Terminologie. La théorie des probabilités fournit des modèles mathématiques permettant l'étude des expériences aléatoires.

Dimension: px
Commencer à balayer dès la page:

Download "Terminologie. La théorie des probabilités fournit des modèles mathématiques permettant l'étude des expériences aléatoires."

Transcription

1 Probabilités

2 Terminologie Une expérience ou une épreuve est qualiée d'aléatoire si on ne peut pas prévoir son résultat et si, répétée dans des conditions identiques, elle peut donner des résultats diérents. La théorie des probabilités fournit des modèles mathématiques permettant l'étude des expériences aléatoires.

3 L'univers Ω L'univers Ω est l'ensemble de toutes les issues élémentaires possibles de l'expérience. Exemples. on jette un dé : Ω = {1, 2, 3, 4, 5, 6}. on tire un numéro du loto : Ω = {1, 2,..., 48, 49}. on lance une pièce de monnaie Ω = {P, F }. on lance deux pièces de monnaie distinctes Ω = {PP, PF, FF, FP}.

4 Evénements On jette un dé. Quels événements peut on obtenir? j'obtiens un 2, j'obtiens un 5 sont des événements élémentaires. On peut aussi considérer des événements plus complexes j'obtiens un nombre inférieur ou égal à 3. j'obtiens un nombre pair. j'obtiens un 7. j'obtiens un nombre premier. nombre entier : seulement divisible par un et par lui-même. j'obtiens un nombre compris entre 1 et 6 (inclus).

5 Evénements élémentaires et complexes Comment noter ces diérents événements? Evénements Notation j'obtiens un 2 {2} j'obtiens un 5 {5} j'obtiens un nombre inférieur ou égal à 3 {1, 2, 3} j'obtiens un nombre pair {2, 4, 6} j'obtiens un 7 Ø j'obtiens un nombre premier {1, 2, 3, 5} j'obtiens un nombre compris entre 1 et 6 (inclus) {1, 2, 3, 4, 5, 6} {2} et {5} sont qualiés d'événements élémentaires. Les autres événements ne sont pas élémentaires.

6 Evénements élémentaires et complexes (2) Notons que tous ces événements, qu'ils soient élémentaires ou pas, appartiennent à l'ensemble des parties de Ω, P(Ω). L'ensemble Ω est ici égal à {1, 2, 3, 4, 5, 6}. L'ensemble P(Ω) contient 2 6 = 64 éléments dont ceux du tableau de la page précédente.

7 Vocabulaire & notations Monde réel Evénement certain Evénement impossible Evénement A et événement B Evénement A ou événement B Evénements A et B incompatibles Ā est l'événement contraire de A Monde des probabilités Ω A B A B A B = A Ā = Ω et A Ā = Prenons l'exemple du dé. Quel est l'événement j'obtiens un nombre inférieur (ou égal) à 3 et j'obtiens un nombre impair? C'est {1, 2, 3} {1, 3, 5} = {1, 3}.

8 Vocabulaire & notations (2) Encore l'exemple du dé. Quel est l'événement j'obtiens un nombre inférieur (ou égal) à 3 ou j'obtiens un nombre impair? C'est {1, 2, 3} {1, 3, 5} = {1, 2, 3, 5}. Toujours l'exemple du dé. Quel est l'événement contraire de l'événement j'obtiens un 1? (ie l'événement {1}) C'est l'événement j'obtiens un 2 ou un 3 ou un 4 ou un 5 ou un 6 (ie l'événement {2, 3, 4, 5, 6}). On vérie bien qu'il s'agit là d'événements contraires : {1} {2, 3, 4, 5, 6} = {1, 2, 3, 4, 5, 6} = Ω. {1} {2, 3, 4, 5, 6} = Ø.

9 Probabilités Soit l'univers Ω = {ω 1, ω 2,..., ω n }. Rappelons que les ω 1, ω 2,..., ω n sont les événements élémentaires. Dénition : On appelle probabilité toute application p de P(Ω) dans [0, 1] qui vérie les deux propriétés : 1. La somme des probabilités de tous les événements élémentaires est égale à 1 : p({ω 1 }) + p({ω 2 }) +...p({w n }) = 1 2. La probabilité d'un événement A est égale à la somme des probabilités des événements élémentaires qui le composent.

10 Probabilités - Exemple Pour modéliser un dé équilibré. Ω = {1, 2, 3, 4, 5, 6}. p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = 1/6. Quelle est la probabilité d'obtenir un nombre inférieur ou égal à 3? L'évenement est noté {1, 2, 3}. On utilise la deuxième condition qui dénit une probabilité en ajoutant les probabilités élémentaires. On obtient p(1) + p(2) + p(3) = = 1 2. Pour modéliser un dé non équilibré (exemple) Ω = {1, 2, 3, 4, 5, 6}. p(1) = p(2) = p(3) = p(4) = p(5) = 0.15 et p(6) = = 0.25.

11 Propriétés des probabilités Propriétés. 1. La probabilité d'un événement certain vaut 1 : p(ω) = La probabilité d'un événement impossible vaut 0 : p( /O) = La somme de deux événements contraires vaut 1 : p(a) + p(ā) = Si deux événements A et B sont élémentaires alors P(A B) = P(A) + P(B). 5. Si deux événements A et B sont quelconques alors P(A B) = P(A) + P(B) P(A B). Remarque : les deux dernières propriétés sont cohérentes car si A et B sont deux événements élémentaires alors A B = Ø et donc p(a B) = 0.

12 Application Dans une classe, 10% des élèves jouent d'un instrument à corde, 20% jouent d'un instrument à vent et 5% jouent d'un instrument à corde et d'un instrument à vent. On choisit un élève au hasard. Quelle est la probabilité qu'il joue d'un instrument à corde ou à vent? Notons C l'événement : "l'élève joue d'un instrument à corde" et V : "l'élève joue d'un instrument à vent". D'après les données, on a : p(c) = 0.1 ; p(v ) = 0.2 et p(c V ) = D'après les propriétés précédentes, on a p(c V ) = p(c)+p(v ) p(c V ) = = 0.25

13 Le cas d'équiprobabilité Un cas particulier courant est celui où tous les événements élémentaires ont la même probabilité : p({ω 1 }) = p({ω 2 }) =... = p({w n }) = 1 n Pour tout événement A, on a alors la propriété p(a) = Card(A) Card(Ω) On résume parfois cette dernière inégalité sous la forme : p(a) = nombre de cas favorables nombre total de cas

14 Le cas d'équiprobabilité (2) Exemple : quelle est la probabilité d'obtenir un nombre premier en jetant un dé? C'est card({1, 2, 3, 5}) card({1, 2, 3, 4, 5, 6}) = 4 6 = 2 3

15 Exemple Une enquête eectuée auprès de 1500 personnes adultes (habitants d'une ville) portant sur les jeux d'argent indique que 1182 jouent à la loterie (A) 310 vont au casino (B) 190 jouent autant à la loterie qu'au casino (C ). Questions. Comment écrire l'événement C en fonction de A et de B? Si une personne adulte (de la ville) est choisie au hasard, quelle est la probabilité qu'elle joue à la loterie? qu'elle joue au casino? qu'elle joue à la loterie ou au casino? Quelle est la probabilité qu'elle joue uniquement au casino?

16 Exemple On tire une des 1500 personnes au hasard : on est dans le cas d'équiprobabilité. Comment s'écrit l'événement jouer à la loterie et au casino? C'est C = A B p(a) = 1182/1500 = p(b) = 310/1500 = p(a B) = p(a) + p(b) p(a B) = = 0.868

17 Exemple (suite) Combien de personnes jouent seulement au casino? Il y en a = 120 Probabilité que la personne tirée au sort joue seulement au casino? C'est 120/1500 = 0.08 Remarque : Comment s'écrit l'événement jouer seulement au casino? C'est l'événement D = Ā B.

18 Exemple 2 On tire 8 cartes dans un jeu de 32 cartes. Quelle est la probabilité de Tirer tous les coeurs? Tirer les 4 as? Tirer 5 coeurs et 3 trèes?

19 Exemple 2 (suite) Ici l'ordre n'est pas important. De plus, nous sommes dans le cas d'événements élémentaires équiprobables. Le nombre total de tirages possibles est de C 8 32 = ! =

20 Exemple 2 (suite) Quelle est la probabilité de tirer tous les coeurs? Quel est le nombre de tirages favorables? C'est 1 (ou C 8 8 : on tire les 8 cartes parmi les 8 coeurs). La probabilité recherchée est donc nombre de cas favorables / nombre total de cas = 1/ =

21 Exemple 2 (suite) Quelle est la probabilité de tirer les 4 as? Quel est le nombre de tirages favorables? C'est C 4 4 C 4 28 = ! = = En eet on tire 4 cartes parmi les 4 as, et 4 autres cartes parmi 28 restantes La probabilité recherchée est donc nombre de cas favorables / nombre total de cas = 20475/ = 0.002

22 Exemple 2 (suite) Quelle est la probabilité de tirer 5 coeurs et 3 trèes? Quel est le nombre de tirages favorables? C'est C 5 8 C 3 8 = ! ! = = 3136 La probabilité recherchée est donc nombre de cas favorables / nombre total de cas = 3136/ =

23 Exemple 3 Un groupe de 10 personnes est composé de 4 hommes et 6 femmes. On choisit 5 personnes. Déterminer les probabilités des événements suivants, pour le tirage obtenu. il n'y a aucun homme. il y a 2 hommes et 3 femmes.

24 Exemple 3 (suite) On est dans le cas d'équiprobabilité. Ici l'ordre ne compte pas. Le nombre de tirages possibles est égal à C 5 10 = ! = 252

25 Exemple 3 (suite) Déterminer la probabilité qu'il n'y ait aucun homme. Cela veut dire qu'il n'y a que des femmes. Le nombre de tirages favorables est C 5 6 = ! La probabilité recherchée est 6/252 = = 6

26 Exemple 3 (suite) Déterminer la probabilité qu'il y ait 2 hommes et 3 femmes. Le nombre de tirages favorables est C 2 4 C 3 6 = 4 3 2! ! = 6 20 = 120 La probabilité recherchée est 120/252 = 0.476

27 Indépendance - dénition Deux événements sont indépendants par rapport à la probabilité p si p(a B) = p(a)p(b)

28 Indépendance - exemple On jette 2 dés équilibrés de couleurs diérentes (rouge et vert). Soit l'événement A : le dé rouge a donné 5 et l'événement B: le dé vert a donné 3. Ces événements sont-ils indépendants? Evidemment oui mais vérions le! Quel est l'ensemble Ω de toutes les issues élémentaires possibles (l'univers)? C'est l'ensemble {11, 12, 13, 14, 15, 16, 21,..., 66}. le codage 21 signie le dé rouge a donné 2, le dé vert, 1 L'ensemble Ω comporte 6 6 = 36 éléments. Ici les événements élémentaires sont équiprobables.

29 Indépendance - exemple (suite) L'événement A peut s'écrire sous la forme {51, 52, 53, 54, 55, 56}. Sa probabilité est égale à card(a)/card(ω) = 6/36 = 1/6. L'événement B peut s'écrire sous la forme {13, 23, 33, 43, 53, 63}. Sa probabilité est égale à card(b)/card(ω) = 6/36 = 1/6. L'évenement A B (le dé rouge tiré est 5 et le dé vert tiré est 1) est l'événement {53}. On a p(a B) = 1/36. On a bien 1 36 = les événements sont donc indépendants.

30 Probabilités conditionnelles Supposons que l'on jette un dé. Quelle est la probabilité d'obtenir un 1? (événement {1}) C'est p({1}) = 1/6. Supposons maintenant qu'une autre personne voit le résultat du tirage avant nous. Cette personne nous dit que le résultat du tirage est un nombre impair, sans plus de précision. Pour calculer la probabilité d'obtenir un 1, on utilise cette nouvelle information. On calcule maintenant p({1} / {1, 3, 5}). Le signe / se dit sachant que ou conditionnellement à. Il traduit le fait que l'on possède une nouvelle information (ici le nombre tiré est impair) pour calculer la probabilité.

31 Probabilités conditionnelles - dénition Dénition. La probabilité conditionnelle d'un événement A, sachant qu'un autre événement B de probabilité non nulle s'est réalisé (ou probabilité de A sachant B) est le nombre noté p(a/b) déni par p(a/b) = p(a B) p(b) Dans l'exemple précédent, on calcule la probabilité d'obtenir 1 sachant que le résultat est impair. Cela s'écrit p({1} / {1, 3, 5}). En utilisant la formule précédente on obtient p({1} / {1, 3, 5}) = p({1} {1, 3, 5})) p({1, 3, 5}) = p({1}) 1 p({1, 3, 5}) = 6 = Le résultat n'est pas étonnant.

32 Probabilités conditionnelles - remarques Remarque 1. Lorsque les événements A et B sont indépendants, on a la propriété p(a/b) = p(a) C'est logique : si les événements A et B sont indépendants, connaître B n'apporte pas d'information supplémentaire sur la réalisation ou pas de A.

33 Probabilités conditionnelles - remarques (suite) Remarque 2. On a p(a/b) = p(a B) p(b) Or on sait qu'on a aussi p(b/a) = p(a B) p(a) ou encore p(a B) = p(b/a)p(a) On peut donc réécrire la première formule comme p(a/b) = p(b/a)p(a) p(b) formule qui est souvent utile (voir TD4)

Chapitre 5 Les Probablilités

Chapitre 5 Les Probablilités A) Introduction et Définitions 1) Introduction Chapitre 5 Les Probablilités De nombreuses actions provoquent des résultats qui sont dus en partie ou en totalité au hasard. Il est pourtant nécessaire de

Plus en détail

Probabilités. Chapitre 2 : Le modèle probabiliste - Indépendance d évènements. Julian Tugaut. 15 janvier 2015

Probabilités. Chapitre 2 : Le modèle probabiliste - Indépendance d évènements. Julian Tugaut. 15 janvier 2015 Indépendance de deux évènements Chapitre 2 : Le modèle probabiliste - Indépendance d évènements 15 janvier 2015 Sommaire 1 Indépendance de deux évènements 2 Indépendance de deux évènements Approche intuitive

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS ONDITIONNELLES Exercice 01 On considère une roue partagée en 15 secteurs angulaires numérotés de 1 à 15. es secteurs sont de différentes couleurs. On fait tourner la roue qui s'arrête sur

Plus en détail

Chapitre 3 : Introduction aux probabilités

Chapitre 3 : Introduction aux probabilités IUT de Sceaux Département TC1 Mathématiques Chapitre 3 : Introduction aux probabilités 1. Évènements Les événements élémentaires sont les issues possibles d'une expérience aléatoire. Un événement est un

Plus en détail

NOTIONS DE PROBABILITÉS

NOTIONS DE PROBABILITÉS NOTIONS DE PROBABILITÉS Sommaire 1. Expérience aléatoire... 1 2. Espace échantillonnal... 2 3. Événement... 2 4. Calcul des probabilités... 3 4.1. Ensemble fondamental... 3 4.2. Calcul de la probabilité...

Plus en détail

EXERCICES SUR LES PROBABILITÉS

EXERCICES SUR LES PROBABILITÉS EXERCICES SUR LES PROBABILITÉS Exercice 1 Dans un univers Ω, on donne deux événements A et B incompatibles tels que p(a) = 0,2 et p(b) = 0,7. Calculer p(a B), p(a B), p ( A ) et p ( B ). Exercice 2 Un

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

Probabilités CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Probabilités CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Chapitre Ce que dit le programme : Probabilités CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Objectifs visés par l enseignement des statistiques et probabilités à l occasion de résolutions de problèmes dans

Plus en détail

Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles

Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles Chapitre 3 Événements indépendants et Probabilités conditionnelles Indépendance Indépendance Probabilité conditionnelle Definition Deux événements A et B sont dits indépendants si P(A B) = P(A).P(B) Attention

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

9 5 2 5 Espaces probabilisés

9 5 2 5 Espaces probabilisés BCPST2 9 5 2 5 Espaces probabilisés I Mise en place du cadre A) Tribu Soit Ω un ensemble. On dit qu'un sous ensemble T de P(Ω) est une tribu si et seulement si : Ω T. T est stable par complémentaire, c'est-à-dire

Plus en détail

CALCUL DES PROBABILITES

CALCUL DES PROBABILITES CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

Cogmaster, Probabilités discrètes. Feuille de TD n o 1 - Événements et probabilités

Cogmaster, Probabilités discrètes. Feuille de TD n o 1 - Événements et probabilités Cogmaster, Probabilités discrètes Feuille de TD n o 1 - Événements et probabilités Exercice 1 Parmi les ensembles suivants, lesquels sont égaux entre eux? A = {n + 4, n N}, B = {n, n = k + 4, k N}, C =

Plus en détail

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

Feuille d exercices 1

Feuille d exercices 1 Université Paris 7 - Denis Diderot L2 - Probabilités PS4 Année 2014-2015 Feuille d exercices 1 Exercice 1 Combien y a-t-il de paires d entiers non consécutifs compris entre 1 et n (n 1)? Exercice 2 1.

Plus en détail

Calculs de probabilités conditionelles

Calculs de probabilités conditionelles Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile

Plus en détail

Correction des exemples. Mathieu EMILY

Correction des exemples. Mathieu EMILY Correction des exemples Mathieu EMILY Novembre 2005 Table des Matières Exemple_Exercice 1 Page 2 Exemple_Exercice 2 Page 3 Exemple_Exercice 3 Page 5 Exemple_Exercice 4 Page 6 Exemple_Exercice 5 Page 7

Plus en détail

2. Probabilité. 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance. http://statwww.epfl.ch

2. Probabilité. 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance. http://statwww.epfl.ch 2. Probabilité 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance Probabilité et Statistiques I Chapître 2 1 2.1 Espaces de Probabilité Contenu Exemples élémentaires de probabilité,

Plus en détail

TD: Ensembles, applications, dénombrement

TD: Ensembles, applications, dénombrement Université de Provence Année 011/1 Licence Math Info ème année S3 Fondements de l Informatique 1 Ensembles et fonctions TD: Ensembles, applications, dénombrement 1. On suppose que l ensemble de tous les

Plus en détail

Probabilités conditionnelles

Probabilités conditionnelles Probabilités conditionnelles Exercice Dans une usine, on utilise conjointement deux machines M et M 2 pour fabriquer des pièces cylindriques en série. Pour une période donnée, leurs probabilités de tomber

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Espace de probabilité, indépendance et probabilité conditionnelle

Espace de probabilité, indépendance et probabilité conditionnelle Chapter 2 Espace de probabilité, indépendance et probabilité conditionnelle Sommaire 2.1 Tribu et événements........................................... 15 2.2 Probabilité................................................

Plus en détail

MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités

MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités Master Génie des Systèmes Industriels, mentions ACCIE et RIM Université du Littoral - Côte d Opale, La Citadelle Laurent SMOCH (smoch@lmpa.univ-littoral.fr)

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

I. Cas de l équiprobabilité

I. Cas de l équiprobabilité I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus

Plus en détail

2 Probabilités conditionnelles. Événements indépendants

2 Probabilités conditionnelles. Événements indépendants 2 Probabilités conditionnelles. Événements indépendants 2.1 Probabilité conditionnelle Soient A et B deux événements tels que P(B) > 0. Soit alors P(A B), la probabilité que A se réalise, B étant réalisé.

Plus en détail

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau GEA II Introduction aux probabilités Poly. de révision Lionel Darondeau Table des matières Énoncés 4 Corrigés 10 TD 1. Analyse combinatoire 11 TD 2. Probabilités élémentaires 16 TD 3. Probabilités conditionnelles

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Calcul élémentaire des probabilités

Calcul élémentaire des probabilités Myriam Maumy-Bertrand 1 et Thomas Delzant 1 1 IRMA, Université Louis Pasteur Strasbourg, France Licence 1ère Année 16-02-2006 Sommaire Variables aléatoires. Exemple 1. (Jeu d argent) Exemple 2. Loi de

Plus en détail

Dénombrement Probabilité uniforme sur un ensemble fini

Dénombrement Probabilité uniforme sur un ensemble fini UPV - MathsL1S1 1 II Dénombrement Dénombrement Probabilité uniforme sur un ensemble fini I Dénombrement 1) Factorielles : Pour n entier 1, il y a : n! = n.(n - 1). (n - 2) 2.1 façons d aligner n objets

Plus en détail

Thème 3 : ensembles, espaces de probabilités finis

Thème 3 : ensembles, espaces de probabilités finis Thème 3 : ensembles, espaces de probabilités finis Serge Cohen, Monique Pontier, Pascal J. Thomas Septembre 2004 1 Généralités : ensembles et parties d un ensemble Définition 1.1 On appelle ensemble une

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

collège des flandres : http://www5.ac-lille.fr/~clgflandres/maths/mathscours.html Activité cours : Probabilité

collège des flandres : http://www5.ac-lille.fr/~clgflandres/maths/mathscours.html Activité cours : Probabilité Le cours de M. Haguet collège des flandres : http://www5.ac-lille.fr/~clgflandres/maths/mathscous.html Activité cours : Probabilité I) Expérience aléatoire a) Exemples d'expériences pile ou face jeu de

Plus en détail

Analyse Combinatoire

Analyse Combinatoire Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

Les trois sortes de tirages

Les trois sortes de tirages DERNIÈRE IMPRESSION LE 29 juin 2015 à 19:20 Les trois sortes de tirages Introduction Comme nous l avons vu, dans une loi équirépartie, il est nécessaire de dénombrer les cas favorables et les cas possibles.

Plus en détail

Cours de Probabilités 1. Dénombrement 2. Probabilités 3. Variables aléatoires réelles

Cours de Probabilités 1. Dénombrement 2. Probabilités 3. Variables aléatoires réelles Cours de Probabilités 1. Dénombrement 2. Probabilités 3. Variables aléatoires réelles Pour BCPST 1 Année scolaire : 2004/2005 16 juin 2005 Mohamed TARQI Table des matières 1 Dénombrement 3 1.1 Généralités.

Plus en détail

Probabilités. C. Charignon. I Cours 3

Probabilités. C. Charignon. I Cours 3 Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3

Plus en détail

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J.

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J. Année 2013-2014 UNIVERSIÉ DE CERGY LICENCE d ÉCONOMIE et FINANCE LICENCE de GESION Seconde année - Semestre 3 PROBABILIÉS Cours de M. J. Stéphan ravaux Dirigés de Mme M. Barrié, M. J-M. Chauvet et M. J.

Plus en détail

Unité G Calcul des probabilités

Unité G Calcul des probabilités Unité G Calcul des probabilités MATHÉMATIQUES PRÉ-CALCUL SECONDAIRE 4 Calcul des probabilités CALCUL DES PROBABILITÉS Dans l'unité qui suit, les élèves : définissent des espaces d'échantillon pour calculer

Plus en détail

3 Exercices. 3.1 Probabilités simples. 3.2 Probabilités avec dénombrement. Probabilités 3. Exercice 1 On tire au hasard une carte parmi un jeu de 52.

3 Exercices. 3.1 Probabilités simples. 3.2 Probabilités avec dénombrement. Probabilités 3. Exercice 1 On tire au hasard une carte parmi un jeu de 52. Probabilités 3 3 Exercices 3.1 Probabilités simples Exercice 1 On tire au hasard une carte parmi un jeu de 52. Calculer la probabilité d obtenir : 1. un roi 2. le valet de trèfle 3. l as de coeur ou la

Plus en détail

APERÇU SUR L'ENSEIGNEMENT DES PROBABILITÉS ET STATISTIQUES AU VIETNAM

APERÇU SUR L'ENSEIGNEMENT DES PROBABILITÉS ET STATISTIQUES AU VIETNAM DOCUMENT A Enseignement des Mathématiques Séminaire International Toulouse 5-9 juillet 1975 Extrait du Résumé des Communications APERÇU SUR L'ENSEIGNEMENT DES PROBABILITÉS ET STATISTIQUES AU VIETNAM par

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

SESSION 2006. NOM, Prénom : PROBABILITES 2006 T ES. France septembre 2005 (5 points)

SESSION 2006. NOM, Prénom : PROBABILITES 2006 T ES. France septembre 2005 (5 points) SESSION 2006 France septembre 2005 (5 points) Parmi les stands de jeux d une fête de village, les organisateurs ont installé une machine qui lance automatiquement une bille d acier lorsque le joueur actionne

Plus en détail

2. Un jeu de trente-deux cartes est constitué de huit cartes de chacune des quatre couleurs. Combien de cartes faut-il tirer au minimum pour

2. Un jeu de trente-deux cartes est constitué de huit cartes de chacune des quatre couleurs. Combien de cartes faut-il tirer au minimum pour Chapitre 8 PROBABILITE 8.1 Exercices introductifs 1. On tire une carte d un paquet bien mélangé et on note la couleur de cette carte: coeur, carreau, pique, trèfle. Parmi les adjectifs possible, certain

Plus en détail

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile. Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir

Plus en détail

Inférence et décision statistiques

Inférence et décision statistiques Aurelio Mattei Inférence et décision statistiques Théorie et application à la gestion des affaires Lausanne ii AVANT-PROPOS Ce manuel est le fruit de plus de dix ans d enseignement de la statistique à

Plus en détail

1 Exercices d introdution

1 Exercices d introdution 1 Exercices d introdution Exercice 1 (Des cas usuels) 1. Combien y a-t-il de codes possibles pour une carte bleue? Réponse : 10 4. 2. Combien y a-t-il de numéros de téléphone commençant par 0694? Réponse

Plus en détail

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls.

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls. Diagonalisation des matrices http://www.math-info.univ-paris5.fr/~ycart/mc2/node2.html Sous-sections Matrices diagonales Valeurs propres et vecteurs propres Polynôme caractéristique Exemples Illustration

Plus en détail

Exercices de dénombrement

Exercices de dénombrement Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais

Plus en détail

Calcul rapide des puissances

Calcul rapide des puissances Calcul rapide des puissances Par Mathtous Il s'agit de puissances à exposant entier naturel (avec la convention a 0 = 1, et a 1 = a). Si on applique la dénition pour calculer a n, on calcule de proche

Plus en détail

Couples de variables aléatoires discrètes

Couples de variables aléatoires discrètes Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude

Plus en détail

Première S2 Chapitre 20 : probabilités. Page n 1 2007 2008

Première S2 Chapitre 20 : probabilités. Page n 1 2007 2008 Preière S2 Chapitre 20 : probabilités. Page n De tous teps, les hoes se sont intéressés aux jeux de hasard. La théorie des probabilités est une branche des athéatiques née de l'étude des jeux de hasard

Plus en détail

1.1 Probabilité, événements

1.1 Probabilité, événements T le ES - programme 0 mathématiques ch.4 cahier élève Page sur 3 Ch.4 Probabilités conditionnelles. Probabilité, événements Probabilité d'un événement On note a,a,, a n les événements élémentaires d'une

Plus en détail

Terminale ES Corrigé de la feuille d'exercices de baccalauréat sur les probabilités. 1400 875=525. 504 étudiants en STS règlent par chèque bancaire.

Terminale ES Corrigé de la feuille d'exercices de baccalauréat sur les probabilités. 1400 875=525. 504 étudiants en STS règlent par chèque bancaire. erminale ES Corrigé de la feuille d'exercices de baccalauréat sur les probabilités. Exercice 1 : Partie I. 1) Calcul du nombre d'élèves de seconde, première ou terminale : Sur 1400 lycéens, 62,5 % sont

Plus en détail

Exercices corrigés de probabilités et statistique

Exercices corrigés de probabilités et statistique Exercices corrigés de probabilités et statistique Université Paris 1 Panthéon-Sorbonne Cours de deuxième année de licence de sciences économiques Fabrice Rossi Cette œuvre est mise à disposition selon

Plus en détail

1 Représentation des nombres.

1 Représentation des nombres. 1 REPRÉSENTATION DES NOMBRES. Codage des données 1 Représentation des nombres. Exercice 1 : Expliquez ce que peut signier le signe '=' dans l'équation suivante 10 = 2 que l'on préfèrera écrire 0b10 = 2

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux. UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases

Plus en détail

Seconde et première Exercices de révision sur les probabilités Corrigé

Seconde et première Exercices de révision sur les probabilités Corrigé I_ L'univers. _ On lance simultanément deux dés indiscernables donc il n'y a pas d'ordre. Il y a répétition, les dbles. On note une issue en écrivant le plus grand chiffre puis le plus petit. 32 signifie

Plus en détail

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient

Plus en détail

Calculer la probabilité d un événement

Calculer la probabilité d un événement THEME : CORRIGE DES EXERCICES PROBABILITES Calculer la probabilité d un événement Exercice n : Un sachet contient bonbons à la menthe, à l orange et au citron. On tire, au hasard, un bonbon du sachet et

Plus en détail

Andrey Nikolaevich Kolmogorov

Andrey Nikolaevich Kolmogorov PROBABILITÉS La théorie des probabilités est née de l étude par les mathématiciens des jeux de hasard. D'ailleurs, le mot hasard provient du mot arabe «az-zahr» signifiant dé à jouer. On attribue au mathématicien

Plus en détail

Ch.12 : Loi binomiale

Ch.12 : Loi binomiale 4 e - programme 2007 - mathématiques ch.12 - cours Page 1 sur 5 1 RÉPÉTITION D'EXPÉRIENCES INDÉPENDANTES Lancer plusieurs fois un dé et noter les résultats successifs. Ch.12 : Loi binomiale Prélever des

Plus en détail

D'UN THÉORÈME NOUVEAU

D'UN THÉORÈME NOUVEAU DÉMONSTRATION D'UN THÉORÈME NOUVEAU CONCERNANT LES NOMBRES PREMIERS 1. (Nouveaux Mémoires de l'académie royale des Sciences et Belles-Lettres de Berlin, année 1771.) 1. Je viens de trouver, dans un excellent

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Références. Compter les mots. Le langage comme donnée. Communication Langagière Ingénierie des langues et de la parole

Références. Compter les mots. Le langage comme donnée. Communication Langagière Ingénierie des langues et de la parole Communication Langagière Ingénierie des langues et de la parole 1. Introduction générale 2. Ingénierie des langues 2.1 Représentation et codage des textes 2.2 Théorie de l information et probabilités 2.3

Plus en détail

TUTORAT UE 4 2014-2015 Biostatistiques Séance n 3 Semaine du 06/10/2014

TUTORAT UE 4 2014-2015 Biostatistiques Séance n 3 Semaine du 06/10/2014 TUTORAT UE 4 2014-2015 Biostatistiques Séance n 3 Semaine du 06/10/2014 Séance d entrainement M. Dujols M. Sabatier Séance préparée par les TS de l ATM² QCM n 1 : Une population comporte 94750 individus

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

Probabilités, cours pour la classe de Terminale STG

Probabilités, cours pour la classe de Terminale STG Probabilités, cours pour la classe de Terminale STG F.Gaudon 16 février 2008 Table des matières 1 Probabilités (rappels) 2 2 Événements 3 3 Calculs de probabilités 4 4 Probabilités conditionnelles 5 4.1

Plus en détail

Prétest A QUESTIONNAIRE

Prétest A QUESTIONNAIRE MATHÉMATIQUES MAT5103 Probabilités II Prétest A QUESTIONNAIRE NE PAS ÉCRIRE SUR CE DOCUMENT Version du 16 décembre 2004 Rédigé par Denise Martin (martindenise@csdgsqcca) Centre L Envol 1 Un jeu consiste

Plus en détail

Feuille TD 1 : Probabilités discrètes, dénombrement

Feuille TD 1 : Probabilités discrètes, dénombrement Université de Nice-Sophia Antipolis -L2 MASS - Probabilités Feuille TD 1 : Probabilités discrètes, dénombrement Exercice 1 : 1. On doit choisir 2 représentants dans une classe de 40 élèves. Quel est le

Plus en détail

COMBINATOIRES ET PROBABILITÉS

COMBINATOIRES ET PROBABILITÉS COMBINATOIRES ET PROBABILITÉS ème année. Analyse combinatoire.. Outils.. Principe de décomposition.. Permutations.. Arrangements..5 Combinaisons 8.. Développement du binôme 9..7 Ce qu il faut absolument

Plus en détail

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples 36 Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples (Ω, B, P est un espace probabilisé. 36.1 Définition et propriétés des probabilités conditionnelles Définition 36.1

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont

Plus en détail

Préparation à l écrit Année 2008-2009. Liste des fiches de probabilités

Préparation à l écrit Année 2008-2009. Liste des fiches de probabilités Capes de Mathématiques Université Joseph Fourier Préparation à l écrit Année 2008-2009 Liste des fiches de probabilités Probabilités 1 : Introduction aux espaces probabilisés Probabilités 2 : Variables

Plus en détail

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements

Plus en détail

Petits jeux de probabilités (Solutions)

Petits jeux de probabilités (Solutions) Petits jeux de probabilités (Solutions) Christophe Lalanne En famille 1. Mon voisin a deux enfants dont l un est une fille, quelle est la probabilité pour que l autre soit un garçon? Une famille de deux

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

Cours 9 Une variable numérique : distribution et répartition

Cours 9 Une variable numérique : distribution et répartition Cours 9 Une variable numérique : distribution et répartition Lorsqu'une variable est qualitative et l'autre numérique, il est courant que la première identie des sous-populations (sexe, catégories socio-économiques,

Plus en détail

Feuille d exercices 2 : Espaces probabilisés

Feuille d exercices 2 : Espaces probabilisés Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un

Plus en détail

Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA

Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA Exercice 1 (4 points) Dans une classe de terminale STAV de 5 élèves, chaque élève possède une

Plus en détail

Série de TD N 1. On lance un dé dont les faces sont numérotées de 1 à 6, donc

Série de TD N 1. On lance un dé dont les faces sont numérotées de 1 à 6, donc Série de TD N 1 Exercice 1 Combien de " mots " de cinq lettres au plus peut-on former avec les quatre lettres de mot "CLAN". Ces lettres étant répétées ou non, et leur ordre n intervenant pas. Exercice

Plus en détail

8 Probabilités. Les notions étudiées dans ce chapitre CHAPITRE. 1. Expérience aléatoire 2. Loi de probabilité 3. Probabilité d'un événement

8 Probabilités. Les notions étudiées dans ce chapitre CHAPITRE. 1. Expérience aléatoire 2. Loi de probabilité 3. Probabilité d'un événement CHAPITRE Probabilités Les notions étudiées dans ce chapitre Le mot hasard vient de l'arabe al zhar qui désigne un dé à jouer. Les jeux de hasard sont connus depuis la plus haute Antiquité. Déjà les romains

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Fiche BAC ES 05 Terminale ES Probabilités conditionnelles Loi binomiale Cette fiche sera complétée au fur et à mesure Exercice n 1. BAC ES. Centres étrangers 2012. [RÉSOLU] Un sondage a été effectué auprès

Plus en détail

MATHÉMATIQUES APPLIQUÉES S4 Exercices

MATHÉMATIQUES APPLIQUÉES S4 Exercices Unité D Probabilité Exercice 1 : Chemins 1. Aline habite la maison illustrée ci-dessous. Le diagramme illustre les murs et les portes. a) Combien existe-t-il de chemins possibles entre la pièce A et la

Plus en détail

Arbre de probabilité(afrique) Univers - Evénement

Arbre de probabilité(afrique) Univers - Evénement Arbre de probabilité(afrique) Univers - Evénement Exercice 1 Donner l univers Ω de l expérience aléatoire consistant à tirer deux boules simultanément d une urne qui en contient 10 numérotés puis à lancer

Plus en détail

UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée

UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée 1. On tire successivement et sans remise deux cartes d un jeu de 52 cartes. Soit A l événement

Plus en détail

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO.

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée produite par TFO. Le guide Édition 1988 Rédacteur (version anglaise) : Ron Carr Traduction : Translatec Conseil Ltée

Plus en détail

indépendance, indépendance conditionnelle

indépendance, indépendance conditionnelle Plan du cours 1.2 RFIDEC cours 1 : Rappels de probas/stats (2/3) Christophe Gonzales LIP6 Université Paris 6, France 1 probabilités : événements, définition 2 probabilités conditionnelles 3 formule de

Plus en détail

Chapitre 2 : la comptabilité en partie double

Chapitre 2 : la comptabilité en partie double Chapitre 2 : la comptabilité en partie double Les opérations à crédit Les comptes Caisse et Banque ne suffisent pas à décrire les opérations de l'entreprise car certaines génèrent des paiements différés

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail