Nicolas Bousquet. 29 août Université Laval

Dimension: px
Commencer à balayer dès la page:

Download "Nicolas Bousquet. 29 août 2014 - Université Laval"

Transcription

1 Pêche, foresterie et sites de production énergétique - quelques apports des statistiques pour améliorer la gestion des ressources environnementales et industrielles Nicolas Bousquet Électricité de France Division Recherche et Développement Dpt MRI - EDF Lab Chatou & Institut de Mathématique de Toulouse Équipe de Statistique et Probabilités Université Paul Sabatier 29 août Université Laval

2 Quelques mots de présentation personnelle

3 Vocabulaire Ressource Σ biologique (population animale, végétale..) industrielle (capacité de production durée de vie active, résistance aux risques) Optimisation pérenne permettant un renouvellement de la ressource (environnementale) protection technique efficace, robuste aux aléas exceptionnels (industrielle) Incertitudes aléatoire: intrinsèque représentée par des distributions de probabilité épistémique: réductible par apport de connaissance (ex : nouvelles données)

4 Gestion d une population exploitée : calcul du rendement maximal durable (MSY )

5 Impact des incertitudes de modèle (aléatoires) Spencer and Collie (1997) ont produit des estimateurs des paramètres pour les années ˆr = 0.4, ˆK = 129 kt (kilotonnes), ˆσ = Prix du marché (US dollars / kg) après 1993 avec Q = produit de la pêche (kt) T indice temporel P = a + bq + ct paramètres économiques a = 1.82, b = 0.022, c = estimés de façon à obtenir une rentabilité maximale Cadre déterministe Cadre stochastique MSY (kt) Market price ($/kg) Expected revenue (10 6 US$) Environ US$ de profit non réaliste mais potentiellement prédit

6 Estimation des paramètres : où interviennent les statistiques... Données d observation Pas de données directe d abondance ( végétaux et certains animaux terrestres) Données indirectes : pêches commerciale et scientifique indices d abondance Un type de données très informatives : capture-recapture avec marquage [Lavalée et Rivest 2012, Rivest 2013] Sélection du plan d échantillonnage Élaboration d un modèle de rééchantillonnage (urne) pour la recapture [Quinn et Deriso 1999, Pollock et al. 2002]

7 où π s a+j,t+j est une probabilité de retour de marque (dépendant de la mortalité) Capture-recapture pour la détermination des caractéristiques d une population structurée par âge Nombre d individus d âge a + 1 au temps t + 1 P a+1,t+1 = P a,ts a,t = P a,t exp F a,t }{{} taux de pêche M a,t }{{} mortalité naturelle Capture théorique moyenne à l âge C a,t = µ a,tp a,t pour un taux d exploitation µ a,t F a,t M a,t + F a,t (1 S a,t) Marquage d une sous-population puis recapture par N pêcheries N a,t = nombre d animaux d âge a marqués puis relâchés au temps t R s a+j,t+j = nombre de marques d âge a + j renvoyées par la pêcherie s En supposant que le destin de chaque poisson est indépendant, marginalement Ra+j,t+j s ( B inom Na,t, πa+j,t+j s )

8 En notant R a+t,t+t = π a+t,t+t = ( ) Ra+1,t+1, 1..., Ra+1,t+1, N..., Ra+T 1,t+T,..., Ra+T N,t+T, ( ) πa+1,t+1, 1..., πa+1,t+1, N..., πa+t 1,t+T,..., πa+t N,t+T, Ra+T,t+T = πa+t,t+t = T N t=1 s=1 T N t=1 s=1 R s a+t,j+t, π s a+t,j+t, en conséquence { R a+t,t+t, N a,t R } a+t,t+t M ult (N a,t ; { π a+t,t+t, 1 π a+t,t+t }) la distribution de probabilité de tous les retours de marque est un produit de lois multinomiales (en supposant que tous les marquages sont indépendants les uns des autres)

9 Le vecteur de probabilité est où π s a+j,t+j = α exp( βj) ζ s a+j,t+j ν s a+j,t+j λ s a+j,t+j α exp( βj) est la probabilité qu un poisson survive à l étape de marquage après j pas de temps ζ s a+j,t+j est la probabilité qu un poisson marqué se mélange au reste de la population visée par la pêcherie s après j intervalles de temps ν s a+j,t+j est la probabilité qu un poisson soit pêché par la pêcherie s λ s a+j,t+j est la probabilité qu une marque pêchée par la pêcherie s soit retrouvée et renvoyée aux scientifiques Inconnues du problème : ( {Ma, F s t, ς s a, λ s a,t, ζ s a,t}s {1,...,N},a {a0,...,a},t {t0,...,t }, {Pa0,t} t {t0,...,t }, α, β, ) de dimension N T (1 + 2 A ) + N A + T + 2

10 Réduction de la dimension : tester des hypothèses de mortalité naturelle Forme en "U" pour M a : influence de la senescence Forme en "W" pour M a : influence additionnelle de la reproduction Utilisation de fonctions polynômiales de l âge (splines cubiques)

11 Prises commerciales et observations Les captures théoriques suivent également (marginalement) C s a+j,t+j B ( P a,t, ν s a+j,t+j). Cependant, beaucoup d incertitudes dominent la variation intrinsèque du "tirage dans l urne" (surpêche, rejets, erreurs de transcription dans les journaux de bord...) [Polacheck et al. 2006] On fait une hypothèse "grossière" sur les observations des prises Ĉ s a+j,t+j N ( ν s a+j,t+jp a,t, (σ s a+j,t+j) 2). où la variance du bruit d observation (incertitude épistémique) est fixée à plusieurs valeurs étude de sensibilité Estimation du vecteur de paramètre par maximisation de la vraisemblance "produit-de-multinomiale" suivie d un parcours stochastique dans la zone où celle-ci est haute Exemple d outil logiciel : Rcapture package [Baillargeon et Rivest 2007]

12 Ex: marquage des thonidés dans l Océan Indien CTOI (IOTC): ,301 poissons marqués (listao = bonite = skipjack) 10,290 retours de marque 25 cohortes 3 pêcheries (senneurs français et espagnol, canneurs maldiviens) [B. et al. 2014]

13 Quelques résultats a=2.25 a=2.5 a=2.75 a=3 a=3.25 a=3.5 a=3.75 a=4 0 number of returns 200 a=0.5 a=0.75 a=1 a=1.25 a=1.5 a=1.75 a=2 cohort indicators time of release

14 Conséquence : modèles de projection de biomasse en danger sous forçage environnemental [B. et al (b)]

15 Transformation taille-âge Même problématique en: fork length (cm) foresterie analyse des échos ultrasonores dans un cadre industriel caractérisation de la taille d un défaut par son écho bruité age(y) suivi de la taille d une fissure Deux grandes approches de quantification (avec gestion des incertitudes) 1. modèles purement statistiques de type régression ou processus 2. modèles numériques explicatifs (fondés sur la biologie, la physique...) explorés par des outils statistiques

16 Modèles "purement" statistiques : un exemple via les processus gamma Soit un processus aléatoire L t positif s accroissant avec le temps t, supposé reproduire le comportement de k systèmes similaires (ex: longueur de poisson ou d arbre, taille de fissure... ) k, L k,0 = 0 et les incréments Z k,i = L k,ti L k,ti 1 sont indépendants k et 0 s t, L k,t L k,s est une v.a. de loi gamma de densité 1 f α(t s),β (x) = Γ(α i (t s)) x α(t s) 1 e x β β α(t s) 1 {x 0} En dessous d une certaine valeur z, on n observe rien bruit environnemental précision dispositif > taille individu (ex: larves) Les données disponibles d sont des réalisations de Y k,t = max(l k,t, z) faites à certaines valeurs de temps (réguliers ou non) transformées en incréments

17 Un exemple industriel : propagation d une fissure dans un composant de production (1/2)

18 { Soit t rk +1 = min ti, L k,ti z } i {1,...,n k } Censure double: 1. vraisemblance associée aux observations manquantes (censure à gauche) ) ( rk ) ( ) P (L k,t1 L k,t2... L k,trk < z = P Z k,i < z = γ αt rk, β z ) i=1 Γ (αt rk 2. vraisemblance associée à l observation Z k,rk +1 = L z (censure à k,trk +1 droite) ) Γ (α(t P(Z k,rk +1 > L z) = rk +1 t rk ), (L z)/β k,trk +1 k,trk +1 Γ ( α(t rk +1 t rk ) ) Vraisemblance complète pour la trajectoire k ( ) ) γ αt rk, z Γ (α(t β rk +1 t rk ), (L z)/β k,trk +1 l k (α, β d k ) = Γ ( ) ( αt rk Γ α(trk +1 t rk ) ) n k Γ(α(t i t i 1 )) ( ) β α t nk t rk +1 exp 1 β i=r k +2 n k i=r k +2 z k,i n k i=r k +2 z t i t i 1 k,i α

19 Inférence (1/3) Une connaissance a priori existe sur le phénomène étudié (outre les données d observation d) : vitesse de croissance moyenne accélération de la croissance... (biologistes, ingénieurs, physiciens... faisant par exemple des expériences de laboratoire) Connaissance imprégnée d incertitude épistémique Le cadre statistique bayésien permet d intégrer cette connaissance sur L en la traduisant indirectement par une mesure de probabilité π(α, β) (loi a priori) Inférence bayésienne = réduction de l incertitude épistémique par conditionnement à l information portée par d : on estime la loi a posteriori k π(α, β d) = l k(α, β d k )π(α, β) k l k(α, β d k )π(α, β)dαdβ

20 Inférence (2/3) Proposition [Paroissin. et al. 2014] Le mélange de lois gamma et inverse gamma β α IG (αm t e,1, m z e), α G (m/2, m t e,2) est une approximation à l ordre 1 de la loi a posteriori d un échantillon de taille m dont la moyenne des temps d observation est t e,1 dont la moyenne de l accroissement en taille durant t e,1 est z e avec t e,2 une statistique reliée à la vitesse d accroissement Choix de loi a priori l information supplémentaire est quantifiée comme celle provenant d un échantillon virtuel

21 Inférence (3/3) ( 1. Simuler S j G 2. Simuler β j IG M α j 1 k=1 (α j 1 { m t e,1 + M t rk, 1/β j 1 ) 1 {0 S M z}. k=1 } { t nk, m z e + S j + M 3. Simuler α j ρ(. α j 1 ) N ( α j 1, ρ α 2 j 1). n k k=1 i=r k +1 z k,i }). 4. Simuler u j U[0, 1] and accept α j = α j if u j η j où { η j = min 1 } l(β j, α j d)π(β j, α j )ρ(α j 1 α j ) l(β j, α j 1 d)π(β j, α j 1 )ρ( α j α j 1 ) ou accepter α j = α j 1.

22 Un exemple industriel : propagation d une fissure dans un composant de production (2/3)

23 Un exemple industriel : propagation d une fissure dans un composant de production (3/3) Information a priori : estimation des quantités suivantes 1. vitesse annuelle la plus probable = rapport z e/ t e,1 (2 mm/an) 2. probabilités (1 δ 1, 1 δ 2) à 15 puis 30 ans (= m t e,1) que toute fissure soit plus longue que (x 1, x 2) = (5, 10) mm Soit pour i = {1, 2}, ) P (X m te,1 < x i = δ i, = xi 0 0 x αm t e,1 1 (m z e) αm t e,1 Γ (2αm t e,1) π(α) dαdx. (m z e + x) 2αm t e,1 Γ 2 (αm t e,1) Calibration: en choisissant δ i dans {1%, 5%, 10%, 20%, 25%}, par minimisation en (m, t e,2) du coût C(m, t e,2) = 2 i=1 δ 2 i { xi 0 0 } 2 x αt 1 (2T ) αt Γ (2αT ) (2T + x) 2αT Γ 2 (αt ) π(α) dαdx δ i

24

25 Modèles numériques de simulation Explication d un phénomène pour lequel on a peu ou pas de données d observation Implémentation sous forme de codes de calcul g (souvent déterministe) d un ensemble d équations et d optimisations Y = g(x ) typiquement Problème 1 : "caler" les (lois des) entrées incertaines (aléatoires) X Problème 2 : simuler le comportement Difficultés : dimension élevée de X, lourdeur en temps de calcul Exemple industriel: Prévision de niveau d eau (cote) en hydraulique

26 Assurer la sécurité d un site de production face à une crue Y = g(x, K s) où : X est un débit de rivière amont Q K s des coefficients de frottement et Y est un une hauteur d eau en aval Enjeux EDF 1. Protéger les personnes et les biens contre un risque de crue à fort impact 2. Assurer la capacité de production de façon pérenne Le phénomène est considéré comme monotone et s implémente par un code hydraulique g (ex: codes EDF MASCARET / TELEMAC)

27 Enjeu technique 1 : modélisation d une distribution de débits extrêmes (typ. maxima annuels) Règle fondamentale de sûreté (1984) 1. La hauteur de dimensionnement d une digue protégeant un site de production doit être au moins égale à y 0 = g(q 1 α + pen Q, K s) + pen Y où α 1 2. le quantile Q 1 α de seuil α est associée à une loi des extrêmes 3. la valeur du frottement est pénalisée Théorie des valeurs extrêmes [Fisher-Tippett-Gnedenko] Soit X 1,..., X n un échantillon de loi continue. S il existe des suites (a n, b n) IR + IR + telles que (Xn a n)/b n converge en loi, alors la loi limite de la statistique d ordre (maximum de l échantillon) Xn est l une des trois lois suivantes : loi de Gumbel F (x) = exp( exp( (x µ)/σ)), x IR loi de Fréchet F (x) = exp( ((x µ)/σ) β ), x µ, β 0 loi de Weibull F (x) = exp( ( ((x µ)/σ) β )), x µ, β 0

28 Données historiques + expertise terrain Inférence apport de connaissance / données actuelles (en faible nombre) Choix d un cadre inférentiel bayésien Proposition [B. 2013] En posant (λ, ζ) = (1/σ, exp(µ/σ)), le mélange de lois gamma ( { } ) 1 ζ λ G m, α 1/m 1 exp( λx (e) α ) ( λ G m, ( x m x α (e) ) 1) est une approximation à l ordre 1 de la loi a posteriori d un échantillon Gumbel de taille m et de moyenne x m telle que marginalement P(X < x α (e) ) = α

29 Enjeu technique 2 : simulation pour le calcul de critère de risque On souhaite vérifier que p = P(g(X ) > y 0) = 1 {g(x)>y0 }f X (x) dx 10 q où y 0 est une hauteur de digue g boîte noire et X variable aléatoire supposée de loi f X Estimation statistique classique de p par Monte Carlo ˆp n = 1 1 {g(xi )>y n 0 } avec x 1,..., x iid n f X i=1 Estimateur sans biais, consistant, sans hypothèse sur g (ex: discontinuités..) CV [ˆp n] = p(1 p)/n: il faut 10 q+2 simulations pour une estimation à 10% d erreur de 10 q Or le code peut être très coûteux en temps CPU (ex : 3h pour TELEMAC dans certaines configurations)

30 Aspects pratiques du calcul 1. Développement de méthodes de Monte Carlo à réduction de variance Quasi Monte Carlo, échantillonnage d importance, techniques séquentielles Fondées sur des plans d échantillonnage numériques intelligents 2. Utilisation de méta-modèles simplificateurs réseaux de neurones et machines à vecteur de support (classification/apprentissage) processus gaussiens (krigeage)

31 Une dernière approche Approche par copules Une loi jointe en (X, Y ) peut être définie par sa fonction de répartition P(X < x, Y < y) = C θ (P X (X < x), P Y (Y < y)) = C θ (F X (x), F Y (y)) Calcul de probabilité conditionnel P (Y < y 0 X [x δ x, x + δ x]) = CJ θ {F X (x + δ x), F Y (y 0)} C J θ {F X (x δ x), F Y (y 0)} F Y (x + δ x) F X (x δ x) Étude des comportements extrêmes joints [Genest & Rivest 1993, Ghoudi, Khoudraji & Rivest 1998,...]

32 Quelques mots de conclusion Statistiques indispensables pour la modélisation et la quantification des incertitudes aléatoires épistémiques Impact potentiellement important sur la gestion optimisée des ressources Flexibilité et robustesse : de multiples outils pour traiter des problèmes similaires Le cadre décisionnel des statistiques (définissant ce qu est un "bon estimateur") permet de répondre aux questions sur la définition d une gestion optimale De nombreux travaux de Louis-Paul Rivest et ses coauteurs sont précieux et importants à de multiples niveaux : sélection des données, modélisation, décision, domaines d application variés Et comme évoqué... de belles pistes à poursuivre!

33 Bibliographie Bordet, Rivest (2014). A stochastic Pella Tomlinson model and its maximum sustainable yield. J.Theor. Biol. B., Duchesne, Rivest (2008). Redefining the MSY for the Schaefer population model including multiplicative environmental noise J.Theor. Biol. B., Chassot, Dortel, Million, Fonteneau, Hallier (2014). A Bayesian Brownie-Petersen model for estimating the natural mortality of Indian Ocean tunas. Application to skipjack. In revision for Fish. Res. B., Chassot, Duplisea, Hammill (2014). Forecasting the major influences of predation and environment on cod recovery in the northern Gulf of St. Lawrence. Plos ONE Dortel, Sardenne, Le Croizier, B., Chassot (2014). A three-stanza growth model for Indian Ocean yellowfin tuna. In revision for Fish. Res. Ghoudi, Khoudraji, Rivest (1998). Propriétés statistiques de copules de valeurs extrêmes bidimensionelles. RCS. Genest, Rivest (1993). Statistical inference procedures for bivariate Archimedean copulas. JASA. Kooijman (2010). Dynamic Energy Budget theory for metabolic organisation. Cambridge University Press. Lavalée, Rivest (2012). Capture-recapture sampling and indirect sampling. J. Off. Stat. Paroissin, B., Fouladirad, Grall (2014). Bayesian gamma processes for optimising condition-based maintenance under uncertainty. In revision for App. Stoch. Models Bus. Indus. Polacheck, Eveson, Laslett, Pollock, Hearn (2006). Integrating catch-at-age and multiyear tagging data: a combined Brownie and Petersen estimation approach in a fishery context. Can. J. Fish. Aquat. Sci. Pollock, Hearn, Polacheck (2002). A general model for tagging on multiple component fisheries [...]. Environ. Ecol. Stat. Quinn, Deriso (1999). Quantitative Fish Dynamics. Oxford University Press Rivest (2013). Théorie et applications des modèles de capture-recapture. Bull. AMQ

Méthodes de Simulation

Méthodes de Simulation Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents

Plus en détail

Incertitude et variabilité : la nécessité de les intégrer dans les modèles

Incertitude et variabilité : la nécessité de les intégrer dans les modèles Incertitude et variabilité : la nécessité de les intégrer dans les modèles M. L. Delignette-Muller Laboratoire de Biométrie et Biologie Evolutive VetAgro Sup - Université de Lyon - CNRS UMR 5558 24 novembre

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique Télécom ParisTech, 09 mai 2012 http://www.mathematiquesappliquees.polytechnique.edu/ accueil/programmes/cycle-polytechnicien/annee-1/

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Yves Aragon, David Haziza & Anne Ruiz-Gazen GREMAQ, UMR CNRS 5604, Université des Sciences

Plus en détail

Approche bayésienne des modèles à équations structurelles

Approche bayésienne des modèles à équations structurelles Manuscrit auteur, publié dans "42èmes Journées de Statistique (2010)" Approche bayésienne des modèles à équations structurelles Séverine Demeyer 1,2 & Nicolas Fischer 1 & Gilbert Saporta 2 1 LNE, Laboratoire

Plus en détail

Résumé des communications des Intervenants

Résumé des communications des Intervenants Enseignements de la 1ere semaine (du 01 au 07 décembre 2014) I. Titre du cours : Introduction au calcul stochastique pour la finance Intervenante : Prof. M hamed EDDAHBI Dans le calcul différentiel dit

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

IFT6561. Simulation: aspects stochastiques

IFT6561. Simulation: aspects stochastiques IFT 6561 Simulation: aspects stochastiques DIRO Université de Montréal Automne 2013 Détails pratiques Professeur:, bureau 3367, Pav. A.-Aisenstadt. Courriel: bastin@iro.umontreal.ca Page web: http://www.iro.umontreal.ca/~bastin

Plus en détail

OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT)

OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT) OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT) LAGGOUNE Radouane 1 et HADDAD Cherifa 2 1,2: Dépt. de G. Mécanique, université de Bejaia, Targa-Ouzemour

Plus en détail

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base M.A. Knefati 1 & A. Oulidi 2 & P.Chauvet 1 & M. Delecroix 3 1 LUNAM Université, Université Catholique de l Ouest,

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Modélisation et simulation du trafic. Christine BUISSON (LICIT) Journée Simulation dynamique du trafic routier ENPC, 9 Mars 2005

Modélisation et simulation du trafic. Christine BUISSON (LICIT) Journée Simulation dynamique du trafic routier ENPC, 9 Mars 2005 Modélisation et simulation du trafic Christine BUISSON (LICIT) Journée Simulation dynamique du trafic routier ENPC, 9 Mars 2005 Plan de la présentation! Introduction : modèles et simulations définition

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU $SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU Fabien FIGUERES fabien.figueres@mpsa.com 0RWVFOpV : Krigeage, plans d expériences space-filling, points de validations, calibration moteur. 5pVXPp Dans le

Plus en détail

Cours STAT 2150. "Statistique non paramétrique: Méthodes de lissage"

Cours STAT 2150. Statistique non paramétrique: Méthodes de lissage Cours STAT 2150 "Statistique non paramétrique: Méthodes de lissage" Année académique 2008-2009 Séance 1 1 Table de matière du cours 1. Introduction (Fonction de répartition, histogramme, propriétés d un

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires CHAPITRE I. SIMULATION DE VARIABLES ALÉATOIRES 25 Chapitre I Simulation de variables aléatoires La simulation informatique de variables aléatoires, aussi complexes soient elles, repose sur la simulation

Plus en détail

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Table des matières. Introduction....3 Mesures et incertitudes en sciences physiques

Plus en détail

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL La régression logistique Par Sonia NEJI et Anne-Hélène JIGOREL Introduction La régression logistique s applique au cas où: Y est qualitative à 2 modalités Xk qualitatives ou quantitatives Le plus souvent

Plus en détail

Probabilités II Étude de quelques lois. Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec.

Probabilités II Étude de quelques lois. Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec. Probabilités II Étude de quelques lois Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec.fr 2012 2013 1 1 Lois discrètes. On considère des v.a. ne prenant que des valeurs

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

MODELES DE DUREE DE VIE

MODELES DE DUREE DE VIE MODELES DE DUREE DE VIE Cours 1 : Introduction I- Contexte et définitions II- Les données III- Caractéristiques d intérêt IV- Evènements non renouvelables/renouvelables (unique/répété) I- Contexte et définitions

Plus en détail

!-.!#- $'( 1&) &) (,' &*- %,!

!-.!#- $'( 1&) &) (,' &*- %,! 0 $'( 1&) +&&/ ( &+&& &+&))&( -.#- 2& -.#- &) (,' %&,))& &)+&&) &- $ 3.#( %, (&&/ 0 ' Il existe plusieurs types de simulation de flux Statique ou dynamique Stochastique ou déterministe A événements discrets

Plus en détail

Segmentation en assurance et problématiques de gestion des risques associées en mortalité

Segmentation en assurance et problématiques de gestion des risques associées en mortalité Segmentation en assurance et problématiques de gestion des risques associées en mortalité 13 septembre 2013, version 1.0 Aymric Kamega, Actuaire aymric.kamega@univ-brest.fr www.euria.univ-brest.fr Sommaire

Plus en détail

Prévention et gestion des risques naturels et environnementaux

Prévention et gestion des risques naturels et environnementaux Prévention et gestion des risques naturels et environnementaux Risque et assurance : quelques éléments théoriques Ecole des Ponts - Le 6 Avril 01 Jacques Pelletan 1 Théorie du risque et pérennité de l

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

Soutenance de stage Laboratoire des Signaux et Systèmes

Soutenance de stage Laboratoire des Signaux et Systèmes Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud

Plus en détail

De la mesure à l analyse des risques

De la mesure à l analyse des risques De la mesure à l analyse des risques Séminaire ISFA - B&W Deloitte Jean-Paul LAURENT Professeur à l'isfa, Université Claude Bernard Lyon 1 laurent.jeanpaul@free.fr http://laurent.jeanpaul.free.fr/ 0 De

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

K. Ammar, F. Bachoc, JM. Martinez. Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau

K. Ammar, F. Bachoc, JM. Martinez. Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau Apport des modèles de krigeage à la simulation numérique K Ammar, F Bachoc, JM Martinez CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette, France Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau Apport des

Plus en détail

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3

Plus en détail

Marketing quantitatif M2-MASS

Marketing quantitatif M2-MASS Marketing quantitatif M2-MASS Francois.Kauffmann@unicaen.fr UCBN 2 décembre 2012 Francois.Kauffmann@unicaen.fr UCBN Marketing quantitatif M2-MASS 2 décembre 2012 1 / 61 Première partie I Analyse Analyse

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun

Plus en détail

Raisonnement probabiliste

Raisonnement probabiliste Plan Raisonnement probabiliste IFT-17587 Concepts avancés pour systèmes intelligents Luc Lamontagne Réseaux bayésiens Inférence dans les réseaux bayésiens Inférence exacte Inférence approximative 1 2 Contexte

Plus en détail

Estimation et modélisation de dépendance dans des modèles de survie bivariés en présence de censure

Estimation et modélisation de dépendance dans des modèles de survie bivariés en présence de censure Estimation et modélisation de dépendance dans des modèles de survie bivariés en présence de censure Svetlana Gribkova, Olivier Lopez Laboratoire de Statistique Théorique et Appliquée, Paris 6 4 Mars 2014

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

Echantillonnage Non uniforme

Echantillonnage Non uniforme Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas

Plus en détail

Intérêt du découpage en sous-bandes pour l analyse spectrale

Intérêt du découpage en sous-bandes pour l analyse spectrale Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,

Plus en détail

1 La formule de Black et Scholes en t discret

1 La formule de Black et Scholes en t discret Université de Provence Préparation Agrégation Epreuve de Modélisation, Option Proba. Texte : La formule de Black Scholes en Finance Étienne Pardoux 1 La formule de Black et Scholes en t discret On suppose

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail

Population responses to environmental forcing : approaches to model and monitor habitat characteristics

Population responses to environmental forcing : approaches to model and monitor habitat characteristics Approche systémique des pêches Boulogne-sur sur-mer 2008 Population responses to environmental forcing : approaches to model and monitor habitat characteristics Pierre Petitgas (1), M. Huret (1), B. Planque

Plus en détail

UNIVERSITÉ PARIS DESCARTES

UNIVERSITÉ PARIS DESCARTES UNIVERSITÉ PARIS DESCARTES MASTER Domaine DROIT, ÉCONOMIE, GESTION Mention MONNAIE,BANQUE, FINANCE, ASSURANCE Spécialité RISQUE, ASSURANCE, DÉCISION 2014 / 2015 Z.Trocellier Directeurs Pr Kouroche VAFAÏ

Plus en détail

Le bootstrap expliqué par l exemple

Le bootstrap expliqué par l exemple Le bootstrap expliqué par l exemple 1 Le bootstrap expliqué par l exemple 1. Les concepts du bootstrap 2. Des variantes adaptées au contexte 3. Comparaison des différentes méthodes 4. Les cas sensibles

Plus en détail

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay pascal.pernot@u-psud.fr

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay pascal.pernot@u-psud.fr Modélisation prédictive et incertitudes P. Pernot Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay pascal.pernot@u-psud.fr Le concept de Mesure Virtuelle mesure virtuelle résultat d un modèle visant

Plus en détail

Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation

Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation Laurent Denis STATXPERT Journée technologique "Solutions de maintenance prévisionnelle adaptées à la production" FIGEAC,

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

PROJET MODELE DE TAUX

PROJET MODELE DE TAUX MASTER 272 INGENIERIE ECONOMIQUE ET FINANCIERE PROJET MODELE DE TAUX Pricing du taux d intérêt des caplets avec le modèle de taux G2++ Professeur : Christophe LUNVEN 29 Fevrier 2012 Taylan KUNAL - Dinh

Plus en détail

1 Design-based and model-based methods for estimating model parameters

1 Design-based and model-based methods for estimating model parameters Groupe de lecture Econométrie des données d'enquête Compte-rendu de la troisième réunion, 19 janvier 2015 La modélisation en théorie des sondages Suivi par Marine Guillerm et Ronan Le Saout Cette troisième

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,

Plus en détail

Projet TER - Master 1 SITN La statistique Bayésienne

Projet TER - Master 1 SITN La statistique Bayésienne Projet TER - Master 1 SITN La statistique Bayésienne Artemis TOUMAZI Encadré par Mme Anne Perrut 0.0 0.5 1.0 1.5.0.5 0.0 0. 0.4 0.6 0.8 1.0 1. 7 juin 013 À ma mère et mon père. Table des matières Introduction

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Mesure et gestion des risques d assurance

Mesure et gestion des risques d assurance Mesure et gestion des risques d assurance Analyse critique des futurs référentiels prudentiel et d information financière Congrès annuel de l Institut des Actuaires 26 juin 2008 Pierre THEROND ptherond@winter-associes.fr

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Une expérience de mathématiques appliquées en Grande Ecole

Une expérience de mathématiques appliquées en Grande Ecole Une expérience de mathématiques appliquées en Grande Ecole El Karoui Nicole Univ Paris VI / Ecole Polytechnique elkaroui@cmapx.polytechnique.fr 6 Novembre 2009 El Karoui Nicole (Labo de proba/ CMAP) Conf

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

MCMC et approximations en champ moyen pour les modèles de Markov

MCMC et approximations en champ moyen pour les modèles de Markov MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

APPORT DES RESEAUX BAYESIENS DANS LA PREVENTION DE LA DELINQUANCE

APPORT DES RESEAUX BAYESIENS DANS LA PREVENTION DE LA DELINQUANCE SûretéGlobale.Org La Guitonnière 49770 La Meignanne Téléphone : +33 241 777 886 Télécopie : +33 241 200 987 Portable : +33 6 83 01 01 80 Adresse de messagerie : c.courtois@sureteglobale.org APPORT DES

Plus en détail

Tâche 03 Approche hybride De la correction des erreurs à la sélection de variables

Tâche 03 Approche hybride De la correction des erreurs à la sélection de variables 31 décembre 2013 Georges-Marie Saulnier, William Castaings, Anne Johannet, Gérard Dreyfus Tâche 03 Approche hybride De la correction des erreurs à la sélection de variables Sommaire 1. INTRODUCTION...

Plus en détail

chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d

chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d Laboratoire de Mécanique et Ingénieriesnieries EA 3867 - FR TIMS / CNRS 2856 ER MPS Modélisation stochastique d un d chargement d amplitude variable à partir de mesures Application à l approche fiabiliste

Plus en détail

Chapitre 1. L algorithme génétique

Chapitre 1. L algorithme génétique Chapitre 1 L algorithme génétique L algorithme génétique (AG) est un algorithme de recherche basé sur les mécanismes de la sélection naturelle et de la génétique. Il combine une stratégie de survie des

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour francour@unice.fr Une grande partie des illustrations viennent

Plus en détail

4 Distributions particulières de probabilités

4 Distributions particulières de probabilités 4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Une comparaison de méthodes de discrimination des masses de véhicules automobiles

Une comparaison de méthodes de discrimination des masses de véhicules automobiles p.1/34 Une comparaison de méthodes de discrimination des masses de véhicules automobiles A. Rakotomamonjy, R. Le Riche et D. Gualandris INSA de Rouen / CNRS 1884 et SMS / PSA Enquêtes en clientèle dans

Plus en détail

Introduction à la statistique non paramétrique

Introduction à la statistique non paramétrique Introduction à la statistique non paramétrique Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry http://stat.genopole.cnrs.fr/ cmatias Atelier SFDS 27/28 septembre 2012 Partie 2 : Tests non

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

Modélisation des lois multidimensionnelles par la théorie des copules

Modélisation des lois multidimensionnelles par la théorie des copules Modélisation des lois multidimensionnelles par la théorie des copules Grégoire Mercier jeudi 9 novembre 26 Contenu 2 Mesure de dépendance Lien avec les copules 3 Estimation de l information mutuelle Estimation

Plus en détail

Ordonnancement robuste et décision dans l'incertain

Ordonnancement robuste et décision dans l'incertain Ordonnancement robuste et décision dans l'incertain 4 ème Conférence Annuelle d Ingénierie Système «Efficacité des entreprises et satisfaction des clients» Centre de Congrès Pierre Baudis,TOULOUSE, 2-4

Plus en détail

Le risque Idiosyncrasique

Le risque Idiosyncrasique Le risque Idiosyncrasique -Pierre CADESTIN -Magali DRIGHES -Raphael MINATO -Mathieu SELLES 1 Introduction Risque idiosyncrasique : risque non pris en compte dans le risque de marché (indépendant des phénomènes

Plus en détail

Minimisation de coût de l énergie de pompage Cas du Canal haut service des Doukkala. Pr. A. Oulhaj 1, A. Aboussaleh 1

Minimisation de coût de l énergie de pompage Cas du Canal haut service des Doukkala. Pr. A. Oulhaj 1, A. Aboussaleh 1 Résumé La hausse continue du coût de l'énergie et la rareté de l'eau rendent plus complexe la gestion de l'eau dans les périmètres irrigués. Ainsi au cours des deux dernières décennies, le prix de l'énergie

Plus en détail

Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr

Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr Introduction à la théorie des files d'attente Claude Chaudet Claude.Chaudet@enst.fr La théorie des files d'attente... Principe: modélisation mathématique de l accès à une ressource partagée Exemples réseaux

Plus en détail

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,zguessoum@usthb.dz

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Analyse des risques financiers

Analyse des risques financiers Analyse des risques financiers Version du 1 er octobre 2014 Cette fiche s'adresse aux services de l État mandatés pour mener une analyse financière et est susceptible de contribuer à la définition du niveau

Plus en détail

LA PREVISION DU TAUX DE CHANGE. Finance internationale, 9 ème éd. Y. Simon & D. Lautier

LA PREVISION DU TAUX DE CHANGE. Finance internationale, 9 ème éd. Y. Simon & D. Lautier LA PREVISION DU TAUX DE CHANGE 1 Qui cherche à prévoir? Les entreprises Les banques Les fonds d investissement Les investisseurs institutionnels Pourquoi chercher à prévoir? Créances et dettes en devises

Plus en détail

Projetde SériesTemporelles

Projetde SériesTemporelles COMMUNAUTE ECONOMIQU E ET MONETAIRE DE L AFRIQUE CENTRALE (CEMAC) INSTITUT SOUS REGIONAL DE STATISTIQUES ET D ECONOMIE APPLIQUEE (ISSEA) Projetde SériesTemporelles MODELISATION DE LA RENTABILITE DE L INDICE

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Théorie de la viabilité: application à un agroécosystème prairial. Rodolphe Sabatier, Muriel Tichit 05-12-2012

Théorie de la viabilité: application à un agroécosystème prairial. Rodolphe Sabatier, Muriel Tichit 05-12-2012 INRA UMR SADAPT Théorie de la viabilité: application à un agroécosystème prairial Rodolphe Sabatier, Muriel Tichit 05-12-2012 rodolphe.sabatier@agroparistech.fr Plan Théorie de la viabilité: concepts et

Plus en détail

TECH. INFOTECH # 34 Solvabilité 2 : Le calcul du capital économique dans le cadre d un modèle interne. Introduction

TECH. INFOTECH # 34 Solvabilité 2 : Le calcul du capital économique dans le cadre d un modèle interne. Introduction INFO # 34 dans le cadre d un modèle interne Comment les méthodes d apprentissage statistique peuvent-elles optimiser les calculs? David MARIUZZA Actuaire Qualifié IA Responsable Modélisation et Solvabilité

Plus en détail

Etude expérimentale et numérique de la Sédimentation/Consolidation de sols à très forte teneur en eau

Etude expérimentale et numérique de la Sédimentation/Consolidation de sols à très forte teneur en eau Etude expérimentale et numérique de la Sédimentation/Consolidation de sols à très forte teneur en eau Gilbert LE BRAS (IUT de st nazaire, Dépt. Génie Civil) Alain ALEXIS (GeM) 1/42 Introduction Domaine

Plus en détail

MODÉLISATION DU FONCTIONNEMENT EN PARALLELE À DEUX OU PLUSIEURS POMPES CENTRIFUGES IDENTIQUES OU DIFFERENTES

MODÉLISATION DU FONCTIONNEMENT EN PARALLELE À DEUX OU PLUSIEURS POMPES CENTRIFUGES IDENTIQUES OU DIFFERENTES Annals of the University of Craiova, Electrical Engineering series, No. 30, 006 MODÉLISATION DU FONCTIONNEMENT EN PARALLELE À DEUX OU PLUSIEURS POMPES CENTRIFUGES IDENTIQUES OU DIFFERENTES Daniela POPESCU,

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab

l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab scilab à l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab Tests de comparaison pour l augmentation du volume de précipitation 13 février 2007 (dernière date de mise à jour) Table

Plus en détail

Modélisation mathématique et finance des produits dérivés

Modélisation mathématique et finance des produits dérivés Modélisation mathématique et finance des produits dérivés Ecole Polytechnique Paris Académie Européenne Interdisciplinaire des Sciences Paris, 28 novembre 2011 Outline Introduction 1 Introduction 2 3 Qu

Plus en détail

Modélisation géostatistique des débits le long des cours d eau.

Modélisation géostatistique des débits le long des cours d eau. Modélisation géostatistique des débits le long des cours d eau. C. Bernard-Michel (actuellement à ) & C. de Fouquet MISTIS, INRIA Rhône-Alpes. 655 avenue de l Europe, 38334 SAINT ISMIER Cedex. Ecole des

Plus en détail