(i) Le nombre de travailleurs commencant leur service est positif ou nul : x i 0 i = 1,...,7

Dimension: px
Commencer à balayer dès la page:

Download "(i) Le nombre de travailleurs commencant leur service est positif ou nul : x i 0 i = 1,...,7"

Transcription

1 Chapitre 1 Modelisation 11 Exemples de Problèmes 111 La Cafétaria Cafétaria ouverte toute la semaine Statistique sur le personnel requis : Jour Lundi Mardi Mercredi Jeudi Vendredi Samedi Dimanche Nombre Un employé travaille 5 jour d affilée puis a deux jours de repos Problème : nombre minimal d employé requis Quelles inconnues : x i le nombre d employés le jour i Pas pratique : comment définir le nombre d employés? x i le nombre d employés qui commencent le jour i Modèle : Σ i=7 i=1 x i est le nombre d employés à minimiser : fonction objectif Les contraintes : (i) Le nombre de travailleurs commencant leur service est positif ou nul : x i 0 i = 1,,7 (ii) Les x i sont des entiers (iii) Pour chaque jour le nombre de travailleur est supérieur ou égal à celui requis Le jour i, le nombre de travailleurs est (en comptant modulo 7) : x i + x i x i 4 1

2 2 CHAPITRE 1 MODELISATION D où : x 1 + x 7 + x 6 + x 5 + x 4 14 x 2 + x 1 + x 7 + x 6 + x 5 13 x 3 + x 2 + x 1 + x 7 + x 6 15 x 4 + x 3 + x 2 + x 1 + x 7 16 x 5 + x 4 + x 3 + x 2 + x 1 19 x 6 + x 5 + x 4 + x 3 + x 2 18 x 7 + x 6 + x 5 + x 4 + x 3 11 Ce problème est un problème de programmation linéaire en nombre entiers Le problème peut se mettre sous la forme : Résolution avec le logiciel Eclipse [eclipse 2]: {X1+X4+X5+X6+X7 >= 14, X1+X2+X5+X6+X7 >= 13, X1+X2+X3+X6+X7 >= 15, X1+X2+X3+X4+X7 >= 16, X1+X2+X3+X4+X5 >= 19, X6+X2+X3+X4+X5 >= 18, X6+X7+X3+X4+X5 >= 11, X1>=0, X2>=0, X3>=0, X4>=0, X5>=0, X6>=0, X7>=0, Z=X1+X2+X3+X4+X5+X6+X7}, minimize(z) X1 = 4 X2 = X2 X3 = X3 X4 = X4 X5 = X5 X6 = 3 X7 = 0 Z = 22 Max z = cx Ax b x 0

3 11 EXEMPLES DE PROBLÈMES 3 % Linear constraints: { X5 = 7 - X4, X3 = 8 - X2, X4 =< 7, X2 =< 7, X4 - X2 =< 1, X4 >= 4 }Yes (001s cpu) 112 Problème de jeu Ciseau/Pierre/Papier Jeu à somme nulle : Gain +1 si gagnant, perte -1 si perdu, 0 si égalité Tableau des gains/pertes Question : Trouver la strategie optimale au jeu (en supposant que l adversaire joue du mieux possible) Si on considère une suite de parties, on cherche une stratégie sans mémoire : le coup joué ne dépend pas de l historique du jeu Principe : Joueur 1 joue Ciseau avec la probabilité x 1, Pierre avec x 2 et Papier avec x 3 Contraintes : 0 x i 1 x 1 + x 2 + x 3 = 1 Son espérance de gain est : Si joueur 2 joue Ciseau : x 2 x 3 Si joueur 2 joue Pierre : x 3 x 1 Si joueur 2 joue Papier : x 1 x 2 Hypothèse : Joueur 2 joue du mieux possible donc le gain réalisé par 1 est minimal ie g = min(x 2 x 3, x 3 x 1, x 1 x 2 ) But : Maximiser g Apparemment le problème n est pas un problème de programmation linéaire à cause du min dans la définition de g Mais on peut s y ramener : Max(g) g x 2 x 3 g x 3 x 1 g x 2 x 1 g 0 (avec g une variable) Remarque : la solution est x 1 = x 2 = x 3 = 1/3 avec g = 0

4 4 CHAPITRE 1 MODELISATION 113 Placement Financier Placer 1000 euros sur 6 ans de la manière optimale sachant que : la caisse d épargne rapporte 5% par an et immobilise le capital un an, l obligation 1 rapporte 12% à l échéance si on le choisit la premieère année sinon elle rapporte 11%, immobilise le capital deux ans, l obligation 2 rapporte 18% à l échéance, immobilise le capital trois ans, l obligation 3 rapporte 24% à l échéance L obligation 2 est disponible tous les ans sauf l année 3, l obligation 2 n est pas disponible l année 1, et l obligation 3 n est disponible que l année 1 Ecrire le problème de programmation linéaire qui correspond au meilleur placement possible Idée : en début d année i on place x i à la caisse d épargne, y i en obligation i, z i en obligation z et w i en obligation w A chaque année on écrit quelle somme est disponible (tout ce qui arrive à échéance avec les intérêts et on la place dans ce qui est disponible On maximise la somme obtenue à la fin d année 6 12 Définition de la PL 121 Formes canonique et standard c = (c 1,,c n ), x = x 1 x n, b = b 1 b m, A = (a i,j ) 1 i m 1 j n avec c i, b j, a i,j des réels Forme canonique Max z = cx Ax b x 0 Si les variables doivent prendre des valeurs entières, on a un problème de programmation linéaire en nombres entiers (plus difficile) Forme standard Max z = cx Ax = b x 0 IMPORTANT : on peut transformer la forme canonique en forme standard et vice-versa On peut aussi transformer un max en min par max{x }) = min{ x } De même

5 12 DÉFINITION DE LA PL 5 si on a un problème ou il n y a pas de contraintes x 0 mais x peut être quelconque, on peut se ramener à un problème avec des variables 0 en posant x = x 1 x 2 avec x 1, x 2 0 Une solution admissible d un problème de PL (en forme standard ou canonique) est un vecteur x qui satisfait les contraintes 122 Résolution Graphique Fabriquant d ordinateurs : portable ou PC le portable rapporte 750 euros, le PC 1000 euros Le PC comme le portable utilise un microprocesseur Le PC a deux unités de mémoire de 256Mb et le portable en a une Il faut 4 minutes d assemblage pour un portable et 3 minutes pour un PC On dispose de 25 milliers minutes d assemblage de 15 milliers de mémoires et de 10 milliers de processeurs x 1, x 2 nombre de millier de portables, PC, d òu le problème de PL : Max z = 750x x 2 x 1 + x 2 10 x 1 + 2x x 1 + 3x 2 25 x 1, x 2 0 Les contraintes sont délimités par les droites x 1 + x 2 = 10, x 1 + 2x 2 = 15, 4x 1 + 3x 2 = 25, x i = 0 et définissent un polytope Le maximum peut se calculer en faisant glisser la droite d équation 0, 75x 1 + x 2 = K en augmentant la valeur de K (qui correspond au profit obtenu) On trouve que le maximum est atteint par le sommet P(1,7) qui donne un profit maximum de 7750 Résolution avec Eclipse [eclipse 3]: { Z=750*X1+1000*X2, X1+X2=<10, X1+2*X2=<15, 4*X1+3*X2=<25, X1>=0, X2>=0 }, maximize(z) X1 = 1 X2 = 7 Z = 7750 Yes (000s cpu)

6 6 CHAPITRE 1 MODELISATION 13 Géométrie de la PL 131 Espaces Affines et Vectoriels Un vecteur de R n est un n-uplet de réels Un sous-espace vectoriel est un sous-ensemble stable par addition et multiplication par un scalaire Une base d un sous-espace vectoriel V est un ensemble finis de vecteur e 1,,e p tel que (i) tout vecteur v V est combinaison linéaire des e i (ii) une combinaison lineaire des e i est nulle ssi les coefficients sont nuls Un espace affine est l ensemble des points M=N+S avec N un point particulier (un element de R n et S un sous-espace vectoriel La dimension de l espace affine est celle de l espace vectoriel S 132 Polyhedres et Polytopes Un hyperplan H est un espace affine de dimension n 1 et se décrit par une équation a 1 x a n x n = K Un demi-espace fermé délimité par H est défini par a 1 x a n x n K ou a 1 x a n x n K Definition 1 Un polyhèdre est une intersection de demi-espaces fermés Definition 2 Un polytope est un polyhèdre borné Etant donnés un polyhèdre P, un hyperplan H et HS un demi-espace fermé correspondant à H, si HS P H, alors P HS est une face de P Une face de dimension 0 (donc un point) est appelé un sommet de P Une face de dimension 1 est appelée une arête de P Une face de dimension n 1 est appelée une facette de P On admettra la proposition suivante : Proposition 1 Un polytope P n a qu un nombre fini de sommets et tout point M de P peut s ecrire comme combinaison linéaire convexe des sommets M = Σ Si sommetsλ i S i (avec Σλ i = 1 et λ i 0 pour tout i

7 14 OPTIMISATION DE FONCTION CONVEXES SUR UN POLYTOPE 7 14 Optimisation de fonction convexes sur un polytope Unconvexe C est un sous-ensemble de points tels que pour tout couple de points M, M de C, le segment MM est inclus dans C (le segment est l ensemble des points de la forme λm + (1 λ)m avec 1 λ 0) Exercice : montrer que l intersection de deux convexes est un convexe puis qu un polyhèdre est un convexe Une fonction de f : R n R est convexe ssi pour tous points M, M on a f(λm + (1 λ)m ) λf(m) + (1 λ)f(m ) Une fonction est concave si -f est convexe Une fonction linéaire est convexe et concave, la parabole x x 2 est convexe On s interesse à calculer le minimum d une fonction convexe sur un ensemble convexe, plus particulièrement sur un polytope, ce qui est identique à calculer le maximum de -f sur sur le même ensemble Proposition 2 Une fonction convexe f sur un polytope P a un maximum et celui-ci est obtenu sur un sommet Preuve : On utilise le fait que tout point du polytope est combinaison linéaire convexe de ses sommets Soit (S i ) i I l ensemble des sommets de P Alors pour tout M P M = Σ i I λ i S i avec Σ i I λ i = 1 et 1 λ i 0 pour tout i D où et donc d où f(m) = f(σ i I λ i S i ) Σ i I λ i f(s i ) f(m) (Σ i I λ i )Max{f(S i ) i I} f(m) Max{f(S i ) i I} = f(s i0 ) Comme f(s i0 ) est une valeur particulière de f sur P, on a bien que f atteint son maximum sur P ATTENTION : le maximum peut être atteint aussi sur des points qui ne sont pas des sommets Exemple : prendre un carré d écrit par x 1, x 2 0, x 1 1, x 2 1 et la fonction z = x 2 Le maximum est obtenu sur tout un segment de droite (délimité par deux sommets) Un algorithme de calcul du max serait donc d énumerer les sommets et de garder la plus grande valeur de f obtenue : malheureusement, les polytopes qui interviennent dans les applications ont des dizaines ou centaines de milliers de sommets Si on considère un polyhèdre et non un polytope, une fonction (convexe ou concave) n a pas forcement de maximum

Chapitre 1 : Programmation linéaire

Chapitre 1 : Programmation linéaire Graphes et RO TELECOM Nancy 2A Chapitre 1 : Programmation linéaire J.-F. Scheid 1 I. Introduction 1) Modélisation En Recherche Opérationnelle (RO), modéliser un problème consiste à identifier: les variables

Plus en détail

Ax = b iff (B + N) x N

Ax = b iff (B + N) x N Chapitre 3 Algorithme du simplexe 3.1 Solution de base admissible P en forme standard. A = (a 1,...,a n ) Hypothèse : n m (plus de variables que d équations) et rg(a)=m (pas d équation inutile). Donc après

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Algorithme du simplexe

Algorithme du simplexe Algorithme du simplexe Une solution à la programmation linéaire Hugues Talbot Laboratoire A2SI 18 mars 2008 Plan Algèbre linéaire Algorithme du simplexe Formulation et forme standard Notations Recherche

Plus en détail

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 Motivation et objectif du cours

Plus en détail

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre Recherche opérationnelle Programmation linéaire et recherche opérationnelle Ioan Todinca Ioan.Todinca@univ-orleans.fr tél. 0 38 41 7 93 bureau : en bas à gauche Tentative de définition Ensemble de méthodes

Plus en détail

Chapitre IV Bases et dimension d un espace vectoriel

Chapitre IV Bases et dimension d un espace vectoriel Chapitre IV Bases et dimension d un espace vectoriel Objectif : Nous allons voir comment fabriquer des systèmes de coordonnées pour les vecteurs d un espace vectoriel général. Dans ce chapitre désigne

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire NICOD JEAN-MARC Master 2 Informatique Université de Franche-Comté UFR des Sciences et Techniques septembre 2008 NICOD JEAN-MARC Rappels sur les graphes 1 / 47 Sommaire 1 Exemple

Plus en détail

Les espaces vectoriels

Les espaces vectoriels Agrégation interne UFR MATHÉMATIQUES 1. Généralités Les espaces vectoriels Dans tout le chapitre, K représente un corps commutatif. 1.1. Notion d espace vectoriel On considère un ensemble E sur lequel

Plus en détail

Chapitre 4 : Dualité en programmation linéaire

Chapitre 4 : Dualité en programmation linéaire Graphes et RO TELECOM Nancy 2A Chapitre 4 : Dualité en programmation linéaire J.-F. Scheid 1 Plan du chapitre 1 Introduction et définitions 2 Propriétés et Théorèmes de dualité 3 Conditions d optimalité

Plus en détail

Rappels d Algèbre Linéaire de P.C.S.I

Rappels d Algèbre Linéaire de P.C.S.I Rappels d Algèbre Linéaire de PCSI Table des matières 1 Structure d espace vectoriel sur IK 3 11 Définition et règles de calcul 3 12 Exemples de référence 3 13 Espace vectoriel produit 4 14 Sous-espaces

Plus en détail

( ) nouvelles variables et ( ) nouvelles contraintes, en gardant toutefois le caractère 0-1 des variables x.

( ) nouvelles variables et ( ) nouvelles contraintes, en gardant toutefois le caractère 0-1 des variables x. EXERCICES Exercices Dimension et faces élémentaires du Quadric Polytope On considère le problème quadratique en variables 0- suivant: min c i x i n i + c ij x i x i, j n j s.c. x i { 0,} i n où n est un

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 3 4 Master d économie Cours de M. Desgraupes MATHS/STATS Document : Solution des exercices d algèbre linéaire Table des matières

Plus en détail

Espaces affines. 2 Applications affines 7. 2.2 Projections et symétries affines ; affinités... 8 2.3 Alignement et parallélisme...

Espaces affines. 2 Applications affines 7. 2.2 Projections et symétries affines ; affinités... 8 2.3 Alignement et parallélisme... Maths PCSI Cours Espaces affines Table des matières 1 Espaces et sous-espaces affines 2 1.1 Espaces affines et translations.................................... 2 1.2 Exemples d espaces affines......................................

Plus en détail

2 Ensembles convexes. 2.1 Définition et premières propriétés

2 Ensembles convexes. 2.1 Définition et premières propriétés 2 Ensembles convexes Les chapitres 2 et 3 présentent les éléments d analyse convexe qui nous seront utiles pour étudier les problèmes d optimisation et les algorithmes qui les résolvent. Le chapitre 2

Plus en détail

Cours de Mathématiques II Chapitre 1. Algèbre linéaire

Cours de Mathématiques II Chapitre 1. Algèbre linéaire Université de Paris X Nanterre UFR Segmi Année 7-8 Licence Economie-Gestion première année Cours de Mathématiques II Chapitre Algèbre linéaire Table des matières Espaces vectoriels Espaces et sous-espaces

Plus en détail

* fermeture le lendemain

* fermeture le lendemain MOIS DE JANVIER 2011 Samedi 1 01h35 08h43 14h09 21h14 Dimanche 2 02h41 09h42 15h15 22h09 Lundi 3 03h38 10h32 16h10 22h56 Mardi 4 04h26 11h15 16h57 23h37 Mercredi 5 05h07 11h54 17h37 *00h14 Jeudi 6 05h45

Plus en détail

Programmation Linéaire - Cours 4

Programmation Linéaire - Cours 4 Programmation Linéaire - Cours 4 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Sommaire Dualité 1 Dualité 2 3 Primal / Dual Dualité Les PL vont toujours par paires

Plus en détail

MON JOURNAL HEBDOMADAIRE

MON JOURNAL HEBDOMADAIRE LUNDI DATE : vous avez présentés vous avez exercées MARDI DATE : vous avez présentés vous avez exercées MERCREDI DATE : vous avez présentés vous avez exercées JEUDI DATE : vous avez présentés vous avez

Plus en détail

Espaces vectoriels. Espace vectoriel. Exemples

Espaces vectoriels. Espace vectoriel. Exemples Espaces vectoriels Espace vectoriel Définition Un espace vectoriel (réel) est un ensemble abstrait V non vide aux éléments notés a, b,, appelés vecteurs et muni des opérations Somme vectorielle : associant

Plus en détail

PC* Espaces préhilbertiens réels

PC* Espaces préhilbertiens réels I. Espace préhilbertien réel................................... 3 I.1 Produit scalaire dans un espace vectoriel réel................... 3 I.2 Inégalités de Cauchy-Schwarz et de Minkowski..................

Plus en détail

Les matrices. 1 Définitions. 1.1 Matrice

Les matrices. 1 Définitions. 1.1 Matrice Les matrices 2012-2013 1 Définitions 11 Matrice Définition 1 Une matrice m n est un tableau de nombres à m lignes et n colonnes Les nombres qui composent la matrice sont appelés les éléments de la matrice

Plus en détail

Méthode des domaines fictifs

Méthode des domaines fictifs Méthode des domaines fictifs Patrick Joly Patrick.Joly@inria.fr On se propose dans ce projet de résoudre le problème de Laplace par une méthode, dite de domaine fictif qui permet de simplifier la prise

Plus en détail

Sujets HEC B/L 2013-36-

Sujets HEC B/L 2013-36- -36- -37- Sujet HEC 2012 B/L Exercice principal B/L1 1. Question de cours : Définition et propriétés de la fonction de répartition d une variable aléatoire à densité. Soit f la fonction définie par : f(x)

Plus en détail

11. Espaces vectoriels, homomorphismes, bases

11. Espaces vectoriels, homomorphismes, bases 11. Espaces vectoriels, homomorphismes, bases 11.1. Espaces vectoriels, algèbres 11.1.1. Structure d espace vectoriel et d algèbre 11.1.2. Combinaisons linéaires 11.1.3. Espaces vectoriels et algèbres

Plus en détail

1 Programmation linéaire

1 Programmation linéaire UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2012 2013 Master d économie Cours de M. Desgraupes Méthodes Numériques Document 4 : Corrigé des exercices d optimisation linéaire

Plus en détail

1 Topologies, distances, normes

1 Topologies, distances, normes Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un

Plus en détail

Ce déterminant est non nul donc le système est de Cramer. On a donc. 3 3 1 1 1 2 9 1 5 x = det(m)

Ce déterminant est non nul donc le système est de Cramer. On a donc. 3 3 1 1 1 2 9 1 5 x = det(m) Problème ( points) Un capital de 0 000 euros est placé à un taux d intérêts composés de 2%. La valeur récupérée à l issue du placement est 70,2 euros. Quelle est la durée de ce placement? Soit d la durée

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 3 novembre 2005 1 programmation linéaire à deux variables 1.1 Partitionnement du plan Une droite permet de découper un plan en plusieurs parties. Droite

Plus en détail

PROGRAMMATION DYNAMIQUE

PROGRAMMATION DYNAMIQUE PROGRAMMATION DYNAMIQUE 1 Le principe d optimalité de Bellman La programmation dynamique est fondée sur le principe d optimalité de Bellman : Soit f une fonction réelle de x et y = (y 1, y 2,..., y n ).

Plus en détail

Université Paris IX Dauphine UFR Mathématiques de la décision Notes de cours ALGEBRE 2. Guillaume CARLIER

Université Paris IX Dauphine UFR Mathématiques de la décision Notes de cours ALGEBRE 2. Guillaume CARLIER Université Paris IX Dauphine UFR Mathématiques de la décision Notes de cours ALGEBRE 2 Guillaume CARLIER L1, année 2006-2007 2 Ce support de cours est basé sur le poly de Tristan Tomala des années précédentes.

Plus en détail

concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP)

concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP) SESSION DE 2005 concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP) section : mathématiques deuxième composition de mathématiques (épreuve de remplacement)

Plus en détail

Espaces euclidiens. 1 Définitions et exemples. 2 Orthogonalité, norme euclidienne 2. 3 Espaces euclidiens, bases orthonormées 2

Espaces euclidiens. 1 Définitions et exemples. 2 Orthogonalité, norme euclidienne 2. 3 Espaces euclidiens, bases orthonormées 2 Espaces euclidiens Table des matières 1 Définitions et exemples 1 Orthogonalité, norme euclidienne 3 Espaces euclidiens, bases orthonormées 4 Orthogonalisation de Schmidt 3 5 Sous-espaces orthogonaux 3

Plus en détail

Cours 2 6 octobre. 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée

Cours 2 6 octobre. 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée Introduction aux modèles graphiques 2010/2011 Cours 2 6 octobre Enseignant: Francis Bach Scribe: Nicolas Cheifetz, Issam El Alaoui 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée Soit

Plus en détail

FONCTIONS CONVEXES. Chapitre 3. 3.1 Notations et définitions préliminaires

FONCTIONS CONVEXES. Chapitre 3. 3.1 Notations et définitions préliminaires Chapitre 3 FONCTIONS CONVEXES 3.1 Notations et définitions préliminaires L étude des fonctions convexes montrera que celles ci sont continues sur tout l intérieur de leur domaine de définition et qu elles

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot

Laurent Garcin MPSI Lycée Jean-Baptiste Corot ESPACES VECTORIELS 1 Définition et exemples fondamentaux 1.1 Définition Définition 1.1 Espace vectoriel Soient K un corps et E un ensemble muni d une loi interne + et d une loi externe. i.e. d une application

Plus en détail

Programmation Linéaire - Cours 1

Programmation Linéaire - Cours 1 Programmation Linéaire - Cours 1 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.

Plus en détail

Autour de Perron, Frobenius et Markov

Autour de Perron, Frobenius et Markov Université Claude Bernard Lyon 1-2007/2008 Préparation Capes - Algèbre et Géométrie - Devoir à rendre le 12 février 2008 - Autour de Perron Frobenius et Markov Rappels et notations On note M mn (K) le

Plus en détail

Chapitre 3. Espaces vectoriels

Chapitre 3. Espaces vectoriels Département de mathématiques et informatique L1S1, module A ou B Chapitre 3 Espaces vectoriels Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé

Plus en détail

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51 Résolution de systèmes linéaires : Méthodes directes Polytech Paris-UPMC - p. /5 Rappels mathématiques s Propriétés - p. 2/5 Rappels mathématiques Soit à résoudre le système linéaire Ax = b. Rappels mathématiques

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

Analyse en composantes principales

Analyse en composantes principales Analyse en composantes principales Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire LITIS Analyse en composantes principales p. 1/18 Introduction Objectifs Soit {x i } i=1,,l

Plus en détail

Optimisation sous-modulaire

Optimisation sous-modulaire 1/23 Optimisation sous-modulaire Guillaume Aubian 14 avril 2016 2/23 Définition Soient f : E R et g : E {true, false} Problème de minimisation associé : Trouver x E tel que : g(x) = true y E, f (x) f (y)

Plus en détail

Analyse en composantes principales Christine Decaestecker & Marco Saerens ULB & UCL

Analyse en composantes principales Christine Decaestecker & Marco Saerens ULB & UCL Analyse en composantes principales Christine Decaestecker & Marco Saerens ULB & UCL LINF 2275 Stat. explor. multidim. 1 A.C.P.: Analyse en Composantes Principales Analyse de la structure de la matrice

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

Chapitre 6. Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique. 6.1.1 Exemple introductif

Chapitre 6. Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique. 6.1.1 Exemple introductif Chapitre 6 Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique 6.1.1 Exemple introductif Problème : n matrices M i (m i, m i+1 ) à multiplier en minimisant le nombre de multiplications,

Plus en détail

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

Topologie des espaces vectoriels normés

Topologie des espaces vectoriels normés Topologie des espaces vectoriels normés Cédric Milliet Version préliminaire Cours de troisième année de licence Université Galatasaray Année 2011-2012 2 Chapitre 1 R-Espaces vectoriels normés 1.1 Vocabulaire

Plus en détail

Automates temporisés Partie 1: Définitions

Automates temporisés Partie 1: Définitions p.1 Automates temporisés Partie 1: Définitions p.2 Motivation Les automates temporisés constituent un des modèle de systèmes réactifs à temps continu proposé par Alur et Dill en 1991. Temps continu vs

Plus en détail

Les espaces vectoriels Partie 1

Les espaces vectoriels Partie 1 Les espaces vectoriels Partie 1 MPSI Prytanée National Militaire Pascal Delahaye 1 er février 2016 1 Définition d un Espace Vectoriel Soit ( K,+, ) un corps commutatif (le programme impose K = R ou C).

Plus en détail

Chapitre 7 : Programmation dynamique

Chapitre 7 : Programmation dynamique Graphes et RO TELECOM Nancy 2A Chapitre 7 : Programmation dynamique J.-F. Scheid 1 Plan du chapitre I. Introduction et principe d optimalité de Bellman II. Programmation dynamique pour la programmation

Plus en détail

THÉORIE DES JEUX : ÉQUILIBRES DE NASH

THÉORIE DES JEUX : ÉQUILIBRES DE NASH THÉORIE DES JEUX : ÉQUILIBRES DE NASH INDEX 1) INTRODUCTION 1.1)Définition d'un jeu 1.2)Historique et applications 2)LES JEUX MATRICIELS 2.1)Définition 2.2)Le Théorème fondamental 2.3)Principe de la preuve

Plus en détail

Feuille d exercices n o 1. N(x i ). 4. On rappelle qu un espace normé est séparable s il contient une partie dénombrable dense.

Feuille d exercices n o 1. N(x i ). 4. On rappelle qu un espace normé est séparable s il contient une partie dénombrable dense. 1 Feuille d exercices n o 1 1. Deuxième forme géométrique du théorème de Hahn-Banach Soient A E et B E deux convexes, non vides, disjoints (E est une espace vectoriel normé). On suppose que A est fermé

Plus en détail

LA PROGRAMMATION LINEAIRE : ANALYSE DE SENSIBILITE

LA PROGRAMMATION LINEAIRE : ANALYSE DE SENSIBILITE LA PROGRAMMATION LINEAIRE : ANALYSE DE SENSIBILITE Nous abordons dans cette leçon la partie analyse de sensibilité de la résolution d'un problème de programmation linéaire. Il s'agit d'étudier les conséquences

Plus en détail

en dimension finie Table des matières

en dimension finie Table des matières Maths PCSI Cours Algèbre linéaire en dimension finie Table des matières 1 Rappels d algèbre linéaire 2 1.1 Applications linéaires......................................... 2 1.2 Familles libres, génératrices

Plus en détail

EQUATIONS, INEQUATIONS

EQUATIONS, INEQUATIONS 1 sur 13 EQUATIONS, INEQUATIONS I. Résolution d équations Activité conseillée p126 activité1 : Notion d équation et d inéquation Activité conseillée p60 activité1 : Notion d équation et d inéquation -p140

Plus en détail

M2 MPRO. Optimisation dans les Graphes 2014-2015

M2 MPRO. Optimisation dans les Graphes 2014-2015 M2 MPRO Optimisation dans les Graphes 2014-2015 Programmation linéaire et problèmes d'optimisation dans les graphes 1 Problèmes d'optimisation dans les graphes : quelles méthodes pour les résoudre? Théorie

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

Programmation Linéaire - Cours 2

Programmation Linéaire - Cours 2 Programmation Linéaire - Cours 2 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Sommaire 1 2 3 Retournons dans le yaourt! Reprenons l exemple du 1er cours Forme normale

Plus en détail

COURS DE LICENCE 2 SCIENCES ECONOMIQUES COURS D ANNIE CLARET

COURS DE LICENCE 2 SCIENCES ECONOMIQUES COURS D ANNIE CLARET COURS DE LICENCE 2 SCIENCES ECONOMIQUES COURS D ANNIE CLARET MATHEMATIQUES 3 PRISE DE NOTE PAR : PLASMAN SYLVAIN SERIE 7 ANNEE 2010-2011 1 Sommaire et accès aux chapitres/sous-chapitres Cliquez sur le

Plus en détail

Avertissement! Dans tout ce chapître, C désigne une partie convexe de IR n, et f une fonction. 9.1 Fonctions affines, convexes, strictement convexes

Avertissement! Dans tout ce chapître, C désigne une partie convexe de IR n, et f une fonction. 9.1 Fonctions affines, convexes, strictement convexes Chp. 9. Convexité Avertissement! Dans tout ce chapître, C désigne une partie convexe de IR n, et f une fonction numérique partout définie sur C. 9.1 Fonctions affines, convexes, strictement convexes Définition

Plus en détail

Introduction à l optimisation

Introduction à l optimisation Chapitre 1 Introduction à l optimisation 1.1 Problématique 1.1.1 Cadre Un problème d optimisation consiste, étant donnée une fonction f : S R, àtrouver: 1) son minimum v (resp. son maximum) dans S 2) un

Plus en détail

Table des Matières. Satisfaisabilité en logique propositionnelle ES pour les problèmes d optimisation Élagage à l aide d heuristiques Le Labyrinthe

Table des Matières. Satisfaisabilité en logique propositionnelle ES pour les problèmes d optimisation Élagage à l aide d heuristiques Le Labyrinthe Table des Matières Essais Successifs (ES) 1 Rappels : Fonctions et Ordres de grandeurs 2 Diviser pour Régner 3 Approches Gloutonnes 4 Programmation Dynamique 5 Essais Successifs (ES) Le problème des n

Plus en détail

Tracé de lignes et de courbes planes

Tracé de lignes et de courbes planes Département d informatique Université de Toulon et du Var Plan 1 Introduction 2 Tracé de segments 3 Tracé de cercles 4 Tracé de courbes Définition Le processus de représentation d objets graphiques continus

Plus en détail

UNIVERSITE IBN ZOHR Année Universitaire 2014-2015 Faculté des Sciences Juridiques Economiques et Sociales Agadir

UNIVERSITE IBN ZOHR Année Universitaire 2014-2015 Faculté des Sciences Juridiques Economiques et Sociales Agadir UNIVERSITE IBN ZOHR Année Universitaire 2014-2015 Faculté des Sciences Juridiques Economiques et Sociales S5 Agadir Recherche Opérationnelle Corrigé de la série1: Traduction des problèmes en language mathématique

Plus en détail

Algèbre linéaire. 1 Espaces vectoriels R n. Jean-Paul Davalan. 1.1 Les ensembles R n. 1.2 Addition dans R n. (R n, +) désigne R n muni de l addition.

Algèbre linéaire. 1 Espaces vectoriels R n. Jean-Paul Davalan. 1.1 Les ensembles R n. 1.2 Addition dans R n. (R n, +) désigne R n muni de l addition. Algèbre linéaire. Jean-Paul Davalan 2001 1 Espaces vectoriels R n. 1.1 Les ensembles R n. Définition 1.1 R 2 est l ensemble des couples (x, y) de deux nombres réels x et y. D une manière générale, un entier

Plus en détail

Les théorèmes de Gerschgorin et de Hadamard

Les théorèmes de Gerschgorin et de Hadamard Localisation des valeurs propres : Quelques propriétés sur les disques de Gerschgorin. Jean-Baptiste Campesato 22 septembre 29 Gerschgorin est parfois retranscrit en Gershgorin, Geršgorin, Hershhornou

Plus en détail

INTRODUCTION À OMP PROBLÈME D USINAGE 1 Préambule

INTRODUCTION À OMP PROBLÈME D USINAGE 1 Préambule 1 Préambule 1 sur 7 Le logiciel OMP est un produit de OM Partners. Le version mise à disposition est la version 9.27. OMP comporte : un compilateur de modèles et de données ; un optimiseur ; un générateur

Plus en détail

Corrigé du baccalauréat ES Asie 19 juin 2014

Corrigé du baccalauréat ES Asie 19 juin 2014 Corrigé du baccalauréat ES Asie 9 juin 4 EXERCICE 4 points Commun à tous les candidats Proposition : fausse f (4) est le coefficient directeur de la tangente à la courbe au point C ; cette droite passe

Plus en détail

COURS DICTE ou rétroprojeté (TNI)! (mots de vocabulaire et formules écrites au tableau bien sûr)

COURS DICTE ou rétroprojeté (TNI)! (mots de vocabulaire et formules écrites au tableau bien sûr) Date J 03/09 Séquences Pédagogiques et Travail personnel Prise de contact. Fiche «administrative» et fiche «informations et règles de fonctionnement». A remplir et faire signer pour LUNDI 07. Programme

Plus en détail

1. a) question de cours b) P(f) est un polynôme de l endomorphisme f donc commute avec f.

1. a) question de cours b) P(f) est un polynôme de l endomorphisme f donc commute avec f. escp-eap 2(Ecole de commerce) OPTION SCIENTIFIQUEMATHEMATIQUES I adapté en retirant certaines question qui sont du cours de PC et en ajoutant le dernier exemple.. a) question de cours b) P(f) est un polynôme

Plus en détail

ACCQ204 4 Jan. 2016. Cours 3. Définition 1 Pour tout entier r 2 un code de Hamming (binaire) a pour matrice de parité H r telle que : 1 0 1 0 1.

ACCQ204 4 Jan. 2016. Cours 3. Définition 1 Pour tout entier r 2 un code de Hamming (binaire) a pour matrice de parité H r telle que : 1 0 1 0 1. ACCQ4 4 Jan 6 Cours 3 Enseignant: Aslan Tchamkerten Crédit: Pierre de Sainte Agathe Code de Hamming Définition Pour tout entier r un code de Hamming (binaire) a pour matrice de parité H r telle que : H

Plus en détail

Fonctions Nombre Dérivé Fonction dérivée

Fonctions Nombre Dérivé Fonction dérivée Fonctions Nombre Dérivé Fonction dérivée Ce chapitre est le chapitre central de la classe de Terminale STG. Il permet (en partie) de clore ce qui avait été entamé dés le collège avec les fonctions affines

Plus en détail

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA 75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Rappels (1) Objectif et plan. Rappels (2) On considère le problème modèle, supposé bien posé, Chercher uh V h tel que (1) a(u, v) = b(v)

Rappels (1) Objectif et plan. Rappels (2) On considère le problème modèle, supposé bien posé, Chercher uh V h tel que (1) a(u, v) = b(v) Rappels (1) On considère le problème modèle, supposé bien posé, { Chercher u V tel que a(u, v) = b(v) v V (1) Éléments finis en 2D Alexandre Ern ern@cermics.enpc.fr http://cermics.enpc.fr/cours/cs (V Hilbert,

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Université Joseph Fourier Année 2005-2006 LST Mathématiques. Géométrie

Université Joseph Fourier Année 2005-2006 LST Mathématiques. Géométrie Université Joseph Fourier Année 2005-2006 LST Mathématiques KMAT367 Géométrie version du 5 avril 2006 Table des matières Introduction 1 1 Espaces affines 3 1.1 Définition....................................

Plus en détail

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume.

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume. Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

Prof.É.D.Taillard. Classification automatique @Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre

Prof.É.D.Taillard. Classification automatique @Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre INFORMATIQUE ORIENTATION LOGICIELS CLASSIFICATION AUTOMATIQUE Prof.É.D.Taillard Classification automatique @Prof. E. Taillard EIVD, Informatique logiciel, 4 e semestre CLASSIFICATION AUTOMATIQUE But :

Plus en détail

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION Dans les leçons précédentes, nous avons modélisé des problèmes en utilisant des graphes. Nous abordons dans cette leçon un autre type de modélisation.

Plus en détail

Équations différentielles en physique

Équations différentielles en physique Fiche Mathématiques pour la Physique - Équations différentielles en physique - MPSI 1 Lycée Chaptal - 2012 Équations différentielles en physique On ne considère en physique en prépa (quasiment) que des

Plus en détail

MATH-F-306 - Optimisation. Prénom Nom Note

MATH-F-306 - Optimisation. Prénom Nom Note MATH-F-306 Optimisation examen de 1 e session année 2009 2010 Prénom Nom Note Répondre aux questions ci-dessous en justifiant rigoureusement chaque étape, affirmation, etc. AUCUNE NOTE N EST AUTORISÉE.

Plus en détail

Baccalauréat STG Pondichéry 17 avril 2015 Sciences et technologies du management et de la gestion

Baccalauréat STG Pondichéry 17 avril 2015 Sciences et technologies du management et de la gestion Baccalauréat ST Pondichéry 17 avril 015 Sciences et technologies du management et de la gestion Correction EXERCICE 1 6 points Le tableau ci-dessous, extrait d une feuille de calcul, donne le revenu disponible

Plus en détail

Optimisation en nombres entiers

Optimisation en nombres entiers Optimisation en nombres entiers p. 1/83 Optimisation en nombres entiers Michel Bierlaire michel.bierlaire@epfl.ch EPFL - Laboratoire Transport et Mobilité - ENAC Optimisation en nombres entiers p. 2/83

Plus en détail

202 - Exemples de parties denses et applications

202 - Exemples de parties denses et applications 202 - Exemples de parties denses et applications 1 Généralités et premiers exemples 1.1 Parties denses On xe un espace métrique (X, d). Dénition 1. Soit D X. On dit que D est dense dans X si D = X. Exemple.

Plus en détail

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Le théorème du point xe. Applications

Le théorème du point xe. Applications 49 Le théorème du point xe. Applications 1 Comme dans le titre de cette leçon, le mot théorème est au singulier, on va s'occuper du théorème du point xe de Picard qui a de nombreuses applications. Le cas

Plus en détail

CH.2 CODES CORRECTEURS

CH.2 CODES CORRECTEURS CH.2 CODES CORRECTEURS 2.1 Le canal bruité 2.2 La distance de Hamming 2.3 Les codes linéaires 2.4 Les codes de Reed-Muller 2.5 Les codes circulaires 2.6 Le câblage des codes circulaires 2.7 Les performances

Plus en détail

7 FONCTIONS USUELLES. 1 Parité d une fonction. 2 Fonctions affines

7 FONCTIONS USUELLES. 1 Parité d une fonction. 2 Fonctions affines Cours 7 FONCTIONS USUELLES Parité d une fonction Définition Soit f une fonction définie sur un ensemble D. On dit que f est paire si : { D est symétrique par rapport à 0 Pour tout x D, f ( x) = f (x) On

Plus en détail

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant Licence informatique - L Année 0/0 Conception d algorithmes et applications (LI) COURS Résumé. Dans cette cinquième séance, nous continuons l exploration des algorithmes de type Programmation Dynamique.

Plus en détail

Problème du flot à coût minimum

Problème du flot à coût minimum Problème du flot à coût minimum IFT1575 Modèles de recherche opérationnelle (RO). Optimisation de réseaux e. Flot à coût minimum On a un graphe orienté et connexe chaque arc (i,j), on associe une capacité

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

COURS OPTIMISATION. Cours en Master M1 SITN. Ionel Sorin CIUPERCA

COURS OPTIMISATION. Cours en Master M1 SITN. Ionel Sorin CIUPERCA COURS OPTIMISATION Cours en Master M1 SITN Ionel Sorin CIUPERCA 1 Table des matières 1 Introduction 4 2 Quelques rappels de calcul différentiel, analyse convexe et extremum 5 2.1 Rappel calcul différentiel............................

Plus en détail

Corrigé du baccalauréat ES Pondichéry 16 avril 2015

Corrigé du baccalauréat ES Pondichéry 16 avril 2015 Corrigé du baccalauréat ES Pondichéry 16 avril 2015 Exercice 1 Commun à tous les candidats 5 points Partie A On appelle B l événement «la batterie est défectueuse» ; l événement «le disque dur est défectueux».

Plus en détail

Le théorème du sandwich au jambon

Le théorème du sandwich au jambon Le théorème du sandwich au jambon Florian Bouguet & Paul Schneider Ecole Normale Supérieure de Cachan - Antenne de Bretagne Travaux encadrés par Antoine Chambert-Loir Université de Rennes 1 1 2 Table des

Plus en détail

Exercices chapitre 8. Probabilités.

Exercices chapitre 8. Probabilités. Lycée Descartes PC 2014-15 M. Besbes Exercices chapitre 8. Probabilités. Exercice 1. Soit (Ω, B, P ) un espace probabilisé. Montrer que l ensemble : A = {A B; P (A) = 0 ou P (A) = 1} est une tribu. Exercice

Plus en détail