Organisation des appareils et des systèmes: Le domaine de l optique

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Organisation des appareils et des systèmes: Le domaine de l optique"

Transcription

1 Organisation des appareils et des systèmes: Bases physiques des méthodes d exploration UE 3A Le domaine de l optique Dr JC DELAUNAY PACES- année 2015/2016

2 OPTIQUE GEOMETRIQUE Stigmatisme Miroirs Dioptres Lentilles

3 Lentille convergente Lumière B A A F O F B

4 Lentille divergente Lumière B B A A O F F

5 Organisation des appareils et des systèmes: Bases physiques des méthodes d exploration UE 3A Le domaine de l optique : LASER Dr JC DELAUNAY PACES- année 2015/2016

6 LASER Acronyme de «light amplification by stimulated emission of radiation» «amplification de la lumière par émission stimulée de radiation» Un laser est fondamentalement un amplificateur de lumière. Le terme laser est ambivalent puisqu'on l'emploie à la fois pour décrire le dispositif, la source qui permet de créer et d'émettre cette lumière particulière et pour nommer le rayon lumineux lui-même. EINSTEIN 1917 (principe)

7 Cavité Colloque bordeaux-jullien Miroir semi-réfléchissant Miroir v atomes molécules ions Photons Source excitatrice

8 Interaction matière rayonnement atome hu e - Etat stable E 0 Energie extérieure Etat excité Absorption d Energie e - niveau E 1 Atome excité repasse spontanément à son état fondamental: Emission spontanée photon (même u situation de résonance) Photon émis dans une direction quelconque DE = E 1 - E 0 = hu Fluorescence (l) (nanoseconde)

9 hu Photon émis Rencontre une particule excitée Désexcitation et formation 2 ième photon Nouveau photon est en tout point similaire à celui qui a permis à la particule de se désexciter : il transporte la même quantité d'énergie, à la même fréquence et possède la même direction de propagation. Conséquence: Le nombre de photons croît intensité du faisceau lumineux

10 Loi de Boltzmann: n 2 = n 1 exp [- (E 2 E 1 ) / kt E 2 hu (n 2 ) système en équilibre n 1 > n 2 niveaux plus bas toujours plus peuplés E 1 (n 1 ) Photons probablement absorbés Pour que le faisceau s enrichisse en photons n 2 > n 1 E 2 hu E 1 (n 2 ) hu hu (n 1 ) Inversion de population ( hors équilibre thermique avec apport d énergie) Emission stimulée (émission induite)

11 Amplification Milieu actif Apport d énergie Photon incident sur atome excité Émission stimulée Emission grand nombre de photons (Réactions en chaîne) Photons émis ont des propriétés identiques à ceux de l onde de départ Amplification en cascade du nombre de photons Effet laser L'inversion de population contribue ainsi à l'amplification de la lumière dans le laser. Source lumineuse

12 processus insuffisant pour produire à lui seul un faisceau laser. milieu actif placé entre deux miroirs. Miroir réfléchissant à 100% Cavité résonante Résonateur optique Miroir semi-réfléchissant à 99% Sortie de la lumière Les photons peuvent traverser plusieurs fois le milieu actif(allers-retours) Emission stimulée d un plus grand nombre de photons processus d'amplification laser oscille.

13 Dans la cavité optique, un très grand nombre d ondes réfléchies se superposent (ne pas oublier ondes lumineuses sinusoïdales). Additions de signaux si ondes ne sont pas en phase Interférences destructives Df Interférences constructives

14 Il faut que les ondes réfléchies soient en phase Interférences constructives Intensité maximale Condition remplie pour 2L = n l n entier positif u= n c 2L L distance entre les 2 miroirs le résonateur est généralement construit de manière à favoriser l'une des longueurs d'onde produites dans le milieu actif au détriment des autres.

15 Forme des miroirs But des miroirs faisceau optique traverse le milieu actif un grand nombre de fois. Miroirs plans Pertes latérales de la lumière Miroirs sphériques Pertes latérales minimisées

16 Construction optimale de la cavité de résonance Grand nombre de photons ou ondes se propageant en phase, à la même longueur d'onde (monochromatique) et dans la même direction. La somme de ces émissions stimulées produit une lumière dite cohérente, de très forte énergie (puissance) et de faible divergence (faisceau parallèle). L Energie rayonnée par un faisceau laser est concentrée dans un rayon cylindrique de faible diamètre. P On définit l intensité rayonnée I par: I = S (Puissance surfacique) avec I en W.m -2, P en W et S en m 2

17 Pompage optique (KASTLER 1950) Inversion de population Passage état excité plus rapide que la désexcitation. stockage des atomes dans un état excité pompage E 2 hu E 1 (n 2 ) hu n 2 > n 1 hu (n 1 ) atomes molécules ions cavité Source excitatrice Source va donner l énergie nécessaire pour l inversion de population

18 Pompage optique : Apport d énergie lumineuse au milieu : les photons émis par la source lumineuse sont absorbés par le milieu. Lampe à décharge remplie de gaz ou de vapeur métallique. Lampe flash ( lumière intense pulsée) possède un large spectre de 400 à nm. Diode laser (sélective en l). Pompage électrique décharge électrique

19 Energie LASER à 4 niveaux E 3 E 2 Transition non radiative (très rapide) stockage absorption E 1 E 0 Émission stimulée Transition très rapide Émission spontanée (peu probable)

20 Fonctionnement du laser mode continu (leur puissance est constante) source d'énergie excite en continu mode impulsionnel (émission pendant une durée brève, puis arrêt et à nouveau émission). (source d'énergie envoie par intermittence une décharge d'énergie) Emission de quelques ms aux femtosecondes

21 TYPES DE LASER Laser à milieu solide ( cristaux ou des verres) Matrice (cristal ou verre) dopée par un ion qui est le milieu actif. λ émission dépend de l ion dopant et de la matrice Milieu amplificateur: laser à rubis (Al 2 O 3 ) Cr 3+ λ= 694nm, rouge Dopé au terres rares: Nd (Néodyme), Er(Erbium) barreau Yb(Ytterbium), matrice YAG : λ= 1064nm grenat d'aluminium et d'yttrium verre dopage Nd l = 1053nm

22 Fibre matrice silice dopage Yb Source d excitation pour ce type de LASERS à milieux solides : Lampe flash ou diode laser Fonctionnement: continu ou de manière impulsionnelle (impulsions 10-6 s à s) visible, proche IR, UV. Puissances de l'ordre du kw en continu et du GW en pulsé. Pour un diamètre de 1 mm et P = 1kW I = 1, W.m -2

23 Applications tant scientifiques qu'industrielles: soudage, le marquage et la découpe de matériaux (Laser Nd-YAG). Très hautes énergies de l'ordre du mégajoule: systèmes destinés à la fusion nucléaire (Laser Nd-Verre) Dermatologie Odontologie (Laser Nd-YAP ) Détatouage (Laser Nd-YAG).

24 Lasers à milieu gazeux Gaz pur ou en mélange Excitation: décharge électrique voire optique Cathode He-Ne Anode Milieu actif: Miroir à 99% Miroir à 100% Atomes: laser hélium-néon (He-Ne) petite puissance (de 1 à 100mW) rouge à 632,8 nm Holographie et anciennement lecture des codes-barres Ions: Ar puissance de l ordre de 10 W Bleu-vert à 488 et 514 nm

25 Milieu actif: Moléculaire CO 2 CO 2 IR entre 9,4 et 10,6 µm Milieu actif: CO 2 environ 10 à 20%; puissance (mw à centaines de kw) section de tissus organiques Pour un diamètre de 1 mm et P = 1kW I = 1, W.m -2 très fortes puissances (fonctionnement en impulsion) 10 6 W. gravure ou découpe de matériaux. Refroidissement nécessaire

26 Lasers à milieu gazeux Excimère milieu actif halogène + gaz rare: XeCl, ArF. émission dans l UV (190 à 350 nm) petites impulsions qui permettent de faire l'ablation des surfaces de tissus ou des incisions. Applications: chirurgie ophtalmologique (myopie) et dans la fabrication des semi conducteurs. Lasers à colorants: molécules organiques émettant en général dans le visible. Pompage optique

27 Lasers à semi-conducteurs Pompage: courant électrique Semi-conducteurs sont dopés Semi-conducteurs sont dopés Diodes Lasers Ex:Arséniure de gallium dopé avec l aluminium (GaAsAl) Domaine émission: IR et Rouge Diode Laser Domaine émission: IR et Rouge Utilisation: Peu puissants : entre 1 et 100 mw. Pour un diamètre de 1 mm et P = 1mW I = 1, W.m -2 Dispositifs de «pompage» pour de plus gros lasers Les lecteurs de disques compacts En télécommunications (fibres optiques)

28 Risques: Les risques sont liés principalement aux effets thermiques Brûlures. Lésions oculaires (brûlure de la rétine) à partir de quelques mw. Ils sont accrus si la longueur d onde n est pas dans le spectre Visible. Port obligatoire de lunettes protectrices et éviter les surfaces Réfléchissantes.

29 Concours Cocher la (ou les) propositions vraie(s) A, B, C, D A - Les lasers à CO 2 sont utilisés dans l'industrie pour la découpe de matériaux. B - Un laser est un amplificateur de lumière faisant appel à l émission stimulée. C - L'inversion de population peut être obtenue en utilisant le pompage optique. D - Le faisceau émis par le laser est une onde lumineuse qui transporte de l énergie. E- Dans un laser à milieu solide, la longueur d onde d émission du faisceau dépend uniquement des propriétés de la matrice.

30 Références de quelques Livres se trouvant à la bibliothèque de Bordeaux2 (cours-propriétés colligatives; cours-électrophysiologie; cours-optique) ATKINS P.; PAULA J. Chimie_Physique Ed. De Boeck et Dunod AURENGO A., PETITCLERC T., GREMY F. Biophysique Ed. Flammarion BORDENAVE L. et al Biophysique Ed. Omniscience

31 Concours prisme Cocher la (ou les) proposition (s) vraie (s) Un faisceau lumineux monochromatique arrive, comme indiqué sur la figure ci-dessous, sur un prisme d angle au sommet A 1 et d indice n. Le faisceau lumineux arrive sur la face A 1 B 1 avec un angle d incidence i 1 = 40. On constate que, dans ces conditions, l angle d émergence du rayon sortant i 2 est aussi de 40. On notera r 1 l angle de réfraction issu de i 1 et r 2 l angle de réfraction issu de i 2. sin 20 = 0,34; sin 30 = 0,50; sin 40 = 0,64; sin 50 = 0,77; sin 60 = 0,87. A - Nous sommes dans les conditions du minimum de déviation. B - L angle de déviation D du faisceau lumineux est égal à 20. C - L angle de déviation D du faisceau lumineux est égal à 30. D - L angle de réfraction r 1 est égal à 30. E - La valeur numérique de l indice n du prisme est égale à 1,28. angle d incidence i 1 = angle d émergence du rayon sortant i 2 D = i incident + i émergent - A = 2 i - A D = = 20 sin i 1 = n sin r 1 r 1 + r 2 = A r 1 = r 2 2 r 1 = A r 1 = 30 n = sin i 1 sin r 1 n = sin 40 sin 30 = 0,64 0,50

32 FIN

JC DELAUNAY BIOPHYSIQUE - LASER

JC DELAUNAY BIOPHYSIQUE - LASER JC DELAUNAY BIOPHYSIQUE - UE 3A LASER LASER «light amplification by stimulated emission of radiation» «amplification de la lumière par émission stimulée de radiation» Un laser est fondamentalement un amplificateur

Plus en détail

Organisation des appareils et des systèmes: Le domaine de l optique

Organisation des appareils et des systèmes: Le domaine de l optique Université Bordeaux Segalen Organisation des appareils et des systèmes: Bases physiques des méthodes d exploration UE 3A Le domaine de l optique Dr JC DELAUNAY PACES- année 2014/2015 OPTIQUE GEOMETRIQUE

Plus en détail

émission spontanée puis émissions stimulées avec amplification du rayonnement

émission spontanée puis émissions stimulées avec amplification du rayonnement E 3 E 3 E 3 émission spontanée puis émissions stimulées avec amplification du rayonnement doc.1 : amplification du rayonnement par émission stimulée dans un milieu actif Milieu doc.2 : schéma de principe

Plus en détail

Lasers de puissance. 1 Principe. 2 Types de sources. 3 Applications et machines

Lasers de puissance. 1 Principe. 2 Types de sources. 3 Applications et machines Lasers de puissance 1 Principe 2 Types de sources 3 Applications et machines LASERS DE PUISSANCE : POUR QUOI FAIRE? Les différents procédés laser -1 Densité de Puissance (W/cm²) 10 10 10 9 Choc-laser 100

Plus en détail

LASER LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION. : Amplification de la Lumière par Emission Stimulée de Radiation

LASER LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION. : Amplification de la Lumière par Emission Stimulée de Radiation LASER LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION : Amplification de la Lumière par Emission Stimulée de Radiation Découverte: T. Maiman, Juin 1960 Cristal de Rubis excité par lampes flash

Plus en détail

Les lasers : quoi, comment, pourquoi?

Les lasers : quoi, comment, pourquoi? Les lasers : quoi, comment, pourquoi? Thierry Lahaye LCAR, UMR 5589 du CNRS, Toulouse Délégation régionale du CNRS 8 novembre 2010 Il y a 50 ans naissait le laser 16 mai 1960, Theodor Maiman (Hughes Research

Plus en détail

ChapitreVI OPTIQUE NON LINEAIRE

ChapitreVI OPTIQUE NON LINEAIRE ChapitreVI OPTIQUE NON LINEAIRE 41 VI-1- INTRODUCTION Les sources lasers ont bouleversé les méthodes et les possibilités de la spectroscopie: leurs très grande monochromaticité a permis de résoudre des

Plus en détail

Thème : Énergie, matière et rayonnement Type de ressources : séquence sur le Laser utilisant des ressources numériques.

Thème : Énergie, matière et rayonnement Type de ressources : séquence sur le Laser utilisant des ressources numériques. Thème : Énergie, matière et rayonnement Type de ressources : séquence sur le Laser utilisant des ressources numériques. Notions et contenus : Transferts quantiques d énergie Émission et absorption quantiques.

Plus en détail

Chapitre 2 LE LASER. I- Principe de fonctionnement du LASER

Chapitre 2 LE LASER. I- Principe de fonctionnement du LASER Chapitre 2 LE LASER Objectifs : - Connaître le principe de fonctionnement du LASER - Connaître les différents types de LASER et les précautions liées à son utilisation - Connaître les applications médicales

Plus en détail

Optique géométrique Un système optique est une succession de milieux transparents et I- Stigmatisme

Optique géométrique Un système optique est une succession de milieux transparents et I- Stigmatisme Le domaine de lʼoptique 2 Optique géométrique Un système optique est une succession de milieux transparents et I- Stigmatisme homogènes séparés par des surfaces qui réfractent ou qui Un système réfléchissent

Plus en détail

Spectroscopie d émission: Luminescence. 1. Principe 2. Exemples et applications 3. Lasers (Rubis et YAG)

Spectroscopie d émission: Luminescence. 1. Principe 2. Exemples et applications 3. Lasers (Rubis et YAG) Spectroscopie d émission: Luminescence 1. Principe 2. Exemples et applications 3. Lasers (Rubis et YAG) I. Principe Etat excité instable Photon Retour à l état fondamental??? Conversion interne (non radiatif)

Plus en détail

EPREUVE PARTIE D TITRE : LE LASER ET SES APPLICATIONS INDUSTRIELLES

EPREUVE PARTIE D TITRE : LE LASER ET SES APPLICATIONS INDUSTRIELLES EPREUVE PARTIE D TITRE : LE LASER ET SES APPLICATIONS INDUSTRIELLES Temps de préparation : 2h15 Temps de présentation devant le jury : 10 mn Entretien avec le jury : 10 minutes Le dossier fourni comporte

Plus en détail

STAGE LASERS INTENSES Du 15 au 19 mai 2006 COURS

STAGE LASERS INTENSES Du 15 au 19 mai 2006 COURS STAGE LASERS INTENSES Du 15 au 19 mai 2006 COURS Production d impulsions d laser nanosecondes en régime déclenché Directeur de Recherche au CNRS Responsable de l Équipe Lasers Solides et Applications (ELSA)

Plus en détail

5/ Fonctionnement du laser

5/ Fonctionnement du laser 5/ Fonctionnement du laser La longueur d onde du laser est de 532 nanomètres (532x10-9 m) soit dans le vert. Le choix de cette longueur d onde n est pas fait au hasard car la matière va interagir avec

Plus en détail

LES DIFFERENTS LASERS MEDICAUX ET LA TRANSMISSION DU FAISCEAU. Guy Delacrétaz

LES DIFFERENTS LASERS MEDICAUX ET LA TRANSMISSION DU FAISCEAU. Guy Delacrétaz - 1 - LES DIFFERENTS LASERS MEDICAUX ET LA TRANSMISSION DU FAISCEAU Guy Delacrétaz Laboratoire de Photonique Avancée, Faculté des Sciences et Techniques de l ingénieur, Ecole Polytechnique Fédérale de

Plus en détail

Sources - Techniques de projection - Lentilles

Sources - Techniques de projection - Lentilles TPC2 TP - Sciences Physiques Sources - Techniques de projection - Lentilles Objectifs généraux de formation Formation disciplinaire - Capacités exigibles Caractériser une source lumineuse par son spectre.

Plus en détail

Partie 1. Introduction aux lasers et applications... 1

Partie 1. Introduction aux lasers et applications... 1 Bibliographie générale...xv Tableaux utiles : lettres grecques, préfixes d'unités, spectre électromagnétique, notations utilisées (xx), abréviations utilisées (xxi), classes de sécurité des lasers (xxii)...xix

Plus en détail

De la bougie au LASER

De la bougie au LASER De la bougie au LASER Les objets émettent des «simulacres», espèces de fines écorces qui se détachent de la surface même des corps.s élancent dans l air en conservant leur forme entrent en nous en reproduisant

Plus en détail

6. MOYENS DE TRANSMISSION. 6.1 Transport par bras articulé. 6.2. Focalisation - 27 -

6. MOYENS DE TRANSMISSION. 6.1 Transport par bras articulé. 6.2. Focalisation - 27 - - 27-6. MOYENS DE TRANSMISSION 6.1 Transport par bras articulé Certaines radiations fortement absorbées par l'eau en particulier (dans le domaine infrarouge) ne sont pas transmissibles par fibre optique

Plus en détail

1) Sources de lumières

1) Sources de lumières TP COURS OPTIQUE GEOMETRIQUE Lycée F.BUISSON PTSI CONNAISSANCE DE BASES EN OPTIQUE GEOMETRIQUE 1) Sources de lumières 1-1) Sources à spectre de raies ou spectre discontinu Ces sources émettent un spectre

Plus en détail

TUTORAT SANTE MONTPELLIER- NIMES

TUTORAT SANTE MONTPELLIER- NIMES TUTORAT SANTE MONTPELLIER- NIMES METHODES D ETUDE DE LA CELLULE UE2 SPR 2011-2012 1 NOTIONS THÉORIQUES Un microscope est un système grossissant composé de deux lentilles convergentes: L objectif, proche

Plus en détail

Dioptre convergent (foyers réels)

Dioptre convergent (foyers réels) SF > 0 et SF < 0 le dioptre est convergent. foyers réels SF < 0 et SF > 0 le dioptre est divergent. foyers virtuels Dioptre convergent (foyers réels) n 1 < n 2 B n 2 Image réelle A F F S C A B n1 n 2 n1

Plus en détail

TP-Cours : Instruments d optique A. MARTIN. Sources lumineuses. Miroirs Lentilles. Projection Autocollimation. Instruments d optique

TP-Cours : Instruments d optique A. MARTIN. Sources lumineuses. Miroirs Lentilles. Projection Autocollimation. Instruments d optique et et 1/21 1 / 21 et Lumière blanche Lampe à incandescence : lumière blanche Source thermique : Fonctionnement basé sur le rayonnement électromagnétique spontané d un corps chauffé à haute température,

Plus en détail

Les LASERS et leurs applications - III

Les LASERS et leurs applications - III Les LASERS et leurs applications - III Sébastien FORGET Maître de conférences Laboratoire de Physique des Université Paris-Nord Merci à Sébastien Chenais (LPL, Paris-Nord) Et à Patrick Georges (Institut

Plus en détail

LES APPLICATIONS MÉDICALES DU LASER

LES APPLICATIONS MÉDICALES DU LASER REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE MENTOURI 1 CONSTANTINE FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D

Plus en détail

Propriétés optiques des matériaux : absorption, réflexion, réfraction, dispersion

Propriétés optiques des matériaux : absorption, réflexion, réfraction, dispersion Propriétés optiques des matériaux : absorption, réflexion, réfraction, dispersion Les matériaux utilisés pour réaliser des composants optiques sont ± absorbants (pertes énergétiques selon le trajet Flux

Plus en détail

Le laser. CLAEIS Nicolas LERNOUT Aymeric ROUSSEAUX Cédric LEJEUNE Sami. Page 1/12. http://titaniumphysicists.brachiolopemedia.com

Le laser. CLAEIS Nicolas LERNOUT Aymeric ROUSSEAUX Cédric LEJEUNE Sami. Page 1/12. http://titaniumphysicists.brachiolopemedia.com Le laser http://titaniumphysicists.brachiolopemedia.com CLAEIS Nicolas LERNOUT Aymeric ROUSSEAUX Cédric LEJEUNE Sami Page 1/12 SOMMAIRE I. Qu'est-ce qu'un laser? 1) Définition laser 2) Son invention 3)

Plus en détail

Caractérisation de Fibres dopées Terres Rares

Caractérisation de Fibres dopées Terres Rares Laboratoire Physique de la Matière Condensée CNRS-UMR7336_Université Nice Sophia-Antipolis Rapport de stage tuteuré en laboratoire Licence 3 Physique Encadrant: Bernard Dussardier Projet réalisé par :

Plus en détail

un concentré de lumière

un concentré de lumière > 9 > Le laser : un concentré de lumière LA FABRICATION DE LA LUMIÈRE LASER LES PROPRIETES DES LASERS LES LASERS DE RECHERCHE LES LASERS INDUSTRIELS 2 > SOMMAIRE Le laser : un concentré de lumière LA FABRICATION

Plus en détail

LE MONDE MERVEILLEUX DES LASERS!!!!

LE MONDE MERVEILLEUX DES LASERS!!!! LE MONDE MERVEILLEUX DES LASERS!!!! Patrick GEORGES Responsable du Groupe Laser et Biophotonique (LASBIO) et de l Équipe Lasers Solides et Applications (ELSA) du Laboratoire Charles Fabry de l Institut

Plus en détail

Les LASERS et leurs applications - II

Les LASERS et leurs applications - II Les LASERS et leurs applications - II Sébastien FORGET Maître de conférences Laboratoire de Physique des Lasers Université Paris-Nord Merci à Sébastien Chenais (LPL, Paris-Nord) Et à Patrick Georges (Institut

Plus en détail

Materiaux pour lasers a solide 261. et nous ne citerons que les principaux : LaMgAlnOi9 (LMA), LiYF4 (LYF), YAlOs (YAP) et

Materiaux pour lasers a solide 261. et nous ne citerons que les principaux : LaMgAlnOi9 (LMA), LiYF4 (LYF), YAlOs (YAP) et 260 G. Boulon developpements Materiaux pour lasers a solide 261 et nous ne citerons que les principaux : LaMgAlnOi9 (LMA), LiYF4 (LYF), YAlOs (YAP) et YVO4 dont 262 G. Boulon niveaux electroniques Materiaux

Plus en détail

Organisation des appareils et des systèmes: Le domaine de l optique

Organisation des appareils et des systèmes: Le domaine de l optique Université Bordeaux Segalen Organisation des appareils et des systèmes: Bases physiques des méthodes d exploration UE 3A Le domaine de l optique Dr JC DELAUNAY PACES- année 2011/2012 OPTIQUE GEOMETRIQUE

Plus en détail

Les LASERS et leurs applications - IV

Les LASERS et leurs applications - IV Les LASERS et leurs applications - IV Sébastien FORGET Maître de conférences Laboratoire de Physique des Lasers Université Paris-Nord Merci à Sébastien Chenais (LPL, Paris-Nord) Et à Patrick Georges (Institut

Plus en détail

Contrôle dynamique de la surface d onde du «LULI2000»

Contrôle dynamique de la surface d onde du «LULI2000» Contrôle dynamique de la surface d onde du «LULI2000» Ji-Ping Zou, Anne-Marie Sautivet, Luc Martin, Christian Sauteret Laboratoire pour l Utilisation des Lasers Intenses (LULI), Unité Mixte Ecole Polytechnique-

Plus en détail

LUMIERE BLANCHE - LUMIERE MONOCHROMATIQUE

LUMIERE BLANCHE - LUMIERE MONOCHROMATIQUE LUMIERE BLANCHE - LUMIERE MONOCHROMATIQUE I LE PHENOMENE DE DISPERSION 1 Expérience 2 Observation La lumière émise par la source traverse le prisme, on observe sur l'écran le spectre de la lumière blanche.

Plus en détail

Cours de physique appliqué Terminale STI électronique epix@fr.st. L optique (Chap 3)

Cours de physique appliqué Terminale STI électronique epix@fr.st. L optique (Chap 3) L optique (Chap 3)! Révisé et compris! Chapitre à retravaillé! Chapitre incompris 1. La lumière : La lumière est une onde électromagnétique, caractérisé par sa fréquence f. Les ondes électromagnétiques

Plus en détail

TPE Alarme LASER. MICHEL Victorien NUMA Stève

TPE Alarme LASER. MICHEL Victorien NUMA Stève CONTON Steeven MICHEL Victorien NUMA Stève Classe de 1 ère S1 TPE Alarme LASER M. Audry, professeur de sciences de l'ingénieur M. Poussel, professeur de physique-chimie Année 2012/2013, Lycée Etienne Bézout

Plus en détail

Sécurité LASER Novembre 2015 Valérie REITA Pôle Optique et Microscopies

Sécurité LASER Novembre 2015 Valérie REITA Pôle Optique et Microscopies Sécurité LASER Novembre 2015 Valérie REITA Pôle Optique et Microscopies plan Le spectre électromagnétique Les 4 classes de laser et exemples au laboratoire Les 3 Types d exposition Les 3 Effets du rayonnement

Plus en détail

Optique géométrique et physique

Optique géométrique et physique J.Hormière / 2 Optique géométrique et physique I Un objectif de distance focale f 320 mm est constitué par un doublet (L, L 2 ) de formule 8, 5, 4 (f 8a, e 5a, f 2 4a). La lumière rencontre d abord la

Plus en détail

Les LASERS et leurs applications - V

Les LASERS et leurs applications - V Les LASERS et leurs applications - V Sébastien FORGET Maître de conférences Laboratoire de Physique des Lasers Université Paris-Nord Merci à Sébastien Chenais (LPL, Paris-Nord) Et à Patrick Georges (Institut

Plus en détail

Les lasers par Élisabeth Giacobino

Les lasers par Élisabeth Giacobino Texte de la 216 e conférence de l Université de tous les savoirs donnée le 3 août 2000. Les lasers par Élisabeth Giacobino Inventé il y a quarante ans, le laser reste un instrument un peu mystérieux, voire

Plus en détail

Rencontre nationale trans-réseaux Réseau des mécaniciens Réseau Haute- Pression. Laser et procédés. Présenté par Emmanuelle MIQUET.

Rencontre nationale trans-réseaux Réseau des mécaniciens Réseau Haute- Pression. Laser et procédés. Présenté par Emmanuelle MIQUET. Rencontre nationale trans-réseaux Réseau des mécaniciens Réseau Haute- Pression Laser et procédés Présenté par Emmanuelle MIQUET À Mittelwihr Le 18 novembre 2011 Centre de Ressources Technologiques spécialisé

Plus en détail

TP n 4 : Etude de sources de lumière Spectre de corps noir et loi de Wien

TP n 4 : Etude de sources de lumière Spectre de corps noir et loi de Wien TP n 4 : Etude de sources de lumière Spectre de corps noir et loi de Wien I. Etude de quelques sources de lumière Objectif : - Obtenir expérimentalement les spectres de quelques sources de lumière, et

Plus en détail

INSTITUT MAUPERTUIS. Les applications des lasers dans l industrie. 2. Le soudage keyhole

INSTITUT MAUPERTUIS. Les applications des lasers dans l industrie. 2. Le soudage keyhole INSTITUT MAUPERTUIS Bulletin technique N 7 Les applications des lasers dans l industrie Présentation générale : La précision et la productivité au quotidien La technologie des lasers de puissance s est

Plus en détail

2/Focalisation des lasers

2/Focalisation des lasers 2/Focalisation des lasers L utilisation d un laser à distance élevé est donc inutile car la divergence du faisceau est non négligeable. L intérêt d un laser est sa capacité à transporter de l énergie dans

Plus en détail

Programme de khôlles

Programme de khôlles Programme de khôlles Semaines 7 et 8 (du 3 au 16 novembre 2014) Les lentilles minces 1. Savoir qu une lentille épaisse est un système centré, formé de deux dioptres sphériques qui délimitent un milieu

Plus en détail

Activité expérimentale

Activité expérimentale STi2D STL Thème Santé Activité expérimentale Les dangers du laser pour les yeux THÈME du programme : SANTÉ Sous thème : prévention et soin. Type d activité : Activité documentaire (1,5h) Les dangers du

Plus en détail

Etude expérimentale sur les interférences lumineuses

Etude expérimentale sur les interférences lumineuses Etude expérimentale sur les interférences lumineuses La lumière est une onde électromagnétique. Deux ondes sont à même d interagir en se sommant. Dans certains cas particuliers, notamment pour deux rayons

Plus en détail

C - La lumière : sources et propagation rectiligne

C - La lumière : sources et propagation rectiligne C - La lumière : sources et propagation rectiligne La propagation rectiligne, élément nouveau par rapport l école primaire, est un excellent moyen pour introduire la notion de modèle avec le rayon lumineux.

Plus en détail

cpgedupuydelome.fr -PC Lorient

cpgedupuydelome.fr -PC Lorient Première partie Modèle scalaire des ondes lumineuses On se place dans le cadre de l optique géométrique 1 Modèle de propagation 1.1 Aspect ondulatoire Notion d onde électromagnétique On considère une onde

Plus en détail

Ouverture au monde quantique

Ouverture au monde quantique Ouverture au monde quantique I) QUELQUES RAPPELS 1) Force de gravitation et force électrique 2) Les ondes électromagnétiques a) Domaine des ondes électromagnétiques - les infrarouges (IR), de 800 à 1400

Plus en détail

LASER INFORMATION C.N.R.S. MEUDON LE 06 MARS

LASER INFORMATION C.N.R.S. MEUDON LE 06 MARS SÉCURITÉ LASER SÉCURITÉ LASER INFORMATION C.N.R.S. MEUDON LE 06 MARS 2009 NOS DOMAINES D ACTIVITÉS Conseil et assistance technique : LASER CONSEIL intervient le plus en amont possible d un projet, afin

Plus en détail

Le Monde Quantique L3 PHYTEM Bases de la Mécanique Quantique Cours d introduction

Le Monde Quantique L3 PHYTEM Bases de la Mécanique Quantique Cours d introduction Le Monde Quantique L3 PHYTEM Bases de la Mécanique Quantique Cours d introduction C. Fabre fabre@spectro.jussieu.fr rdres de grandeur - échelle terrestre : d 7 10 m 25 10 Kg - échelle terrestre : d 7 10

Plus en détail

Chapitre II PHÉNOMÈNES RADIATIFS: PROPRIÉTÉS D EMISSION

Chapitre II PHÉNOMÈNES RADIATIFS: PROPRIÉTÉS D EMISSION 8 Chapitre II PHÉNOMÈNES RADIATIFS: PROPRIÉTÉS D EMISSION Compte tenu des règles de sélection une émission peut être observée si un gap d énergie important existe entre l état fondamental et un des états

Plus en détail

CPGE MPSI Programme de khôlle. Programme de khôlle. - Semaines 7 et 8 - (24/10 au 10/11) Bases de l optique géométrique

CPGE MPSI Programme de khôlle. Programme de khôlle. - Semaines 7 et 8 - (24/10 au 10/11) Bases de l optique géométrique Programme de khôlle - Semaines 7 et 8 - (24/10 au 10/11) Bases de l optique géométrique 1. Savoir que la lumière est une onde électromagnétique, se propagent de manière omnidirectionnelle à partir d une

Plus en détail

TUTORAT UE 3 2015-2016 Biophysique Séance n 2 Semaine du 21/09 au 25/09

TUTORAT UE 3 2015-2016 Biophysique Séance n 2 Semaine du 21/09 au 25/09 TUTORAT UE 3 2015-2016 Biophysique Séance n 2 Semaine du 21/09 au 25/09 Optique 1 Pr. Mariano-Goulart Séance préparée par Lélio VANLAER et Alicia BAUDOUY (ATM 2 ) Données : Champ de pesanteur terrestre

Plus en détail

MONJAUD Robin (monjaud@efrei.fr)

MONJAUD Robin (monjaud@efrei.fr) 1 MONJAUD Robin (monjaud@efrei.fr) Mme L Hernault 2 MONJAUD Robin (monjaud@efrei.fr) Mme L Hernault 3 MONJAUD Robin (monjaud@efrei.fr) Mme L Hernault 4 MONJAUD Robin (monjaud@efrei.fr) Mme L Hernault 5

Plus en détail

LASERS AU BLOC OPERATOIRE

LASERS AU BLOC OPERATOIRE S AU BLOC OPERATOIRE ALIBODE 2013 Mr MAZALAIGUE / Responsable service Technique Collin COLLIN S.A, BAGNEUX, 201005 Bref historique 1917 Décrit par Albert Einstein 1950 Procédé de pompage optique Alfred

Plus en détail

Marquer, graver et identifier grâce à la technique laser YAG de Gravograph

Marquer, graver et identifier grâce à la technique laser YAG de Gravograph Marquer, graver et identifier grâce à la technique laser YAG de Gravograph La gravure, l identification et le marquage permanents font aujourd hui partie de toutes les branches de production. Même les

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section i-prépa - I. Limites de la mécanique de Newton : Au niveau macroscopique : un satellite peut graviter à une distance quelconque d un

Plus en détail

Devoir Surveillé n 3

Devoir Surveillé n 3 Devoir Surveillé n 3 Les candidat(e)s veilleront à exposer leurs réponses avec clarté et rigueur, rédiger avec soin dans un français correct et reporter dans la marge les numéros des questions traitées.

Plus en détail

TUTORAT UE3-a 2013-2014 Physique Séance n 2 Semaine du 23/09/2013

TUTORAT UE3-a 2013-2014 Physique Séance n 2 Semaine du 23/09/2013 FACULTE De PHARMACIE TUTORAT UE3-a 2013-2014 Physique Séance n 2 Semaine du 23/09/2013 Optique 1 Pr Mariano-Goulart Séance préparée par Inès BOULGHALEGH, Hélène GUEBOURG DEMANEUF, Karim HACHEM, Jeff VAUTRIN

Plus en détail

Sommaire. Chapitre 1 Généralités sur la lumière. Chapitre 2 Lois et principes de l optique géométrique. Chapitre 3 Formation des images

Sommaire. Chapitre 1 Généralités sur la lumière. Chapitre 2 Lois et principes de l optique géométrique. Chapitre 3 Formation des images Sommaire Chapitre 1 Généralités sur la lumière A. Qu est ce que l optique aujourd hui?..................................... 8 B. Généralités sur la lumière.............................................

Plus en détail

Introduction à la physique du laser. 1ère partie : les caractéristiques des faisceaux gaussiens.

Introduction à la physique du laser. 1ère partie : les caractéristiques des faisceaux gaussiens. Introduction à la physique du laser. 1ère partie : les caractéristiques des faisceaux gaussiens. Objectifs Connaître les caractéristiques de la structure gaussienne d un faisceau laser (waist, longueur

Plus en détail

Oraux : optique géométrique

Oraux : optique géométrique Extraits de rapports de jury : - Le tracé de rayons, dans des cas les plus triviaux, engendre de nombreuses erreurs et imprécisions, même avec une seule lentille (tracé de l'émergent pour un incident quelconque,

Plus en détail

Technologies des réseaux tout optique

Technologies des réseaux tout optique École Nationale des Sciences Appliquées Tétouan- Génie des Systèmes de Télécommunications et Réseaux GSTR3 Module: Complément Télécoms Technologies des réseaux tout optique Pr. Mounir Arioua m.arioua@ieee.org

Plus en détail

Chapitre 12 Physique quantique

Chapitre 12 Physique quantique DERNIÈRE IMPRESSION LE 29 août 2013 à 13:52 Chapitre 12 Physique quantique Table des matières 1 Les niveaux d énergie 2 1.1 Une énergie quantifiée.......................... 2 1.2 Énergie de rayonnement

Plus en détail

LASER A SEMI-CONDUCTEUR (DIODE LASER).

LASER A SEMI-CONDUCTEUR (DIODE LASER). LASER A SEMI-CONDUCTEUR (DIODE LASER). I-THEORIE I - 1 Spécificité du laser à semi-conducteur. La faisabilité d'une émission laser au sein d'un semi-conducteur fut démontrée expérimentalement dans l'arséniure

Plus en détail

Histoire de l optique Optique géométrique (version historique) 2005-2006

Histoire de l optique Optique géométrique (version historique) 2005-2006 Histoire de l optique Optique géométrique (version historique) 2005-2006 1. Propagation rectiligne de la lumière (Euclide, ~300 av. J.-C. - ~260av. J.-C.) Durée : environ 1h00 en classe Construction d

Plus en détail

La correction de la myopie grâce au laser

La correction de la myopie grâce au laser La correction de la myopie grâce au laser Au fil du temps, les gens atteints de myopie en ont assez de devoir porter des lunettes ou des lentilles cornéennes qui les empêchent de profiter de leurs activités

Plus en détail

Chapitre 15 MILIEUX AMPLIFICATEURS

Chapitre 15 MILIEUX AMPLIFICATEURS Chapitre 15 MILIEUX AMPLIFICATEURS Nous rappelons que la lumière visible est caractérisée par des longueur d onde dans le vide, ; comprises entre 750 nm et 400 nm environ : > 750 nm est le domaine de l

Plus en détail

Phénomènes vibratoires et optique

Phénomènes vibratoires et optique Travaux dirigés Phénomènes vibratoires et optique K. F. Ren L3 IUP ME 2015 1 Oscillations 1.1 Etude d un oscillateur harmonique Un oscillateur harmonique est décrit par l équation : u(t) = 0, 4 cos(5πt

Plus en détail

Cours de révision MASC

Cours de révision MASC Cours de révision MASC 1) Décrire les rayonnements émis par un matériau irradié par un faisceau de rayons X. Diffusion élastique Nom et nature du rayonnement diffusés élastiquement Caractéristiques (énergie,

Plus en détail

1 Le flux lumineux. C'est aussi cette énergie, transportée par le faisceau lumineux, qui impressionne la rétine et provoque le mécanisme de la vision.

1 Le flux lumineux. C'est aussi cette énergie, transportée par le faisceau lumineux, qui impressionne la rétine et provoque le mécanisme de la vision. Photométrie Nous allons voir dans ce chapitre comment les phénomènes d'émission et d'absorption de lumière par les atomes ou les molécules peuvent être utilisés pour le dosage de certaines solutions les

Plus en détail

Exercices. Sirius 1 re S - Livre du professeur Chapitre 4. Lumière et couleur. Exercices d application. 5 minutes chrono!

Exercices. Sirius 1 re S - Livre du professeur Chapitre 4. Lumière et couleur. Exercices d application. 5 minutes chrono! Exercices Exercices d application 5 minutes chrono! 1. Mots manquants a. produit b. polychromatique c. longueur d onde d. supérieure e. trichromatique f. cônes g. thermique h. Wien 2. QCM a. peut être

Plus en détail

Communications Numériques par Fibre Optique

Communications Numériques par Fibre Optique Université Mohammed Premier École Nationale des Sciences Appliquées d Oujda Cours de la 5 ème Année : Cycle d Ingénieurs Module 5M4 Version 1.0 (Septembre 2009) Communications Numériques par Fibre Optique

Plus en détail

TP Cours : Polarisation rectiligne de la lumière

TP Cours : Polarisation rectiligne de la lumière TP Cours : Polarisation rectiligne de la lumière Les ondes lumineuses sont des ondes électromagnétiques vectorielles. Certains systèmes physiques, comme par exemple les lunettes de soleil polarisantes,

Plus en détail

Spectrophotométrie d absorption. http://www.youtube.com/watch?v=ximapwz5wsi

Spectrophotométrie d absorption. http://www.youtube.com/watch?v=ximapwz5wsi Spectrophotométrie d absorption http://www.youtube.com/watch?v=ximapwz5wsi Spectrophotométrie Usage de la lumière pour mesurer une concentration Basée sur l absorption des radiations lumineuses L absorption

Plus en détail

1- Propriétés de la lumière et indice de réfraction. Le microscope polarisant

1- Propriétés de la lumière et indice de réfraction. Le microscope polarisant CHABOU Moulley Charaf Ecole Nationale Polytechnique Département Génie Minier Cours - - 1- Propriétés de la lumière et indice de réfraction. Le microscope polarisant 1.1. Généralités sur la lumière La lumière

Plus en détail

TECHNOLOGIE LASER. En quelques mots. À la pointe de la technologie dans l usinage laser d outils de coupe. A member of the UNITED GRINDING Group

TECHNOLOGIE LASER. En quelques mots. À la pointe de la technologie dans l usinage laser d outils de coupe. A member of the UNITED GRINDING Group Creating Tool Performance A member of the UNITED GRINDING Group À la pointe de la technologie dans l usinage laser d outils de coupe En quelques mots L usinage moderne de matériaux à l aide de la technologie

Plus en détail

Le Laser et ses applications dans la médecine. Réalisé par : Ouerghi khalil & Benyahia Adil

Le Laser et ses applications dans la médecine. Réalisé par : Ouerghi khalil & Benyahia Adil Le Laser et ses applications dans la médecine Réalisé par : Ouerghi khalil & Benyahia Adil Année Universitaire : 2011/2012 Plan de l exposé Principe du fonctionnement du laser Différents types de laser.

Plus en détail

Chapitre II PHÉNOMÈNES RADIATIFS: PROPRIÉTÉS D EMISSION. f AB = mc 2 e 2. β 1 k(υ)dυ N

Chapitre II PHÉNOMÈNES RADIATIFS: PROPRIÉTÉS D EMISSION. f AB = mc 2 e 2. β 1 k(υ)dυ N 8 Chapitre II PHÉNOMÈNES RADIATIFS: PROPRIÉTÉS D EMISSION Compte tenu des règles de sélection une émission peut être observée si un gap d énergie important existe entre l état fondamental et un des états

Plus en détail

Laser à Cascade Quantique. génération du rayonnement THz par excitation optique des transitions inter-bandes

Laser à Cascade Quantique. génération du rayonnement THz par excitation optique des transitions inter-bandes Laser à Cascade Quantique étudié par spectroscopie THz ultrarapide, et génération du rayonnement THz par excitation optique des transitions inter-bandes Présentation : Simon SAWALLICH Date : Mercredi 14/04/2008

Plus en détail

TD de Physique n o 10 : Interférences et cohérences

TD de Physique n o 10 : Interférences et cohérences E.N.S. de Cachan Département E.E.A. M2 FE 3 e année Physique appliquée 2011-2012 TD de Physique n o 10 : Interférences et cohérences Exercice n o 1 : Interférences à deux ondes, conditions de cohérence

Plus en détail

SOURCES ET INTENSITÉ LUMINEUSES

SOURCES ET INTENSITÉ LUMINEUSES Ch. O1 : Sources et intensité lumineuses 1 C H A P I T R E 1 SOURCES ET INTENSITÉ LUMINEUSES 1. MODELE SCALAIRE DE LA LUMIERE 1.1. Amplitude et intensité lumineuses La lumière possède un double aspect

Plus en détail

TS1 - DST de Physique-Chimie 04/11/2013-2 h

TS1 - DST de Physique-Chimie 04/11/2013-2 h NOM : PRÉNOM : CLASSE : TS1 - DST de Physique-Chimie 04/11/2013-2 h COMPETENCES EVALUEES (A = acquis ; E = en cours d acquisition ; N = non acquis) Ex1 Ex2 Ex3 Rédiger et présenter son devoir. Restituer

Plus en détail

Introduction aux lasers et applications

Introduction aux lasers et applications Partie 1 Introduction aux lasers et applications Dans cette partie, on évoque la science des lasers de façon heuristique et de manière qualitative. Dans le chapitre 1.1, la jeune histoire des lasers et

Plus en détail

Comprendre l Univers grâce aux messages de la lumière

Comprendre l Univers grâce aux messages de la lumière Seconde / P4 Comprendre l Univers grâce aux messages de la lumière 1/ EXPLORATION DE L UNIVERS Dans notre environnement quotidien, les dimensions, les distances sont à l échelle humaine : quelques mètres,

Plus en détail

LE SPECTROSCOPE À PRISME. ANALYSE DES SPECTRES D ÉMISSION ET D ABSORBTION

LE SPECTROSCOPE À PRISME. ANALYSE DES SPECTRES D ÉMISSION ET D ABSORBTION LE SPECTROSCOPE À PRISME. ANALYSE DES SPECTRES D ÉMISSION ET D ABSORBTION 1. Le but du travail 1.1. Mise en evidence du phénomène de dispersion de la lumière par l observation des spectres d émission et

Plus en détail

Chapitre B3a. Spectroscopie infrarouge (IR)

Chapitre B3a. Spectroscopie infrarouge (IR) Chapitre B3a. Spectroscopie infrarouge (IR) 1 Chapitre B3a. Spectroscopie infrarouge (IR) Pour déterminer la formule développée d une molécule, on peut utiliser diverses méthodes : Des méthodes chimiques

Plus en détail

Le microscope optique ou photonique

Le microscope optique ou photonique Le microscope optique ou photonique I description : Le microscope est composé de deux systèmes optiques, l objectif et l oculaire, chacun pouvant être considéré comme une lentille mince convergente L objectif

Plus en détail

U D. I D = I so e - 1 - I I. INTRODUCTION

U D. I D = I so e - 1 - I I. INTRODUCTION H7. Photovoltaïsme : énergie solaire I. INTRODUCTION Le soleil est une source d énergie pratiquement inépuisable. La plus grande partie de l énergie utilisée par l homme jusqu à présent a son origine dans

Plus en détail

Dynamique des lasers. Lasers en impulsion

Dynamique des lasers. Lasers en impulsion Dynamique des lasers. Lasers en impulsion A. Evolutions couplées atomesphotons Rappel: gain laser en régime stationnaire Equations couplées atomes-rayonnement Facteur * Elimination adiabatique de l inversion

Plus en détail

Optique : expériences de base

Optique : expériences de base Préparation à l agrégation de Sciences-Physiques ENS Physique Optique : expériences de base Sextant, Optique expérimentale 1 I) Sources lumineuses 1) Sources thermiques Elles ont un spectre continu dont

Plus en détail

Vue d ensemble des radiations électromagnétiques

Vue d ensemble des radiations électromagnétiques Vue d ensemble des radiations électromagnétiques On appelle lumière la partie visible d'un vaste groupe de radiations, qui vont des rayons cosmiques aux ondes radio. Toutes ces ondes sont de même nature

Plus en détail

Une fois la lunette réglée, escamotez le miroir semi-rééchissant. Corrigez l'horizontalité de la lunette si nécessaire

Une fois la lunette réglée, escamotez le miroir semi-rééchissant. Corrigez l'horizontalité de la lunette si nécessaire TP 06 - Spectroscope à réseau Comment analyser la lumière émise par une source? 1 Principe et réglages du spectrogoniomètre à lunette autocollimatrice Figure 1: Goniomètre Le goniomètre est un appareil

Plus en détail

Unité d Enseignement Libre Université de Nice- Sophia Antipolis F. Millour PAGE WEB DU COURS : www.oca.eu/spip.php?article593 accessible via

Unité d Enseignement Libre Université de Nice- Sophia Antipolis F. Millour PAGE WEB DU COURS : www.oca.eu/spip.php?article593 accessible via Les moyens d observations en astronomie & astrophysique Unité d Enseignement Libre Université de Nice- Sophia Antipolis F. Millour PAGE WEB DU COURS : www.oca.eu/spip.php?article593 accessible via www.oca.eu/fmillour

Plus en détail

solaire photovoltaïque, solaire thermique, Solaire thermodynamique, Mur à accumulation d énergie

solaire photovoltaïque, solaire thermique, Solaire thermodynamique, Mur à accumulation d énergie solaire photovoltaïque, solaire thermique, Solaire thermodynamique, Mur à accumulation d énergie Le mur, placé sur une façade exposée sud, accumule l énergie solaire sous forme thermique durant le jour

Plus en détail

Les méthodes d observation

Les méthodes d observation Les méthodes de biologie cellulaire et moléculaire Les méthodes d observation Cocher la (ou les) proposition(s) vraie(s) 1. Concernant les constituants du microscope photonique : A. La lentille la plus

Plus en détail