VECTEURS EXERCICES CORRIGES

Dimension: px
Commencer à balayer dès la page:

Download "VECTEURS EXERCICES CORRIGES"

Transcription

1 Exercice n 1. VECTEURS EXERCICES CORRIGES On considère un hexagone régulier ABCDEF de centre O, et I et J les milieux respectifs des segments [AB] et [ED]. En utilisant les lettres de la figure citer : 1) Deux vecteurs égaux ) Deux vecteurs de même direction, de sens contraire et de normes différentes ) Deux vecteurs de même direction, de même sens et de normes différentes 4) Deux vecteurs de direction différentes et de même norme. 5) Deux vecteurs opposés. Exercic e n ompléter les pointillés à l'aide de la relati de has = IB. + B C..E = F. + G on. AB + BC C les +CD IJ + DE =.. XK = XL +.K H. =.. IJ AB =.C +.D +.. CD =.A + A. RS = R. +.S + MN =. P = JK +. M.Y = XJ R Exercice n.on considère la figure-contre : En n'utilisant que les lettres représentées sur cette figure, compléter : AB + FE =... AB + AH... BA + BC =... BC + DE =... BF + GF =... AE + FB =... D E F C B H A G Exercice n 4. ABC est le triangle ci-co ntre 1) Placer les points D et E tels que AD = AC AB et ) Démontrer que A est le milieu de [ED]. AE = AB AC Exercice n 5. Dans chaque cas, Déterminer à partir du graphique une relation du type : =k où k est un réel :.... Exercice n 6. ABCD étant un parallélogramme, construire les points I, J et K tels que : AI = AB DJ = CD DK = CA + AB Exercice n 7. Soit A et B deux points distincts d un plan. Placer le point G tel que GA + 5GB = 0 Page 1/7

2 Exercice n 8. 1) Exprimer plus simplement le vecteur : n = MA AC + MB MC en fonction de AB et AC. ( ) ) u, v et w sont vecteurs. Déterminer le nombre k tel que w= k u 5 sachant que u = v et que w = v. 4 Exercice n 9. Soient trois points A, B et C distincts non alignés. Les vecteurs w et x sont-ils colinéaires dans les cas suivan ts? 1) w = AB et x = 6 AB ) w = AB + AC et x = 4 AB 6 AC ) w = AB AC et x = 9 AB AC 4) w = 1 AB + AC et x = AB 9 AC 5) w = 1 AB + AC et x = 1 AB AC 6) w = 5 AB 5 AC 1 et x = AB 4 AC Exercice n 10. On considère un triangle ABC. 1) Construire les points D et E tels que AD = AC + AB et BE = AB + AD ) Construire les points M et N tels que AM = AB et AN = AC ) Exprimer MN en fonction de BC. Que peut-on en déduire pour (MN) et (BC)? Exercice n 11. Soit ABCD un quadrilatère quelconque. On désigne par I,J,K et L les milieux respectifs de [AB], [BC], [CD] et [DA] 1) Trouvez le nombre h tel que IJ =h AC ) Que peut-on dire de LK? ) Conclure sur la nature du quadrilatère IJKL Exercice n 1. On considère un triangle ABC. On désigne par P le milieu de [AB], et par Q et R les points définis par BQ = - 1 BC et RC = 4 5 AC 1) Exprimer PQ et PR en fonction des vecteurs AB et AC ) Que peut-on dire des vecteurs PQ et PR? ) Que peut-on en déduire? Exercice n 1. Soit ABC un triangle. 5 On désigne par D et E les points tels que : AD = AC + CB 1 et CE = AC + AB Montrer que le point B est le milieu du segment [ED]. Exercice n 14. Soit ABC un triangle. 1) On désigne par J, D et K les points tels que AJ = ) Montrer que les points J, D et K sont alignés. 1, BK = AB et AD = AC BC Page /7

3 Exercice n 1 MN = MP + PN autre lettre que A) JM = JK + KM VECTEURS CORRECTION 1) Deux vecte urs ég aux sont par exemple : AB = FO = OC = ED ou encore FE = AO = OD = BC ) Deux vecteurs de même direction, de sens contraire et de normes différentes sont par exemple : AB et CF ) deux vecteurs de même direction, de même sens et de normes différentes sont par exemple : AB et FC 4) Deux vecteurs de direction différentes et de même norme sont par exemple : AB et BC 5) Deux vecteurs opposés sont par exemple : AB et DE Exercice n Compléter le s point illés à l' aid e de la relation de Chasles IJ = IB BJ XK = XL + LK FE = FG + GE AB + BC +CD + + DE = AE CD HJ = HI + IJ = CA + AD RS = RA + AS AB = AC + CD + DB (ou n importe quelle XY = XJ + RY + JR (on change alors E xe rcice n O n c ons id ère la f igure suivante : AB + FE = AB + BC = AC AB + AH = AB + BE = AE BA + BC = FG + GH = FH BC + DE = BC + CB = 0 BF + GF = BF + AB= AB+ BF = AF AE + FB = AE + EC = AC Exercice n 4 1) AD = AC AB = AC + ( AB) opposé du vcteur AB = AC + BA = BA + AC = BC AE = AB AC = AB + ( AC) opposé du l ordre des vecteurs dans la somme) vcteur AC = AB + CA = CA + AB = CB ) Puisque CB = BC, on déduit que AE = AD = DA, qui caractérise le fait que A est le milieu de {ED] Page /7

4 Exercice n 5 et ont la même et ont la même et ont la même et ont la même direction, et sont de même direction, et sont de sens direction, et sont de sens direction, et sont de même sens donc k > 0. contraire donc k < 0. contraire donc k < 0. sens donc k > 0. 5 u = v u = v u = 6 v u = 4 v = v 5 6 Exercice n 6 DJ = CD = DC Exercice n 7 1) On écrit n = ( MA AC) + MB MC = ( MA AC) + MA+ AB ( MA+ AC) = MA AC+ MA+ AB MA AC = MA + MA MA AC + AB AC = AB 5AC 5 ) Si u = v, alors v = 4 u. Si w= v, alors v = w v = u Ainsi w= u w= u = u v = w 8 Ainsi le nombre nombre k tel que w= k u vaut k = 15 Exercice n 8 GA + 5 GB = 0 Relation de Chasles GA + 5( GA + AB) = 0 GA + 5GA + 5AB = 0 GA + 5AB = GA = 5AB GA = AB AG = AB D où une construction du point G : Page 4/7

5 Exercice n 9 1) Si w = AB et x = 6 AB, alors w= AB= 6AB= x. Puisque x = w, les vecteurs x et w sont colinéaires ) Si w = AB + AC e t x = 4 AB 6 AC, alors w= ( AB+ AC) = ( ) ( AB) + ( ) AC = 4AB 6AC = x. Puisque x = w, s vecteurs x et w nt colinéaires le so ) Si w = AB AC et x = 9 AB AC, les vecteurs ne sont pas colinéaires, car s il existait un réel k tel que k w = x, on aurait kw = k ( AB AC) = k AB k AC = x k = 9 si et seulement si. Or il n existe aucune valeur k réelle k = solution de ce système 1 4) Si w = AB + AC et x = AB 1 9 AC, alors w= AB+ AC = AB 9AC = x. Puisque x = w, les vecteurs x et w sont colinéaires 5) Si w = 1 AB + AC et x = 1 AB - AC, les vecteurs ne sont pas colinéaires, car s il existait un réel k tel que k w = x 1 k, on aurait kw = k A B + AC = AB + k AC = x k 1 = si et seulement si. Or il n existe aucune k = valeur k réelle solution de ce système 6) Si w= AB AC et x = AB 4 AC alors w= AB AC = AB AC = AB AC = x. Puisque x = w, les vecteurs x et w sont colinéaires. 4 4 Exercice n 10 1) et ) voir ci-contre ) MN = MA+ AN = AM + AC = BA + AC = ( BA + AC ) = BC Les vecteurs MN et BC étant colinéaires, on déduit que les droites (MN) et (BC) sont parallèles Exercice n 11 (le Théorème de Varignon) Page 5/7

6 1) Dans le triangle ABC, I étant le milieu de [AB]et J celui de [BC], on applique la propriété dite de la droite des milieux 1 (ou de Thalès Vectoriel) pour conclure que IJ = A C ) Dans le triangle ACD, L étant le milieu de [AD]et K celui de [CD], on applique la propriété dite de la droite des 1 milieux (ou de Thalès Vectoriel) pour conclure que LK = AC 1 1 ) Puisque IJ = A C et LK = AC, on conclut que IJ = LK, donc que IJKL est un parallélogramme. Exercice n 1 1) On écrit PQ = PB + BQ car P est le milieu [ ] de AB par définition 1 1 = AB + BC 1 1 = AB ( BA + AC) = AB BA AC = AB + AB AC 5 1 = AB AC 6 Si RC = 4 5 AC 4, alors, on peut écrire de plus que CR = 5 CA, d où : PR = PA + AC + CR car P est le milieu [ ] de AB par définition 1 4 = BA+ AC+ CA AC ) On calcule 5 1 PQ = AB AC = PR Les vecteurs PR et PQ sont donc colinéaires ) On en déduit que les points P, Q et R sont alignés Page 6/7

7 Exercice n 1 1) On va exprimer les vecteurs BD et BE en fonction de AB et AC afin de montrer qu ils sont colinéaires O écri un art : n t d e p BD = BA + AD 5 = BA + AC + CB 5 + ( CA + AB) 5 = AB + AB + AC AC 1 = AB + AC E t d au tre part : BE = BC + CE 1 = BA+ AC AC+ AB. 1 = AB + AB + AC AC 1 = AB AC Puisque BD= BE, on en déduit que le point B est le milieu du segment [ED]. Exercice n 14 On écrit succ : essivement JK = JA + AB + BK 1 = BA + AB + BC 1 = AB + AB + ( BA + AC) 1 1 = AB + AB AB + AC puis JD = JA + AD = BA + AC, ce qui nous permet de constater que JD = 4JK, donc de conclure que les points J,D et K sont alignés. Page 7/7

vs Christia 1 n Poisson

vs Christia 1 n Poisson vs Christian 1 Poisson Cet ouvrage contient une sélection d'études d'echecs composées par ordinateur, plus précisément par l'analyse de tables de finales, en l'occurrence ici la table, à l'aide de WinChloe

Plus en détail

DEVOIR MAISON 4 : LES VECTEURS

DEVOIR MAISON 4 : LES VECTEURS DEVOIR MAISON 4 : LES VECTEURS Ce devoir maison de révisions, de préparation au DS4 comporte deux pages. Vous traiterez au choix au moins la première ou la deuxième page. Exercice 1. Le plan est muni d

Plus en détail

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ.

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ. Exercice :(Amiens 1995) Les questions 2, 3 et 4 sont indépendantes. L'unité est le centimètre. 1) Construire un triangle MAI rectangle en A tel que AM = 8 et IM = 12. Indiquer brièvement les étapes de

Plus en détail

Sarl XYZ EFFORT de RECHERCHE et de DEVELOPPEMENT EXERCICE 2003 C.I.R.

Sarl XYZ EFFORT de RECHERCHE et de DEVELOPPEMENT EXERCICE 2003 C.I.R. EXEMPLE DE DOSSIER Sarl XYZ EFFORT de RECHERCHE et de DEVELOPPEMENT EXERCICE 23 C.I.R. STRATEGIE & ACCOMPAGNEMENT FINANCIER 7 Rue DENFERT-ROCHEREAU 38 GRENOBLE France Tél fax : ( 33 ) 4 76 43 47 11 SIRET

Plus en détail

Chapitre 5 : Géométrie dans l'espace

Chapitre 5 : Géométrie dans l'espace Source : site Bacamahts (G.Constantini) et Mathématiques 2 nde (Terracher) I. Règles de base de la géométrie dans l'espace Il existe une et une seule droite de l'espace passant par deux points distincts.

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

Il suffit de tracer deux médiatrices pour obtenir le centre du cercle circonscrit..

Il suffit de tracer deux médiatrices pour obtenir le centre du cercle circonscrit.. Correction-Exercices sur les droites remarquables 1. Construire un triangle ABC tel que AB = 5cm, BC = 6cm et AC= 8 cm et le cercle circonscrit à ce triangle Il suffit de tracer deux médiatrices pour obtenir

Plus en détail

I-ACTIVITÉS NUMÉRIQUES (12 points)

I-ACTIVITÉS NUMÉRIQUES (12 points) BREVET BLANC 1_DECEMBRE 2011 I-ACTIVITÉS NUMÉRIQUES (12 points) Exercice 1 : (4 pts) Soit les expressions 1) Calculer A et B en détaillant les étapes du calcul et écrire le résultat sous la forme d'une

Plus en détail

Triangle rectangle et cercle

Triangle rectangle et cercle Objectifs : 1 Savoir reconnaître et tracer une médiane. 2 Connaître et savoir utiliser la propriété qui caractérise le triangle rectangle par son inscription dans un demi-cercle. 3 Connaître et savoir

Plus en détail

CHAPITRE 6 Les vecteurs

CHAPITRE 6 Les vecteurs A/ Vecteurs Cours de Mathématiques Classe de Seconde Chapitre 6 Les Vecteurs CHAPITRE 6 Les vecteurs 1) Définition et exemples a) Définition Soient deux points A et B. On appelle vecteur AB "la flèche"

Plus en détail

Activités numériques

Activités numériques Sujet et correction Stéphane PASQUET, 25 juillet 2008 2008 Activités numériques Exercice On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre pas 3. b) Ajouter le carré

Plus en détail

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5 ACTIVITÉS NUMÉRIQUES (12 s) Montrer que D est un nombre entier. Ê D = 5 12 2 D = 5 2 Exercice n 1 : Toutes les étapes de calcul devront figurer sur la copie. 1. On donne A = + 1 + 2. Calculer et donner

Plus en détail

Savoir que AB= CD équivaut à ABDC est un parallélogramme, éventuellement aplati. Connaître les coordonnées (x B x A ; y B y A ) du vecteur AB

Savoir que AB= CD équivaut à ABDC est un parallélogramme, éventuellement aplati. Connaître les coordonnées (x B x A ; y B y A ) du vecteur AB Chapitre 3 La notion de vecteurs CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Vecteurs Définition de la translation qui transforme un point A du plan en un point B. Vecteur AB associé. Égalité de deux vecteurs

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme.

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Devoir Maison A rendre le mercredi 2 mai 2nde 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Calculer les coordonnées du point D. 2/ a)

Plus en détail

BILAN - ACTIF PLASTIRISQ - 92400 COURBEVOIE SIRET 50062021600019. Période N du 01/01/2014 au 31/12/2014 Période N-1 du 01/01/2013 au 31/12/2013

BILAN - ACTIF PLASTIRISQ - 92400 COURBEVOIE SIRET 50062021600019. Période N du 01/01/2014 au 31/12/2014 Période N-1 du 01/01/2013 au 31/12/2013 BILAN - ACTIF Exercice N Exercice N - 1 Brut Amortissements, provisions Net Net Capital souscrit non appelé (I) AA Frais d'établissement AB AC ACTIF CIRCULANT ACTIF IMMOBILISÉ DIVERS CRÉANCES STOCKS IMMOBILISATIONS

Plus en détail

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0?

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0? Exercice 1 : ACTIVITÉS NUMÉRIQUES. Métropole Juin 2008 On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre par 3. b) Ajouter le carré du nombre choisi. c) Multiplier par

Plus en détail

Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation )

Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation ) Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation ) Introduction : On se place dans plan affine euclidien muni

Plus en détail

Introduction aux inégalités

Introduction aux inégalités Introduction aux inégalités -cours- Razvan Barbulescu ENS, 8 février 0 Inégalité des moyennes Faisons d abord la liste des propritétés simples des inégalités: a a et b b a + b a + b ; s 0 et a a sa sa

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

Fragments de géométrie du triangle

Fragments de géométrie du triangle Fragments de géométrie du triangle Pierre Jammes (version préliminaire du 2 août 2013) 1. Dénitions On donne ici les dénitions des principaux objets mis en jeu dans le début du texte. Dans le plan euclidien,

Plus en détail

Séquence 10. Géométrie dans l espace. Sommaire

Séquence 10. Géométrie dans l espace. Sommaire Séquence 10 Géométrie dans l espace Sommaire 1. Prérequis 2. Calculs vectoriels dans l espace 3. Orthogonalité 4. Produit scalaire dans l espace 5. Droites et plans de l espace 6. Synthèse Dans cette séquence,

Plus en détail

JUIN : EXERCICES DE REVISIONS

JUIN : EXERCICES DE REVISIONS . Les fonctions JUIN : EXERCICES DE REVISIONS y 30 0 0-8 -7-6 - - 0 3 4 6 7 8 x -0 - -0 0 Fonction n : f(x) = y = 30x Fonction n : f(x) = y = -x³ + 3x² + x - 3 Fonction n 3 : f3(x) = y = -x + 30 Fonction

Plus en détail

Calculer à la règle non graduée et au compas.

Calculer à la règle non graduée et au compas. Calculer à la règle non graduée et au compas. Elèves : RUNDSTADLER Ilina 5 ème MARION Alice 4 ème THOMMES Emeline 4 ème GRANDJEAN Bixente 3 ème MACEL Eric 3 ème WU Louise 3 ème Enseignants : HIRIART Louisette

Plus en détail

Démonstration des propriétés géométriques du plan niveau collège

Démonstration des propriétés géométriques du plan niveau collège Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est

Plus en détail

Créer des figures dynamiques en 3 dimensions avec GeoGebra 5

Créer des figures dynamiques en 3 dimensions avec GeoGebra 5 Créer des figures dynamiques en 3 dimensions avec GeoGebra 5, 1/46 I. Pour débuter...3 IV. 9. Obtenir une sphère ou un cône tronqué...21 I. 1. Téléchargement...3 V. Illustration d'exercices...22 I. 2.

Plus en détail

Les leviers pour une efficacité renforcée de l Éducation prioritaire Eléments de problématisation et ressources pour la réflexion des acteurs

Les leviers pour une efficacité renforcée de l Éducation prioritaire Eléments de problématisation et ressources pour la réflexion des acteurs Assises de l Éducation prioritaire 2013 Les leviers pour une efficacité renforcée de l Éducation prioritaire Eléments de problématisation et ressources pour la réflexion des acteurs CENTRE ALAIN-SAVARY

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

CHAPITRE 1 CONSTRUCTIONS GEOMETRIQUES

CHAPITRE 1 CONSTRUCTIONS GEOMETRIQUES CHAPITRE 1 CONSTRUCTIONS GEOMETRIQUES 1. La médiatrice d'un segment 2 2. La bissectrice d'un angle 3 3. Les triangles 4 4. Parallèles et perpendiculaires 6 5. Les parallélogrammes 7 6. Le problème de Napoléon

Plus en détail

!" #!# $%!""#$%&!'(%$)

! #!# $%!#$%&!'(%$) !" #!# $%!""#$%&!'(%$) & *& +",++-.-/0' "!(12$ ' '# # ' ("""!)*+,!- *&+.",0' 3*"(4$./ ' *&5,++-.-0'/3*"(4$ # #.') $ ' 0+1* 2 "!)*+)1+ *&+",++-.- 0'3*"(4$ ' '# # ' (3,4!53""!)*+,! +&!!- *& +",++-.-/0'3*"(4$

Plus en détail

Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879-

Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879- Chapitre 9 REVOIR > les notions de points, droites, segments ; > le milieu d un segment ; > l utilisation du compas. DÉCOUVRIR > la notion de demi-droite ; > de nouvelles notations ; > le codage d une

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2011 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

4B Devoir Surveillé n 2 Les calculatrices sont autorisées.

4B Devoir Surveillé n 2 Les calculatrices sont autorisées. 4B Devoir Surveillé n 2 Les calculatrices sont autorisées. Exercice n 1 :(7,5 points) Tracer un triangle ABC rectangle en B tel que AB = 6 cm et BC = 8 cm. Placer I le milieu de [AB] et placer J le milieu

Plus en détail

Triangle rectangle : Cercle circonscrit et médiane

Triangle rectangle : Cercle circonscrit et médiane Triangle rectangle : Cercle circonscrit et médiane I) Vocabulaire 1) Hypoténuse Définition : Dans un triangle rectangle le côté opposé à l angle droit est appelé hypoténuse. 2) Hauteurs, médianes, médiatrices

Plus en détail

RA/8000/L2, RA/8000/L4 (ISO/VDMA/NFE) Vérins avec bloqueur de tige Double effet - Ø 32 à 125 mm

RA/8000/L2, RA/8000/L4 (ISO/VDMA/NFE) Vérins avec bloqueur de tige Double effet - Ø 32 à 125 mm A/8000/L, A/8000/L4 (ISO/VDMA/NFE) Vérins avec bloqueur de tige Double effet - Ø 3 à 5 mm Avec piston magnétique ou non selon ISO 555, ISO 643, VDMA 456 et NFE 49-003- Blocage de sécurité de la tige de

Plus en détail

Étude des formes de pratiques de la gymnastique sportive enseignées en EPS à l école primaire

Étude des formes de pratiques de la gymnastique sportive enseignées en EPS à l école primaire Étude des formes de pratiques de la gymnastique sportive enseignées en EPS à l école primaire Stéphanie Demonchaux To cite this version: Stéphanie Demonchaux. Étude des formes de pratiques de la gymnastique

Plus en détail

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE Jean Luc Bovet, Auvernier L'article de Monsieur Jean Piquerez (Bulletin de la SSPMP No 86), consacré aux symédianes me paraît appeler une généralisation. En

Plus en détail

SECRETARIAT PERMANENT DOCUMENT DE STRATEGIE DE REDUCTION DE LA PAUVRETE AU BENIN

SECRETARIAT PERMANENT DOCUMENT DE STRATEGIE DE REDUCTION DE LA PAUVRETE AU BENIN REPUBIQUE DU BENIN COMMISSION NATIONAE POUR E DEVEOPPEMENT ET A UTTE CONTRE A PAUVRETE (CNDP) SECRETARIAT PERMANENT DOCUMENT DE STRATEGIE DE REDUCTION DE A PAUVRETE AU BENIN 2003 2005 Décembre 2002 TABE

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous NOM : Seconde A B C H J Mardi 19 janvier 010 Exercice 1 : sur,5 points 1) Lire graphiquement les équations des droites D 1, D et D tracées dans le repère ci-dessous ) Dans le même repère, tracer la droites

Plus en détail

COUPE JEAN-CLAUDE LOUBATIÈRE

COUPE JEAN-CLAUDE LOUBATIÈRE COUPE JEAN-CLAUDE LOUBATIÈRE 1. Organisation générale 1.1. Structure La Coupe Jean-Claude Loubatière est organisée chaque saison. Le nombre d'équipes engagées par club n'est pas limité. 1.2. Déroulement

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2010 ÉPREUVE DE MATHÉMATIQUES classe de 3 e Durée : 2 heures Présentation et orthographe : points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

!"#$"%&'()' !"#! +!$ % & + ! " + ,-.

!#$%&'()' !#! +!$ % & + !  + ,-. !"#$"%&'()'!*! " +!"#! +!$ % & +,-. ! " # #$%&$!'$()$!*+$* ($ &!! "! "" # $ # %# "! &' "!,-&. */01&&1/12(%(3('& 4 5'!' $! *+,-..+ ""/"01! ",2!",-..+ 6478 % 9 (!0 3"! "1 7 0 " 45! 64 (71 558 ""!"8 5"!!58"

Plus en détail

Devoir commun de seconde, mars 2006

Devoir commun de seconde, mars 2006 Devoir commun de seconde, mars 006 calculatrices autorisées On rappelle que le soin et la qualité de rédaction entrent pour une part non négligeable dans l appréciation de la copie. Eercice (7 points).

Plus en détail

Quelques contrôle de Première S

Quelques contrôle de Première S Quelques contrôle de Première S Gilles Auriol auriolg@free.fr http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage

Plus en détail

L AIDE AUX ATELIERS D ARTISTES :

L AIDE AUX ATELIERS D ARTISTES : RAPPORT DAVID LANGLOIS-MALLET SOUS LA COORDINATION DE CORINNE RUFET, CONSEILLERE REGIONALE D ILE DE FRANCE L AIDE AUX ATELIERS D ARTISTES : PROBLÉMATIQUES INDIVIDUELLES, SOLUTIONS COLLECTIVES? DE L ATELIER-LOGEMENT

Plus en détail

Groupe seconde chance Feuille d exercices numéro 4

Groupe seconde chance Feuille d exercices numéro 4 Groupe seconde chance Feuille d exercices numéro 4 Exercice 1 Ecrire un programme de construction de la figure suivante. On utilisera seulement deux mesures : le rayon du cercle est 8 cm, la largeur d

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Politique d Horodatage achatpublic.com. achatpublic.com

Politique d Horodatage achatpublic.com. achatpublic.com Politique d Horodatage achatpublic.com Version 1.0 1 Préambule 2 1.1 Glossaire et bibliographie 2 1.2 Objet du présent document 2 1.3 Les services d achatpublic.com achatpublic.com 2 1.4 Les marchés publics

Plus en détail

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin

Plus en détail

Brevet Juin 2007 Liban Corrigé Page 1 sur 6

Brevet Juin 2007 Liban Corrigé Page 1 sur 6 Brevet Juin 007 Liban Corrigé Page 1 sur 6 Exercice 1 : 1) A = 500 (10 3 ),4 10 7 8 10 4 = 500 10 6 4 10 1 10 7 8 10 4 500 4 = 8 = 500 3 8 8 = 500 3 100 10 4 = 1500 10 0 + 4 = 1500 10 4 = 1,5 10 3 10 4

Plus en détail

!"#$%#&%'() !"#$"%&'&()*'+,,+-'.+,,+/(0#11.*2(+'(34-,.2%5%'& 6+2(*#.5+,,+2(7"#*'%8"+2(9+(,:;--82(+'(9+(,:%**#5;'%#*($;"';<&2 *%$+,-+.

!#$%#&%'() !#$%&'&()*'+,,+-'.+,,+/(0#11.*2(+'(34-,.2%5%'& 6+2(*#.5+,,+2(7#*'%8+2(9+(,:;--82(+'(9+(,:%**#5;'%#*($;';<&2 *%$+,-+. !"#$%#&%'()!"#$"%&'&()*'+,,+-'.+,,+/(0#11.*2(+'(34-,.2%5%'& 6+2(*#.5+,,+2(7"#*'%8"+2(9+(,:;--82(+'(9+(,:%**#5;'%#*($;"';

Plus en détail

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant

Plus en détail

Le seul ami de Batman

Le seul ami de Batman Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective

Plus en détail

MODIFIER LES CARACTÈRES D'UN PC POUR AFFICHER RUSSE, ARABE, GREC, ETC. (*)

MODIFIER LES CARACTÈRES D'UN PC POUR AFFICHER RUSSE, ARABE, GREC, ETC. (*) 229 COMMENT MODIFIER LES CARACTERES D'UN PC POUR AFFICHER RUSSE, ARABE, GREC, ETC. (*) Si la forme des caractères qui s'affichent sur l'écran de votre PC ne vous convient pas, si vous souhaitez en créer

Plus en détail

Nombres complexes et géométrie euclidienne

Nombres complexes et géométrie euclidienne 19 Nombres complexes et géométrie euclidienne Le corps C des nombres complexes est supposé construit voir le chapitre 7. On rappelle que C est un corps commutatif et un R-espace vectoriel de dimension,

Plus en détail

Académies et années. Type de fonction Type de problème Résolution conjointe

Académies et années. Type de fonction Type de problème Résolution conjointe Académies et années Type de fonction Type de problème Résolution conjointe Affine Linéaire Autre Tarifs Géom. Plane Espace équation Inéquat. Système Grenoble 00 x x Nancy 00 x x Orléans 00 x x Caen 00

Plus en détail

COLLÈGE LA PRÉSENTATION. BREVET BLANC Février 2014

COLLÈGE LA PRÉSENTATION. BREVET BLANC Février 2014 COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2014 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

E3A PC 2009 Math A. questions de cours. t C). On véri e que

E3A PC 2009 Math A. questions de cours. t C). On véri e que E3A PC 29 Math A questions de cours. Soit C 2 M 3 (R) Analyse : Si C = S + A, S 2 S 3 (R) et A 2 A 3 (R) alors t C = t S + t A = S A d où S = 2 (C +t C) et A = 2 (C t C). L analyse assure l unicité (sous

Plus en détail

Bonne définition: La médiatrice d'un segment est la droite perpendiculaire au segment en son milieu. Phrase correcte. (d)

Bonne définition: La médiatrice d'un segment est la droite perpendiculaire au segment en son milieu. Phrase correcte. (d) Correction du contrôle 1: Voici quelques phrases trouvées dans vos copies pour la partie cours: Définition de la médiatrice d'un segment La médiatrice d'un segment est la droite qui coupe un segment en

Plus en détail

DIPLÔME NATIONAL DU BREVET

DIPLÔME NATIONAL DU BREVET DIPLÔME NATIONAL DU BREVET SESSION JUIN 2008 ÉPREUVE DE MATHÉMATIQUES SÉRIE COLLÈGE Durée de l épreuve: 2h00 Métropole - La Réunion- Mayotte L emploi des calculatrices est autorisé Barème: - Activités

Plus en détail

Chapitre 7 Proportionnalité.

Chapitre 7 Proportionnalité. Chapitre 7 Proportionnalité. Voir 5 ème, chapitres 5 et 7 ; 4 ème, chapitres 4, 5 et 12. I) Pourcentages, indices A) Augmentation (ou diminution) Eemple : Le pri d un objet est passé de à 14. Calculer

Plus en détail

TRIGONOMETRIE ET CALCUL NUMERIQUE

TRIGONOMETRIE ET CALCUL NUMERIQUE TRIGONOMETRIE ET CALCUL NUMERIQUE Questions 2010-2013 Exercice 1 2 2 sin(4 x)cos( x) 2sin( x)cos (2 x) 1 2sin ( x) (valeurs numériques) x 45 k 90 ;10 k 120 ;50 k 120 k Exercice 2 tg x 3tg x 4 4 (valeurs

Plus en détail

Correction du Brevet Blanc Shanghai mars 2013

Correction du Brevet Blanc Shanghai mars 2013 Correction exercice 1(4 points) Correction du Brevet Blanc Shanghai mars 2013 1. Calculer les expressions suivantes A et B et donner le résultat sous la forme d une fraction irréductible : 2. Calculer

Plus en détail

EXAMEN D ADMISSION DE L ECOLE DE MATURITE 1 ère ANNEE MATHEMATIQUES

EXAMEN D ADMISSION DE L ECOLE DE MATURITE 1 ère ANNEE MATHEMATIQUES GYMNASE DU BUGNON - LAUSANNE Mai 2008 EXAMEN D ADMISSION DE L ECOLE DE MATURITE 1 ère ANNEE MATHEMATIQUES Date : mai 2008 Durée : 3h Matériel mis à disposition par le gymnase : - Matériel apporté par les

Plus en détail

Dans cet exercice, toutes les réponses seront données sous la forme la plus simple possible.

Dans cet exercice, toutes les réponses seront données sous la forme la plus simple possible. L orthographe, le soin, la qualité et la précision de la rédaction seront pris en compte à hauteur de 4 points sur 40 dans l évaluation de la copie. L utilisation de la calculatrice est autorisée. Les

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

TD d exercices de Géométrie dans l espace.

TD d exercices de Géométrie dans l espace. TD d exercices de Géométrie dans l espace. Exercice 1. (Brevet 2006) Pour la pyramide SABCD ci-contre : La base est le rectangle ABCD de centre O. AB = 3 cm et BD = 5cm. La hauteur [SO] mesure 6 cm. 1)

Plus en détail

Brevet Blanc n 1. Mathématiques

Brevet Blanc n 1. Mathématiques Brevet Blanc n 1 Novembre 2010 Mathématiques Durée de l'épreuve : 2h00 Le candidat répondra sur une copie L'usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. Activités

Plus en détail

INFORMATIONS DIVERSES

INFORMATIONS DIVERSES Nom de l'adhérent : N d'adhérent :.. INFORMATIONS DIVERSES Rubrique Nom de la personne à contacter AD Date de début exercice N BA Date de fin exercice N BB Date d'arrêté provisoire BC DECLARATION RECTIFICATIVE

Plus en détail

M2 20.00% 6.09 UN 20.00% 13.40 M 20.00% 10.11 M 20.00% 31.69 M 20.00% 21.79 M2 20.00% 95.51 UN 20.00% 222.62 UN 20.00% 292.91 UN 20.00% 444.

M2 20.00% 6.09 UN 20.00% 13.40 M 20.00% 10.11 M 20.00% 31.69 M 20.00% 21.79 M2 20.00% 95.51 UN 20.00% 222.62 UN 20.00% 292.91 UN 20.00% 444. ou n identification fiscal pays hors CEE Aménagement de stand l Décoration DS01 Fourniture et pose de moquette type tapis aiguilleté (norme M3) M2 20.00% 6.09 DS02 Pose de tenture murale norme M1 M2 20.00%

Plus en détail

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)

Plus en détail

!" #$#% #"& ' ( &)(*"% * $*' )#""*(+#%(' $#),")- '(*+.%#"'#/* "'") $'

! #$#% #& ' ( &)(*% * $*' )#*(+#%(' $#),)- '(*+.%#'#/* ') $' !" #$#% #"& ' ( &)(*"% * $*' )#""*(+#%(' $#),")- '(*+.%#"'#/* "'") $' &!*#$)'#*&)"$#().*0$#1' '#'((#)"*$$# ' /("("2"(' 3'"1#* "# ),," "*(+$#1' /&"()"2$)'#,, '#' $)'#2)"#2%#"!*&# )' )&&2) -)#( / 2) /$$*%$)'#*+)

Plus en détail

Mathématiques (10 points)

Mathématiques (10 points) Mathématiques (10 points) Exercice 1 (3 points) Philippe achète 3 planches pour fabriquer une étagère. Le prix de chaque planche est de 5,40. 1. Calculer le prix total des 3 planches. 2. Il obtient une

Plus en détail

E1 :aide E3 : les quotients (ON CITERA LES. puis calculer x et y

E1 :aide E3 : les quotients (ON CITERA LES. puis calculer x et y DM Devoir maison 4 lire une abscisse placer un point d'abscisse connu convertir un nombre dans une unité donnée le triangle isocèle construction à partir d'un dessin milieu d'un segment le cercle,construction

Plus en détail

GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces

GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces Etude de l équilibre d un solide soumis à trois forces non parallèles Si un solide soumis à l'action de 3 forces A

Plus en détail

Trigonométrie. Guesmi.B. I) Déterminer une longueur... C 4 cm F 8. 5 cm. 5 m. 70 mm. II) Déterminer le cosinus d'un angle... B D

Trigonométrie. Guesmi.B. I) Déterminer une longueur... C 4 cm F 8. 5 cm. 5 m. 70 mm. II) Déterminer le cosinus d'un angle... B D Trigonométrie I) Déterminer une longueur... C 4 cm D I 3) Déterminer GI au millième près A 5 cm 25 E 30 2) Déterminer DF au millimètre près F 8 1) Déterminer C au centième près P 4) Déterminer QR au centimètre

Plus en détail

Ce document regroupe les 6 devoirs à la maison proposés dans la progression.

Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Le document a été paginé de façon à ce que chaque devoir corresponde à une page pour en faciliter l impression. Page 2... Devoir

Plus en détail

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points)

Plus en détail

BREVET BLANC CORRIGE

BREVET BLANC CORRIGE ACTIVITES NUMERIQUES (12 POINTS) Exercice 1 (2 points) On a relevé le nombre de médailles gagnées par les sportifs calédoniens lors des Jeux du Pacifique. Voici les résultats regroupés à l aide d un tableur

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

1. ANALYSE DE LA SITUATION 1.1 Problématique de la microfinance 1.2 Les structures nationales en charge de la mise en œuvre de la lps (dmf, atcpec,

1. ANALYSE DE LA SITUATION 1.1 Problématique de la microfinance 1.2 Les structures nationales en charge de la mise en œuvre de la lps (dmf, atcpec, TABLE DES MATIERES FICHE ANALYTIQUE ET RESUME EXECUTIF SIGLES ET ACRONYMES UTILISES 1. ANALYSE DE LA SITUATION 1.1 Problématique de la microfinance 1.2 Les structures nationales en charge de la mise en

Plus en détail

Limitations of the Playstation 3 for High Performance Cluster Computing

Limitations of the Playstation 3 for High Performance Cluster Computing Introduction Plan Limitations of the Playstation 3 for High Performance Cluster Computing July 2007 Introduction Plan Introduction Intérêts de la PS3 : rapide et puissante bon marché L utiliser pour faire

Plus en détail

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures Consignes pour le déroulement de l épreuve d une durée de 2 heures * Calculatrice autorisée pour les deux parties mais en précisant les étapes des calculs. A] Nombres et Calculs : Exercice n 1 : Compléter

Plus en détail

ÉLECTRICITÉ GÉNÉRALE / ÉCLAIRAGE PUBLIC

ÉLECTRICITÉ GÉNÉRALE / ÉCLAIRAGE PUBLIC 1 1Aa Aa Godard Roger (Rue) CANDELABRE H 6.00 MAZDA ESTORIL G SHP150 ENT MB2 2 2Aa Aa Godard Roger (Rue) BETON H: 8M MAZDA ESTORIL G SHP150 TORS MB2 3 3Aa Aa Godard Roger (Rue) BETON H: 8M MAZDA ESTORIL

Plus en détail

Prolongation d utilisation des sources scellées «périmées»

Prolongation d utilisation des sources scellées «périmées» 30/04/10 Prolongation d utilisation des sources scellées «périmées» Arrêté du 23 octobre 2009 portant homologation de la décision n 2009 DC 0150 du 16/07/09 de l ASN définissant les critères techniques

Plus en détail

Définition : «interconnection» et «networks». nterconneconnexion des années 60 des années 70 ARPANET des années 80 les années 90 Aujourd'hui

Définition : «interconnection» et «networks». nterconneconnexion des années 60 des années 70 ARPANET des années 80 les années 90 Aujourd'hui I N T R O D U C T I O N D I n t e r n e t e s t l e p l u s g r a n d r é s e a u a u m o n d e a v e c d e s c e n t a i n e s d e m i l l i o n s da o r d i n a t e u r é s e a u x c o n n e c t é sa

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

LE CHOIX D UNE QUALIFICATION PENALE

LE CHOIX D UNE QUALIFICATION PENALE !"""!! ## LE CHOIX D UNE QUALIFICATION PENALE Directeur de mémoire : Monsieur le Doyen DECOCQ !"#$%&' ( # % &&'() *" % *+,(-,(#'+(&,'.#/0&/ #! % #'++')((',(1'// #! % #'2,' +') ( +23( (!', ( 1'//, ( 0,

Plus en détail

Vecteurs. I Translation. 1. Définition :

Vecteurs. I Translation. 1. Définition : Vecteurs I Translation Soit A et B deux points du plan. On appelle translation qui transforme A en B la transformation du plan qui a tout point M associe le point M tel que [AM ] et [BM] aient le même

Plus en détail

Nomenclature d exécution 2006. Programme 721. «Gestion du patrimoine immobilier de l État»

Nomenclature d exécution 2006. Programme 721. «Gestion du patrimoine immobilier de l État» d exécution 2006 721 «du patrimoine immobilier de l État» Mission ministérielle : YB «du patrimoine immobilier de l État» Ministère : 07 «Économie, finances et industrie» (Version du 23/01/2007 à 05:34:43

Plus en détail

Tournez la page S.V.P.

Tournez la page S.V.P. 17 Tourne la page S.V.P. Le problème est constitué de quatre parties indépendantes La mesure de l intensité d un courant électrique peut nécessiter des méthodes très éloignées de celle utilisée dans un

Plus en détail

Devoir commun Décembre 2014 3 ème LV2

Devoir commun Décembre 2014 3 ème LV2 Devoir commun Décembre 2014 3 ème LV2 Collège OASIS Corrigé de l Epreuve de Mathématiques L usage de la calculatrice est autorisé, mais tout échange de matériel est interdit Les exercices sont indépendants

Plus en détail

" #$ % &'(&)**+,+-)./010/2-3&'3'-2+-3)&4++&10.+2,5.)/06+/.54/5&+4,5+/0/)4)0-

 #$ % &'(&)**+,+-)./010/2-3&'3'-2+-3)&4++&10.+2,5.)/06+/.54/5&+4,5+/0/)4)0- ! $ % ()**+,+).12332+3)++1.+2,5.)6+.55+,5+)) 7 89 : 8! $ %%% ()()) * +,()()$ + 5.;+ 899%)5 8% ,+ ) :+,+)*+?@==+5+)5)++3++)=)A,)=+>3= >32*+=)+5?)+.@+.@+,+)3+6+.=)1)+5).@)=2B5+)3)=

Plus en détail