUES 2015 CATALOGUE DES FORMATIONS STATISTIQUES 2015 Améliorez vos connaissances statistiques pour une meilleure exploitation de vos données TOUTES LES SOLUTIONS FORMATION INTER Entreprises (catalogue) ou INTRA

Plus en détail

LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION

LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION Sylvie Gervais Service des enseignements généraux École de technologie supérieure (sylvie.gervais@etsmtl.ca) Le laboratoire des condensateurs

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

UNIVERSITÉ PARIS DESCARTES

UNIVERSITÉ PARIS DESCARTES UNIVERSITÉ PARIS DESCARTES MASTER Domaine DROIT, ÉCONOMIE, GESTION Mention MONNAIE,BANQUE, FINANCE, ASSURANCE Spécialité RISQUE, ASSURANCE, DÉCISION 2014 / 2015 Z.Trocellier Directeurs Pr Kouroche VAFAÏ

Plus en détail

Domaine : Sciences, Technologies et Santé Mention : Nutrition, Sciences des aliments, Agroalimentaire

Domaine : Sciences, Technologies et Santé Mention : Nutrition, Sciences des aliments, Agroalimentaire Contexte Domaine : Sciences, Technologies et Santé Mention : Nutrition, Sciences des aliments, Agroalimentaire Fédération des spécialités de Master des 5 pôles universitaires partenaires de la région Nord-Pas-de-Calais

Plus en détail

RESUME DESCRIPTIF DE LA CERTIFICATION (FICHE REPERTOIRE)

RESUME DESCRIPTIF DE LA CERTIFICATION (FICHE REPERTOIRE) RESUME DESCRIPTIF DE LA CERTIFICATION (FICHE REPERTOIRE) Intitulé (cadre 1) Ingénieur diplômé de l École Nationale Supérieure d Ingénieurs en Informatique, Automatique, Mécanique, Énergétique et Électronique

Plus en détail

TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie

TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux pressesagro.gembloux@ulg.ac.be www.pressesagro.be

Plus en détail

Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données

Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données et le Data Mining Nous suivons le plan suivant : Fonctionnement de Spad Catalogue des méthodes (statistiques

Plus en détail

Votre organisation en 3 clics. www.optimiso.com

Votre organisation en 3 clics. www.optimiso.com Votre organisation en 3 clics www.optimiso.com 2 Intuitif, modulable et fiable Réponse idéale à chaque exigence.... 3 Fiabilité, sécurité et solution personnalisable.... 4 Modules Optimiso : > Process

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

Analyse de grandes bases de données en santé

Analyse de grandes bases de données en santé .. Analyse de grandes bases de données en santé Alain Duhamel Michaël Genin Mohamed Lemdani EA 2694 / CERIM Master 2 Recherche Biologie et Santé Journée Thématique Fouille de Données Plan. 1 Problématique.

Plus en détail

Formation Inter Entreprises

Formation Inter Entreprises Formation Inter Entreprises Lean Six Sigma - Méthodologie DMAIC Niveau Black Belt 3conseils 10, place Charles Béraudier 69428 LYON CEDEX 03 www.3conseils.com 2015 Objectifs de la formation La formation

Plus en détail

Le bootstrap expliqué par l exemple

Le bootstrap expliqué par l exemple Le bootstrap expliqué par l exemple 1 Le bootstrap expliqué par l exemple 1. Les concepts du bootstrap 2. Des variantes adaptées au contexte 3. Comparaison des différentes méthodes 4. Les cas sensibles

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1 Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe

Plus en détail

DETERMINATION DE L INCERTITUDE DE MESURE POUR LES ANALYSES CHIMIQUES QUANTITATIVES

DETERMINATION DE L INCERTITUDE DE MESURE POUR LES ANALYSES CHIMIQUES QUANTITATIVES Agence fédérale pour la Sécurité de la Chaîne alimentaire Administration des Laboratoires Procédure DETERMINATION DE L INCERTITUDE DE MESURE POUR LES ANALYSES CHIMIQUES QUANTITATIVES Date de mise en application

Plus en détail

CTE Éditeur de classification arborescente pour spécifications du cas de test

CTE Éditeur de classification arborescente pour spécifications du cas de test Tessy Test d intégration et unitaire dynamique automatisé pour des applications embarquées CTE Éditeur de classification arborescente pour spécifications du cas de test Le meilleur outil de test unitaire

Plus en détail

données en connaissance et en actions?

données en connaissance et en actions? 1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)

Plus en détail

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour francour@unice.fr Une grande partie des illustrations viennent

Plus en détail

FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc)

FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc) 87 FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc) Dans le cadre de la réforme pédagogique et de l intérêt que porte le Ministère de l Éducation

Plus en détail

Téléchargez la Version d Évaluation 30 Jours de STATISTICA 9 en Français. Version Native en 64-bit... 2. Expérience Utilisateur Plus Intuitive...

Téléchargez la Version d Évaluation 30 Jours de STATISTICA 9 en Français. Version Native en 64-bit... 2. Expérience Utilisateur Plus Intuitive... Téléchargez la Version d Évaluation 30 Jours de STATISTICA 9 en Français Version Native en 64-bit... 2 Expérience Utilisateur Plus Intuitive... 3 Exploration Visuelle des Données... 5 Catégories de Graphiques...

Plus en détail

L'intelligence d'affaires: la statistique dans nos vies de consommateurs

L'intelligence d'affaires: la statistique dans nos vies de consommateurs L'intelligence d'affaires: la statistique dans nos vies de consommateurs Jean-François Plante, HEC Montréal Marc Fredette, HEC Montréal Congrès de l ACFAS, Université Laval, 6 mai 2013 Intelligence d affaires

Plus en détail

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI 1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

MIKRON CUSTOMER SERVICE. Un service client adapté à vos besoins

MIKRON CUSTOMER SERVICE. Un service client adapté à vos besoins MIKRON CUSTOMER SERVICE Un service client adapté à vos besoins 2-3 CUMULEZ LES OPTIONS DE SERVICES DE CHAQUE MODULE POUR AMéLIORER LA PRODUCTIVITé DE VOTRE SYSTÈME MIKRON CUSTOMER SERVICE FLEXIBLE, MODULAIRE,

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Méthode automatisée de dosage colorimétrique du dioxyde de soufre total dans les vins

Méthode automatisée de dosage colorimétrique du dioxyde de soufre total dans les vins Méthode automatisée de dosage colorimétrique du dioxyde de soufre total dans les vins Marc DUBERNET* et Françoise GRASSET* Laboratoire DUBERNET - 9, quai d Alsace - 11100 Narbonne France 1. Objet Méthode

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS Formations EViews FORMATIONS GENERALES INTRODUCTIVES DEB : DECOUVERTE DU LOGICIEL EVIEWS INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS FORMATIONS METHODES ECONOMETRIQUES VAR : MODELES

Plus en détail

9, rue Louis Courtois de Viçose - 31100 Toulouse www.kpeo.fr - tel: 05 81 10 01 30 - contact@kpeo.fr. Votre organisation en 3 clics. www.optimiso.

9, rue Louis Courtois de Viçose - 31100 Toulouse www.kpeo.fr - tel: 05 81 10 01 30 - contact@kpeo.fr. Votre organisation en 3 clics. www.optimiso. Votre correspondant en Midi-Pyrénées 9, rue Louis Courtois de Viçose - 31100 Toulouse www.kpeo.fr - tel: 05 81 10 01 30 - contact@kpeo.fr Votre organisation en 3 clics www.optimiso.com 2 Intuitif, modulable

Plus en détail

INTRODUCTION AU DATA MINING

INTRODUCTION AU DATA MINING INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET TP DE DATA MINING Le TP et le projet consisteront à mettre

Plus en détail

BROCHURE SIX SIGMA PROJET DMAIC & LEAN. Tél. : 024 423 96 50 Email : info@ariaq.ch Web : www.ariaq.ch

BROCHURE SIX SIGMA PROJET DMAIC & LEAN. Tél. : 024 423 96 50 Email : info@ariaq.ch Web : www.ariaq.ch BROCHURE SIX SIGMA PROJET DMAIC & LEAN Tél. : 024 423 96 50 1 INTRODUCTION Le Lean Six Sigma est une démarche d amélioration continue basée sur une gestion rigoureuse de projet en 5 phases DMAIC ; l utilisation

Plus en détail

Programmation orientée objet et technologies Web

Programmation orientée objet et technologies Web Programmation orientée objet et technologies Web LEA.3N, version 2012 Information : (514) 376-1620, poste 7388 Programme de formation Type de sanction Attestation d études collégiales permettant de cumuler

Plus en détail

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Table des matières. Introduction....3 Mesures et incertitudes en sciences physiques

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU $SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU Fabien FIGUERES fabien.figueres@mpsa.com 0RWVFOpV : Krigeage, plans d expériences space-filling, points de validations, calibration moteur. 5pVXPp Dans le

Plus en détail

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence

Plus en détail

Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit

Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Adil Belhouari HEC - Montréal - Journées de l Optimisation 2005-09 Mai 2005 PLAN DE LA PRÉSENTATION

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Session 8 : Assurance Qualité des produits absents du Programme de Préqualification de l OMS

Session 8 : Assurance Qualité des produits absents du Programme de Préqualification de l OMS Session 8 : Assurance Qualité des produits absents du Programme de Préqualification de l OMS Question aux participants Comment s assurer de la qualité et de l intégrité d un produit qui n a pas été préqualifié

Plus en détail

Spécificités, Applications et Outils

Spécificités, Applications et Outils Spécificités, Applications et Outils Ricco Rakotomalala Université Lumière Lyon 2 Laboratoire ERIC Laboratoire ERIC 1 Ricco Rakotomalala ricco.rakotomalala@univ-lyon2.fr http://chirouble.univ-lyon2.fr/~ricco/data-mining

Plus en détail

Qu est-ce que le ehealthcheck?

Qu est-ce que le ehealthcheck? Plus la dépendance d une compagnie envers ses systèmes informatiques est grande, plus le risque qu une erreur dans les processus métiers puisse trouver ses origines dans l informatique est élevé, d où

Plus en détail

Cycle de formation certifiante Sphinx

Cycle de formation certifiante Sphinx Cycle de formation certifiante Sphinx 28, 29, 30 Mai 2015 Initiation, Approfondissement et Maîtrise Etudes qualitatives / quantitatives Initiation, approfondissement et maîtrise des études qualitatives

Plus en détail

Ecole Nationale Vétérinaire, Agroalimentaire et de l Alimentation Nantes- Atlantique Nantes- Atlantic National College of Veterinary Medicine, Food

Ecole Nationale Vétérinaire, Agroalimentaire et de l Alimentation Nantes- Atlantique Nantes- Atlantic National College of Veterinary Medicine, Food Masters Oniris Ecole Nationale Vétérinaire, Agroalimentaire et de l Alimentation Nantes-Atlantique Nantes Atlantic National College of Veterinary Medicine, Food Science and Engineering Secteur «Recherche»

Plus en détail

EPFL SB-ISIC. laborantin en chimie. laboratoire-école appren tis

EPFL SB-ISIC. laborantin en chimie. laboratoire-école appren tis EPFL SB-ISIC laborantin en chimie laboratoire-école appren tis info Description de la profession La chimie est une science très ancienne qui fait partie intégrante de notre vie quotidienne. Les secteurs

Plus en détail

Algèbre 40 Analyse 26 14 Stat. 1 - IES : Probabilités discrètes et calcul intégral 29,5 6 Stat. 2 - IES : Probabilités générales 54 8 UE1-02 M-E-IS

Algèbre 40 Analyse 26 14 Stat. 1 - IES : Probabilités discrètes et calcul intégral 29,5 6 Stat. 2 - IES : Probabilités générales 54 8 UE1-02 M-E-IS 1er semestre UE1-01 E Algèbre 40 Analyse 26 14 Stat. 1 - IES : Probabilités discrètes et calcul intégral 29,5 6 Stat. 2 - IES : Probabilités générales 54 8 UE1-02 M-E-IS Introduction au système SAS 25,5

Plus en détail

CONFERENCE PALISADE. Optimisation robuste d un plan d expériences par simulation Monte-Carlo Concepts de «Design Space» et de «Quality by Design»

CONFERENCE PALISADE. Optimisation robuste d un plan d expériences par simulation Monte-Carlo Concepts de «Design Space» et de «Quality by Design» CONFERENCE PALISADE Optimisation robuste d un plan d expériences par simulation Monte-Carlo Concepts de «Design Space» et de «Quality by Design» 1 SIGMA PLUS Logiciels, Formations et Etudes Statistiques

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

SUPPLEMENT AU DIPLOME

SUPPLEMENT AU DIPLOME SUPPLEMENT AU DIPLOME Préambule : «Le présent supplément au diplôme suit le modèle élaboré par la Commission européenne, le Conseil de l Europe et l UNESCO/CEPES. Le supplément vise à fournir des données

Plus en détail

Classe de première L

Classe de première L Classe de première L Orientations générales Pour bon nombre d élèves qui s orientent en série L, la classe de première sera une fin d étude en mathématiques au lycée. On a donc voulu ici assurer à tous

Plus en détail

UNIVERSITÉ MOHAMMED VI POLYTECHNIQUE MASTERE SPÉCIALISÉ MILEO

UNIVERSITÉ MOHAMMED VI POLYTECHNIQUE MASTERE SPÉCIALISÉ MILEO UNIVERSITÉ MOHAMMED VI POLYTECHNIQUE MASTERE SPÉCIALISÉ MILEO Management Industriel et Excellence Opérationnelle Diplôme conjoint de l'ecole des Mines de Paris (Mines ParisTech) et de l EMINES School of

Plus en détail

FUTURMASTER FUTURMASTER

FUTURMASTER FUTURMASTER Mars 2010 Pour vos appels d offre APS Logiciels de planification 2 e ÉDITION FUTURMASTER FUTURMASTER SupplyChainMagazine.fr 19, rue Saint-Georges - 94700 Maisons-Alfort 1. NOM de l'éditeur FUTURMASTER

Plus en détail

DUT Statistique et Traitement Informatique des Données (S.T.I.D.)

DUT Statistique et Traitement Informatique des Données (S.T.I.D.) UNIVERSITÉ DE LILLE 2 IUT DE ROUBAIX DÉPARTEMENT STATISTIQUE ET TRAITEMENT INFORMATIQUE DES DONNÉES DUT Statistique et Traitement Informatique des Données OBJECTIFS : (S.T.I.D.) Il s agit d une formation

Plus en détail

ECOLE SUPERIEURE DE COMMERCE D ALGER

ECOLE SUPERIEURE DE COMMERCE D ALGER MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE ECOLE SUPERIEURE DE COMMERCE D ALGER PROGRAMME DE LICENCE EN SCIENCES COMMERCIALES ET FINANCIERES OPTION : FINANCE ( applicable à partir

Plus en détail

Travailler avec les télécommunications

Travailler avec les télécommunications Travailler avec les télécommunications Minimiser l attrition dans le secteur des télécommunications Table des matières : 1 Analyse de l attrition à l aide du data mining 2 Analyse de l attrition de la

Plus en détail

ÉdIteur officiel et fournisseur de ServIceS professionnels du LogIcIeL open Source ScILab

ÉdIteur officiel et fournisseur de ServIceS professionnels du LogIcIeL open Source ScILab ÉdIteur officiel et fournisseur de ServIceS professionnels du LogIcIeL open Source ScILab notre compétence d'éditeur à votre service créée en juin 2010, Scilab enterprises propose services et support autour

Plus en détail

LOGICIELS DE PRÉVISIONS

LOGICIELS DE PRÉVISIONS Pour vos appels d offre Mars 2014 LGICIELS DE PRÉVISINS 4 e ÉDITIN SAS INSTITUTE SAS Forecast Server SupplyChainMagazine.fr 19, rue Saint-Georges - 94700 Maisons-Alfort 1. NM de l'éditeur SAS Institute

Plus en détail

Maîtrise en administration des affaires Éducation permanente et Faculté d administration

Maîtrise en administration des affaires Éducation permanente et Faculté d administration Maîtrise en administration des affaires Éducation permanente et Faculté d administration Atteignez de nouveaux sommets! www.umoncton.ca/mbaenligne Atteignez de nouveaux sommets! Souhaitez-vous occuper

Plus en détail

Comment ne pas construire un score-titanic

Comment ne pas construire un score-titanic Comment ne pas construire un score-titanic Mon mailing Olivier Decourt ABS Technologies / Educasoft Formations 1- Les principes 2- Un premier exemple : les vins de France 3- Mise en œuvre sous SAS 4- Un

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

IBM Cognos TM1. Fiche Produit. Aperçu

IBM Cognos TM1. Fiche Produit. Aperçu Fiche Produit IBM Cognos TM1 Aperçu Cycles de planification raccourcis de 75 % et reporting ramené à quelques minutes au lieu de plusieurs jours Solution entièrement prise en charge et gérée par le département

Plus en détail

Débouchés professionnels

Débouchés professionnels Master Domaine Droit, Economie, Gestion Mention : Monnaie, Banque, Finance, Assurance Spécialité : Risque, Assurance, Décision Année universitaire 2014/2015 DIRECTEUR de la spécialité : Monsieur Kouroche

Plus en détail

Le calcul numérique : pourquoi et comment?

Le calcul numérique : pourquoi et comment? Le calcul numérique : pourquoi et comment? 16 juin 2009 Claude Gomez Directeur du consortium Scilab Plan Le calcul symbolique Le calcul numérique Le logiciel Scilab Scilab au lycée Le calcul symbolique

Plus en détail

Technicien Qualité QUALIFICATION UIMM N MQ 92 11 89 01 01

Technicien Qualité QUALIFICATION UIMM N MQ 92 11 89 01 01 Technicien Qualité QUALIFICATION UIMM N MQ 92 11 89 01 01 Finalité professionnelle Sous le contrôle du responsable qualité (et/ou sécurité-environnement), de l animateur qualité (et/ou sécurité-environnement)

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,

Plus en détail

Objectif du groupe GT1.1 Fusion de Données

Objectif du groupe GT1.1 Fusion de Données Objectif du groupe GT1.1 Fusion de Données Le groupe travaille dans trois directions Le vocabulaire (piloté par ADVITAM et l aide de SITE) L état de l art (piloté par SYROKKO) Deux applications illustratives

Plus en détail

PLANIFICATION ET OPERATIONS INTEGREES DU TRANSPORT MULTIMODAL

PLANIFICATION ET OPERATIONS INTEGREES DU TRANSPORT MULTIMODAL PLANIFICATION ET OPERATIONS INTEGREES DU TRANSPORT MULTIMODAL KEYWORDS : SYSTEMX, Transport, Multimodal, Simulation, Optimisation, Supervision CONTEXTE de l IRT SYSTEMX L IRT SystemX est un institut de

Plus en détail

Employée/Employé de commerce CFC «Services et administration»

Employée/Employé de commerce CFC «Services et administration» Employée/Employé de commerce CFC «Services et administration» Le champ d activité des employés 1 de commerce de la branche «Services et administration» va du contact avec la clientèle au back office. La

Plus en détail

GUIDE DU DATA MINER. Scoring - Modélisation. Data Management, Data Mining, Text Mining

GUIDE DU DATA MINER. Scoring - Modélisation. Data Management, Data Mining, Text Mining GUIDE DU DATA MINER Scoring - Modélisation Data Management, Data Mining, Text Mining 1 Guide du Data Miner Scoring - Modélisation Le logiciel décrit dans le manuel est diffusé dans le cadre d un accord

Plus en détail

Le scoring est-il la nouvelle révolution du microcrédit?

Le scoring est-il la nouvelle révolution du microcrédit? Retour au sommaire Le scoring est-il la nouvelle révolution du microcrédit? BIM n 32-01 octobre 2002 Frédéric DE SOUSA-SANTOS Le BIM de cette semaine se propose de vous présenter un ouvrage de Mark Schreiner

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

Apprentissage Statistique. Bureau d étude :

Apprentissage Statistique. Bureau d étude : Apprentissage Statistique Bureau d étude : Score d appétence en GRC Hélène Milhem IUP SID M2 2011/2012 Institut de Mathématiques de Toulouse UMR CNRS C5219 Equipe de Statistique et Probabilités Université

Plus en détail

NORME INTERNATIONALE D AUDIT 620 UTILISATION DES TRAVAUX D UN EXPERT DESIGNE PAR L AUDITEUR

NORME INTERNATIONALE D AUDIT 620 UTILISATION DES TRAVAUX D UN EXPERT DESIGNE PAR L AUDITEUR NORME INTERNATIONALE D AUDIT 620 UTILISATION DES TRAVAUX D UN EXPERT DESIGNE PAR L AUDITEUR Introduction (Applicable aux audits d états financiers pour les périodes ouvertes à compter du 15 décembre 2009)

Plus en détail

Apprentissage Automatique

Apprentissage Automatique Apprentissage Automatique Introduction-I jean-francois.bonastre@univ-avignon.fr www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs

Plus en détail

Management de l Innovation

Management de l Innovation Management de l Innovation Mention du Master Sciences et Technologies de l Université Pierre et Marie Curie Directeur du Département de Formation : Patrick Brézillon Contact secrétariat : 01 44 39 08 69

Plus en détail

Vue d ensemble. Initiatives des données. Gestion de la trésorerie. Gestion du risque. Gestion des fournisseurs 2 >>

Vue d ensemble. Initiatives des données. Gestion de la trésorerie. Gestion du risque. Gestion des fournisseurs 2 >> Access MD Online Vue d ensemble Access MD Online fournit aux organisations un accès en temps réel à leurs programmes de carte commerciale au sein d un environnement sécurisé, n importe où et n importe

Plus en détail

Maîtriser les mutations

Maîtriser les mutations Maîtriser les mutations Avec UNE Supply chain AGILE La réflexion porte ses fruits www.cereza.fr TALAN Group Notre savoir-faire : maîtriser les mutations et en faire une force pour l entreprise Cereza,

Plus en détail

Master UP 6. Mention Santé Publique et Management de la Santé. Spécialité Pharmacologie Clinique. Construire une carrière dans l industrie

Master UP 6. Mention Santé Publique et Management de la Santé. Spécialité Pharmacologie Clinique. Construire une carrière dans l industrie Master UP 6 Mention Santé Publique et Management de la Santé Spécialité Pharmacologie Clinique Construire une carrière dans l industrie pharmaceutique Alain Leclerc, CTPartners 3 mars 2009 Your Executive

Plus en détail

Dans le cadre de la formation initiale en entreprise, le DFP à l école n est pas défini de manière plus précise.

Dans le cadre de la formation initiale en entreprise, le DFP à l école n est pas défini de manière plus précise. Dossier de formation et des prestations des employés de commerce CFC de la branche «Services et administration» dans le cadre de la formation initiale en école (écoles de commerce de droit public EC) Contexte

Plus en détail

LA LICENCE D ENSEIGNEMENT (LE)

LA LICENCE D ENSEIGNEMENT (LE) La licence d enseignement (LE) Licence d enseignement dans les matières reconnues par l Etat libanais comme disciplines d enseignement. Nombre de crédits : 40 crédits, capitalisables dans le CAPES, à effectuer

Plus en détail

Sigma Consulting est un cabinet conseil spécialisé en management des organisations. Le Management en mode projet..2

Sigma Consulting est un cabinet conseil spécialisé en management des organisations. Le Management en mode projet..2 Sigma Consulting est un cabinet conseil spécialisé en management des organisations. Sa mission est d'aider les entreprises à développer la qualité de service dont ont besoin leurs clients internes ou externes.

Plus en détail

LICENCE. Mathématiques

LICENCE. Mathématiques LICENCE Mathématiques Que sont les mathématiques? Les mathématiques, par l étude d objets abstraits (nombres, figures géométriques...) et le recours au raisonnement logique, permettent de décrire et de

Plus en détail

Améliorer les performances du site par l'utilisation de techniques de Web Mining

Améliorer les performances du site par l'utilisation de techniques de Web Mining Améliorer les performances du site par l'utilisation de techniques de Web Mining CLUB SAS 2001 17/18 octobre 2001 Stéfan Galissie LINCOLN stefan.galissie@lincoln.fr contact@web-datamining.net 2001 Sommaire

Plus en détail

Master en Gouvernance et management des marchés publics en appui au développement durable

Master en Gouvernance et management des marchés publics en appui au développement durable Master en Gouvernance et management des marchés publics en appui au développement durable Turin, Italie Contexte Le Centre international de formation de l Organisation internationale du Travail (CIF-OIT)

Plus en détail

MRK -6081 A : Méthodes d Analyse de Données en Marketing Automne 2010

MRK -6081 A : Méthodes d Analyse de Données en Marketing Automne 2010 E MRK -6081 A : Méthodes d Analyse de Données en Marketing Automne 2010 Professeure :Elissar Toufaily Plage horaire du cours : Cours en salle Jeudi 15h 30-18h30 Local 4221 PAP Du 2 septembre. 2010 au 9

Plus en détail

C ) Détail volets A, B, C, D et E. Hypothèses (facteurs externes au projet) Sources de vérification. Actions Objectifs Méthode, résultats

C ) Détail volets A, B, C, D et E. Hypothèses (facteurs externes au projet) Sources de vérification. Actions Objectifs Méthode, résultats C ) Détail volets A, B, C, D et E Actions Objectifs Méthode, résultats VOLET A : JUMELAGE DE 18 MOIS Rapports d avancement du projet. Réorganisation de l administration fiscale Rapports des voyages d étude.

Plus en détail

INTRODUCTION. Cadre d évaluation de la qualité des données (CEQD) (juillet 2003)

INTRODUCTION. Cadre d évaluation de la qualité des données (CEQD) (juillet 2003) INTRODUCTION Cadre d évaluation de la qualité des données (CEQD) (juillet 2003) Le cadre d évaluation des données (CEQD) propose une structure qui permet d évaluer la qualité des données en comparant les

Plus en détail

Techniques de DM pour la GRC dans les banques Page 11

Techniques de DM pour la GRC dans les banques Page 11 Techniques de DM pour la GRC dans les banques Page 11 II.1 Introduction Les techniques de data mining sont utilisé de façon augmentaté dans le domaine économique. Tels que la prédiction de certains indicateurs

Plus en détail

REF01 Référentiel de labellisation des laboratoires de recherche_v3

REF01 Référentiel de labellisation des laboratoires de recherche_v3 Introduction Le présent référentiel de labellisation est destiné aux laboratoires qui souhaitent mettre en place un dispositif de maîtrise de la qualité des mesures. La norme ISO 9001 contient essentiellement

Plus en détail

PRÉSENTATION PRODUIT. Plus qu un logiciel, la méthode plus efficace de réconcilier.

PRÉSENTATION PRODUIT. Plus qu un logiciel, la méthode plus efficace de réconcilier. PRÉSENTATION PRODUIT Plus qu un logiciel, la méthode plus efficace de réconcilier. Automatiser les réconciliations permet d optimiser l utilisation des ressources et de générer plus de rentabilité dans

Plus en détail

Les solutions SAS pour les Petites et Moyennes Entreprises

Les solutions SAS pour les Petites et Moyennes Entreprises BROCHURE SOLUTION Les solutions SAS pour les Petites et Moyennes Entreprises Sur un marché aussi compétitif que celui des Petites et Moyennes Entreprises, le temps et l efficacité sont deux valeurs prioritaires

Plus en détail

Vous trouvez plus d information sur AREL. ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html

Vous trouvez plus d information sur AREL. ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html Option Deux thèmes : La recherche opérationnelle : Traiter des problèmes d optimisation, d aide à la décision et d évaluation de performances

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

Cursus de Master en Ingénierie de la Production Alimentaire. Une autre façon d accéder au métier d ingénieur

Cursus de Master en Ingénierie de la Production Alimentaire. Une autre façon d accéder au métier d ingénieur Cursus de Master en Ingénierie de la Production Alimentaire Une autre façon d accéder au métier d ingénieur Un Réseau National de 28 CMI Le réseau FIGURE Formation en InGenierie par des Universités de

Plus en détail