ETUDE DES E VI V B I RATIO I N O S
|
|
- Beatrice Lamontagne
- il y a 1 ans
- Total affichages :
Transcription
1 ETUDE DES VIBRATIONS 1
2 Chapitre I - Présentation et définitions 2
3 Les objectifs à atteindre: 1) Savoir décrire le modèle de l'oscillateur harmonique et savoir l'appliquer à l'étude des systèmes physiques oscillants. 2) Savoir étudier les réponses de ces systèmes, en tenant compte des paramètres caractéristiques et des conditions initiales, 3) Savoir étudier l'énergie de tels systèmes. Pour cela, il est recommandé d'aborder, dans l'ordre, les thèmes suivants : L'oscillateur harmonique. L'oscillateur harmonique amorti. L'oscillateur harmonique forcé 3
4 L'étude de ces thèmes nécessite certaines connaissances préalables en mathématiques et en physique : En physique, Le principe fondamental de la dynamique Les théorèmes généraux (de l'énergie cinétique, du moment cinétique). Les définitions des énergies cinétique, potentielle, énergie totale mécanique ou électrique. En mathématiques : il faut savoir résoudre les équations différentielles (du second ordre, linéaires, à coefficients constants, sans et avec second membre) il faut connaître la représentation complexe d'une grandeur sinusoïdale fonction du temps. Développement en série de Fourrier / transformée de fourrier 4
5 I) Introduction générale et Définitions a) Exemples d Oscillateurs Ils peuvent être de types différents : mécanique, électrique, acoustique, - la masse accrochée à un ressort, le pendule, - le circuit électrique RLC, - un enfant sur une balançoire, - le balancier d'une horloge, - Sismographe, - haut-parleur, microphone, - instruments de musique à vent ou à cordes, - amortisseurs d'un véhicule, - structure d'une molécule diatomique 5
6 b) Définitions α) Vibrations : Petites variations provoquées par une excitation d une grandeur q autour d une valeur moyenne q e. La fonction q(t) décrit la réponse du système à l'excitation appliquée. Quand l évolution de l oscillateur peut-être décrite par n variables indépendantes, l oscillateur possède n degrés de liberté. Le système physique est appelé oscillateur lorsque q(t) varie périodiquement Un oscillateur est linéaire si son mouvement est décrit par une équation différentielle linéaire. L oscillateur élémentaire linéaire possède un seul degré de liberté. Un oscillateur est libre s il oscille sans interventions extérieures pendant son retour à l équilibre. Un oscillateur est forcé si une action extérieure lui communique de l énergie. Un oscillateur dissipe de l énergie quand il retourne vers son état d équilibre : il est amorti 6
7 Exemple de réponse d'un oscillateur : L'oscillation est de forme quelconque et de période T. La fonction de réponse est telle que : q(t) = q(t+t) 7
8 β) Oscillateur Harmonique - La forme des oscillations est sinusoïdale - L'excitation appliquée au système est très brève, elle disparaît dès que le système oscille, - Les oscillations sont dites libres. -L'énergie totale du système se conserve au cours du temps χ) Oscillateur Harmonique amorti - Le système physique dissipe de l'énergie : l'énergie totale ne se conserve pas dans le temps. Le système est amorti. - Les oscillations sont libres (l excitation initiale n est pas entretenue). δ) L'oscillateur harmonique forcé Le système est soumis à une excitation permanente produite par un dispositif extérieur. Les oscillations sont dites forcées. 8
9 φ) L'oscillateur anharmonique - Le système évolue suivant une loi périodique de forme quelconque ( non sinusoïdale) - Pour des petites variations (approximation des petites oscillations), certains systèmes se comportent comme des oscillateurs harmoniques. L'oscillateur est dit anharmonique. - On montre mathématiquement que toute oscillation périodique se décompose en une somme d'oscillations harmoniques (décomposition de Fourrier). la réponse de ce système physique est celle d un un oscillateur anharmonique. Car q(t) : - est une fonction périodique du temps, - elle est de forme quelconque, 9
10 γ) Forces de Frottement : - Frottement visqueux: Les forces de frottement sont proportionnelles à la vitesse et de sens contraire. r f r = µ.v pour un oscillateur rectiligne dθ M f = µ pour un systeme en rotation dt Exemple de dispositif : 0 P r r r r r la relation fondamentale s'écrit: P + R + T + f = mγ T R f x Frottements solides : La force de frottement est constante et opposée au mouvement 10
11 11
12 II) Démarche générale 1) Définir et décrire le système physique oscillant. 2) Appliquer le «principe fondamental de la dynamique» 3) Résoudre les équations différentielles du second ordre, linéaires, à coefficients constants 4) Déterminer les expressions des énergies cinétique, potentielle élastique et mécanique. 12
13 Chapitre II - L Oscillateur Harmonique 13
14 14
15 15
16 16
17 17
18 18
19 19
20 Autres Oscillateurs Harmoniques Pendule élastique : x l l Période d oscillation vide P T x O x T = 2π m k Pendule de Torsion: I : moment d inertie / θ C: Constante de torsion T = 2 π I C 20
21 Pendule pesant O OG = a G θ M: masse du pendule I : moment d inertie / P I T = 2 π M g a Pour le pendule simple: T = 2 π l g 21
22 1. Oscillateur non amorti Résumé : Oscillateur libre On appelle oscillateur harmonique un système évoluant dans le temps suivant la loi : x = a sin( ω ο t + ϕ ) ω o est la pulsation propre de l oscillateur 2. Équation différentielle caractéristique 2 t x ω = x 0 Inversement : tout système obéissant à l équation ci-dessus est un oscillateur harmonique. 22
23 II - Étude énergétique 1) pendule élastique : On a : x = a sin (ω.t + ϕ) et v = a ω cos (ω.t + ϕ ) l énergie cinétique : 1 1 Ec = m v ² = m a ² ω ² cos ²( ω t + ϕ ) 2 2 L énergie potentielle: 0 E p ( x ) = x 0 k.x.dx Ep = k.x = ka ² sin ²( ω t + ϕ) 2 2 L énergie Mécanique de vibration s écrit : a² 2 E = Ec + Ep = m ω ² cos ²( ω t + ϕ ) + k sin ( ω t + ϕ ) k Soit : E = k.a ² = m ω ²a ² avec ω ² = 2 2 m L Energie mécanique totale est constante 23
24 2) Autres oscillateurs harmoniques Pendule de torsion: Pendule pesant : Ec = J θ & ; Ep = C θ E = Cθ = J ω² θ = Jθ& m m m Ec = I. θ & ; Ep = M.g.a. θ ² E = M.g.a. θ m Circuit LC: E = 1 2 Q m 2 C L oscillateur harmonique non amorti est un système à énergie mécanique constante: C est un système conservatif 24
25 III) Équation différentielle à partir de l énergie mécanique 1 1 t e E m = k x ² + m. x& ² + C 2 2 d E m d x d x& = k. x + m. x& = 0 d t d t d t k && x + x = 0 m Qui est l équation différentielle du mouvement pour un oscillateur harmonique 25
26 26
27 Chapitre III - L Oscillateur Harmonique Amorti 27
28 28
29 2. Mise en équation ( frottement fluide ) F r r ext = ma r r r dl r m i = k( l l ) i + mgi α i 2 dt dt On utilise la relation fondamentale de la dynamique: 2 On obtient : d l o x= ( l l e ) Avec l équation devient : α k && x + x& + x = 0 m m Avec α λ = et ωo = 2m k m && 2 o + 2 & + = 0 x λ x ω x 29
30 30
31 Si λ > ω o Si λ = ω o Si λ < ω o régime apériodique : régime critique : régime pseudopériodique La solution x(t) est alors une combinaison linéaire des deux solutions particulières: x t 1 1 ( ) = e r t x t = e ( ) r t x( t) = A x ( t) + A x ( t) L expression de x(t) dépend donc de la constante d amortissement λ : 31
32 Remarque : la fonction de réponse x(t) n est ni sinusoïdale ni périodique 32
33 33
34 Solution qui peut aussi s écrire : x = A + λt e (1 Bt) Si on suppose qu à l instant t = 0, x = x o et v = 0, on a : x = x o + λ λt e (1 t) et v = λ²x t.e λ o t On constate que x est toujours positif et la vitesse v est toujours négative, donc x décroît de x o à 0 en un temps théoriquement infini: Il n y a plus d oscillations. 34
35 35
36 36
37 Les constantes A et ϕ sont déterminées par les conditions initiales. Par exemple, si à t = 0 on a : x = x o nous obtenons : A = x o et ϕ = π/2 ; v = - λ x o Soit o λt x = x e cos ωt Le système effectue des oscillations d amplitude décroissante et de «pseudo-période» T = 2π/ω 37
38 38
39 A B 39
40 40
41 41
42 x(t) Λ = 0.5 log(2 (2,6 /0,8 0,8) = T = (9,5 3)/2 = 6,25 s λ = Λ/Τ = 0,1 s -1 ) = 0,6 x(t+2t) 42
43 43
44 44
45 45
46 46
47 47
48 Chapitre IV - Oscillateur Harmonique Forcé 48
49 49
50 La fréquence naturelle de l oscillateur est: Réponse d un oscillateur à une force excitatrice pour différentes valeurs de la fréquence d excitation. f = 0,4 Hz f = 1,01 Hz f = 1,6 Hz f 0 = ω 1 k 1Hz 2 π = 2 π m = La force excitatrice s écrit: F = F cos(2 π. f. t) 0
51 51
52 52
53 2 - Étude du régime Forcé On utilise la méthode des complexes. x ( t ) = x co s( ω t + ϕ ) = R x. e o e a e o ( j t ) o e x ( t ) = R x. e ω e j a a v e c x = x. e ϕ o o amplitude complexe de l oscillateur ( j ( ω et + ϕ a ) ) Pour la force d excitation on obtient : ( j t ) e F ( t ) = R F. e ω E e o 53
54 L équation différentielle appliquée à la solution du régime forcé donne : 2 x. e jωet 2 j. x. e jωet 2 x. e jωet A e jωet e o e o o o o ω λω ω + + = ( 2 2 ω ω 2 λ ω ) x + j = A o o e e o x o = A ( ω 2 ω jλω ) o e e o 54
55 55
56 56
57 57
58 Rappel : 58
59 59
60 60
61 61
62 62
63 63
64 64
65 65
66 66
67 67
68 68
69 69
70 70
71 71
72 72
73 73
74 74
75 75
76 76
77 77
78 Chapitre V - Oscillateurs Harmoniques couplés 78
79 Considérons deux oscillateurs harmoniques de longueur à vide l et de raideurs k 1 et k 2 reliés par un ressort de longueur L et de raideur K. On désigne par x 1 et x 2 les déplacements respectifs de m 1 et m 2 par rapport à leurs positions d équilibre. k 1 m 1 K m 2 k 2 T1 T x 1 x 2 Considérons la masse m 1 : elle est soumise aux tension T 1 du ressort k 1 et T due au ressort K. T 1 = - k 1.x 1 T = + k 2 (x 2 x 1 ) 79
80 Action du ressort k 1 : son allongement étant x 1, il exerce sur m 1 une force T 1 = ε. k 1.x 1 (ε=+/ ε=+/ 1) Si x 1 >0 le ressort k 1 est allongé. Il va chercher à se raccourcir en exerçant sur m 1 une force T 1 dirigée vers la gauche. T 1 sera négatif et ε = - 1. Donc T 1 = - k 1.x 1 Si x 1 < 0 le ressort k 1 est comprimé. Il va chercher à s allonger en exerçant sur m 1 une force dirigée vers la droite. T 1 > 0 et x 1 < 0 ε = -1 l expression est la même: T 1 = - k 1.x 1 Action du ressort K : son allongement étant ( x 2 x 1 ) il exerce sur m 1 une force T = ε Κ.(x 2 x 1 ). Si ( x 2 x 1 ) > 0, le ressort K est étiré et va chercher à se raccourcir en exerçant sur m1 une force dirigée vers la droite. T est positif et donc ε = +1. T = + K ( x 2 x 1 ) Si (x 2 x 1 ) < 0 le ressort K est comprimé. Il va chercher à s allonger en repoussant m1. La force T 2 est dirigée vers la gauche. T <0 et (x 2 x 1 ) < 0 ε = + 1. L expression est la même. 80
81 Mise en équation : Le PFD appliqué à m 1 donne la relation : m.x && = k.x + K(x x ) Masse m 2 : Sachant qu elle subit la tension du ressort K et celle du ressort k 2, le même raisonnement conduit à la relation: 1) Cas du couplage d oscillateurs symétriques. m.x && = k.x K(x x ) Les deux oscillateurs reliés par le ressort K sont identiques: Le système devient : m 1 = m 2 = m et k 1 = k 2 = ko. m.x && 1 = k 0.x1 + K(x2 x 1) m.x && 2 = k 0.x2 K(x2 x 1) (1) (2) 81
82 Résolution: en posant S = (x 1 + x 2 ) et D = (x 1 x 2 ) on obtient les deux équations découplées suivantes: Les solutions de ces équations sont: m.s&& = k.s et m.d&& = ( k + 2K ).D 0 0 S = S cos( ω t + ϕ ) et D = D cos( ω t + φ ) o 1 o 2 avec ω = ; ω = k 0 k 0 + 2K 1 m 2 m Sachant que x 1 = (S+D)/2 et x 2 = (S D)/2 on obtient finalement : S o D o x 1 = c o s ( ω 1t + ϕ ) + c o s ( ω 2 t + φ ) 2 2 S o D o x 2 = c o s ( ω 1t + ϕ ) c o s ( ω 2 t + φ )
83 Modes propres Remarque : les oscillations couplées x 1 (t) et x 2 (t) ne sont en général pas sinusoïdales (la somme ou la différence de deux fonctions sinusoïdales de fréquences différentes n est pas une fonction sinusoïdale) Définition: On appelle mode propre du système couplé un mode d oscillation pour lequel tous les paramètres ont des mouvements sinusoïdaux de même pulsation 83
84 -Si D o = 0, alors x 1 (t) = x 2 (t) = S o /2.cos(ω 1 t + ϕ). Les deux oscillateurs oscillent en phase, avec la même pulsation et la même amplitude: c est le premier mode propre ou mode propre symétrique. -Si S o = 0, alors x 1 (t) = - x 2 (t) = D o /2.cos(ω 2 t + φ). Les deux oscillateurs oscillent en opposition de phase, avec la même pulsation et la même amplitude. C est le deuxième mode propre ou mode propre antisymétrique Remarque: En général, il y a autant de modes propres et de pulsations propres ( c.a.d de pulsations pour lesquelles tous les oscillateurs sont en phase) que d oscillateurs. 84
85 2) Oscillateurs couplés dissymétriques Les équations différentielles m.x && = k.x + K(x x ) et m.x && = k.x K(x x ) Peuvent être mise sous la forme plus générale: && x + a.x = b.x && x + a.x = b.x a) Équations aux pulsations propres: Les modes propres sont les solutions particulières du système qui sont sinusoïdales et de même pulsation ω, c.a.d i t x (t) = A.e ω et x (t) = A.e En reportant ces solutions particulières dans le système d équations: iωt 85
86 On obtient : 2 ( ω + a 1)A 1 b1a 2 = 0 2 b 2A 1 + ( ω + a 2 )A 2 = 0 Qui n a de solution non nulle que si le déterminant des coefficients de A 1 et A 2 est nul, c est-à-dire: ( ω + a )( ω + a ) b b = C est l équation aux pulsations propres Cette équation en ω fournit les deux solutions ω 1 et ω 2 acceptables (c.a.d positives), pulsations propres du système dissymétrique couplé Pour ω = ω 1 Pour ω = ω 2 : les deux oscillateurs oscillent en phase : les deux oscillateurs oscillent en opposition de phase Mais toujours avec des amplitudes différentes 86
87 Exemples d oscillateurs couplés Pendules simples α α α α m m m m X 1 (t) X 2 (t) X 1 (t) X 2 (t) 1 er mode propre ( ω 1 ) X 1 (t) = x 2 (t) 2 eme mode propre ( ω 2 ) X 1 (t) = - x 2 (t) 87
88 Pendule double Ο y θ x Α 2m ϕ G Β m Corde plombée y 1 y 3 y 1 y2 y 2 88
89 FIN «Vibrations» 89
90 RAPPELS : Transformée de Fourier 90
91 1) Développement d une fonction périodique en série de Fourier Théorème : Toute fonction périodique f(t), de période T, bornée, est équivalente à une somme infinie de sinusoïdes de fréquences f=n/t, n étant un entier appelé «harmonique» = + + f ( t) a a.cos(2 π. nft) b.sin(2 π. nft) o n n n= 1 n= 1 f ( t) = a + a cos nω t + b sin nωt [ ] o n n n= 1 En posant b n c n = a n + b n et ϕ n = Arctg a n f ( t) = a + c cos( nω t + ϕ ) o n n n= 1 Cn>0 91
92 O n c a lc u le le s c o e ffic ie n ts d e F o u rie r p a r: 1 T a 0 = f ( t ). d t T 0 2 T a = n f ( t ). c o s ( nω t ). d t T 0 2 T b = n f ( t ). s in ( n ω t ). d t T 0 Remarque : si f(t) paire bn = 0 si f(t) impaire an = 0 L ensemble des valeurs a n, b n ou C n constitue le spectre de la fonction f 92
93 les termes a ; a.cos( nωt) ; b.sin( nωt) 0 n sont les composantes de Fourier de f -La composante n = 1 est la composante fondamentale. -Les autres, n = 2, 3... sont les Harmoniques En coordonnées spatiales (x) le D.S.F de h( x) s'écrit: = + + h ( x ) = a + a.cos( nkx ) + b.sin( nkx ) o n n n= 1 n= 1 avec k = 2 π λ vecteur d'onde 1 Id en tité d e P arseval: f ( t ). d t a T 2 2 T 2 2 = n + n n = 1 2 n = 1 2 n a b 93
94 2) Transformée de Fourier Toute fonction f est décomposable en une somme infinie et continue de fonctions sinusoïdales: 1 + f ( t ) = c( ω ) cos [ ωt + ϕ ( ω )] dω 2π f ( t ) = F ( ω ).exp( j ω t ). d ω 2 π ω= où F( ω) est la Transformée de Fourier de f : 1 + F( ω) = f ( t).exp( jωt). dt = 2π t On voit que f est la Transformée Inverse de F 94
Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties
Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties L'objet de cette ressource est l'étude des systèmes physiques, de type mécanique, électrique ou microscopique, se comportant
M5 Oscillateur harmonique et régime forcé
M5 Oscillateur harmonique et régime forcé Rappels des épisodes précédents... Au cours de la première période, nous avons rencontré le modèle de l Oscillateur Harmonique Amorti Cf Cours M4). Nous allons
Introduction au cours de physique (1)
Introduction au cours de physique () Exercices : Petites variations, valeurs moyennes Calculs de petites variations Méthode De manière générale : il est souvent plus simple de faire une différentiation
Cours de mécanique M14-travail-énergies
Cours de mécanique M14-travail-énergies 1 Introduction L objectif de ce chapitre est de présenter les outils énergétiques utilisés en mécanique pour résoudre des problèmes. En effet, parfois le principe
EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1. Durée : 4 heures
SESSION 2013 PCP1003 EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1 Durée : 4 heures N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si
DEVOIR DE SYNTHESE N 2. Les solutions tampons
MINESTERE DE L EDUCATION DIRECTION REGIONALE DE NABEUL LYCÉE TAIEB MEHIRI MENZEL TEMIME PROPOSÉ PAR : MOHAMED CHERIF, AHMED RAIES, SALWA RJEB. EPREUVE : SCIENCES PHYSIQUES NIVEAU: 4 EME SECTION : SC.EXPERIMENTALES
Corps remorqué dans l eau
ACCUEIL Corps remorqué dans l eau Frédéric Elie, août 2007 La reproduction des articles, images ou graphiques de ce site, pour usage collectif, y compris dans le cadre des études scolaires et supérieures,
Devoir Surveillé n 2
Devoir Surveillé n 2 Les candidat(e)s veilleront à exposer leurs réponses avec clarté et rigueur, rédiger avec soin dans un français correct et reporter dans la marge les numéros des questions traitées.
Physique. chassis aimant. Figure 1
Physique TSI 4 heures Calculatrices autorisées 2013 Les résultats numériques seront donnés avec un nombre de chiffres significatifs compatible avec celui utilisé pour les données. On s intéresse ici à
TP-cours n 7 : Câble coaxial
TP-cours n 7 : Câble coaial Matériel disponible : Câble coaial enroulé de 100m, GBF Centrad, adaptateurs BNC-banane, boite à décade de résistances. I Équation de propagation dans le câble coaial I.1 Introduction
PHYSIQUE. Lampe à incandescence et bilans thermiques. Partie I - Lampe à incandescence en régime permanent
PHYSIQUE Lampe à incandescence et bilans thermiques Partie I - Lampe à incandescence en régime permanent IA - Détermination de la température du filament Le filament d une ampoule à incandescence est constitué
Etude de la période d un pendule simple
Etude de la période d un pendule simple Préparation à l Agrégation de Physique ENS Cachan June 3, Figure 1: Photographie du dispositif expérimental pour étudier la variation de la période d un pendule
Devoir de Sciences Physiques n 1 pour le 09-09-2015
1 DM1 Sciences Physiques MP 20152016 Devoir de Sciences Physiques n 1 pour le 09092015 Problème n o 1 Capteurs de proximité E3A PSI 2013 Les capteurs de proximité sont caractérisés par l absence de liaison
Équations différentielles en physique
Fiche Mathématiques pour la Physique - Équations différentielles en physique - MPSI 1 Lycée Chaptal - 2012 Équations différentielles en physique On ne considère en physique en prépa (quasiment) que des
Oscillations libres des systèmes à deux degrés de liberté
Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à
COMPOSITION DE PHYSIQUE (XULCR) (Durée : 4 heures)
ÉCOLE POLYTECHNIQUE ÉCOLES NORMALES SUPÉRIEURES CONCOURS D ADMISSION 2014 FILIÈRE MP COMPOSITION DE PHYSIQUE (XULCR) (Durée : 4 heures) L utilisation des calculatrices n est pas autorisée pour cette épreuve.
CH12 : Solide en mouvement de translation
BTS électrotechnique 1 ère année - Sciences physiques appliquées CH12 : Solide en mouvement de translation Motorisation des systèmes Enjeu : Problématique : En tant que technicien supérieur, il vous revient
Systèmes dynamiques. Chapitre 1
Chapitre 1 Systèmes dynamiques 1) Placement financier On dépose une quantité d argent u 0 à la banque à l instant t 0 = 0 et on place cet argent à un taux r > 0. On sait qu en vertu de la loi des intérêts
Généralités sur les fonctions numériques
7 Généralités sur les fonctions numériques Une fonction numérique est, de manière générale, une fonction d une variable réelle et à valeurs réelles. 7.1 Notions de base sur les fonctions Si I, J sont deux
Equations différentielles
Equations différentielles Mathématiques Martine Arrrou-Vignod FORMAV 2009 I Equations différentielles linéaires à coefficients constants du premier ordre 3 I.1 Vocabulaire Définitions......................
ÉCOLE POLYTECHNIQUE Promotion 2009. CONTRÔLE DU COURS DE PHYSIQUE PHY311 Lundi 12 juillet 2010, durée : 2 heures
ÉCOE POYTECHNIQUE Promotion 2009 CONTRÔE DU COURS DE PHYSIQUE PHY311 undi 12 juillet 2010, durée : 2 heures Documents autorisés : cours, recueil de problèmes, copies des diapositives, notes de PC Indiquer
Michel.Campillo@ujf-grenoble.fr. Documents: http://isterre.fr/annuaire/pages-web-du-personnel/michel-campillo/ TUE415 1
Michel.Campillo@ujf-grenoble.fr Documents: http://isterre.fr/annuaire/pages-web-du-personnel/michel-campillo/ TUE415 1 Ondes de surface: observations Figures de: Stein and Wysession TUE415 2 Pourquoi étudier
La dynamique du système est donnée par (1)
Master d Ingénierie Mathématique Contrôle des systèmes non-linéaires Examen, durée 3h Sujet donné par Pierre Rouchon, tous les documents sont autorisés. Comme le montre la figure ci-contre, ce robot marcheur
Superposition de signaux sinusoïdaux
Superposition de signaux sinusoïdaux I TP interférences obtenues par la superposition de deux ondes ultrasonores...3 1 Modélisation d une courbe sous Regressi...3 2 Mesure de l amplitude de l onde résultant
Un modèle simple de formation d étoiles
Un modèle simple de formation d étoiles [Exercice classique] Un modèle simple d étoile consiste à supposer que celle-ci est constituée d une masse M d atomes d hydrogène, adoptant une configuration sphérique
PHYSIQUE - MATHÉMATIQUES
SESSION 2013 SECOND CONCOURS ÉCOLE NORMALE SUPÉRIEURE PHYSIQUE - MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche à alimentation autonome, sans imprimante et sans document d accompagnement
Les calculatrices sont interdites
Les calculatrices sont interdites Ce sujet coporte deux problèes indépendants qui portent sur des thèes différents. Chaque problèe coporte plusieurs parties qui sont le plus souvent indépendantes les unes
Concours AVENIR 8 mai 2011 EPREUVE DE PHYSIQUE. DUREE : 1h30mn Coefficient 5 CONSIGNES SPECIFIQUES
NOM :. PRENOM : NUMERO DE CANDIDAT :... EPREUVE DE PHYSIQUE DUREE : 1h30mn Coefficient 5 CONSIGNES SPECIFIQUES Lire attentivement les consignes afin de vous placer dans les meilleures conditions de réussite
1 Réflexion et réfraction
1 Réflexion et réfraction 1.1 Rappel sur la propagation dans les milieux linéaires isotropes Equations de Maxwell dans les milieux Dans un milieu diélectrique sans charges libres (ni courants libres) les
BACCALAURÉATS PROFESSIONNELS EN 3 ANS
BACCALAURÉATS PROFESSIONNELS EN ANS Électrotechnique énergie équipements communicants Exemple de progression pédagogique Programmes : BOEN n 11 du 1/06/199 / A 8/07/99 modifié A 19/07/0 Mathématiques :
QUESTION DE COURS (3 points)
4 MNT DEVOI SUVEILLE Fonctions de l Electronique le 1 juin 005 Durée : heures NB : - Documents non autorisés. - Nombre de pages totales : 9 - Nombre de pages annexes : 6 - Nombre d annexe à rendre avec
CHAPITRE 1 CINÉTIQUE. 1.1 Masse et inertie. 1.1.1 Notions d inertie
TABLE DE MATIÈRE 1 Cinétique 1 1.1 Masse et inertie................................ 1 1.1.1 Notions d inertie........................... 1 1.1.2 Masse.................................. 2 1.1.3 Centre d
Chapitre 5 Les lois de la mécanique et ses outils
DERNIÈRE IMPRESSION LE 1 er août 2013 à 12:49 Chapitre 5 Les lois de la écanique et ses outils Table des atières 1 Les référentiels et repères 2 2 Les grandeurs de l évolution 2 2.1 Le vecteur de position..........................
L3 Mathématique pour la physique Examen final 4 janvier 2011 : CORRIGE
Université Joseph Fourier L3 Physique Julia Meyer julia.meyer@ujf-grenoble.fr L3 Mathématique pour la physique Examen final 4 janvier 20 : CORRIGE Modalités : Notes de cours et TDs permis. NOTE IMPORTANTE
Feuille d exercices n o 1. N(x i ). 4. On rappelle qu un espace normé est séparable s il contient une partie dénombrable dense.
1 Feuille d exercices n o 1 1. Deuxième forme géométrique du théorème de Hahn-Banach Soient A E et B E deux convexes, non vides, disjoints (E est une espace vectoriel normé). On suppose que A est fermé
Partie I : Manipulation d inégalités. n k. k=0. (1 + a) n 1 + na. 27. Indication : On pourra utiliser les fonctions f(x) = (x+b+c)3.
Mathématiques Devoirs de Vacances MPSI/PCSI août 5 Partie I : Manipulation d inégalités Eercice Soit m un réel Déterminer l'ensemble E des réels tels que e + e l'ensemble E des réels tels que (m + + m
1 Topologies, distances, normes
Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un
1.1. Le moment cinétique en mécanique classique
c M Dunseath-Terao - Master 1 de Physique UR1 2006 2007 1 Complément 1 Le moment cinétique 1.1. Le moment cinétique en mécanique classique L équation du mouvement d un corps en rotation en mécanique classique
COMPOSITION DE PHYSIQUE ET SCIENCES DE L INGÉNIEUR. L expérience Virgo Réduction de certaines causes de bruit de fond
ÉCOLE POLYTECHNIQUE FILIÈRE MP Option Physique et Sciences de l Ingénieur CONCOURS D ADMISSION 2005 COMPOSITION DE PHYSIQUE ET SCIENCES DE L INGÉNIEUR (Durée : 4 heures) L utilisation des calculatrices
Séquence 6. Amortissement et temps. Sommaire
Séquence 6 Amortissement et temps Problématique Le temps et sa mesure, la définition et l évolution de son unité reposent sur l étude et l exploitation de phénomènes périodiques. L histoire de cette mesure,
MECA0003-2 - MÉCANIQUE RATIONNELLE
L G L G Octobre 015 MEA0003- - MÉANIQUE RATIONNELLE Prof. Éric J.M.DELHEZ Un constructeur de jouets souhaitant mettre au point un nouveau système de propulsion de petites voitures pour son circuit miniature
USAGE DES COMPLEXES DANS LES CIRCUITS ÉLECTRIQUES
Avant propos : usage des nombres complexes est incontournable en ce qui concerne l étude des circuits électriques aussi bien du point de vue énergétique (2 hemins de l énergie, bilan de puissance, puissance
III.1 Quelques rappels théoriques sur les interférences à 2 ondes.
III TP 3 : Intérférences à deux ondes dans le domaine hyperfréquence. 22 Introduction Le but de ce TP est d étudier le phénomène d interférences dans le domaine des ondes hyperfréquences 2. Il s agit donc
EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES 2. Durée : 4 heures
SESSION 2003 PCM2007 EPEUVE SPECIFIQUE FILIEE PC MATHEMATIQUES 2 Durée : 4 heures L utilisation des calculatrices est autorisée. Les deux problèmes sont indépendants *** N.B. : Le candidat attachera la
FICHE EXPERIMENTALE CHAP13-14-15φ : SYSTEMES OSCILLANTS
FICHE EXPERIMENTALE CHAP13-14-15φ : SYSTEMES OSCILLANTS Matériel : Dispositif du pendule pesant ou du pendule simple avec module d angle (l écart angulaire du pendule est traduit en une tension, ces deux
cos φ sin φ 0 sin φ cos φ 0 0 0 1 1 0 0 0 cos θ sin θ 0 sin θ cos θ cos ψ sin ψ 0 sin ψ cos ψ 0 0 0 1
Corrigé No 2 26.09.08 Representation de base des milieux continus 1. Angles d'euler Par dénition, les angles d'euler sont dénis de la manière suivante en partant d'un repère orthonormé Oxyz : - on tourne
Éléments de correction du TD
Septembre 011 Éléments de correction du TD Stéphane Blin Introduction Je donne ici les éléments de correction de la question - de la marche de potentiel, ainsi que les éléments de corrections pour les
1 Présentation du moulin. 2 Modélisation mathématique. 2.1 Modélisation statique. Don Quichotte de l Atlantique
1 Présentation du moulin Il s agit d une roue tournant autour d un axe. Sur l extérieur de la roue sont fixées des tiges et sur les tiges sont accrochés des récipients. Ces récipients sont ouverts en haut
CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté
CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté 010-011 CHAPITE IV Oscillations libres des systèmes à plusieurs derés de liberté Introduction : Dans ce chapitre, nous examinons
M4 OSCILLATEUR HARMONIQUE
M4 OSCILLATEUR HARMONIQUE I Modèle de l oscillateur harmonique (O.H.) I. Exemples Cf Cours I. Définition Définition : Un oscillateur harmonique à un degré de liberté x (X, θ,... ) est un système physique
TUTORAT UE3-a 2013-2014 Physique Séance n 2 Semaine du 23/09/2013
FACULTE De PHARMACIE TUTORAT UE3-a 2013-2014 Physique Séance n 2 Semaine du 23/09/2013 Optique 1 Pr Mariano-Goulart Séance préparée par Inès BOULGHALEGH, Hélène GUEBOURG DEMANEUF, Karim HACHEM, Jeff VAUTRIN
Problème 1. Problème 2 OPTIQUE MÉCANIQUE CHIMIE. DM 3 pour le 14 novembre
DM 3 pour le novembre OPTIQUE MÉCANIQUE CHIMIE Problème On considère un œil modélisé par une lentille convergente (le cristallin et un écran (la rétine tel que la distance lentille-écran soit égale à 5
Applications mathématiques à la physique
Applications mathématiques à la physique Serge Robert cégep Saint-Jean-sur-Richelieu RÉSUMÉ Je vais présenter quelques problèmes qui sont traités dans le cours Intégration des apprentissages en Sciences
FSAB1203 Réflexion et réfraction - exercices S4
FSAB1203 Réflexion et réfraction - exercices S4 Les solutions de ces exercices sont reprises sur le site web de FSAB1203. Ne consultez les solutions qu après avoir tenté sérieusement de résoudre l exercice.
Feuille d'exercices : Diusion thermique
Feuille d'exercices : Diusion thermique P Colin 2014/2015 1 Diusion thermique dans une barre * On considère une barre cylindrique de longueur l et de section S constituée d un matériau de conductivité
OSCILLATEURS COUPLÉS
TP OSCILLATEURS COUPLÉS Capacités exigibles : mtre en évidence l action d n filtre linéaire sr n signal périoqe dans les domaines fréqentiel temporel La théorie générale des oscillaters coplés n est pas
Concours d entrée - mai 2012. A remplir par le candidat : Nom :.. Prénom :.. Centre de passage de l examen : N de place :.
A remplir par le candidat : Nom : Prénom :.. Centre de passage de l examen : N de place :. Note : Concours filière Technicien Supérieur et er cycle filière Ingénieur Concours nd cycle filière Ingénieur
PHYSIQUE I. Partie I - Phénomène de polarisation de la lumière
PHYSIQUE I Le problème s intéresse à différents aspects de la polarisation de la lumière Les applications de ces phénomènes sont multiples et les dispositifs associés sont des composants de base dans les
4. Equation de Schröninger
4. Equation de Schröninger Introduction Particule libre Paquets d ondes Particule libre localisée Puits de potentiel de profondeur infinie Puits de potentiel de profondeur finie Barrière de potentiel Microscope
Dynamique des lasers. Lasers en impulsion
Dynamique des lasers. Lasers en impulsion A. Evolutions couplées atomesphotons Rappel: gain laser en régime stationnaire Equations couplées atomes-rayonnement Facteur * Elimination adiabatique de l inversion
TD de Physique n o 10 : Interférences et cohérences
E.N.S. de Cachan Département E.E.A. M2 FE 3 e année Physique appliquée 2011-2012 TD de Physique n o 10 : Interférences et cohérences Exercice n o 1 : Interférences à deux ondes, conditions de cohérence
S2I 1. Modélisation d un hayon de coffre électrique
S2I 1 TSI 4 heures Calculatrices autorisées Modélisation d un hayon de coffre électrique 213 L industrie automobile propose sur les véhicules modernes de plus en plus de systèmes d aide à l utilisateur,
Modélisation dans le repère tournant et Influence des défauts sur le comportement vibratoire des machines tournantes
Modélisation dans le repère tournant et Influence des défauts sur le comportement vibratoire des machines tournantes Benoit Prabel 1, Didier Combescure 1,, Arnaud Lazarus 1,3 1 : CEA Saclay - DEN/DMS/SEMT/DYN
PHYSQ 124 LEC A1 : Particules et ondes Examen final Automne 2011. Nom SOLUTIONS. Numéro de l étudiant.e
PHYSQ 124 LEC A1 : Particules et ondes Examen final Automne 2011 Nom SOLUTIONS Numéro de l étudiant.e Professeur Marc de Montigny Horaire Vendredi, 16 décembre 2011, de 9 h à midi Lieu Gymnase du Campus
Intégration de polynômes Points de Gauss
Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )
Petit cours d automatique
Petit cours d automatique Pourquoi ce cours? Modèle d un système physique Résolution par transformée de Laplace Réponse en fréquence, spectre Commande par rétro-action Commande PID Simulation Matlab/Simulink
2 Le champ électrostatique E
Licence 3 Sciences de la Terre, de l Univers et de l Environnement Université Joseph-Fourier : Outil Physique et Géophysique 2 Le champ électrostatique E k Daniel.Brito@ujf-grenoble.fr E MAISON DES GÉOSCIENCES
4 THÉORIE CINÉTIQUE DES GAZ. 4.1 Échelles d observations et fluctuations
4 THÉORIE CINÉTIQUE DES GAZ 4.1 Échelles d observations et fluctuations On s intéresse à un volume V de gaz très grand : qq m 3 dans les conditions normales de température et de pression. Au sein de ce
TP 2 - Simulation de systèmes mécaniques et électromécaniques avec Simscape
TP 2 - Simulation de systèmes mécaniques et électromécaniques avec Simscape Durée: 3h + 1h pour le compte rendu Simscape est une extension de Matlab/Simulink pour modéliser des systèmes physiques dans
Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales
Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin
Oscillateurs et mesure du temps
Oscillateurs et mesure du temps Très tôt dans l histoire de l humanité, les phénomènes périodiques ont été utilisés pour mesurer le temps. Les premiers ont été les événements astronomiques puis, à mesure
Récupération d énergie
Récupération d énergie Le sujet propose d étudier deux dispositifs de récupération d énergie soit thermique (problème 1) soit mécanique (problème 2) afin de produire une énergie électrique. Chaque problème
7 FONCTIONS USUELLES. 1 Parité d une fonction. 2 Fonctions affines
Cours 7 FONCTIONS USUELLES Parité d une fonction Définition Soit f une fonction définie sur un ensemble D. On dit que f est paire si : { D est symétrique par rapport à 0 Pour tout x D, f ( x) = f (x) On
Microscopie à force atomique. (Atomic Force Microscopy, AFM)
Microscopie à force atomique (Atomic Force Microscopy, AFM) Introduction Résolution en microscopie classique La résolution est limitée par la diffraction par le diaphragme d ouverture. L image d un point
2. analyse au moyen d'un circuit RLC 2.1 rappel sur la résonance
filtrage d'une tension créneau par un circuit RLC. rappels sur les séries de Fourier. décomposition en séries de Fourier une fonction périodique f(t) peut être décomposée en série de Fourier : a 0 f (t)
(Durée de l épreuve: 3 heures) L usage de la calculatrice est autorisé
ÉCOLE DES PONTS PARISTECH SUPAERO (ISAE), ENSTA PARISTECH, TELECOM PARISTECH, MINES PARISTECH, MINES DE SAINT ÉTIENNE, MINES DE NANCY, TÉLÉCOM BRETAGNE, ENSAE PARISTECH (FILIÈRE MP) ÉCOLE POLYTECHNIQUE
Les calculatrices sont interdites.
Les calculatrices sont interdites. NB. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui
PC - TD Révisions de mécanique de sup 1
Exercice 1 Looping PC - TD Révisions de mécanique de sup 1 Un skater assimilé à un point matériel M de masse m, se lâche sans vitesse initiale depuis le point A d une rampe, situé à une hauteur h au-dessus
En voiture! I. Détection des chocs frontaux et protection des passagers : l airbag
En voiture! Ce problème propose d étudier plusieurs phénomènes physiques mis en oeuvre dans un véhicule automobile. La première partie étudie la détection de chocs frontaux pour déclencher l ouverture
Le modèle du gaz parfait
Table des matières 1 : énergie interne, équation d état 1.1 Hypothèses........................................... 1. Énergie interne d un GPM................................... 1.3 Équation d état du GPM....................................
Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin.
Exo7 Développements ités Corrections d Arnaud Bodin. Calculs Exercice Donner le développement ité en 0 des fonctions :. cosx expx à l ordre 2. ln + x)) 2 à l ordre 4 shx x. x à l ordre 6 4. exp sinx) )
EVALUATION DIAGNOSTIQUE : - 1- L énergie cinétique d un solide est proportionnelle à sa masse proportionnelle à sa vitesse toujours constante.
EVALUATION DIAGNOSTIQUE : - 1- L énergie cinétique d un solide est proportionnelle à sa masse proportionnelle à sa vitesse toujours constante - 2- L énergie potentielle de pesanteur du wagon dépend : du
EXAMEN PROBATOIRE D ADMISSION DANS LES ECOLES D OFFICIERS
ANNÉE 2013 EXAMEN PROBATOIRE D ADMISSION DANS LES ECOLES D OFFICIERS CSEA 2013 ÉPREUVE DE PHYSIQUE Durée : 4 heures Coefficient : 1 - L usage de la calculatrice est autorisé ; - Les exercices sont indépendants
Travaux Pratiques de Mécanique
Travaux Pratiques de Mécanique TP L1-S2 Phys103 Arne Keller Elias Khan Univ. Paris-Sud 11 2009 Table des matières I Présentation générale du dispositif pour les TP1 et TP2 6 I.1 Banc à coussin d air.........................
Travail pratique : Contrôle actif des vibrations des structures type poutre
Adrien Badel Fabien Formosa POLYTECH ANNECY CHAMBERY Travail pratique : Contrôle actif des vibrations des structures type poutre Ce document est le support d'un travail pratique qui s'inscrit dans un module
Cours de physique. Classes 1B et 1C. Athénée de Luxembourg
Cours de physique Classes 1B et 1C Athénée de Luxembourg Table des matières 1 Cinématique et Dynamique 5 1.1 Grandeurs cinématiques.............................. 5 1.1.1 Base cartésienne..............................
Cours n 4 : Du LASER continu au LASER femtoseconde
Cours n 4 : Du LASER continu au LASER femtoseconde Manuel Joffre www.enseignement.polytechnique.fr/profs/physique/manuel.joffre/dea/ Le LASER : un oscillateur optique Bouclage Amplification Amplification
Chapitre 2 : Les systèmes d équations récurrentes linéaires. dans
Chapitre 2 : Les systèmes d équations récurrentes linéaires dans Sommaire Sandrine CHARLES 1 Introduction... 3 2 Rappels sur les formes de Jordan réelles dans... 4 2.1 Deux valeurs propres réelles distinctes
2 Fonctions affines : définitions et propriétés fondamentales
Chapitre 3 : Fonctions affines Dans tout ce chapitre, le plan est muni d un repère. 1 Rappels sur les équations de droite Une droite qui n est pas verticale a une unique équation du type y = ax + b, qu
PHYSIQUE Durée : 3 heures
SESSION 2010 CONCOUS G2E PHYSIQUE Durée : 3 heures Les calculatrices programmables et alphanumériques sont autorisées. L usage de tout ouvrage de référence et de tout document est strictement interdit.
DS3. 1- EQUILIBREUSE DE ROUE Le schéma cinématique d'une équilibreuse de roue de véhicule est donné ci-dessous. x, y z
Le sujet comprend : un exercice de cinématique (analytique) Un exercice de cinétique Un problème sur les inerties,et les asservissements Un exercice sur les asservissements. Bon courage EQUILIBREUSE DE
CH2 : Les mécanismes de transmission du mouvement
BTS électrotechnique 2 ème année - Sciences physiques appliquées CH2 : Les mécanismes de transmission du mouvement Motorisation des systèmes. Problématique : En tant que technicien supérieur il vous revient
Cours de Mathématiques. ISA BTP, 2 année
Cours de Mathématiques ISA BTP, 2 année 15 janvier 2013 2 Table des matières 1 Équations différentielles 7 Introduction...................................... 7 1.1 Équations différentielles linéaires........................
Épreuve de MÉCANIQUE ET AUTOMATIQUE
C31181 Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN Concours d admission en 3 ème année GÉNIE MÉCANIQUE ET MÉCANIQUE Session 2011 Épreuve de MÉCANIQUE ET AUTOMATIQUE Durée
Techniques fondamentales de calcul
Chapitre Techniques fondamentales de calcul. Inégalités dans R On rappelle que (R, +,, ) est un corps totalement ordonné, d où : x, y R, x y ou y x, x, y, z R, x y = x + z y + z, x, y R, x 0ety 0 = xy
Les calculatrices sont autoris ees I.1 Traitement classique de la rotation d une mol ecule d eau Figure I.1 1/10
Les calculatrices sont autorisées Les deux problèmes sont indépendants. On fera l application numérique chaque fois que cela est possible, en veillant à préciser l unité et à ne donner que les chiffres
Sujet Centrale 2012 Physique Option MP
I Le Satellite Jason 2 IA1) IA - Etude l orbite Sujet Centrale 2012 Physique Option MP Cf cours : IA2) a) Le référentiel géocentrique est le référentiel de centre Terre en translation par rapport au référentiel
1.1. Remplacer le début des phrases suivantes par : «La tension aux bornes d un(e)» ou «L intensité du courant dans un(e)».
BTS 2003 Le problème porte sur l impression de tickets de caisse du système de distribution de cartes d entrée de piscine. Dans la première partie, on étudiera l impression thermique de tickets de caisse,
Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 24 : Travail d une force-energies
1 Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 24 : Travail d une force-energies I. Les forces travaillent. 1. Effets d une force. Les forces appliquées à un système peut : - Déformer
Résonance - Oscillateurs couplés
Préparation à l agrégation de Sciences-Physiques ENS Physique Résonance - Oscillateurs couplés QUARANTA Dictionnaire de Physique Expérimentale. TOME 1 Mécanique QUARANTA Dictionnaire de Physique Expérimentale.