* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Dimension: px
Commencer à balayer dès la page:

Download "* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable"

Transcription

1 Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice ** Détermier le rayo de covergece de la série etière proposée das chacu des cas suivats : l z z 3 l! z 4 ch + cos 4 z 5 C z 6 l! a z! b 7 a +b z, a,b R + Correctio [005745] Eercice Calculer les sommes suivates das leur itervalle ouvert de covergece après avoir détermié le rayo de covergece de la série proposée ** ** ** I 5 * 4 4! 6 ** ch 7 ** I 9 ** I 0 * 4 4 ** +! + 4 ** k k 7 +4!+ + + ** 3 *** a où a 0 a et N, a + a + + a 4 ** a où a est le ombre de couples,y d etiers aturels tels que + 5y + + Correctio [005746] Eercice 3 Développer e série etière les foctios suivates : * *** I t+, t R 3 * l ** arcta sia cosa, a ]0,π[ 5 ** p 6 *** I arcsi 7 * 0 cost dt 8 *** I dt t 4 +t + 9 ** cosch

2 Correctio [005747] Eercice 4 * I Pour réel, o pose f Correctio { si si 0 si 0 Motrer que f est ce classe C sur R [005748] Eercice 5 *** I Soiet P k0 X k k! et R > 0 doé Motrer que pour suffisammet grad, P a pas de racie das le disque fermé de cetre 0 et de rayo R Correctio [005749] Eercice 6 **** Iverse d ue série etière Soit a z ue série etière de rayo R > 0 et telle que a 0 ou plus gééralemet a 0 0 Motrer qu il eiste ue et ue seule suite b N telle que N, k0 a kb k δ 0, Motrer que la série etière b z a u rayo strictemet positif Correctio [005750] Eercice 7 *** I Pour N, o pose W π/ 0 cos t dt Rayo de covergece et somme de la série etière associée à la suite W N Correctio [00575] Eercice 8 *** Calculer cos π 3 Correctio pour das ],[ [00575] Eercice 9 *** I Calculer Correctio pour das ],[ et e déduire les sommes 4 et 4 4 [005753] Eercice 0 **** Pour etier aturel, o pose u gééral u Correctio + k0 4k+ Covergece et somme de la série umérique de terme [005754] Eercice *** Soit A ue matrice carrée complee de format p N Rayo de covergece et somme e foctio de χ A de la série etière TrA z Correctio [005755] Eercice *** Pour réel, o pose F e 0 et dt E développat F e série etière par deu méthodes différetes, motrer que pour tout etier aturel, k0 k k+k! k!! +!

3 Correctio [005756] Eercice 3 ** O pose a 0 et b 0 0 puis pour tout etier aturel, et b! Correctio { a+ a b b + 3a + 4b Rayos et sommes de a! [005757] Eercice 4 *** I Rayo de covergece et somme de Correctio C [005758] Eercice 5 *** I Soiet a N et b N deu suites de réels strictemet positifs telles que la suite a b ait ue limite N réelle k E particulier a ob si k 0 et a b si k O suppose de plus que la série etière associée à la suite a N a u rayo de covergece égal à et que la série de terme gééral a diverge Motrer que lim a b k Applicatios Correctio a Equivalet simple quad ted vers de l b Détermier lim p p où p est u etier aturel o ul doé [005759] Eercice 6 Soit a N ue suite à valeurs das {,} Pour réel o pose f a! O suppose que pour tout etier aturel p et tout réel positif, f p Détermier f Correctio [005760] Eercice 7 **** I Développemet e série etière de la foctio ta Pour ] π, π [, o pose f ta Motrer qu il eiste ue suite de polyômes P N telle que pour tout etier aturel, f P f et que les P sot à coefficiets etiers aturels Utiliser ta + ta E utilisat la formule de TAYLOR-LAPLACE, motrer que la série de TAYLOR à l origie de f a u rayo de covergece R supérieur ou égal à π 3 O ote a les coefficiets du développemet précédet et g la somme de la série etière associée à la suite a N Motrer que pour tout etier aturel o ul, +a + k0 a ka k E déduire que pour tout de ] π, π [, f g et que R π 4 Calculer a 0, a, a,, a 7 5 Vérifier que la foctio th est développable e série etière Préciser le rayo et la valeur des coefficiets e foctio des a Correctio [00576] Eercice 8 *** Développer e série etière F 0 e t sit dt et e déduire que pour tout réel, F e /4 0 et /4 dt Correctio [00576] 3

4 Eercice 9 *** Soit I le ombre d ivolutios de [[,]] Rayo de covergece et somme de la série etière associée à la suite I! N Correctio [005763] Eercice 0 *** I Déombremet de parethésages Soit E u esemble o vide mui d ue loi itere et a le ombre de parethésages possibles d u produit de éléméts de E a covetioellemet, a, a 3, a 4 5, Motrer que pour tout, a k a ka k Soit f la série etière associée à la suite a O suppose mometaémet le rayo R de cette série strictemet positif Motrer que pour tout de ] R,R[, f f Calculer R et f 4 E déduire a Correctio [005764] Retrouver cette fiche et d autres eercices de maths sur eo7emathfr 4

5 Correctio de l eercice Soit z 0 Pour > e / z, o a z l > et doc la suite l z e ted pas vers 0 quad ted vers Aisi, pour tout ombre complee o ul z, la série proposée diverge grossièremet R 0 Soit z 0 Pour > z, o a z > et doc la suite z e ted pas vers 0 quad ted vers Pour tout ombre complee o ul z, la série proposée diverge grossièremet R 0 3 D après la formule de STIRLING l! l e π + l + l π l La série etière proposée a même rayo de covergece que la série etière associée à la suite l + Comme lim l +, la règle de l d ALEMBERT permet d affirmer que 4 4 l ch Doc ch + cos 4 R + cos 4 l o e/4 et 5 Pour N, posos a C R o a + +!! a! +! e a et doc lim + a 0 D après la règle de d ALEMBERT, R 6 O a vu que l! l Doc la série etière proposée a même rayo de covergece que la série etière associée à la suite l a Puis! b et doc, d après la règle de d ALEMBERT +l+ a /+! b l a /! b b si b > 0, R, si b 0, R et si b < 0, R 0 7 Si a 0, R O suppose a 0 Si b >, Si b, Si 0 b <, a +b a b a +b a Das tous les cas et doc R b a et R a a +b a et R a 5

6 R Ma,b a si a > 0 et R si a 0 Correctio de l eercice La règle de d ALEMBERT motre que la série proposée a u rayo de covergece égal à ère solutio Pour ],[, o pose f f est dérivable sur ],[ et pour das ],[, f l Puis, pour ],[, f f f tdt l + ème solutio Pour ], [, f l + l + ],[, l + l + La règle de d ALEMBERT motre que la série proposée a u rayo égal à Pour ],[\{0} l ],[, 3 + { l si ],[\{0} 0 si 0 3 La règle de d ALEMBERT motre que la série proposée a u rayo égal à Soit ]0,[ l + l argth Soit ],0[ ],[, + argth si ]0,[ si 0 arcta si ],0[ arcta 4 La règle de d ALEMBERT motre que la série proposée a u rayo égal à Pour réel, Si > 0, Si < 0, f f + +!!! +! +! + ch sh 6

7 f R,! +! cos + +! si ch sh si > 0 0 si 0 cos si si < 0 5 Immédiatemet R et R, 4 4! cos + ch e 6 ch et doc R e Pour das ] e, [ e, ch e + e ] e, e e + e [, ch ch ch+ e + e e + e + ch ch + 7 La série proposée est le produit de CAUCHY des séries etières et qui sot toutes deu de rayo Doc R Mais d autre part, pour tout etier aturel o ul, a k k et R Fialemet R De plus, pour das ],[, f l l ],[, k k l 8 La règle de d ALEMBERT motre que le rayo de covergece est égal à Pour etier aturel doé, +4! ! puis Doc, pour tout réel, f ++ +! ! 5 + +! + 5 Esuite f 0 et pour 0, +! f! + e + e 5 e R, +4!+! e +! + 5 +! e { e si R si 0 7

8 9 Pour N, a et doc R Pour das ],[, f Puis k kk k kk k0 k ],[, argth + k0 k+ k+ + k kk 0 R Pour réel o ul das ],[, f 4 l+4 4 et sio f 0 0 { ],[, 4 4 l+4 4 si 0 0 si 0 La règle de d ALEMBERT fourit R Pour das ], [, Pour, la suite + + est pas borée et doc R Mais la série coverge si < et R Fialemet R Pour das ],[, ],[, ère solutio Les racies de l équatio caractéristique z z 0 sot α + 5 et β 5 O sait qu il eiste deu ombres réels λ et µ tels que pour tout etier aturel, a λ µ 5 Les égalités 0 et fourisset { { λ + µ λ + µ + 5 λ + 5 µ λ + λ µ 5 5 µ 5 Fialemet, pour tout etier aturel, a Les séries etières respectivemet associées au suites + 5 respectifs + 5 5/ et 5/ rayo { λ µ et 5 ot pour rayos 5+ Ces rayos état disticts, la série proposée a pour 8

9 Pour das ] 5, [ 5, o a R Mi{ 5, } 5+ 5 a α 5 α β 5 β α 5 α β β α β 5 αβ α + β + ème solutio Supposos à priori le rayo R de la série proposée strictemet positif Pour das ] R,R[, o a f a + + a a + + a + a a les deu séries ot même rayo + + f + f Doc, écessairemet ] R,R[, f Réciproquemet, la fractio ratioelle ci-dessus admet pas 0 pour pôle et est doc développable e série etière Le rayo de covergece de la série obteue est le miimum des modules des pôles de f à savoir R 5 Notos b ce développemet Pour tout de ] R,R[, o a b et doc b b + b + ce qui s écrit ecore b b b Fialemet ] R,R[, b 0 + b b 0 + b b b Par uicité des coefficiets d u développemet e série etière, o a alors b 0 b et, b b + b O e déduit alors par récurrece que N, b a ] [ 5, 5, a Remarque E gééralisat le travail précédet, o peut motrer que les suites associées au développemets e série etière des fractios ratioelles sot justemet les suites vérifiat des relatios de récurrece liéaire 4 Pour tout etier aturel, a + Doc R O remarque que pour tout etier aturel, a k+5l La série etière proposée est doc le produit de CAUCHY des séries k0 k et l0 5l Pour das ],[, o a doc f k0 k l0 5l 5 Remarque De combie de faços peut -o payer 00 euros avec des pièces de,, 5, 0, 0 et 50 cetimes d euros, des pièces de et euros et des billets de 0 et 0 euros? Soit N le ombre de solutios N est le ombre de solutios e ombres etiers a,b, de l équatio a + b + 5c + 0d + 0e + 50 f + 00g + 00h + 500k + 000i j 0000 et est doc le coefficiet de 0000 du développemet e série etière de , La remarque est éamois aecdotique et il semble bie préférable de déombrer à la mai le ombre de solutios Les eercices 9 et 0 de cette plache fot bie mieu compredre à quel poit les séries etières sot u outil itéressat pour les déombremets 9

10 Correctio de l eercice 3 Das chaque questio, o ote f la foctio cosidérée f est développable e série etière à l origie e tat que fractio ratioelle admettat pas 0 pour pôle Le rayo du développemet est le miimum des modules des pôles de f à savoir Pour das ],[, f + f est développable e série etière à l origie e tat que fractio ratioelle admettat pas 0 pour pôle er cas Si t <, soit θ arccost O a doc θ ]0,π[ et t cosθ Pour tout réel, o a t + cosθ + e iθ e iθ, avec e iθ e iθ Les pôles sot de modules et le rayo du développemet est doc égal à Pour das ],[, cosθ + isiθ isiθ e iθ e iθ e iθ e iθ e iθ t ],[, ],[, t+ e iθ eiθ + isiθ e iθ e iθ e iθ si + θ siθ si+θ siθ où θ arccost ème cas Si t >, o peut poser t chθ où θ est u certai réel positif ou ul Plus précisémet, θ argcht lt + t ]0,[ Pour tout réel, o a t + chθ + e θ e θ, avec e θ e θ Le miimum des modules des pôles de f est e θ t+ t t t Le rayo du développemet est doc R t t Pour ] R,R[, chθ + shθ shθ e θ e θ e θ e θ e eiθ eθ + shθ e θ e θ θ 3ème cas Si t <, o applique ce qui précède à t et 4ème cas Si t, pour ],[, t+ e θ + sh + θ shθ Si t, e remplaçat par, o obtiet pour ],[, Pour tout réel, et doc si <, > 0 Pour ],[, l l + l3 l6 + l + l 3, et puisque pour das ],[, et 3 sot das ],[, l l6 + 3, et e particulier la foctio f est développable e série etière et le rayo du développemet est clairemet 0

11 4 Si cosa 0, la foctio f est défiie et dérivable sur D R et si cosa 0, f est défiie et dérivable sur D ] [ ], cosa cosa,[ Pour D, f sia sia cosa + cosa sia cosa+ D après, la foctio f est das tous les cas développable e série etière, le rayo du développemet est et pour das ],[ f si+a sia O sait alors que la foctio f est développable e série etière, que le développemet a même rayo de covergece et s obtiet e itégrat terme à terme Doc pour das ],[, f f f t dt si+a sia + 5 La foctio f est développable e série etière e tat que fractio ratioelle admettat pas 0 pour pôle Le rayo est le miimum des modules des pôles de f à savoir p p λ k k k avec λ k p k k!p k! p k k p! Ck p Par suite, pour das ],[ f p k p p! p k k p! Ck p k k p k+ck p k k p p! p k k+ C k p k 6 La foctio f est deu fois dérivable sur ],[ et pour das ],[, f arcsi puis Doc, pour das ],[, f arcsi + f + 3/ f f et f 0 f 0 0 O admettra que ces égalités détermiet la foctio f de maière uique Soit a ue série etière de rayo R supposé à priori strictemet positif Pour ] R,R[, o pose g a g est solutio de sur ] R,R[ ] R,R[, ] R,R[, ] R,R[, ] R,R[, ] R,R[, a et N, a + a a a + + a + a + a a a + + a + a a + + a par uicité des coefficiets d u DES E résumé, la foctio g est solutio de et sur ] R,R[ si et seulemet si a 0 a 0 et a et N, a + ++ a 3 puis

12 4 3 N, a + 0 et a 0 0, a et, a 4 3 a a 0 0 et N, a + 0 et N, a! E résumé, sous l hypothèse R > 0, la foctio g est solutio de et sur ] R,R[ si et seulemet si ] R,R[, g C Réciproquemet, calculos le rayo de la série etière précédete Pour réel o ul, +! + +!!!! 4 ++ D après la règle de d ALEMBERT, la série proposée coverge absolumet pour < et diverge grossièremet pour > Le rayo de la série proposée est doc > 0 ce qui valide les calculs précédets Par uicité de la solutio de et sur ],[, f est développable e série etière et ],[, arcsi C 7 Pour tout réel, cos 4! le rayo est ifii O sait alors que la foctio f est développable e série etière, que le rayo du développemet est ecore ifii et que l o peut itégrer terme à terme pour obteir e teat compte de f 0 0 R, ! 8 Les zéros du polyôme t 4 +t + sot j, j, j et j Doc la foctio t est développable t 4 +t + e série etière e tat que fractio ratioelle admettat pas zéro pour pôle et que le rayo de la série obteue est Puis pour t das ],[, t 4 +t + t t 6 t t6 t6 t6+ t +t 6 t 8 +t t 4 + La foctio t t 4 +t + est cotiue sur ],0] et égligeable devat t foctio t est doc itégrable sur ],0] t 4 +t + Par itégratio terme à terme licite, o obtiet pour das ],[, f 0 t 4 +t + dt + 0 t 4 +t + dt 0 Calcul de I 0 dt Par parité et réalité, t 4 +t + avec a 4 j 3 + j + j + j + j+ j j 6 Puis Par suite, dt + t 4 +t + t 4 +t + a t j + a a t j t+ j a, t+ j quad t ted vers La t t t 4 +t + j 6 t j + j t j j t + j j t + j 3t t +t + + 3t + 3 t t + t + 4 t +t + + t +t + t t t + + t t + t + 4 t +t t + t t t t +

13 0 t 4 +t + dt [ t +t + l 4 t + arcta t + + arcta t ] 0 π t π π 3 E résumé, ],[, t 4 +t + dt π + t t f est développable e série etière sur R e tat que produit de foctios développables e série etière sur R Pour réel, cosch e +i + e i + e +i + e i p0 e iπ/4 + e iπ/4 + e 3iπ/4 + e 3iπ/4 π cos 4 pπ p p cos 3π + cos 4 k0 + i + i + + i + i! π cos! π cos 4! 4! p p! 4 kπ 4k k 4k cos 4k! k k 4k 4k! R, cosch k0 k k 4k 4k! k0 Correctio de l eercice 4 Pour réel o ul, f +! ce qui reste vrai pour 0 La foctio f est doc développable e série etière sur R et e particulier, la foctio f est de classe C sur R Correctio de l eercice 5 Soit R > 0 Notos D R le disque fermé de cetre 0 et de rayo R Soiet z D R et u etier aturel P z e z e z P z e z e z P z e R e z P z O sait que la suite de polyômes P N coverge uiformémet vers la foctio epoetielle sur D R Doc il eiste u etier 0 tel que pour tout z D R et tout etier 0, e z P z e R Pour 0 et z D R, P z e R > 0 et P e s aule pas das D R Correctio de l eercice 6 O cherche ue série etière b de rayo R strictemet positif telle que a b pour élémet d u certai itervalle ouvert o vide de cetre 0 a 0 b 0 a 0 b + a b 0 0 a 0 b + a b + a b 0 0 Cette égalité impose à la suite b de vérifier le système d équatios a 0 b + a b + + a b + a b 0 3

14 Motros par récurrece que N, b eiste et est uique Puisque a 0, a 0 b 0 b 0 Ceci motre l eistece et l uicité de b 0 Soit N Supposos avoir démotré l eistece et l uicité de b 0, b,, b Alors a 0 b + +a b ++a b +a + b 0 0 b + a b a b a + b 0 Ceci motre l eistece et l uicité de b + O a motré par récurrece que la suite b eiste et est uique Il faut alors vérifier que la série etière associée à la suite b N a u rayo de covergece strictemet positif Soit R > 0 le rayo de la série associée à la suite a N et soit r u réel tel que 0 < r < R O sait que la suite a r N est borée et il eiste M > 0 tel que pour tout etier aturel, a M r b 0 puis b a b 0 M r puis b a b 0 a b M r + M r M r MM+ r b 3 a 3 b 0 a b a b M r 3 + M r + M r + M r MM+ r Motros alors par récurrece que N, b MM+ r C est vrai pour Soit, supposos que k [[,]], b k MM+k Alors r k b + a + b 0 + a b + + a b M r + + k M r + + M M + k k MM +M+ r 3 M r + + M M + M + puis MM+ r 3 MM + k r k M r + k MM + r + O a motré par récurrece que pour tout etier aturel o ul, b MM+ E particulier, le r + rayo R de la série etière associée à la suite b N vérifie R r M+ > 0 Ceci valide les calculs iitiau sur ] ρ,ρ[ où ρ MiR,R > 0 et doc l iverse d ue foctio f développable e série etière à l origie et telle que f 0 0 est développable e série etière à l origie Correctio de l eercice 7 O a déjà vu que W π et la règle de d ALEMBERT fourit R Soit ],[ Pour tout t [ 0, π ] et tout etier aturel, cos t Comme la série umérique de terme gééral, N, coverge, la série de foctios de terme gééral t cos t est ormalemet et doc uiformémet covergete sur le segmet [ 0, π ] D après le théorème d itégratio terme à terme sur u segmet, W π/ π/ cos t dt 0 0 du u +u π/ cos t dt 0 cost dt t 0 + u e posat u ta 0 + u + du + arcta u + + arcta + 0 ],[, W arcta + 4

15 Correctio de l eercice 8 Pour tout etier aturel o ul, a et doc R Mais si >, la suite cos π 3 est pas borée comme o le voit e cosidérat la suite etraite des termes d idices multiples de 3 et doc R Pour das ],[, f Re Le problème est alors de e pouvoir écrire l j Il faut j s y predre autremet f est doc dérivable sur ],[ et pour das ] ;[, f cos π 3 Re j Re j j Re j j ++ Par suite, pour ],[, f f f t dt l + + ],[, cos π 3 l Correctio de l eercice 9 Le rayo de la série cosidérée est égal Soit ],[ Si est das ]0,[, f Si est das ],0[, f f l arcta f 0 Maiteat, la somme est e fait défiie sur [, ] car les séries umériques de termes géérau et 4 4 coverget Vérifios que la somme est cotiue sur [,] Pour das [,] et N, 4 qui est le terme gééral d ue série umérique covergete La 4 série etière cosidérée coverge doc ormalemet sur [, ] O e déduit que cette somme est cotiue sur [,] Doc 4 f lim < f lim < + l l Remarque 4 lim k0 k k+ lim + série télescopique 5

16 O a aussi 4 f lim > f lim > + arcta π 4 + arcta Correctio de l eercice 0 Pour tout etier aturel, a Pour tout etier aturel, k0 + et doc la série proposée e coverge pas absolumet + k0 + u u + + 4k k k0 4k k > 0 k0 La suite u N est doc décroissate De plus, pour tout etier aturel o ul, k0 4k+ 4+ k k + k 4+ k k t dt + l4 + et doc u +l4+ + O e déduit que lim u 0 Fialemet, la série proposée coverge e vertu du critère spécial au séries alterées Cosidéros la série etière u + La série de terme gééral a coverge et doc R mais puisque la série de terme gééral a diverge et doc R Fialemet, R Pour ],[, posos f u + Pour das ],[, f k k + k0 4k + produit de CAUCHY de deu séries umériques absolumet covergetes Doc, pour das ]0,[, f gh où h + puis g Maiteat, e posat kx X 4+ pour X das ],[, k X X 4 X 4 + Esuite, e posat ω e iπ/4, par réalité et parité où a ω 4ω 3 4 Il viet alors ω X X 4 + a X ω + a X ω X ω + ω X ω ω X + ω ω X + ω X + X + X + X X X + 4 X + X + X + + a X+ω X + + E teat compte de k0 0, o obtiet doc pour X ],[, a X+ω X 4 X X + + X + X + X + X X X + + X + 6

17 kx 4 lx + X + lx X + + arctax + + arctax Esuite, pour tout réel ]0,[, f k + k k et doc f f k k0 k lx + X + lx X + + Quad ted vers, f ted vers 3 l + + arcta + + arcta 3 car arcta + + arcta arcta + + arcta + π arctax + + arctax l3 + + π Efi, pour das [0,] et das N, u u + + u u + 0 et la série umérique de terme gééral u est alterée D après ue majoratio classique du reste à l ordre d ue telle série, pour tout etier aturel et tout réel de [0,], R k+ u k k u + + u +, et doc Sup R a + 0 La covergece est uiforme sur [0,] et o e déduit que la somme est [0,] cotiue sur [0,] E particulier u f lim f 3 < l3 + + π + k0 4k+ 3 l3 + + π Correctio de l eercice Posos Sp C A λ,,λ p O sait que pour tout etier aturel, TrA λ + + λ p Soit λ u ombre complee Si λ 0, la série etière associée à la suite λ N est de rayo ifii et pour tout ombre complee z, λ z λz Si λ 0, la série etière associée à la suite λ est de rayo λ et pour z < λ, λ z λz Soit ρ Ma λ,, λ p ρ est le rayo spectral de la matrice A et R ρ si ρ 0 et R si ρ 0 Pour z < R, TrA z p k p k λ k z λ k z p k λ k z somme de p séries covergetes Il est alors clair que R est le rayo de covergece de la série etière proposée développemet e série etière d ue fractio ratioelle Si de plus, 0 < z < R, TrA z z p k χ A z P z λ décompositio usuelle de k z χ A z P Correctio de l eercice Pour réel, o sait que F e 0 et dt! +!+ La foctio F est impaire doc les coefficiets d idices pairs sot uls D autre part, pour N, le coefficiet de + du produit de Cauchy des deu séries précédetes vaut 7

18 k0 k!k+ k k! La méthode choisie fourit classiquemet ue epressio compliquée des coefficiets O peut aussi obteir F comme solutio d ue équatio différetielle liéaire du premier ordre F est dérivable sur R et pour tout réel, F e 0 et dt + F + F est uiquemet détermiée par les coditios F + F et F0 0 * F est développable e série etière sur R d après le début de l eercice et impaire Pour réel, posos doc F a + R, + a + a + R, a a + a a 0 et, + a + a 0 a 0 et, a + a a 0 et, a + a 0 N,! +! O a motré que pour tout réel, F N, o obtiet e particulier, N, k0! +! + Par uicité des coefficiets d ue série etière, k!k+ k k!! +! Correctio de l eercice 3 Pour tout etier aturel, a + + b + a + b et 3a + + b + 3a + b rappel : ces combiaisos liéaires sot fouries par les vecteurs propres de t A si o e les devie pas O e déduit que pour tout etier aturel, a + b a 0 + b 0 et 3a + b 3a 0 + b 0 3 Fialemet, N, a 3 + et b 3 Les deu séries proposées sot alors clairemet de rayos ifii et pour tout réel, f 3e e et g 3e e O peut avoir d autres idées de résolutio, plus astucieuses, mais au bout du compte mois performates Correctio de l eercice 4 Pour, posos a C Pour N, a + a +! +! +!! + Par suite, a + a 4 et d après la règle de d ALEMBERT, le rayo de la série etière cosidérée est R 4 Pour ] 4,4[, posos f a Les relatios s écrivet ecore N, 4 + a + a + a Soit ] 4,4[ O multiplie les deu membres de l égalité précédete par + et o somme sur O obtiet 4 + a + a + + a, ou ecore f 4 f a f a ou ecore 4 f + f deu itervalles ] 4,0[ ou ]0,4[Sur I, l équatio E s écrit : E Soit I l u des f + 4 f 4 8

19 Ue primitive sur I de la foctio a : 4 est la foctio A : l 4 l l 4 f solutio de E sur I I, f + 4 f 4 I, e A f + ae A f 4 I, e A f 4 4 Détermios ue primitive de la foctio sur I 4 Si I ]0,4[, 4 4 arcsi Puis 4 et ue primitive de la foctio sur I est la foctio 4 f solutio de E sur I C R/ I, e A f arcsi +C C R/ I, f arcsi +C 4 Si I ] 4,0[, 4 4 foctio argch Puis 4 et ue primitive de la foctio sur I est la 4 f solutio de E sur I C R/ I, e A f argch +C C R/ I, f argch +C 4 f doit être défiie, cotiue et dérivable sur ] 4,4[ et e particulier dérivable e 0 Ceci impose lim 0 + arcsi + C 0 car sio f C et doc C π 0 + Pour ]0,4[, o a alors f π 4 arcsi 4 arccos ce qui reste vrai pour 0 par cotiuité De même, lim 0 argch +C 0 et doc C 0 O a motré que ] 4,4[, C 4 arccos si [0,4[ 4 argch si ] 4,0] Correctio de l eercice 5 Soiet A et B les sommes des séries etières associées au suites a et b sur ],[ La foctio B est strictemet positive sur ]0,[ et e particulier e s aule pas sur ]0,[ La suite a est positive doc la foctio A est croissate sur [0,[ et admet aisi ue limite réelle ou ifiie quad ted vers par valeurs iférieures De plus, pour N etier aturel doé et [0,[, o a a N a et doc N N, lim A, < N lim, < a N a 9

20 Puisque la série de terme gééral positif a diverge, quad N ted ted vers, o obtiet lim A, < et doc lim A Il e est de même pour B car la série de terme gééral b diverge quelque, < soit la valeur de k O veut alors motrer que A kb ob Soit ε > 0 Par hypothèse, a kb o b et doc il eiste u etier aturel N tel que pour N, a kb ε b Soit [0,[ A kb a kb N a kb + ε N+ b N a kb + ε B Maiteat, B ted vers quad ted vers par valeurs iférieures Doc il eiste α ]0,[ tel que pour ] α,[, B > ε N a kb Pour ] α,[, o a alors A kb < ε B + ε B εb O a motré que ε > 0, α ]0,[/ ] α,[, A kb < εb et doc lim A B k a La série etière proposée «vérifie»les hypothèses du et de plus, l Doc f k k l b Soit p p l l p Comme les deu suites p et p vérifiet les hypothèses du p + p + p p p! p Par suite, lim p p p! Correctio de l eercice 6 Supposos qu il eiste u etier aturel p tel que a p a p+ Le développemet limité à l ordre de f p e 0 s écrit f p 0 f p 0 + f p+ 0 + o a p + + o et o e déduit f p a p + o + o + sur u voisiage poité de 0 à droite + > sur u voisiage poité de 0 à droite Doc si deu termes cosécutifs sot égau, f e vérifie pas les coditios de l éocé ou ecore si f vérifie les coditios de l éocé, alors p N, a p+ a p puis a p p a 0 Mais alors, écessairemet pour tout réel, f e ou pour tout réel, f e Réciproquemet, ces deu foctios sot clairemet solutios du problème posé Correctio de l eercice 7 La foctio f est de classe C sur ] π, π [ e tat que quotiet de foctios de classe C sur ] π, π dot le déomiateur e s aule pas sur ] π, π [ et de plus f + f Motros par récurrece que pour tout aturel, il eiste u polyôme P à coefficiets etiers aturels tel que f P f ou ecore ] π, π [, ta P ta C est vrai pour 0 avec P 0 X et pour avec P + X Soit Supposos que pour tout k [[0,]], il eiste u polyôme P k à coefficiets etiers aturels tel que f k P k f D après la formule de LEIBNIZ, 0 [

21 f + + f f k0 et le polyôme P + k0 f k f k k0 k P k P k f k P k P k est u polyôme à coefficiets etiers aturels tel que ta + k P + f Remarque O aurait pu aussi dériver l égalité f P f pour obteir f + f P f P P f mais o a déjà das l idée ue relatio de récurrece sur les coefficiets du développemet de ta qui est pas fourie par cette derière égalité Soiet [ 0, π [ et N La formule de TAYLOR-LAPLACE à l ordre e 0 fourit f k0 f k 0 k! k + t 0! f + t dt Le motre que pour tout réel t de [ 0, π [ et tout etier aturel k, f k t P k tat 0 Doc, d ue part f k 0 k! k 0 et d autre part, k0 f k 0 k! k f t 0! f + t dt La suite des sommes partielles de la série de terme gééral f k 0 k! k 0 est majorée et doc la série de terme gééral f k 0 k! k coverge Aisi, la série de TAYLOR de f à l origie coverge pour tout réel de [ 0, π [ So rayo de covergece R est doc supérieur ou égal à π et doc la série de terme gééral f k 0 k! k coverge aussi pour ] π,0] Il y a par cotre aucue raiso pour le momet pour que sa somme soit f 3 Pour etier aturel doé, posos a f 0! puis pour das ] π, π [, posos g a O a vu que N, P + k0 P kp k O divise les deu membres de ces égalités par! et o pred la valeur e 0 ta0 O obtiet Doc, pour ] π, π [, N, + a + a k a k et aussi a 0 0 et a g + a g k0 a k a k + k0 a k a k + a De plus, g0 a 0 0 Pour ] π, π [ ], posos alors h arctag La foctio h est dérivable sur π, π [ et pour ] π, π [ h g puis h h g Aisi, pour tout ] π, π [, g ta f Ceci motre déjà que f est développable e série etière sur ] π, π [ Mais quad ted vers π par valeurs iférieures, g f ted vers et doc R π puis R π E résumé, la foctio tagete est développable e série etière sur ] π, π [ ] et pour π, π [, ta a où a 0 0, a et N, + a + k0 a ka k De plus, N, a 0 puisque la foctio tagete est impaire 4 a 0 a a 4 a 6 0 puis a 3a 3 a 0 a + a + a a 0 et doc a 3 3 5a 5 a a 3 3 et doc a 5 5 7a 7 a a 5 + a et a

22 ] π, π [, ta Pour tout réel, th tai et doc pour ] π, π [, th i a +i + a + + Cette série etière a aussi pour rayo de covergece π Correctio de l eercice 8 Soit R La foctio t e t sit est cotiue sur [0,[, égligeable devat t quad t ted vers et est doc itégrable sur [0,[ La foctio F est doc défiie sur R et impaire Soit R Pour tout réel t, posos f t e t sit Pour t R, o a e t sit + +! t+ e t Pour N et t R, posos f t + +! t+ e t Chaque foctio f, N, est cotiue puis itégrable sur [0,[ car égligeable devat quad t ted t vers La série de foctios de terme gééral f, N, coverge simplemet vers la foctio f sur [0,[ Esuite, 0 f t dt 0 t + e t dt Pour N, posos I 0 t + e t dt + +! Soit N Soit A u réel strictemet positif Les deu foctios t t et t e t sot de classe C sur le segmet [0,A] O peut doc effectuer ue itégratio par parties et o obtiet A 0 A [ t + e t dt t te t dt ] A A 0 t e t + t e t dt 0 0 A e A + A 0 t e t dt Quad A ted vers, o obtiet I I E teat compte, de I 0 0 te t dt I! puis o a doc N, Soiet N et R +! +3 +3!! + +! 0 f t dt! + +! et doc lim +! +3 +3!! + +! 0 D après la règle de d ALEMBERT, la série umérique de terme gééral! + +! coverge E résumé, pour tout réel, Chaque foctio f, N, est cotiue puis itégrable sur [0,[ car égligeable devat quad t ted t vers La série de foctios de terme gééral f, N, coverge simplemet vers la foctio f sur [0,[ 0 f t dt < D après u théorème d itégratio terme à terme, pour tout réel, 0 e t sit dt 0 f t dt!+ +! R, 0 e t sit dt!+ +! F est dérivable sur R et pour tout réel,

23 F!!!! F Par suite, pour tout réel, e /4 F + e /4 F e /4 et doc F F0 + e /4 0 et /4 dt e /4 0 et /4 dt R, 0 e t sit dt e /4 0 et /4 dt Correctio de l eercice 9 O a I 0 0, I et I l idetité et la traspositio τ, Soit N Il y a I + ivolutios σ de [[, + ]] vérifiat σ + + car la restrictio d ue telle permutatio à [[, + ]] est ue ivolutio de [[, + ]] et réciproquemet Si σ + k [[, + ]], écessairemet σk + puis la restrictio de σ à [[, + ]] \ {k, + } est ue ivolutio et réciproquemet Il y a I ivolutios de [[, + ]] \ {k, + } et + choi possibles de k et doc + I ivolutios de [[, + ]] telles que σ + + E résumé, N, I + I I Le rayo R de la série etière associée à la suite I est supérieur ou égal à car N, I N! Pour das ] R,R[, posos f I! f est dérivable sur ] R,R[ et pour ] R,R[! f I + +! + + I! + I! I + +! f + f f I I + +! Doc, pour ] R,R[, f + + f + ou ecore e + f + + e + f + e + Par suite, pour ] R, R[, e + f f 0 t 0 t + e +t dt e +, et puisque f 0 0, ] R,R[, f e + Réciproquemet, la foctio précédete est développable e série etière sur R e vertu de théorèmes géérau e e et les coefficiets de ce développemet vérifiet les relatios défiissat I! de maière uique Doc, ces coefficiets sot les I! ce qui motre que R R, I! e + Correctio de l eercice 0 Soiet puis k [[, ]] O met ue parethèse autour de X X k et ue autour de X k+ X Esuite, pour chacu des a k parethésages de XX k, il y a a k parethésages possibles de X k+ X Fialemet, e faisat varier k de à, o a motré que, a k a ka k 3

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Séries entières. Chap. 09 : cours complet.

Séries entières. Chap. 09 : cours complet. Séries etières Chap 9 : cours complet Rayo de covergece et somme d ue série etière Défiitio : série etière réelle ou complee Théorème : lemme d Abel Théorème : itervalle des valeurs positives où ue série

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

Développement d une fonction en série entière. Exemples et applications

Développement d une fonction en série entière. Exemples et applications Développemet d ue foctio e série etière Exemples et applicatios Das ce chapitre, K désigera R ou C B(; R) désigera la boule ouverte de cetre et de rayo R > 1 Gééralités Défiitio 1 Soit f ue applicatio

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

On obtient la formule de Pascal en prenant le cardinal :

On obtient la formule de Pascal en prenant le cardinal : Colles du 3 ovembre 014 Solutio de la questio de cours 1. (i) Soit E u esemble de cardial. L esemble (E) peut alors être partitioé comme suit : (E) (E), où (E) est l esemble des parties de E de cardial.

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que [http://mp.cpgedupuydelome.fr] édité le 6 octobre 05 Eocés Suites umériques Covergece de suites Exercice [ 047 ] [Correctio] Soiet u ) et v ) deux suites réelles covergeat vers l et l avec l < l. Motrer

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

Calculs de limites, développements limités, développements asymptotiques

Calculs de limites, développements limités, développements asymptotiques Eo7 Calculs de limites, développemets limités, développemets asymptotiques Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee ****

Plus en détail

BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2015

BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2015 CONCOURS COMMUNS POLYTECHNIQUES FILIÈRE MP BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 5 avec corrigés V. Bellecave, J.-L. Artigue, P. Berger, J.-P. Bourgade, S. Calmet, A. Calvez, D. Cleet, J. Esteba,

Plus en détail

Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan.

Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan. Foctio réciproque d'ue octio cotiue, d'ue octio dérivable FNCTIN RECIPRQUE D'UNE FNCTIN CNTINUE, D'UNE FNCTIN DERIVABLE EXEMPLES N SE LIMITERA AUX FNCTINS NUMERIQUES DEFINIES SUR UN INTERVALLE DE R Notatios

Plus en détail

Correction HEC III 2007

Correction HEC III 2007 HEC III 7 Voie Écoomique Correctio Page Correctio HEC III 7 Voie écoomique La correctio comporte 9 pages. Eercice. Par dé itio est ue valeur propre de t si et seulemet si est ue valeur propre de T: Et

Plus en détail

Questions de cours. tend vers 0, alors que la série harmonique 1. v n = ln n La série u n est convergente, et la série [ ( )]

Questions de cours. tend vers 0, alors que la série harmonique 1. v n = ln n La série u n est convergente, et la série [ ( )] PC - DS N 6 - U corrigé Questios de cours QC..a L assertio a. est fausse. Par exemple, la suite + ted vers 0, alors que la série harmoique + est divergete. QC..b L assertio b. est vraie. Supposos que la

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Valeurs absolues. Partie etière. Iégalités Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très

Plus en détail

Développement en série de Fourier

Développement en série de Fourier [http://mp.cpgedupuydelome.fr] édité le septembre 6 Eocés Développemet e série de Fourier Exercice [ 95 ] [Correctio] Soit f ue foctio cotiue périodique. O suppose que la série de Fourier de f coverge

Plus en détail

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations UPMC 1M001 Aalyse et algèbre pour les scieces 013-014 Feuille : dérivabilité, théorème de Rolle et des accroissemets fiis, étude des variatios Les eercices sas ( ) sot des applicatios directes du cours.

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Féelo aite-marie Préparatio ciece-po/prépa HEC Foctios Versio du juillet 05 Eercice d degré : racies et coefficiets O rappelle que si l équatio a + b + c = 0 ( a 0 ) adet deu racies α et β (évetuelleet

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Polynômes de Tchebychev

Polynômes de Tchebychev Polyômes de Tchebychev Pafoutïi Lvovitch Tchebychev, mathématicie russe, est é à Borovsk e 8 et mort à Sait-Pétersbourg e 894. ) Défiitio et existece a) Polyômes de Tchebychev de ère espèce : T. Soit u

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

Septembre 2011 CPI 317. Exercices. Agnès Bachelot

Septembre 2011 CPI 317. Exercices. Agnès Bachelot Septembre 2 CPI 37 Exercices Agès Bachelot Table des matières - Séries Numériques.......................................... 3 - Séries à termes positifs.................................... 3-2 Séries quelcoques......................................

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est

Plus en détail

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse UNIVERSITÉ MOHAMMED V - AGDAL Faculté des Scieces Départemet de Mathématiques Filière Scieces de Matières Physiques (SMP4) Module Mathématiques : Aalyse (S4) Cours d Aalyse Séries umériques Suites et Série

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008 Sup Galilée - Maths pour l Igéieur Corrigé du Partiel du 9 Novembre 008 Étude d ue suite récurrete Soit u 0 ]0, [ O cosidère la suite (u ) défiie par u + u 3 u ) Justifier que la suite u est borée O motre

Plus en détail

f(t)dt = 0. On pose a = min f et b = max f. 0 1 + x 2 dx = 3 + 1 7 π. 2) En déduire un encadrement de π (meilleur que celui d'archimède).

f(t)dt = 0. On pose a = min f et b = max f. 0 1 + x 2 dx = 3 + 1 7 π. 2) En déduire un encadrement de π (meilleur que celui d'archimède). #4 Itégrale de Riema Khôlles - Classes prépa Thierry Sageaux, Lycée Gustave Eiel Exercice Soit f ue foctio cotiue sur [, ] telle que Motrer que f ab f(t)dt = O pose a = mi f et b = max f Exercice x ) Motrer

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

Chapitre Rappels sur les suites

Chapitre Rappels sur les suites Chapitre Séries umériques. Rappels sur les suites Défiitio.. (i) Ue suite (a ) N de réels (ou de complexes) est covergete vers ue limite a si pour tout ε > 0, il existe 0 N tel que pour tout 0, o a a a

Plus en détail

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I SESSION 9 Cocours ENSAM - ESTP - EUCLIDE - ARCHIMEDE E3A Epreuve de Mathématiques B PSI Exercice I ) rga) 3 < 4 et doc A / GL 4 R) Par suite, est valeur propre de A ) Soit U Puisque la somme des coefficiets

Plus en détail

Mathématiques. Terminale S Corrigés des exercices. Rédaction : Laurent Beroul Isabelle Tenaud Sébastien Cario. Coordination : Sébastien Cario

Mathématiques. Terminale S Corrigés des exercices. Rédaction : Laurent Beroul Isabelle Tenaud Sébastien Cario. Coordination : Sébastien Cario Mathématiques Termiale S Corrigés des eercices Rédactio : Lauret Beroul Isabelle Teaud Sébastie Cario Coordiatio : Sébastie Cario Ce cours est la propriété du Ced Les images et tetes itégrés à ce cours

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france. Exo7 Applicatios liéaires cotiues, ormes matricielles Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr Exercice * * très facile ** facile *** difficulté moyee **** difficile

Plus en détail

1 Programme de l agrégation interne

1 Programme de l agrégation interne Séries umériques Programme de l agrégatio itere Partie 0b : Séries de ombres réels ou complexes Séries à termes positifs La série coverge si et seulemet si la suite des sommes partielles est borée Étude

Plus en détail

3. Développer en série entière au voisinage de 0 la fonction suivante. On précisera le rayon de convergence de la série obtenue. x ln(1 + x 2x 2 ).

3. Développer en série entière au voisinage de 0 la fonction suivante. On précisera le rayon de convergence de la série obtenue. x ln(1 + x 2x 2 ). Colle PC Semaie 3 0-03 Séries Etières Voir : http://www.mimaths.et/img/pdf/s5.pdf http://www.mimaths.et/img/pdf/sem5.pdf EXERCICE :. Doer u exemple de série etière de rayo de covergece π.. Détermier le

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Ensembles et nombres réels

Ensembles et nombres réels Pierre-Louis CAYREL 008-009 Licece Itroductio aux Mathématiques Géérales Uiversité de Paris 8 Esembles et ombres réels Esembles Exercice O pose A = {(x, y) R ; y > x } et B = {(x, y) R ; y < x } Représeter

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

Corrigé de Mathématique éco HEC

Corrigé de Mathématique éco HEC Corrigé de Mathématique éco HEC EXERCICE Hypothèses. M 3 R est l espace vectoriel des matrices carrées d ordre 3 à coefficiets réels. A M 3 R : s A 3 A,j, s A 3 A,j, s 3 A 3 somme des coefficiets des liges

Plus en détail

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM FACULTE DES SCIENCES ET TECHNIQUES. UHA MULHOUSE L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM Chapitre 2 Séries etières Cotets. Gééralités sur les séries etières 2.. Défiitio

Plus en détail

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004 3 octobre 2004 Exemple 2. O se doe a I et q C(I, K). L équatio différetielle liéaire : y (x) q(x) y(x) = 0 avec les coditios y(a) = α, y (a) = β SUITES ET SÉRIES DE FONCTIONS PC*2 3 octobre 2004 Admet

Plus en détail

Exo7. Fractions rationnelles. 1 Fractions rationnelles. 2 Décompositions en éléments simples. Corrections de Léa Blanc-Centi.

Exo7. Fractions rationnelles. 1 Fractions rationnelles. 2 Décompositions en éléments simples. Corrections de Léa Blanc-Centi. Exo7 Fractios ratioelles Correctios de Léa Blac-Ceti. Fractios ratioelles Exercice Existe-t-il ue fractio ratioelle F telle que ( F() ) = ( + ) 3? Idicatio Correctio Vidéo [006964] Exercice Soit F = P

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Chapitre 16 : Espaces vectoriels

Chapitre 16 : Espaces vectoriels PCSI Préparatio des Khôlles -4 Chapitre 6 : Espaces vectoriels Exercice type Soit E=R[X] et F ={P E, P(X)=XP (X)+P()}, motrer que F est u sous-espace vectoriel de E. : O a bie F E. Si P =est le polyôme

Plus en détail

EXERCICES SUR LES SUITES NUMERIQUES

EXERCICES SUR LES SUITES NUMERIQUES EXERCICES SUR LES SUITES NUMERIQUES 1 Etudier la mootoie des suites a ) 0 défiies par : a) a = b) a = + 1) + ) + ) c) a =! d) a = α + 1) α réel positif) Soit a, la suite de terme gééral a = 3 + 1 3 + Trouver

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

Terminale S (2014-2015) Suites numériques

Terminale S (2014-2015) Suites numériques Termiale S (04-05) Suites umériques Raisoemet par récurrece. Itroductio E Mathématiques, u certai ombre de propriétés dépedet d u etier aturel. Par exemple, la ( + ) somme des etiers aturels de à est égale

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Déombremet Exercice 1 [ 01529 ] [correctio] Soiet E et F deux esembles fiis de cardiaux resectifs et. Combie y a-t-il d ijectios de E das F?

Plus en détail

Détermination des champs électriques et magnétiques. statiques par la méthode de séparation de variables

Détermination des champs électriques et magnétiques. statiques par la méthode de séparation de variables Détermiatio es champs électriques et magétiques statiques par la méthoe e séparatio e variables Chapitre III Détermiatio es champs électriques et magétiques statiques par la méthoe e séparatio e variables

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C :

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C : Corrigé baccalauréat S Polyésie 200 (raiateabac.blogspot.com) EXERCICE (5 poits) Pré-requis : z a + bi et _ z a bi Partie A : a ) E posat z a + bi et z a + b i o obtiet : z x z (a + bi) ( a + b i) aa bb

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

Séries entières. Préparation au Capes de Mathématiques

Séries entières. Préparation au Capes de Mathématiques Séries etières Préparatio au Capes de Mathématiques I - Covergece des séries etières Notatios Pour tout élémet r de R +, o ote D r = fz 2 C / jzj < rg et D r = fz 2 C / jzj rg Déitio 1 O appelle série

Plus en détail

et arctanx + arctan 1 x = sgn(x)π 2. 3. Application à la statue de la liberté : haute de 46 mètres avec un piédestal de 47 mètres.

et arctanx + arctan 1 x = sgn(x)π 2. 3. Application à la statue de la liberté : haute de 46 mètres avec un piédestal de 47 mètres. Eo7 Foctios circulaires et hyperboliques iverses Correctios de Léa Blac-Ceti. Foctios circulaires iverses Eercice Vérifier arcsi + arccos π et arcta + arcta sgπ. Idicatio Correctio Vidéo [00075] Eercice

Plus en détail

Polynômes de Bernstein

Polynômes de Bernstein Polyômes de Berstei Sergei Nataovic Berstei est é e 1880 et est mort e 1968. 1) Défiitio. Soit f ue foctio défiie et cotiue sur [0, 1] à valeurs das. Pour etier aturel o ul doé, le -ième polyôme de Berstei

Plus en détail

Terminale S. 1. Divers

Terminale S. 1. Divers Termiale S 1 Divers Bézout 3 Quadratique 4 Divisibilité 5 Equatio diophatiee 6 Equatio diophatiee (, Caracas 01_04) 7 Base de umératio 8 Base de umératio 3 9 Somme des cubes 10 PGCD 11 Somme des diviseurs

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

TD 2 : Suites numériques réelles

TD 2 : Suites numériques réelles Uiversité Paris-Est Mare-la-Vallée Licece L Maths/Ifo d semestre 0/0 Aalyse TD : Suites umériques réelles Exercice Cours) Motrer que si ue suite réelle u ) N coverge, alors toute sous-suite de u ) coverge

Plus en détail

Exercice 2 (Séries de fonctions - 7 points)

Exercice 2 (Séries de fonctions - 7 points) INSA Toulouse, STPI, IMACS 2 mercredi 18 décembre 212 Correctio exame d'aalyse I (coquilles probables) Exercice 1 (Séries etières - 5 poits) Calculer le rayo de covergece et le domaie de covergece simple

Plus en détail

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques Uiversité Deis Diderot (Paris VII) 006-007 MP 3 Quelques exercices corrigés Suites et séries umériques Das les pages qui suivet ous proposos la correctios de quelques exercices de la feuille sur les suites

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

Produit de Cauchy de la série alternée par elle-même.

Produit de Cauchy de la série alternée par elle-même. CCP 8. Filière MP. Mathématiques. Corrigé pour serveur UPS par JL. Lamard (jea-louis.lamard@prepas.org I. Gééralités. Pour > la série défiissat F coverge absolumet, pour < elle coverge par le critère spécial

Plus en détail

Correction de la question de cours 1

Correction de la question de cours 1 Math I Aalyse Exame du 9 décembre 2007 Durée 2 heures Aucu documet est autorisé. Les calculatrices, téléphoes portables et autres appareils électroiques sot iterdits. Il est iutile de recopier les éocés.

Plus en détail

Développements limités

Développements limités [http://mp.cpgedupuydelome.fr] édité le 0 juillet 04 Eocés Développemets limités Calcul de développemets limités Eercice [ 0447 ] [correctio] Détermier les développemets limités suivats : a) DL 3 (π/4)

Plus en détail

Feuille d exercices 5

Feuille d exercices 5 Mathématiques Physique S3, 205/206 Uiversité Blaise Pascal Feuille d exercices 5 Ex.. Tracer le graphe des foctios périodiques suivates, doer leur développemet e série de Fourier et discuter la covergece

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

1 Séries numériques COURS L2, SUITES, SÉRIES, INTÉGRALES IMPROPRES =?

1 Séries numériques COURS L2, SUITES, SÉRIES, INTÉGRALES IMPROPRES =? COURS L2, 200-20. SUITES, SÉRIES, INTÉGRALES IMPROPRES Séries umériques. série géométrique et série téléscopique + 2 + 4 + 8 + 6 +? Figure. quelle est la logueur? Soit q > 0 (das l exemple ci-dessus q

Plus en détail

Séries à termes positifs

Séries à termes positifs Séries à termes positifs Das toute la suite N désigera les etiers aturels positifs 0,,,..., Z tous les etiers aturels...,,, 0,,, 3,... et Q les ombres ratioels. Efi R désigera les réels, et C les complexes.

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k SÉRIES NUMÉRIQUES K désige le corps R ou C. Gééralités. Défiitios Défiitio. Série Soit (u ) 0 ue suite umérique (i.e. à valeurs das K). O appelle série de terme gééral u la suite (S ) 0 où 0, S = u k Cette

Plus en détail

Fonctions réelles d une variable réelle dérivables (exclu études de fonctions)

Fonctions réelles d une variable réelle dérivables (exclu études de fonctions) Eo7 Foctios réelles d ue variable réelle dérivables (eclu études de foctios) Eercices de Jea-Louis Rouget Retrouver aussi cette fice sur wwwmats-fracefr * très facile ** facile *** difficulté moyee ****

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites SESSION 216 PCMA2 EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES Mardi 3 mai : 14 h - 18 h N.B. : le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio.

Plus en détail

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques Chapitre Rappels sur les suites arithmétiques et les suites géométriques Nous allos ici rappeler les différets résultats sur les suites de ombres réels qui sot des suites arithmétiques ou des suites géométriques

Plus en détail

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé Bac blac TS No spécialité maths L usage de la calculatrice est autorisé EXERCICE : (5 poits) Le pla complee est rapporté au repère orthoormal direct (O ; u, v ) O cosidère le poit I d affie i et le poit

Plus en détail

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN Das ce qui suit, o utilisera des argumets élémetaires et o e suppose aucue coaissace des foctios exp et l Ce qui suit sert à les défiir comme

Plus en détail

Séries entières. Plan de cours

Séries entières. Plan de cours 5 Séries etières «U mathématicie qui est pas aussi quelque peu poète e sera jamais u mathématicie complet.» Extrait d ue lettre de Karl Weierstrass à Sophie Kowalevski (883) Pla de cours I Rayo de covergece

Plus en détail

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012 Corrigés d eercices / Versio de décembre 0 Les eercices du livre corrigés das ce documet sot les suivats : Page 9 : N, 6 Page 9 : N Page 9 : N 7, 9 Page 98 : N 9,,, 6, 7, 9 Page 99 : N 4, 47, 49, Page

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

Correction des exercices sur la nature ondulatoire de la lumière

Correction des exercices sur la nature ondulatoire de la lumière CORRECTION EXERCICES TS /5 CHAPITRE 3 Correctio des exercices sur la ature odulatoire de la lumière Correctio exercice : idice d u verre et réfractio. La radiatio = 530 m est verte et la radiatio = 680

Plus en détail

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k.

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k. PHEC Correctio feuille d exercices 00-006 correctio de l exercice t. 8t R + ; + t 6 l( + t) 6 t : Pour cela, o itroduit les foctios f : t 7 l( + t) t et g : t 7 t l( + t) + t dé ies sur [0; +[ et o étudie

Plus en détail

Autour de la loi de Poisson

Autour de la loi de Poisson Agrégatio Itere de Mathématiques Thierry Champio séace du 25 ovembre 2016 Autour de la loi de Poisso Notatios - Itroductio Das tout ce problème, (Ω, T, P) est u espace probabilisé. Toutes les variables

Plus en détail

Feuille 2 : Séries numériques.

Feuille 2 : Séries numériques. Feuille 2 : Séries umériques. Master Eseigemet Spécialité Maths Coseils O accordera ue importace toute particulière aux démostratios des théorèmes du cours. Certais exercices de cette feuille sot ispirés

Plus en détail

Table des matières. Aller à la page suivante

Table des matières. Aller à la page suivante CHAPITRE 3. SÉRIES NUMÉRIQUES Chapitre 3 Séries umériques 3. Préparatio Défiitio 3..2 O appelle série de terme gééral u et o ote u (qui se lit «série de terme gééral u»), où (u ) N R N, la suite de terme

Plus en détail

MATHEMATIQUES Terminale Scientifique

MATHEMATIQUES Terminale Scientifique MATHEMATIQUES Termiale Scietifique Fiches PROGRAMME 22 (v24) Sylvie LAMY Agrégée de Mathématiques Dilômée de l École Polytechique Cours Pi e-mail : lescoursi@cours-icom site : htt://wwwcours-icom siège

Plus en détail