Distance et classification. Cours 4: Traitement du signal et reconnaissance de forme

Dimension: px
Commencer à balayer dès la page:

Download "Distance et classification. Cours 4: Traitement du signal et reconnaissance de forme"

Transcription

1 Distance et classification Cours 4: Traitement du signal et reconnaissance de forme

2 Plan Introduction Pré-traitement Segmentation d images Morphologie mathématique Extraction de caractéristiques Classification Conclusion

3 Objectifs et moyens En fonction des caractéristiques extraites, classer la forme dans une catégorie Évaluer les similitudes entre deux formes (un modèle et la forme étudiée) Prendre une décision en fonction des résultats obtenus Valider (ou non) les résultats (matrice de confusion)

4 Problème! Les méthodes contextuelles donnent une chaîne de caractères et les méthodes globales un vecteur de caractéristiques Quelle(s) méthode(s)? Comparer deux chaînes de caractères (aspect qualitatif) Comparer des vecteurs de caractéristiques (aspect quantitatif)

5 Ce qu on peut faire Distance d édition Classification Supervisée Non supervisée

6 Distance d édition Une chaîne de caractères (Freeman, primitives, polygones, mot reconnu par un système OCR ) S=s 1,s 2, s n Classer une chaîne de caractères en fonction de sa distance d édition avec un alphabet de modèles (obtenu par apprentissage) Distance d édition = nombre minimal d opérations pour passer d une chaîne à une autre

7 Opérateurs d édition coût de la transformation de la chaîne A en B Substitution d un caractère Insertion d un caractère Suppression d un caractère Coût global = somme des coûts élémentaires

8 Exemple Chaîne A: ababa Coût de la transformation Chaîne B: abba - remplacer a par b puis éliminer le b suivant: 2 opérations - éliminer le a central: 1 opération COUT MINIMUM Problème! processus combinatoire = temps de calcul énorme

9 Algorithme de Wagner-Fisher Soient deux chaînes X={aabacd} et Y={abd} de longueurs respectives M=6 et N=3. Matrice D de taille (M+1, N+1) D(0,0) = 0 Substitution de a par b γ(a,b) Insertion de a γ(λ,a) Suppression de b γ(b, λ) Tous les coûts sont fixés à 1

10 Matrice dynamique de Wagner-Fisher d b a d c a b a a X Y - Pour les couples (i,0) et (0,j) D(i,0)= D (i-1, 0)+ γ(λ,x i ) D(0,j)= D (0, j-1)+ γ(y j, λ) - Pour les couples (i,j) (i et j 0) D(i,j)=min { D(i-1,j-1)+ γ(x i,y j ), D(i-1,j)+ γ(λ,x i ), D (i, j-1)+ γ(y j, λ) } Distance d édition δ(x,y) = D(M,N)=3

11 Avantages/inconvénients Avantages très simple d utilisation Très bons résultats en reconnaissance de mots Inconvénients Coût informatique peut être long Problème d échelle

12 Classification Objet X défini par d descripteurs [x 1 x 2 x d ] T Ce vecteur peut être positionné dans l espace des caractéristiques de dimension R d. Exemple. Vecteur de caractéristiques dans R² X X1

13 Classificateur (ou classifieur) Rôle: déterminer, en fonction du vecteur de caractéristiques, à quelle classe (parmi un ensemble fini de classes) appartient un objet donné. Moyens: trouver un outil discriminant (méthodes statistiques, géométriques, connexionistes) qui sépare au mieux les classes Nécessité: dans le cas d un système de reconnaissance de formes (au-delà du simple tri), une phase d apprentissage est indispensable.

14 Apprentissage Fournir au système un ensemble de formes déjà connues (c est-à-dire que l on connaît la classe d appartenance). L apprentissage permet de régler le système de reconnaissance. Ainsi l apprentissage met en concordance vecteur de caractéristiques et classe

15 Apprentissage (2) Deux types d apprentissage Apprentissage supervisé - Nombre de classes connus - Classe de chaque forme de l ensemble d échantillon connue Exemple: Bayes, Géométrie, neurones, Markov Apprentissage non supervisé - Nombre de classes connus ou inconnus - On ne connaît pas la classe des échantillons (on sait cependant que l ensemble d apprentissage contient ce que l on doit connaître) Exemple: nuées dynamiques (ou k- moyennes, ou clustering), neurones

16 Apprentissage non supervisé: Nuées dynamiques (1) Principe: regrouper les données en amas (ou classes) en fonction de leur ressemblance. 6 étapes. Étape 1: Définir le nombre de classes (exemple: 2 classes k1 et k2) Étape 2: fixer arbitrairement les centres de gravité des noyaux dans l espace des caractéristiques (k1 et k2 fixés arbitrairement) X k2 k X1

17 Nuées dynamiques (2) Étape 3: Affecter chaque donnée de l ensemble d apprentissage à la classe dont le centre de gravité est le plus proche (du point de vue de la distance euclidienne) k1 k Étape 4: mettre à jour les centres de gravité en prenant en compte l ensemble d apprentissage de chaque classe k1 k1 k2 k

18 Nuées dynamiques (3) Etape 5: éventuellement réaffectation des pixels (en recalculant les distances par rapport au nouveau centre de gravité). Etape 6: retour à l étape 3 (si centre de gravité non stabilisé) sinon arrêt de l apprentissage

19 Nuées dynamiques (4) Apprentissage fini. Classification de chaque donnée en calculant la distance par rapport au centre de gravité (distance euclidienne ou autres distances) Variantes: algorithme Isodata avec prise en compte de la dispersion du nuage (distance de Mahalanobis)

20 Avantages/inconvénients Avantages Très simple Affectation automatique Inconvénients Nombre de classe fixé à l avance Dépend du point de départ Chaque élément doit être affecté à une classe

21 Apprentissage supervisé Apprentissage supervisé: Pour les objets utilisés lors de l apprentissage Vecteur de caractéristiques et Classe d affectation connus. Apprentissage supervisé Méthodes paramétriques Hypothèse sur la «forme» de la classe, modélisation Exemple: loi normale Méthodes non paramétriques Aucune hypothèse sur la «forme» de la classe

22 Théorie de Bayes Décision sur appartenance à une classe en fonction de la probabilité d appartenance à cette classe. Le classificateur de Bayes affecte un objet à la classe qui maximise la probabilité d appartenance.

23 Rappel de probabilités (1) Un paquet de pièces de 2 types: A et B 80% de A et 20% de B On appelle P(A) la probabilité a priori de l hypothèse A et P(B) la probabilité a priori de l hypothèse B. P(A) = 0,8 et P(B) = 0,2 et P(A)+ P(B) =1

24 Rappel de probabilités (2) On suppose que les pièces A sont faussées et permettent d obtenir à 2/3 de chance «Pile». Les pièces B ont une équiprobabilité d obtenir pile ou face On appelle P(Pile A) la probabilité d obtenir pile sachant A (limité aux pièces A) et P(Pile B) la probabilité d obtenir pile sachant B. P(Pile A) = 2/3 et P(Pile B) = 0,5

25 Règle de Bayes On lance une pièce au hasard Pile! Quelle est la probabilité d avoir lancé une pièce A? Une pièce B? Règle de Bayes: P( PileA). P( A) P( APile) = P( PileA). P( A) + P( PileB). P( B) P(A Pile) = 0,84 et P(B Pile) = 0,16

26 Règle de Bayes: de façon générale (1) P(w i ) la probabilité a priori d avoir la classe w i. Soit C le nombre total de classes P(X w i ) la probabilité d observer X sachant la classe w i. P(w i X) la probabilité a posteriori que la classe correcte soit w i sachant l observation X. Règle de Bayes: P ( wi X ) P ( X w). P ( w) i i = C P ( X wi). P ( wi) i= 1

27 Règle de Bayes: de façon générale (2) Dénominateur est identique pour toutes les classes chercher la probabilité P(w i X) maximale revient à chercher le maximum de P(X w i ).P(w i ). Problème calculer les probabilités P(w i ) et surtout les probabilités (P(X w i )

28 Exemple Exemple: reconnaissance de caractères manuscrits dans un texte. On veut distinguer deux lettres i et m Probabilité a priori: 60% i 40% m P(w 1 )=0,6 et P(w 2 )=0,4

29 Critère observé: Nombre de pixels Observation: nombre de pixels caractérisant la lettre effectif effectif nombre de pixels nombre de pixels La distribution de ces pixels va permettre de déterminer P(X wi) P(X wi) définit la fonction de distribution (ou fonction de densité de probabilité) dans la classe

30 Loi de densité de probabilité La loi de densité de probabilité P(x wi) peut être aussi complexe que voulu la complexité augmente le temps de calcul Hypothèse sur la loi pour simplifier les choses hypothèse basique: la distribution est gaussienne (loi normale)

31 Notions de loi normale (distribution gaussienne) Distribution gaussienne: Hypothèse valable lorsque les valeurs se distribuent de façon harmonieuse (avec une décroissance régulière) autour d une valeur moyenne µ Cas à une dimension (cas discret): - Position moyenne de la courbe µ : µ = K k = 1 x k p k - Dispersion autour de µ (variance ²): K σ ² = ( x k µ )² p k k = 1 L écart-type est la racine carrée de la variance.

32 Calcul de la densité de probabilité Ces deux paramètres (µ et ) suffisent à caractériser une distribution gaussienne et à calculer la fonction de densité de probabilité P(x wi). fonction de densité de probabilité: P ( x µ )² 1 2σ ² ( ) x w i = e σ 2π

33 Estimation Les données peuvent être modélisées de la façon suivante µ=14,94 ; σ=2,5) ; 2 µ=21,2 ; σ=2) 1 µ=14,94 ; σ=4) ; 2 µ=21,2 ; σ=2)

34 Résultats (1) La probabilité d appartenance à la classe 1 (i) P(w 1 x) ou à la classe 2 (m) P(w 2 x) suivant le nombre de pixels. 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0, µ=14,94 ; σ=2,5) ; 2 µ=21,2 ; σ=2)

35 Résultats (2) Même chose avec classes plus lointaines 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0, µ=14,94 ; σ=4) ; 2 µ=21,2 ; σ=2)

36 Règle de Bayes Le nombre de classes peut être supérieur à 2. En général, on utilise un vecteur de plusieurs caractéristiques. écart-type remplacée par matrice de covariance Σ.

37 Cas particulier Remarque: si les écarts-type sont les mêmes pour toutes les classes et si les classes sont équiprobables le calcul du maximum de probabilité revient à calculer (x-µ)². distance euclidienne (distance minimale)

38 Avantages/inconvénients Avantages Très robuste Inconvénients Grand échantillon Modèle pas toujours simple (car la loi n est pas toujours normale) Connaissance a priori sur les classes

39 Cas non paramétrique Aucune hypothèse sur la forme des classes. On reste dans le cas supervisé Comparaison par rapport aux voisins

40 Méthode du plus proche voisin (1) Calcul de toutes les distances existantes entre l objet à classer et les points disponibles ,5 1 1,5 2 2,5 3 3,5 4

41 Méthode du plus proche voisin (2) L objet est assigné au voisin le plus proche ,5 1 1,5 2 2,5 3 3,5 4

42 Inconvénient Très sensible à un unique point de la classe l objet le plus proche peut être d une classe incorrecte alors que les points autour sont de l autre classe. Extension de la méthode aux k plus proches voisins.

43 K plus proche voisins (1) «Parmi les k plus proches voisins, quelle est la classe la plus représentée»? exemple: k =11 Parmi les 11 plus proches voisins, 8 appartiennent à A et 3 à B, alors la forme à classer appartient à A

44 K plus proche voisins (1) En pratique, Plus k est élevé, plus la probabilité d erreur est faible. Mais, plus k est élevé, plus le coût du calcul est prohibitif compromis La distance euclidienne n est pas toujours la plus adaptée, il existe d autres distances mathématiques (Mahalanobis ) Autre méthode non paramétrique: Fenêtre de Parzen

45 Avantages/inconvénients méthodes non paramétriques Avantages Pas de «modélisation» de la classe Méthode très simple et très utilisée Inconvénients Complexité informatique (répétition du calcul des distances est coûteuse)

46 Séparation géométrique (1) Espace des caractéristiques considéré comme un espace géométrique. Apprentissage supervisé Trouver des séparateurs géométriques entre les régions (droites, plans,courbes..) Difficultétrouver l équation de ces droites ou des ces plans

47 Séparation géométrique (2) Exemple: droite séparatrice X 2 X 1

48 Inconvénient En pratique: assez compliqué (équation de plans à déterminer). Hypothèse: il existe des plans ou des droites séparant les classes (ce qui est loin d être toujours le cas, on peut avoir des courbes)

49 Arbre de décision Question/réponses Classification Nombre de pixels >15 Oui Présence d une boucle Non Angles aigus? Oui Non 0 1 >2

50 Avantages/inconvénients Avantages Méthode très simple Traitement rapide de grands volumes de données (simples) Inconvénients Complexe pour forme complexe Dépendance vis à vis de la question de départ

51 Autres classificateurs (1) Méthodes neuronales Perceptron, Hopfiel, Kohonen Méthodes de Markov Processus statistique élaboré Outil très puissant mais souvent lourd à mettre en place

52 Prendre une décision On réalise une mesure de probabilité ou de distance à partir de quelle probabilité ou quelle distance on accepte ou non Fixer un seuil Mesurer la «confiance» de la décision

53 Données de validation (tests) Après l apprentissage Permet de tester l ensemble de l outil utilisé Connaissance des classes d appartenance Calcul de la matrice de confusion

54 Matrice de confusion Évaluation de notre classification Réalité Lettre i Lettre m détection Lettre i Lettre m

55 Taux d erreur 3.33 % d erreur pour la lettre i et 7.5% d erreur pour la lettre m. A voir si cela est satisfaisant ou pas

56 Rejet On peut également calculer un taux de rejet le «risque» est trop gros d assigner une forme à une classe Exemple si Probabilité d appartenance est inférieure à 80% Rejet (forme non classée) On peut calculer un taux de rejet

57 Ajustement des outils de décision Exemple 1: tri postal ou banque fort couteux de prendre un mauvaise décision sur l adresse ou sur compte bancairerisque minimum/ augmentation du taux de rejet Exemple 2: détection d un maladie en médecine augmentation du taux de détection quitte à avoir de faux-malades

58 Conclusion (1) Processus de classification est long: Prétraitement, Segmentation, Extraction de caractéristiques, classification, décision. Lot d apprentissage, lot de validation Accepter et connaître le taux d erreur

59 Conclusion (2) Chaîne de traitement très proche pour reconnaissance de forme et parole Prochain cours: traitement de signal, spécificités reconnaissance de parole, TPs (Dragon Naturally Speaking, Omnipage, traitement d images). Questions?

60

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

PJE : Analyse de comportements avec Twitter Classification supervisée

PJE : Analyse de comportements avec Twitter Classification supervisée PJE : Analyse de comportements avec Twitter Classification supervisée Arnaud Liefooghe arnaud.liefooghe@univ-lille1.fr Master 1 Informatique PJE2 2015-16 B. Derbel L. Jourdan A. Liefooghe 1 2 Agenda Partie

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

Segmentation et data mining pour l industrie.

Segmentation et data mining pour l industrie. Une solution industrielle complète de data mining Segmentation et data mining pour l industrie. Johan Baltié Franck Coppola Tristan Robet Promotion 2002 Specialisation S.C.I.A. Responsable M. Adjaoute

Plus en détail

Systèmes de représentation multi-échelles pour l indexation et la restauration d archives médiévales couleur

Systèmes de représentation multi-échelles pour l indexation et la restauration d archives médiévales couleur 18/12/2003 p.1/50 Systèmes de représentation multi-échelles pour l indexation et la restauration d archives médiévales couleur Julien DOMBRE Laboratoire IRCOM-SIC, UMR-CNRS 6615. En partenariat avec le

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Baccalauréat STMG Nouvelle-Calédonie 14 novembre 2014 Correction

Baccalauréat STMG Nouvelle-Calédonie 14 novembre 2014 Correction Baccalauréat STMG Nouvelle-alédonie 14 novembre 014 orrection EXERIE 1 7 points Dans cet exercice, les parties A, B et sont indépendantes. Le tableau suivant donne le prix moyen d un paquet de cigarettes

Plus en détail

Classification, Apprentissage, Décision

Classification, Apprentissage, Décision Classification, Apprentissage, Décision Rémi Eyraud remi.eyraud@lif.univ-mrs.fr http://www.lif.univ-mrs.fr/~reyraud/ Cours inspiré par ceux de François Denis et Laurent Miclet. Plan général du cours Introduction

Plus en détail

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

Analyse discriminante

Analyse discriminante Analyse discriminante Christine Decaestecker & Marco Saerens ULB & UCL LINF2275 1 Analyse Discriminante Particularités: 2 formes/utilisations complémentaires: méthode factorielle: description "géométrique"

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

Raisonnement probabiliste

Raisonnement probabiliste Plan Raisonnement probabiliste IFT-17587 Concepts avancés pour systèmes intelligents Luc Lamontagne Réseaux bayésiens Inférence dans les réseaux bayésiens Inférence exacte Inférence approximative 1 2 Contexte

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

Apprentissage supervisé

Apprentissage supervisé Apprentissage supervisé 1 Apprendre aux ordinateurs à apprendre Objectif : appliquer la démarche de l apprentissage par l exemple à l ordinateur. Montrer des exemples à l ordinateur en lui disant de quoi

Plus en détail

Modèles neuronaux pour la modélisation statistique de la langue

Modèles neuronaux pour la modélisation statistique de la langue Modèles neuronaux pour la modélisation statistique de la langue Introduction Les modèles de langage ont pour but de caractériser et d évaluer la qualité des énoncés en langue naturelle. Leur rôle est fondamentale

Plus en détail

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014 Télécom Physique Strasbourg Module 2101 STATISTIQUES Cours I : Test d hypothèses Fabrice Heitz Octobre 2014 Fabrice Heitz (Télécom PS) Statistiques 2014 1 / 75 Cours I TESTS D HYPOTHÈSES Fabrice Heitz

Plus en détail

Réseaux neuronaux Apprentissage non supervisé

Réseaux neuronaux Apprentissage non supervisé Introduction Réseaux neuronaux Apprentissage non supervisé Jerzy Korczak, LSIIT, ULP email : jjk@dpt-info.u-strasbg.fr Objectif commun : génération d une taxonomie des données sans connaissances préalable

Plus en détail

Cours de méthodes de scoring

Cours de méthodes de scoring UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Séance 12: Algorithmes de Support Vector Machines

Séance 12: Algorithmes de Support Vector Machines Séance 12: Algorithmes de Support Vector Machines Laboratoire de Statistique et Probabilités UMR 5583 CNRS-UPS www.lsp.ups-tlse.fr/gadat Douzième partie XII Algorithmes de Support Vector Machines Principe

Plus en détail

Classification supervisée de documents

Classification supervisée de documents Classification supervisée de documents 1. Introduction La classification automatique supervisée de document devient nécessaire à cause du volume de documents échangés et stockés sur support électronique.

Plus en détail

Reconnaissance des formes : Classement d ensembles d objets

Reconnaissance des formes : Classement d ensembles d objets Reconnaissance des formes : Classement d ensembles d objets Données Méthodes Extraction de connaissances Applications Expertise Apprentissage Bernard FERTIL Directeur de Recherche CNRS Équipe LXAO, UMR

Plus en détail

Champ de Markov couple pour la segmentation d images texturées

Champ de Markov couple pour la segmentation d images texturées Champ de Markov couple pour la segmentation d images texturées Juliette Blanchet INRIA Rhône-Alpes Equipes Mistis et Lear 1 Segmention d images par champ de Markov caché 2 Segmentation de textures 3 Résultats

Plus en détail

Références. Compter les mots. Le langage comme donnée. Communication Langagière Ingénierie des langues et de la parole

Références. Compter les mots. Le langage comme donnée. Communication Langagière Ingénierie des langues et de la parole Communication Langagière Ingénierie des langues et de la parole 1. Introduction générale 2. Ingénierie des langues 2.1 Représentation et codage des textes 2.2 Théorie de l information et probabilités 2.3

Plus en détail

Ingénierie d aide à la décision

Ingénierie d aide à la décision Ingénierie d aide à la décision Maria Malek 1 er septembre 2009 1 Objectifs et débouchés Nous proposons dans cette option deux grands axes pour l aide à la décision : 1. La recherche opérationnelle ; 2.

Plus en détail

Sur l apprentissage de Réseaux Bayésiens à partir de bases d exemples incomplètes et application à la classification

Sur l apprentissage de Réseaux Bayésiens à partir de bases d exemples incomplètes et application à la classification Sur l apprentissage de Réseaux Bayésiens à partir de bases d exemples incomplètes et application à la classification et Philippe LERAY, Laboratoire LITIS, Rouen. Rencontres Inter-Associations La classification

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

Le data mining met en œuvre un ensemble de techniques issues des statistiques, de l analyse de données et de l informatique pour explorer les données.

Le data mining met en œuvre un ensemble de techniques issues des statistiques, de l analyse de données et de l informatique pour explorer les données. COURS DE DATA MINING 3 : MODELISATION PRESENTATION GENERALE EPF 4/ 5 ème année - Option Ingénierie d Affaires et de Projets - Finance Bertrand LIAUDET Phase 4 : Modelisation 1 Classement des techniques

Plus en détail

Méthodes avancées en décision

Méthodes avancées en décision Méthodes avancées en décision Support vector machines - Chapitre 2 - Principes MRE et MRS Principe MRE. Il s agit de minimiser la fonctionnelle de risque 1 P e (d) = y d(x;w, b) p(x, y) dxdy. 2 La densité

Plus en détail

RECONNAISSANCE DE TRAJECTOIRES PAR VISION ARTIFICIELLE POUR LE SUIVI PAR UN ROBOT.

RECONNAISSANCE DE TRAJECTOIRES PAR VISION ARTIFICIELLE POUR LE SUIVI PAR UN ROBOT. RECONNAISSANCE DE TRAJECTOIRES PAR VISION ARTIFICIELLE POUR LE SUIVI PAR UN ROBOT Z Hammoudi, H Hamdi, M Laouar, A Chaaboub Département d Electronique, Faculté des sciences de l ingénieur Université de

Plus en détail

Apprentissage automatique

Apprentissage automatique Apprentissage automatique François Denis, Hachem Kadri, Cécile Capponi Laboratoire d Informatique Fondamentale de Marseille LIF - UMR CNRS 7279 Equipe QARMA francois.denis@lif.univ-mrs.fr 2 Chapitre 1

Plus en détail

Les données manquantes en statistique

Les données manquantes en statistique Les données manquantes en statistique N. MEYER Laboratoire de Biostatistique -Faculté de Médecine Dép. Santé Publique CHU - STRASBOURG Séminaire de Statistique - 7 novembre 2006 Les données manquantes

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

Apprentissage statistique:

Apprentissage statistique: Apprentissage statistique: Arbre de décision binaire et Random Forest 1 Plan 1. Introduction 2. 3. Application à l apprentissage supervisé 4. Forêt Aléatoire (Random Forest) 2 1 Plan 1. Introduction 2.

Plus en détail

TP 1 M1 Informatique Apprentissage Automatique. Premières classifications : apprentissage et évaluation

TP 1 M1 Informatique Apprentissage Automatique. Premières classifications : apprentissage et évaluation Premières classifications : apprentissage et évaluation L objectif de ce TP est double : prise en main de la bibliothèque scikit-learn de Python, dédiée à l apprentissage automatique, sensibilisation à

Plus en détail

Cours de Statistiques

Cours de Statistiques Cours de Statistiques Romain Raveaux 1 1 Laboratoire L3I Université de La Rochelle romain.raveaux01 at univ-lr.fr Octobre 24-11, 2008 1 / 35 Sommaire 1 Quelques Rappels 2 numériques Relations entre deux

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Ludovic Denoyer 21 septembre 2015 Ludovic Denoyer () FDMS 21 septembre 2015 1 / 1 Contexte Observation La plupart des bonnes

Plus en détail

Prototypes et k plus proches voisins (kppv (knn))

Prototypes et k plus proches voisins (kppv (knn)) Prototypes et k plus proches voisins (kppv (knn)) Université Grenoble 1 - Lab. Informatique Grenbole / MRIM Learning Vector Quantization (1) Algorithme en ligne (on-line) dans lequel des prototypes sont

Plus en détail

FOUILLE DE DONNEES. Anne LAURENT POLYTECH'MONTPELLIER IG 5

FOUILLE DE DONNEES. Anne LAURENT POLYTECH'MONTPELLIER IG 5 FOUILLE DE DONNEES Anne LAURENT POLYTECH'MONTPELLIER IG 5 Pourquoi la fouille de données? Données disponibles Limites de l approche humaine Nombreux besoins : Industriels, Médicaux, Marketing, Qu est-ce

Plus en détail

EXERCICES SUR LES PROBABILITÉS

EXERCICES SUR LES PROBABILITÉS EXERCICES SUR LES PROBABILITÉS Exercice 1 Dans un univers Ω, on donne deux événements A et B incompatibles tels que p(a) = 0,2 et p(b) = 0,7. Calculer p(a B), p(a B), p ( A ) et p ( B ). Exercice 2 Un

Plus en détail

L'apprentissage supervisé. (Classification, Régression)

L'apprentissage supervisé. (Classification, Régression) L'apprentissage supervisé (Classification, Régression) Le problème L'apprentissage supervisé = apprentissage à partir d'exemples Exemples E1 S1 E2 S2 E3 S2 En Sn Entrées f Sortie On imagine les exemples

Plus en détail

FOUILLE DE DONNEES. Anne LAURENT ECD. laurent@lirmm.fr

FOUILLE DE DONNEES. Anne LAURENT ECD. laurent@lirmm.fr FOUILLE DE DONNEES Anne LAURENT laurent@lirmm.fr ECD Pourquoi la fouille de données? Données disponibles Limites de l approche humaine Nombreux besoins : Industriels, Médicaux, Marketing, Qu est-ce que

Plus en détail

Vision par Ordinateur

Vision par Ordinateur Vision par Ordinateur James L. Crowley DEA IVR Premier Bimestre 2005/2006 Séance 6 23 novembre 2005 Détection et Description de Contraste Plan de la Séance : Description de Contraste...2 Le Détecteur de

Plus en détail

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base M.A. Knefati 1 & A. Oulidi 2 & P.Chauvet 1 & M. Delecroix 3 1 LUNAM Université, Université Catholique de l Ouest,

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring Les méthodes d évaluation du risque de crédit pour les PME et les ménages Caractéristiques Comme les montants des crédits et des

Plus en détail

Regroupement (clustering) Bruno Pinaud (basé sur le support de Sofian Maabout)

Regroupement (clustering) Bruno Pinaud (basé sur le support de Sofian Maabout) 1 Regroupement (clustering) Bruno Pinaud (basé sur le support de Sofian Maabout) C est quoi? Regroupement (Clustering): construire une collection d objets Similaires au sein d un même groupe Dissimilaires

Plus en détail

Plan. Cours 4 : Méthodes d accès aux données. Architecture système. Objectifs des SGBD (rappel)

Plan. Cours 4 : Méthodes d accès aux données. Architecture système. Objectifs des SGBD (rappel) UPMC - UFR 99 Licence d informatique 205/206 Module 3I009 Cours 4 : Méthodes d accès aux données Plan Fonctions et structure des SGBD Structures physiques Stockage des données Organisation de fichiers

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

Master ISI 2010-2011. Data Mining Recherche des sous-ensembles fréquents

Master ISI 2010-2011. Data Mining Recherche des sous-ensembles fréquents Master ISI 2010-2011 Data Mining Recherche des sous-ensembles fréquents Yves Lechevallier INRIA-Rocquencourt E_mail : Yves.Lechevallier@inria.fr 1 Processus Data Mining Phase A : Entrepôt de données Entrepôt

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Affichage rapide de scènes 3D

Affichage rapide de scènes 3D ÉPREUVE COMMUNE DE TIPE 2010 - Partie D TITRE : Affichage rapide de scènes 3D Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Entretien avec les examinateurs

Plus en détail

Chapitre 4 : Modélisation 3D

Chapitre 4 : Modélisation 3D Chapitre 4 : Modélisation 3D Modélisation 3D et Synthèse Fabrice Aubert fabrice.aubert@lifl.fr Master Informatique 2014-2015 F. Aubert (MS2) M3DS/ 4 - Modélisation 3D 2014-2015 1 / 44 1 Introduction F.

Plus en détail

Une comparaison de méthodes de discrimination des masses de véhicules automobiles

Une comparaison de méthodes de discrimination des masses de véhicules automobiles p.1/34 Une comparaison de méthodes de discrimination des masses de véhicules automobiles A. Rakotomamonjy, R. Le Riche et D. Gualandris INSA de Rouen / CNRS 1884 et SMS / PSA Enquêtes en clientèle dans

Plus en détail

Optimisation de la compression fractale D images basée sur les réseaux de neurones

Optimisation de la compression fractale D images basée sur les réseaux de neurones Optimisation de la compression fractale D images basée sur les réseaux de neurones D r BOUKELIF Aoued Communication Networks,Architectures and Mutimedia laboratory University of S.B.A aoued@hotmail.com

Plus en détail

Algorithmique I. Augustin.Lux@imag.fr Roger.Mohr@imag.fr Maud.Marchal@imag.fr. Algorithmique I 20-09-06 p.1/??

Algorithmique I. Augustin.Lux@imag.fr Roger.Mohr@imag.fr Maud.Marchal@imag.fr. Algorithmique I 20-09-06 p.1/?? Algorithmique I Augustin.Lux@imag.fr Roger.Mohr@imag.fr Maud.Marchal@imag.fr Télécom 2006/07 Algorithmique I 20-09-06 p.1/?? Organisation en Algorithmique 2 séances par semaine pendant 8 semaines. Enseignement

Plus en détail

Algorithmes probabilistes. Références: Fundamentals of Algortihms de Gilles Brassard et Paul Bratley Note de cours de Pierre McKenzie

Algorithmes probabilistes. Références: Fundamentals of Algortihms de Gilles Brassard et Paul Bratley Note de cours de Pierre McKenzie Algorithmes probabilistes Références: Fundamentals of Algortihms de Gilles Brassard et Paul Bratley Note de cours de Pierre McKenzie Mise en contexte: Indices: Vous êtes à la recherche d un trésor légendaire

Plus en détail

Regime Switching Model : une approche «pseudo» multivarie e

Regime Switching Model : une approche «pseudo» multivarie e Regime Switching Model : une approche «pseudo» multivarie e A. Zerrad 1, R&D, Nexialog Consulting, Juin 2015 azerrad@nexialog.com Les crises financières survenues dans les trente dernières années et les

Plus en détail

Classification et caractérisation

Classification et caractérisation Classification et caractérisation Classification arbre de décision classificateur Bayésien réseau de neurones 1 Caractérisation Description des concepts Généralisation des données Induction orientée attribut

Plus en détail

Méthodes d apprentissage statistique («Machine Learning»)

Méthodes d apprentissage statistique («Machine Learning») Méthodes d apprentissage statistique («Machine Learning») Journées d Etudes IARD Niort, 21 Mars 2014 Fabrice TAILLIEU Sébastien DELUCINGE Rémi BELLINA 2014 Milliman. All rights reserved Sommaire Introduction

Plus en détail

Arbres binaires de décision

Arbres binaires de décision 1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression

Plus en détail

Introduction à l analyse statistique et bioinformatique des puces à ADN

Introduction à l analyse statistique et bioinformatique des puces à ADN Formation INSERM 10 février 2004 Introduction à l analyse statistique et bioinformatique des puces à ADN Gaëlle Lelandais lelandais@biologie.ens.fr 1 Première Partie Analyse d une puce à ADN : Le recherche

Plus en détail

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Patrick Dallaire Université Laval Département d informatique et de génie

Plus en détail

Glossaire Analyse en Composantes Principales (ACP) Analyse Factorielle des Correspondances (AFC) Apprentissage supervisé Apprentissage non supervisé

Glossaire Analyse en Composantes Principales (ACP) Analyse Factorielle des Correspondances (AFC) Apprentissage supervisé Apprentissage non supervisé Glossaire Analyse en Composantes Principales (ACP) : *méthode factorielle (Pearson 1901, Hotelling 1933) permettant de fournir un résumé descriptif (sous forme graphique le plus souvent) d une population

Plus en détail

Plus courts chemins, programmation dynamique

Plus courts chemins, programmation dynamique 1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

données en connaissance et en actions?

données en connaissance et en actions? 1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)

Plus en détail

Définitions. Numéro à préciser. (Durée : )

Définitions. Numéro à préciser. (Durée : ) Numéro à préciser (Durée : ) On étudie dans ce problème l ordre lexicographique pour les mots sur un alphabet fini et plusieurs constructions des cycles de De Bruijn. Les trois parties sont largement indépendantes.

Plus en détail

Le test triangulaire

Le test triangulaire Le test triangulaire Objectif : Détecter l absence ou la présence de différences sensorielles entre 2 produits. «les 2 produits sont-ils perçus comme différents?» Contexte : la différence sensorielle entre

Plus en détail

Objectif du groupe GT1.1 Fusion de Données

Objectif du groupe GT1.1 Fusion de Données Objectif du groupe GT1.1 Fusion de Données Le groupe travaille dans trois directions Le vocabulaire (piloté par ADVITAM et l aide de SITE) L état de l art (piloté par SYROKKO) Deux applications illustratives

Plus en détail

Baccalauréat ES/L Métropole 12 septembre 2014 Corrigé

Baccalauréat ES/L Métropole 12 septembre 2014 Corrigé Baccalauréat ES/L Métropole 12 septembre 2014 orrigé A. P. M. E. P. Exercice 1 6 points ommun à tous les candidats Avant de réaliser une opération marketing en début de saison, un revendeur de piscines

Plus en détail

Chapitre 9 ANALYSE MULTIDIMENSIONNELLE

Chapitre 9 ANALYSE MULTIDIMENSIONNELLE Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 9 ANALYSE MULTIDIMENSIONNELLE L analyse des données multidimensionnelles regroupe un ensemble de méthodes

Plus en détail

Évaluation de la classification et segmentation d'images en environnement incertain

Évaluation de la classification et segmentation d'images en environnement incertain Évaluation de la classification et segmentation d'images en environnement incertain EXTRACTION ET EXPLOITATION DE L INFORMATION EN ENVIRONNEMENTS INCERTAINS / E3I2 EA3876 2, rue F. Verny 29806 Brest cedex

Plus en détail

Dans ce chapitre nous allons étudier une méthode pratique d anti-phishing, ce qui consiste à un système de classification automatique.

Dans ce chapitre nous allons étudier une méthode pratique d anti-phishing, ce qui consiste à un système de classification automatique. I INTRODUCTION Les pages de phishing sont l un des problèmes majeurs de sécurité sur internet. La majorité des attaques utilisent des méthodes sophistiquées comme les fausses pages pour tromper les utilisateurs

Plus en détail

Structures de données non linéaires

Structures de données non linéaires Structures de données non linéaires I. Graphes Définition Un graphe (simple) orienté G est un couple (S, A), où : S est un ensemble dont les éléments sont appelés les sommets. A est un ensemble de couples

Plus en détail

Baccalauréat STG Mercatique Nouvelle-Calédonie 15 novembre 2012 Correction

Baccalauréat STG Mercatique Nouvelle-Calédonie 15 novembre 2012 Correction Baccalauréat STG Mercatique Nouvelle-Calédonie 15 novembre 2012 Correction EXERCICE 1 : TAUX D ÉVOLUTION 5 points Le tableau ci-dessous présente le nombre de voitures neuves vendues en France en 1980,

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Utilisation des réseaux bayésiens et de l approche de Fenton pour l estimation de probabilité d occurrence d événements

Utilisation des réseaux bayésiens et de l approche de Fenton pour l estimation de probabilité d occurrence d événements Utilisation des réseaux bayésiens et de l approche de Fenton pour l estimation de probabilité d occurrence d événements Rapport LAAS-CNRS Numéro N o 13077 Quynh Anh DO HOANG, Jérémie GUIOCHET, Mohamed

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

WEKA, un logiciel libre d apprentissage et de data mining

WEKA, un logiciel libre d apprentissage et de data mining WEKA, un logiciel libre d apprentissage et de data mining Yves Lechevallier INRIA-Rocquencourt Présentation de WEKA 3.4 Format ARFF WEKA Explorer WEKA Experiment Environment WEKA KnowledgeFlow E_mail :

Plus en détail

Espace de probabilité, indépendance et probabilité conditionnelle

Espace de probabilité, indépendance et probabilité conditionnelle Chapter 2 Espace de probabilité, indépendance et probabilité conditionnelle Sommaire 2.1 Tribu et événements........................................... 15 2.2 Probabilité................................................

Plus en détail

Arbres de décisions et forêts aléatoires.

Arbres de décisions et forêts aléatoires. Arbres de décisions et forêts aléatoires. Pierre Gaillard 7 janvier 2014 1 Plan 1 Arbre de décision 2 Les méthodes d ensembles et les forêts aléatoires 2 Introduction 3 Introduction Jeu de données (ex

Plus en détail

MCMC et approximations en champ moyen pour les modèles de Markov

MCMC et approximations en champ moyen pour les modèles de Markov MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:

Plus en détail

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M belayach@fsr.ac.ma 1 1.Le réseau

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

Fouille de données Notes de cours Ph. PREUX Université de Lille 3 philippe.preux@univ-lille3.fr 26 mai 2011

Fouille de données Notes de cours Ph. PREUX Université de Lille 3 philippe.preux@univ-lille3.fr 26 mai 2011 Fouille de données Notes de cours Ph. PREUX Université de Lille 3 philippe.preux@univ-lille3.fr 26 mai 2011 http://www.grappa.univ-lille3.fr/~ppreux/fouille ii Table des matières 1 Introduction 3 1.1 Qu

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

Proposition d activité utilisant l application. Tripatouille. (http://www.malgouyres.fr/tripatouille/)

Proposition d activité utilisant l application. Tripatouille. (http://www.malgouyres.fr/tripatouille/) IREM Clermont-Ferrand Algorithmique au lycée Malika More malika.more@u-clermont1.fr 28 janvier 2011 Proposition d activité utilisant l application Tripatouille (http://www.malgouyres.fr/tripatouille/)

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

Traitement bas-niveau

Traitement bas-niveau Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

OPERATEURS MORPHOLOGIQUES

OPERATEURS MORPHOLOGIQUES OPERATEURS MORPHOLOGIQUES Ensembles caractéristiques et éléments structurants Érosion et dilatation Ouverture et fermeture Application au filtrage Extraction de contours, remplissage de régions Épaississement,

Plus en détail

Reconstruction et Animation de Visage. Charlotte Ghys 15/06/07

Reconstruction et Animation de Visage. Charlotte Ghys 15/06/07 Reconstruction et Animation de Visage Charlotte Ghys 15/06/07 1 3ème année de thèse Contexte Thèse CIFRE financée par Orange/France Telecom R&D et supervisée par Nikos Paragios (Ecole Centrale Paris) et

Plus en détail

Statistiques fonctionnelles pour l imagerie hyperspectrale

Statistiques fonctionnelles pour l imagerie hyperspectrale Statistiques fonctionnelles pour l imagerie hyperspectrale Laurent Delsol Cécile Louchet MAPMO 17e journée CASCIMODOT 6 décembre 2012 Plan Introduction Modélisation des spectres via les statistiques fonctionnelles

Plus en détail