Couche réseau du modèle OSI

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Couche réseau du modèle OSI"

Transcription

1 Chapitre 5 Exploration La couche Réseau IP - Page 1 sur 48 Couche réseau du modèle OSI Nous avons vu la manière dont les applications et services réseau d un périphérique final peuvent communiquer avec des applications et services s exécutant sur un autre périphérique. Nous allons à présent, comme le montre la figure, étudier la façon dont ces données sont transmises efficacement sur le réseau (du périphérique final, ou hôte, source à l hôte de destination). Les protocoles de la couche réseau du modèle OSI définissent l adressage et les processus qui permettent la préparation et le transport des données de la couche transport. L encapsulation de la couche réseau permet de transmettre son contenu à la destination, au sein d un réseau ou sur un autre, avec une surcharge minimale. Ce chapitre souligne le rôle de la couche réseau, en examinant la manière dont elle divise des réseaux en groupes d hôtes pour gérer le flux des paquets de données au sein d un réseau. Nous verrons également comment la communication entre réseaux est facilitée. Cette communication entre réseaux est appelée routage. Objectifs pédagogiques À l issue de ce chapitre, vous serez en mesure d effectuer les tâches suivantes : déterminer le rôle de la couche réseau dans la description de la communication entre deux périphériques finaux ; examiner le protocole de couche réseau le plus courant, IP (Internet Protocol), et ses caractéristiques pour fournir un service d acheminement «au mieux», sans connexion ; comprendre les principes utilisés pour guider la division, ou le groupement, des périphériques dans les réseaux ; comprendre l'adressage hiérarchique des périphériques et comment ceci permet la communication entre réseaux ; comprendre les notions de base relatives aux routes, aux adresses de tronçon suivant et au transfert de paquets vers un réseau de destination.

2 Chapitre 5 Exploration La couche Réseau IP - Page 2 sur 48 1/ Communication entre deux hôtes 1/ IPV4 La couche réseau, ou couche 3 OSI, fournit des services pour l échange des éléments de données individuels sur le réseau entre des périphériques finaux identifiés. Pour effectuer ce transport de bout en bout, la couche 3 utilise quatre processus de base : l adressage ; l encapsulation ; le routage ; le décapsulage. L animation de la figure illustre l échange de données. Adressage La couche réseau doit d abord fournir un mécanisme pour l adressage de ces périphériques finaux. Si des éléments de données individuels doivent être acheminés vers un périphérique final, ce dernier doit posséder une adresse unique. Dans un réseau IPv4, lorsque cette adresse est ajoutée à un périphérique, celui-ci est alors désigné comme hôte. Encapsulation

3 Chapitre 5 Exploration La couche Réseau IP - Page 3 sur 48 La couche réseau doit également fournir une encapsulation. Non seulement les périphériques doivent être identifiés par une adresse, mais les éléments individuels (unités de données de protocole de couche réseau) doivent également contenir ces adresses. Durant le processus d encapsulation, la couche 3 reçoit l unité de données de protocole de la couche 4 et ajoute un entête de couche 3, ou étiquette, pour créer l unité de données de protocole de couche 3. Dans un contexte de couche réseau, cette unité de données de protocole est appelée paquet. Lors de la création d un paquet, l en-tête doit contenir, entre autres, l adresse de l hôte auquel il est envoyé. Cette adresse est appelée adresse de destination. L en-tête de la couche 3 comporte également l adresse de l hôte émetteur. Cette adresse est appelée adresse source. Une fois que la couche réseau termine son processus d encapsulation, le paquet est envoyé à la couche liaison de données pour être préparé pour le transport via les médias. Routage La couche réseau doit ensuite fournir des services pour diriger ces paquets vers leur hôte de destination. Les hôtes source et de destination ne sont pas toujours connectés au même réseau. En fait, le paquet peut avoir de nombreux réseaux à traverser. En route, chaque paquet doit être guidé sur le réseau afin d atteindre sa destination finale. Les périphériques intermédiaires connectant les réseaux sont appelés routeurs. Leur rôle consiste à sélectionner les chemins afin de diriger les paquets vers leur destination. Ce processus est appelé routage. Durant le routage via un interréseau, le paquet peut traverser de nombreux périphériques intermédiaires. Chaque route empruntée par un paquet pour atteindre le périphérique suivant est appelée saut. Lors de l acheminement du paquet, son contenu (unité de données de protocole de la couche transport) reste intact jusqu à ce qu il atteigne l hôte de destination. Décapsulage Enfin, le paquet arrive sur l hôte de destination et est traité par la couche 3. L hôte examine l adresse de destination pour vérifier que le paquet était bien adressé à ce périphérique. Si l adresse est correcte, le paquet est décapsulé par la couche réseau, et l unité de données de protocole de la couche 4 contenue dans le paquet est transmise au service approprié de la couche transport. Contrairement à la couche transport (couche 4 OSI), qui gère le transport des données entre les processus s exécutant sur chaque hôte final, les protocoles de couche réseau spécifient la structure et le traitement des paquets utilisés pour transporter les données d un hôte à un autre. Un fonctionnement indépendant des données d application transportées dans chaque paquet permet à la couche réseau d acheminer des paquets pour plusieurs types de communications entre des hôtes multiples.

4 Chapitre 5 Exploration La couche Réseau IP - Page 4 sur 48 Protocoles de couche réseau Les protocoles mis en œuvre dans la couche réseau qui transportent des données utilisateur comprennent : o Protocole IP version 4 (IPv4) o Protocole IP version 6 (IPv6) o Protocole IPX de Novell o AppleTalk o CLNS (Connectionless Network Service)/DECNet Le protocole IP (IPv4 et IPv6) constitue le protocole de transport de données de couche 3 le plus répandu et fait l objet de ce cours. Les autres protocoles ne seront qu abordés.

5 Chapitre 5 Exploration La couche Réseau IP - Page 5 sur 48 2/ Exemple de protocole de couche réseau Rôle du protocole IPv4 Comme l illustre la figure, les services de couche réseau mis en œuvre par la suite de protocoles TCP/IP constituent le protocole IP (Internet Protocol). La version 4 du protocole IP (IPv4) est actuellement la version la plus répandue. Il s agit du seul protocole de couche 3 utilisé pour transporter des données utilisateur sur Internet, et il est au centre du programme CCNA. Par conséquent, nous l utiliserons comme exemple de protocoles de couche réseau dans ce cours. Le protocole IP version 6 (IPv6), opérationnel, est peu à peu mis en œuvre. IPv6 fonctionnera parallèlement à IPv4 avant de le supplanter éventuellement dans le futur. Les services fournis par IP, ainsi que la structure et le contenu de l en-tête de paquet, sont spécifiés par le protocole IPv4 ou IPv6. Ces services et la structure de paquet sont utilisés pour encapsuler des datagrammes UDP ou des segments TCP pour leur transport dans un interréseau. Les caractéristiques de chaque protocole sont différentes. Leur compréhension vous permettra de saisir le fonctionnement des services décrits par ce protocole. Le protocole IP a été conçu pour ne pas surcharger les réseaux. Il fournit uniquement les fonctions requises pour transférer un paquet d une source à une destination en passant par un système interconnecté de réseaux. Ce protocole n est pas destiné au suivi et à la gestion du flux de paquets. Ces fonctions sont effectuées par d autres protocoles d autres couches. Caractéristiques de base du protocole IPv4 : Sans connexion : aucune connexion n est établie avant l envoi de paquets de données. Au mieux (peu fiable) : aucune surcharge n est utilisée pour garantir la transmission des paquets.

6 Chapitre 5 Exploration La couche Réseau IP - Page 6 sur 48 Indépendant des médias : fonctionne indépendamment du média transportant les données. 4/ Protocole IPV4 : sans connexion Service sans connexion L envoi d une lettre sans en avertir le destinataire à l avance constitue un exemple de communication sans connexion. Comme l illustre la figure, le service postal prend néanmoins la lettre et la délivre au destinataire. Les communications de données sans connexion fonctionnent sur le même principe. Les paquets IP sont envoyés sans avertir l hôte final de leur arrivée. Les protocoles orientés connexion, tels que TCP, exigent l échange de données de contrôle pour établir la connexion, ainsi que des champs supplémentaires dans l en-tête d unité de données de protocole. Le protocole IP étant sans connexion, il ne nécessite aucun échange initial d informations de contrôle pour établir une connexion de bout en bout avant le transfert des paquets, ni de champs supplémentaires dans l en-tête d unité de données de protocole pour maintenir cette connexion. Ce processus réduit considérablement la surcharge d IP. Cependant, la transmission de paquets sans connexion peut entraîner leur arrivée à destination hors séquence. Si des paquets dans le désordre ou manquants génèrent des problèmes pour l application utilisant les données, des services de couche supérieure devront résoudre ces incidents.

7 Chapitre 5 Exploration La couche Réseau IP - Page 7 sur 48 5/ Protocole IPV4 : au mieux (peu fiable) Service au mieux (peu fiable) Le protocole IP ne charge pas le service IP d assurer la fiabilité. Comparé à un protocole fiable, l entête IP est plus petit. Le transport de ces en-têtes plus petits exige donc moins de surcharge. Et qui dit moins de surcharge dit moins de retard, ce qui est souhaitable pour un protocole de couche 3.

8 Chapitre 5 Exploration La couche Réseau IP - Page 8 sur 48 En effet, le rôle de la couche 3 consiste à transporter les paquets entre les hôtes tout en imposant le moins de charge possible au réseau. La couche 3 n est pas concernée par le type de communication contenu à l intérieur d un paquet, ou même l ignore. Cette responsabilité est le rôle des couches supérieures, selon les besoins. Les couches supérieures peuvent décider si la communication entre les services doit être fiable et si elle peut tolérer la surcharge qu implique cette fiabilité. Le protocole IP est souvent qualifié de protocole non fiable. Dans ce contexte, cela ne signifie pas qu il fonctionne parfois bien, parfois moins bien. Cela ne veut pas dire non plus qu il ne convient pas comme protocole de communications de données. Peu fiable signifie simplement que le protocole IP n a pas la capacité de gérer ni de récupérer des paquets non délivrés ou corrompus. Dans la mesure où des protocoles d autres couches peuvent gérer la fiabilité, le protocole IP est autorisé à fonctionner très efficacement au niveau de la couche réseau. Si la surcharge liée à la fiabilité était incluse dans notre protocole de couche 3, les communications n exigeant pas de connexions ou de fiabilité seraient grevées de la consommation de bande passante et du retard associés à cette surcharge. Dans la suite TCP/IP, la couche transport peut choisir TCP ou UDP, selon les besoins de la communication. Comme avec toute isolation de couche fournie par des modèles de réseau, laisser la décision de la fiabilité à la couche transport permet au protocole IP d être plus adaptable et plus pratique pour différents types de communications. L en-tête d un paquet IP ne comprend pas de champs requis pour la transmission fiable de données. La livraison des paquets ne fait l objet d aucun reçu. Il n y a aucun contrôle d erreur de données. En l absence également de toute forme de suivi des paquets, il n existe aucune possibilité de retransmissions.

9 Chapitre 5 Exploration La couche Réseau IP - Page 9 sur 48 6/ Protocole IPV4 : indépendant du média Indépendant du média La couche réseau n est pas non plus grevée des caractéristiques des médias transportant les paquets. IPv4 et IPv6 fonctionnent indépendamment des médias acheminant les données dans les couches inférieures de la pile de protocoles. Comme l illustre la figure, tout paquet IP peut être communiqué électriquement par câble, sous forme de signaux optiques par fibre, ou sans fil sous la forme de signaux radio. Il incombe à la couche liaison de données OSI de prendre un paquet IP et de le préparer pour la transmission via le média choisi. Ainsi, le transport de paquets IP n est pas limité à un média donné. La couche réseau tient compte, cependant, d une caractéristique majeure : la taille maximale d unité de données de protocole que chaque média peut transporter. Cette caractéristique est désignée comme unité de transmission maximale (MTU). Une partie de la communication de contrôle entre la couche liaison de données et la couche réseau est l établissement d une taille maximale pour le paquet. La couche liaison de données transmet la MTU de manière ascendante à la couche réseau. Cette dernière détermine alors la taille de création des paquets.

10 Chapitre 5 Exploration La couche Réseau IP - Page 10 sur 48 Dans certains cas, un périphérique intermédiaire (généralement, un routeur) devra scinder un paquet lors de sa transmission d un média à un autre avec une MTU inférieure. Ce processus est appelé fragmentation du paquet ou simplement fragmentation. Liens : RFC / Empaquetage de l'unité de données de protocole de la couche transport IPv4 encapsule, ou empaquette, le datagramme ou segment de la couche transport pour que le réseau puisse le délivrer à l hôte de destination. Cliquez sur les étapes de la figure pour voir ce processus. L encapsulation IPv4 reste en place du moment où le paquet quitte la couche réseau de l hôte émetteur jusqu à son arrivée dans la couche réseau de l hôte de destination. Le processus d encapsulation de données par couche permet aux services des différentes couches de se développer et d évoluer sans affecter d autres couches. Ceci signifie que des segments de couche transport peuvent être facilement encapsulés par des protocoles de couche réseau existants, comme IPv4 et IPv6, ou par tout nouveau protocole pouvant être mis au point dans le futur. Les routeurs peuvent mettre en œuvre ces différents protocoles de couche réseau pour fonctionner simultanément sur un réseau vers et depuis les mêmes hôtes ou des hôtes différents. Le routage effectué par ces périphériques intermédiaires tient compte uniquement du contenu de l en-tête de paquet qui encapsule le segment.

11 Chapitre 5 Exploration La couche Réseau IP - Page 11 sur 48 Dans tous les cas, la partie données du paquet (à savoir l unité de données de protocole de couche transport encapsulée) reste inchangée durant les processus de couche réseau.

12 Chapitre 5 Exploration La couche Réseau IP - Page 12 sur 48 7/ En-tête de paquet IPV4 Comme l illustre la figure, un protocole IPv4 définit de nombreux champs différents dans l en-tête de paquet. Ces champs contiennent des valeurs binaires que les services IPv4 référencent lors de la transmission de paquets sur le réseau. Ce cours examine les 6 champs clés suivants : Adresse source IP Adresse de destination IP Durée de vie (TTL) Type de service (ToS) Protocole Décalage du fragment Champs clés d en-tête IPv4

13 Chapitre 5 Exploration La couche Réseau IP - Page 13 sur 48 Adresse de destination IP Le champ d adresse de destination IP contient une valeur binaire de 32 bits représentant l adresse de couche réseau de l hôte destinataire du paquet. Adresse source IP Le champ d adresse source IP contient une valeur binaire de 32 bits représentant l adresse de de couche réseau de l hôte source du paquet. Durée de vie La durée de vie (TTL, Time to live) est une valeur binaire de 8 bits indiquant la durée de vie restante du paquet. La valeur TTL est décrémentée de 1 au moins chaque fois que le paquet est traité par un routeur (c est-à-dire à chaque saut). Lorsque la valeur devient nulle, le routeur supprime ou abandonne le paquet et il est retiré du flux de données du réseau. Ce mécanisme évite que les paquets ne pouvant atteindre leur destination ne soient transférés indéfiniment d un routeur à l autre dans une boucle de routage. Si les boucles de routage étaient autorisées à continuer, le réseau serait encombré de paquets de données n atteignant jamais leur destination. Décrémenter la valeur TTL à chaque saut garantit qu elle finira par devenir nulle et que le paquet avec le champ TTL expiré sera supprimé. Protocole Cette valeur binaire de 8 bits indique le type de données utiles que le paquet transporte. Le champ de protocole permet à la couche réseau de transmettre les données au protocole de couche supérieure approprié. Exemples de valeurs : Type de service 01 ICMP 06 TCP 17 UDP Le champ de type de service contient une valeur binaire de 8 bits utilisée pour définir la priorité de chaque paquet. Cette valeur permet d appliquer un mécanisme de qualité de service (QS) aux paquets de priorité élevée, tels que ceux transportant des données vocales de téléphonie. Le routeur traitant les paquets peut être configuré pour déterminer le paquet à transmettre en premier en fonction de la valeur de type de service. Décalage du fragment Comme mentionné précédemment, un routeur peut devoir fragmenter un paquet lors de sa transmission d un média à un autre de MTU inférieure. Lorsqu une fragmentation se produit, le paquet IPv4 utilise le champ de décalage du fragment et l indicateur MF de l en-tête IP pour

14 Chapitre 5 Exploration La couche Réseau IP - Page 14 sur 48 reconstruire le paquet à son arrivée sur l hôte de destination. Le champ de décalage du fragment identifie l ordre dans lequel placer le fragment de paquet dans la reconstruction. Indicateur de fragments supplémentaires L indicateur de fragments supplémentaires (MF) est un seul bit du champ Indicateur utilisé avec le décalage du fragment pour la fragmentation et la reconstruction de paquets. L indicateur de fragments supplémentaires est défini, indiquant qu il ne s agit pas du dernier fragment d un paquet. Quand un hôte récepteur voit un paquet arriver avec l indicateur MF = 1, il examine le décalage du fragment pour voir où ce fragment doit être placé dans le paquet reconstruit. Quand un hôte récepteur reçoit une trame avec l indicateur MF = 0 et une valeur non nulle dans le champ de décalage du fragment, il place ce fragment à la fin du paquet reconstruit. Les informations de fragmentation d un paquet non fragmenté sont toutes nulles (MF = 0, décalage du fragment = 0). Indicateur Ne pas fragmenter L indicateur Ne pas fragmenter (DF) est un seul bit du champ Indicateur stipulant que la fragmentation du paquet n est pas autorisée. Si le bit de l indicateur Ne pas fragmenter est défini, la fragmentation de ce paquet n est PAS autorisée. Si un routeur doit fragmenter un paquet pour permettre sa transmission descendante à la couche liaison de données mais que le bit DF est défini à 1, le routeur supprime ce paquet. Liens : RFC Pour une liste complète des valeurs du champ de numéro de protocole IP Autres champs de l en-tête IPv4 Version : contient le numéro de version IP (4). Longueur d en-tête (IHL) : spécifie la taille de l en-tête de paquet.

15 Chapitre 5 Exploration La couche Réseau IP - Page 15 sur 48 Longueur du paquet : ce champ donne la taille du paquet entier, en-tête et données compris, en octets. Identification : ce champ sert principalement à identifier de manière unique les fragments d un paquet IP d origine. Somme de contrôle d en-tête : le champ de somme de contrôle est utilisé pour vérifier l absence d erreurs dans l en-tête de paquet. Options : des champs supplémentaires sont prévus dans l en-tête IPv4 afin de fournir d autres services, mais ils sont rarement utilisés. Paquet IP type La figure représente un paquet IP complet avec des valeurs de champ d en-tête types. Ver = 4 : version IP. IHL = 5 : taille d en-tête en mots de 32 bits (4 octets). Cet en-tête est de 5*4 = 20 octets, la taille minimale valide. Longueur totale = 472 : la taille de paquet (en-tête et données) est de 472 octets. Identification = 111 : identifiant de paquet initial (requis s il est fragmenté par la suite). Indicateur = 0 : stipule que le paquet peut être fragmenté si nécessaire. Décalage du fragment = 0 : indique que ce paquet n est pas fragmenté actuellement (absence de décalage).

16 Chapitre 5 Exploration La couche Réseau IP - Page 16 sur 48 Durée de vie = 123 : indique le temps de traitement de la couche 3 en secondes avant abandon du paquet (décrémenté d au moins 1 chaque fois qu un périphérique traite l en-tête de paquet). Protocole = 6 : indique que les données transportées par ce paquet constituent un segment TCP. 2/ Division des hôtes en groupe 1/ Séparation des hôtes en groupes communs Un des principaux rôles de la couche réseau est de fournir un mécanisme d adressage des hôtes. À mesure que le nombre d hôtes augmente, la gestion et l adressage du réseau exigent davantage de planification. Division de réseaux Au lieu d avoir tous les hôtes partout connectés à un seul vaste réseau global, il s avère plus pratique et gérable de les grouper en réseaux spécifiques. Historiquement, les réseaux IP constituent à l origine un grand réseau. À mesure que ce réseau unique s est étendu, les soucis liés à sa croissance ont également augmenté. Pour réduire ces problèmes, le grand réseau a été séparé en réseaux plus petits, interconnectés. Ces réseaux plus petits sont souvent appelés sous-réseaux. Réseau et sous-réseau sont des termes souvent utilisés de manière interchangeable pour désigner tout système de réseau rendu possible par les protocoles de communication communs partagés du modèle TCP/IP. De même, à mesure que nos réseaux s étendent, ils peuvent devenir trop grands pour être gérés comme un seul réseau. Il convient alors de diviser le réseau. La planification de la division du réseau implique de regrouper dans le même réseau les hôtes ayant des facteurs communs. Comme l illustre la figure, les réseaux peuvent être groupés en fonction de facteurs incluant : Emplacement géographique Objectif Propriété

17 Chapitre 5 Exploration La couche Réseau IP - Page 17 sur 48 Regroupement géographique des hôtes Les hôtes du réseau peuvent être groupés géographiquement. Le regroupement des hôtes d un même emplacement (comme chaque bâtiment d un campus ou chaque étage d un immeuble) dans des réseaux distincts peut améliorer la gestion et le fonctionnement du réseau. Groupement d hôtes pour des objectifs spécifiques

18 Chapitre 5 Exploration La couche Réseau IP - Page 18 sur 48 Les utilisateurs ayant des tâches similaires emploient en principe des logiciels et des outils communs, avec des caractéristiques de trafic identiques. Il est souvent possible de réduire le trafic requis par l utilisation de logiciels et d outils spécifiques en plaçant les ressources destinées à leur prise en charge sur le réseau avec les utilisateurs. Le volume de trafic de données réseau généré par différentes applications peut varier de manière significative. La division de réseaux en fonction de l utilisation facilite l allocation efficace de ressources réseau ainsi que l accès autorisé à ces ressources. Les professionnels des réseaux doivent équilibrer le nombre d hôtes d un réseau avec le volume de trafic généré par les utilisateurs. Par exemple, prenons une société qui emploie des graphistes utilisant le réseau pour partager des fichiers multimédia très volumineux. Ces fichiers occupent l essentiel de la bande passante disponible pratiquement toute la journée. La société emploie également des vendeurs qui se connectent une fois par jour pour enregistrer leurs transactions, ce qui génère un trafic réseau minimal. Dans cette situation, une utilisation optimale des ressources réseau consisterait à créer plusieurs petits réseaux auxquels quelques graphistes auraient accès et un réseau plus grand à l usage de tous les vendeurs. Groupement d hôtes par propriété La création de réseaux en fonction de l organisation (entreprise, service) permet de mieux contrôler l accès aux périphériques et données, et facilite l administration des réseaux. Dans un grand réseau, il est bien plus difficile pour le personnel réseau de définir et de limiter les responsabilités. La division des hôtes en réseaux distincts fournit une frontière pour la mise en place de la sécurité et la gestion de chaque réseau.

19 Chapitre 5 Exploration La couche Réseau IP - Page 19 sur 48 Liens : Conception de réseau 2/ Pourquoi séparer les hôtes : la performance Comme mentionné précédemment, à mesure que les réseaux s étendent, ils présentent des problèmes qui peuvent être au moins partiellement allégés en divisant le réseau en réseaux plus petits, interconnectés. Les problèmes courants rencontrés par les grands réseaux sont les suivants : Dégradation des performances Problèmes de sécurité Gestion des adresses Amélioration des performances Un grand nombre d hôtes connectés au même réseau peut produire des volumes de trafic de données qui peuvent utiliser au maximum, voire épuiser les ressources réseau telles que la bande passante et les capacités de routage. La division des grands réseaux de façon à regrouper les hôtes devant communiquer réduit le trafic entre les interréseaux. En plus des communications de données proprement dites entre les hôtes, le trafic lié à la gestion et au contrôle du réseau (surcharge) augmente également avec le nombre d hôtes. Les diffusions réseau peuvent contribuer de manière importante à cette surcharge.

20 Chapitre 5 Exploration La couche Réseau IP - Page 20 sur 48 Une diffusion est un message envoyé à partir d un hôte à tous les autres hôtes du réseau. En général, un hôte lance une diffusion lorsque des informations concernant un autre hôte inconnu sont requises. Les diffusions constituent un outil nécessaire et utile employé par les protocoles pour permettre la communication de données sur les réseaux. Cependant, des hôtes nombreux génèrent aussi un nombre important de diffusions qui occupent la bande passante du réseau. De plus, tous les autres hôtes devant traiter le paquet de diffusion reçu, les autres fonctions productives de l hôte sont également interrompues ou altérées. Les diffusions sont contenues dans un réseau. Dans ce contexte, un réseau est également appelé domaine de diffusion. La gestion de la taille des domaines de diffusion en divisant un réseau en sousréseaux évite une dégradation inacceptable des performances du réseau et des hôtes.

21 Chapitre 5 Exploration La couche Réseau IP - Page 21 sur 48 3/ La sécurité Le réseau IP à l origine d Internet comptait un petit nombre d utilisateurs de confiance d agences gouvernementales américaines et des organismes de recherche qu elles sponsorisaient. Dans cette petite communauté, la sécurité n était pas un problème important. La situation a changé à mesure que des individus, des entreprises et des organisations ont mis au point leurs propres réseaux IP connectés à Internet. Les périphériques, services, communications et données appartiennent à ces propriétaires de réseaux. Les périphériques réseau d autres sociétés et organisations n ont pas besoin de se connecter à leur réseau. La division de réseaux en fonction de la propriété signifie que l accès à et à partir des ressources à l extérieur de chaque réseau peut être interdit, autorisé ou surveillé. L accès à l interréseau à l intérieur d une société ou organisation peut être sécurisé de manière similaire. Par exemple, le réseau d une université peut être divisé en sous-réseaux administratif, de recherche et d étudiants. La division d un réseau en fonction de l accès utilisateur constitue un moyen de sécuriser les communications et données contre un accès non autorisé par des utilisateurs situés à la fois dans l organisation et en dehors. La sécurité entre les réseaux est mise en œuvre dans un périphérique intermédiaire (routeur ou dispositif de pare-feu) au périmètre du réseau. La fonction de pare-feu remplie par ce périphérique permet uniquement aux données connues et de confiance d accéder au réseau.

22 Chapitre 5 Exploration La couche Réseau IP - Page 22 sur 48 4/ La gestion des adresses Internet se compose de millions d hôtes, identifiés individuellement par une adresse de couche réseau unique. S attendre à ce que chaque hôte connaisse l adresse de tout autre imposerait une charge de traitement sur ces périphériques réseau entraînant une grave dégradation de leurs performances. La division des grands réseaux de façon à regrouper les hôtes devant communiquer réduit la surcharge inutile de tous les hôtes devant connaître toutes les adresses.

23 Chapitre 5 Exploration La couche Réseau IP - Page 23 sur 48 Pour toutes les autres destinations, les hôtes ont uniquement besoin de connaître l adresse d un périphérique intermédiaire, auquel ils envoient des paquets pour toutes les autres adresses des destinations. Ce périphérique intermédiaire est appelé passerelle. La passerelle est un routeur sur un réseau servant de sortie de ce réseau. 5/ Adressage hierarchique Un adressage hiérarchique est nécessaire pour pouvoir diviser des réseaux. Une adresse hiérarchique identifie chaque hôte de manière unique. Elle comporte également des niveaux facilitant l acheminement de paquets entre des interréseaux, ce qui permet la division d un réseau en fonction de ces niveaux. Pour prendre en charge les communications de données entre réseaux via des interréseaux, les systèmes d adressage de couche réseau sont hiérarchiques. Comme l illustre la figure, les adresses postales sont des exemples types d adresses hiérarchiques. Supposons l envoi d une lettre du Japon à un employé travaillant chez Cisco Systems, Inc. La lettre serait adressée ainsi : Nom de l employé Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134

24 Chapitre 5 Exploration La couche Réseau IP - Page 24 sur 48 USA Quand une lettre est postée dans le pays d origine, l autorité postale examine uniquement le pays de destination et note que la lettre est destinée aux États-Unis. Aucun autre détail de l adresse n a besoin d être traité à ce stade. À l arrivée aux États-Unis, le bureau de poste regarde ensuite l état de destination. La ville, la rue et le nom de la société ne sont pas examinés si la lettre doit encore être acheminée dans l état approprié. Une fois en Californie, la lettre est dirigée vers San Jose. Le porteur local amène alors la lettre à West Tasman Drive, puis après consultation de l adresse, la délivre au numéro 170. Lorsque la lettre arrive effectivement dans les locaux de Cisco, le nom de l employé est utilisé pour l acheminer vers sa destination ultime. Se référer uniquement au niveau d adresse approprié (pays, état, ville, rue, numéro et employé) à chaque stade pour diriger la lettre vers le tronçon suivant rend ce processus très efficace. Il n est pas nécessaire à chaque stade d acheminement de connaître l emplacement exact de la destination ; la lettre a été orientée dans la direction générale jusqu à ce que le nom de l employé soit enfin utilisé à destination. Les adresses de couche réseau hiérarchiques fonctionnent de manière très similaire. Les adresses de couche 3 fournissent la partie réseau de l adresse. Les routeurs acheminent les paquets entre les réseaux en se référant uniquement à la partie de l adresse de couche réseau requise pour diriger le paquet vers le réseau de destination. Au moment où le paquet arrive sur le réseau de l hôte de destination, l ensemble de l adresse de destination de l hôte aura été utilisé pour acheminer le paquet.

25 Chapitre 5 Exploration La couche Réseau IP - Page 25 sur 48 Si un grand réseau doit être divisé en réseaux plus petits, des couches supplémentaires d adressage peuvent être créées. L utilisation d un système d adressage hiérarchique signifie que les niveaux supérieurs de l adresse (correspondant au pays dans l adresse postale) peuvent être conservés, avec le niveau intermédiaire indiquant les adresses réseau (état ou ville) et le niveau inférieur les hôtes individuels. 6/ Réseaux à partir de réseaux Si un grand réseau doit être divisé, des couches supplémentaires d adressage peuvent être créées. L utilisation d un adressage hiérarchique signifie que les niveaux supérieurs de l adresse sont conservés, avec un niveau sous-réseau, puis le niveau hôte. L adresse IPv4 32 bits logique est hiérarchique et constituée de deux parties. La première partie identifie le réseau, et la seconde un hôte de ce réseau. Les deux parties sont requises pour que l adresse IP soit complète. Pour plus de commodité, les adresses IPv4 sont divisées en quatre groupes de 8 bits (octets). Chaque octet est converti en valeur décimale et l adresse complète écrite sous la forme des quatre valeurs décimales séparées par un point. Exemple : Dans cet exemple, comme l illustre la figure, les trois premiers octets ( ) peuvent identifier la partie réseau de l adresse, et le dernier octet (57) identifie l hôte. Il s agit d un adressage hiérarchique car la partie réseau indique le réseau sur lequel se trouve chaque adresse d hôte unique. Les routeurs ont seulement besoin de savoir comment atteindre chaque réseau, sans connaître l emplacement de chaque hôte individuel. Avec l adressage hiérarchique IPv4, la partie réseau de l adresse de tous les hôtes d un réseau est la même. Pour diviser un réseau, la partie réseau de l adresse est étendue pour utiliser des bits de la partie hôte. Ces bits d hôte empruntés sont alors utilisés comme bits de réseau pour représenter les différents sous-réseaux compris dans le réseau d origine. Une adresse IPv4 comptant 32 bits, lorsque des bits d hôte sont utilisés pour diviser un réseau, plus le nombre de sous-réseaux créés est important, moins il y a d hôtes pour chaque sousréseau.cependant, quel que soit le nombre de sous-réseaux créés, l ensemble des 32 bits est requis pour identifier un hôte individuel. Le nombre de bits d une adresse utilisé comme partie réseau est appelé longueur de préfixe. Par exemple, si un réseau utilise 24 bits pour exprimer la partie réseau d une adresse, on parle de préfixe /24. Dans les périphériques d un réseau IPv4, un numéro de 32 bits distinct appelé masque de sousréseau indique le préfixe. Remarque : le chapitre 6 de ce cours traite en détail de l adressage réseau IPv4 et des sous-réseaux. L extension de la longueur de préfixe ou du masque de sous-réseau permet la création de ces sousréseaux. Les administrateurs réseau ont ainsi la possibilité de diviser les réseaux en fonctions des

26 Chapitre 5 Exploration La couche Réseau IP - Page 26 sur 48 besoins (emplacement, gestion des performances du réseau et sécurité), tout en garantissant que chaque hôte possède une adresse unique. Cependant, à des fins d explication, ce chapitre utilise les 24 premiers bits d une adresse IPv4 comme partie réseau. 3/ Routage : mode de traitement des paquets de données 1/ Paramétre des périphériques : prise en charge de la communication hors réseau Au sein d un réseau ou d un sous-réseau, les hôtes communiquent entre eux sans nécessiter de périphérique intermédiaire de couche réseau. Quand un hôte doit communiquer avec un autre réseau, un périphérique intermédiaire, ou routeur, sert de passerelle avec l autre réseau. Dans le cadre de sa configuration, un hôte reçoit une adresse de passerelle par défaut. Comme l illustre la figure, cette adresse de passerelle est l adresse d une interface de routeur connectée au même réseau que l hôte.

27 Chapitre 5 Exploration La couche Réseau IP - Page 27 sur 48 Gardez présent à l esprit qu il est impossible pour un hôte de connaître l adresse de chaque périphérique sur Internet avec lequel il peut devoir communiquer. Pour communiquer avec un périphérique sur un autre réseau, un hôte utilise l adresse de cette passerelle, ou passerelle par défaut, pour acheminer un paquet en dehors du réseau local. Le routeur a également besoin d une route définissant où acheminer le paquet ensuite. On parle d adresse du tronçon suivant. Si une route est disponible pour le routeur, ce dernier achemine le paquet vers le routeur de tronçon suivant qui offre un chemin vers le réseau de destination. 2/ Paquets IP : transport de données de bout en bout Comme vous le savez, le rôle de la couche réseau est de transférer des données de leur hôte d origine vers l hôte qui les utilise. Durant l encapsulation sur l hôte source, un paquet IP est construit dans la couche 3 pour transporter l unité de données de protocole de couche 4. Si l hôte de destination se trouve dans le même réseau que l hôte source, le paquet est acheminé entre les deux hôtes sur le média local sans nécessiter de routeur. Cependant, si l hôte de destination et l hôte source ne se trouvent pas dans le même réseau, le paquet peut transporter une unité de données de protocole de couche transport entre de nombreux réseaux et via de nombreux routeurs. Ce faisant, les informations contenues ne sont pas modifiées par les routeurs lors des décisions d acheminement.

28 Chapitre 5 Exploration La couche Réseau IP - Page 28 sur 48 À chaque saut, les décisions d acheminement sont basées sur les informations de l en-tête de paquet IP. Le paquet avec son encapsulation de couche réseau est aussi fondamentalement intact tout au long du processus complet, de l hôte source à l hôte de destination. Si la communication a lieu entre des hôtes de réseaux différents, le réseau local achemine le paquet de la source vers son routeur de passerelle. Le routeur examine la partie réseau de l adresse de destination du paquet et achemine le paquet à l interface appropriée. Si le réseau de destination est connecté directement à ce routeur, le paquet est acheminé directement vers cet hôte. Si le réseau de destination n est pas connecté directement, le paquet est acheminé vers un second routeur qui constitue le routeur de tronçon suivant. L acheminement du paquet devient alors la responsabilité de ce second routeur. De nombreux routeurs ou sauts tout au long du chemin peuvent traiter le paquet avant d atteindre la destination.

29 Chapitre 5 Exploration La couche Réseau IP - Page 29 sur 48

30 Chapitre 5 Exploration La couche Réseau IP - Page 30 sur 48

31 Chapitre 5 Exploration La couche Réseau IP - Page 31 sur 48 3/ Passerelle : sortie du réseau La passerelle, également appelée passerelle par défaut, est requise pour envoyer un paquet en dehors du réseau local. Si la partie réseau de l adresse de destination du paquet ne correspond pas au réseau de l hôte émetteur, le paquet doit être acheminé en dehors du réseau d origine. Pour ce faire, le paquet est envoyé à la passerelle. Cette passerelle est une interface de routeur connectée au réseau local. L interface de passerelle a une adresse de couche réseau correspondant à l adresse réseau des hôtes. Les hôtes sont configurés pour reconnaître cette adresse comme la passerelle. Passerelle par défaut La passerelle par défaut est configurée sur un hôte. Sur un ordinateur Windows, les outils Propriétés du protocole Internet (TCP/IP) permettent d entrer l adresse IPv4 de la passerelle par défaut. L adresse IPv4 de l hôte et l adresse de passerelle doivent avoir la même partie réseau (et sousréseau, le cas échéant) de leur adresse respective.

32 Chapitre 5 Exploration La couche Réseau IP - Page 32 sur 48 Confirmation de la passerelle et de la route Comme l illustre la figure, l adresse IP de la passerelle par défaut d un hôte peut être affichée en lançant les commandes ipconfig ou route sur la ligne de commande d un ordinateur Windows. La commande route est également utilisée sur un hôte Linux ou UNIX.

33 Chapitre 5 Exploration La couche Réseau IP - Page 33 sur 48

34 Chapitre 5 Exploration La couche Réseau IP - Page 34 sur 48 Aucun paquet ne peut être acheminé sans route. Que le paquet provienne d un hôte ou qu il soit acheminé par un périphérique intermédiaire, le périphérique a besoin d une route pour savoir où l acheminer. Un hôte doit transférer un paquet à l hôte du réseau local ou à la passerelle, selon le cas. Pour acheminer les paquets, l hôte doit disposer de routes représentant ces destinations. Un routeur prend une décision de transfert pour chaque paquet qui arrive à l interface de passerelle. Ce processus de transfert est appelé routage. Pour transférer un paquet vers un réseau de destination, le routeur a besoin d une route vers ce réseau. S il n existe aucune route vers un réseau de destination, le paquet ne peut pas être transféré. Le réseau de destination peut être éloigné de la passerelle par un certain nombre de routeurs ou de sauts. La route vers ce réseau n indique que le routeur de tronçon suivant vers lequel le paquet doit être transféré, et non le routeur final. Le processus de routage utilise une route pour mapper l adresse du réseau de destination au tronçon suivant, puis transfère le paquet à cette adresse de tronçon suivant.

35 Chapitre 5 Exploration La couche Réseau IP - Page 35 sur 48 5/ Route : chemin pour un réseau Une route pour les paquets pour des destinations distantes est ajoutée en utilisant l adresse de passerelle par défaut comme tronçon suivant. Bien que ce ne soit pas habituel, des routes peuvent également être ajoutées manuellement à un hôte via des configurations. Comme les périphériques finaux, les routeurs ajoutent également à leur table de routage des routes pour les réseaux connectés. Lorsqu une interface de routeur est configurée avec une adresse IP et un masque de sous-réseau, elle devient partie intégrante de ce réseau. La table de routage inclut alors ce réseau comme connecté directement. Cependant, toutes les autres routes doivent être configurées ou acquises via un protocole de routage. Pour transférer un paquet, le routeur doit savoir où l envoyer. Cette information est disponible sous forme de routes dans une table de routage. La table de routage stocke des informations sur les réseaux connectés et distants. Les réseaux connectés sont reliés directement à une des interfaces de routeur. Ces interfaces sont les passerelles pour les hôtes situés sur des réseaux locaux différents. Les réseaux distants ne sont pas directement connectés au routeur. Les routes vers ces réseaux peuvent être configurées manuellement sur le routeur par l administrateur réseau ou apprises automatiquement à l aide de protocoles de routage dynamiques. Les routes d une table de routage possèdent trois caractéristiques principales : Réseau de destination Tronçon suivant

36 Chapitre 5 Exploration La couche Réseau IP - Page 36 sur 48 Mesure Le routeur met en correspondance l adresse de destination de l en-tête de paquet avec le réseau de destination d une route dans la table de routage et transfère le paquet au routeur de tronçon suivant spécifié par cette route. Si deux ou plusieurs routes sont possibles pour la même destination, la mesure est utilisée pour décider la route qui apparaît dans la table de routage. Comme l illustre la figure, la table de routage d un routeur Cisco peut être examinée avec la commande show ip route. Remarque : le processus de routage et le rôle des mesures font l objet d un cours ultérieur dans lequel ils sont traités en détail. Comme vous le savez, les paquets ne peuvent pas être acheminés par le routeur sans route. Si une route représentant le réseau de destination ne figure pas dans la table de routage, le paquet est abandonné (non transféré). La route correspondante peut être une route connectée ou une route vers un réseau distant. Le routeur peut également utiliser une route par défaut pour transférer le paquet. La route par défaut est utilisée lorsque le réseau de destination n est représenté par aucune autre route dans la table de routage. Table de routage d hôte Un hôte crée les routes utilisées pour acheminer les paquets qu il émet. Ces routes sont dérivées du réseau connecté et de la configuration de la passerelle par défaut.

37 Chapitre 5 Exploration La couche Réseau IP - Page 37 sur 48 Les hôtes ajoutent automatiquement tous les réseaux connectés aux routes. Ces routes pour les réseaux locaux permettent d acheminer les paquets aux hôtes connectés à ces réseaux. Les hôtes ont également besoin d une table de routage locale pour s assurer que les paquets de couche réseau sont dirigés vers le réseau de destination correct. Contrairement à la table de routage d un routeur, qui contient à la fois des routes locales et distantes, la table locale de l hôte contient généralement sa (ou ses) connexion(s) directe(s) au réseau et sa propre route par défaut vers la passerelle. La configuration de l adresse de passerelle par défaut sur l hôte crée la route par défaut locale. Comme l illustre la figure, la table de routage d un hôte d ordinateur peut être examinée sur la ligne de commande en lançant les commandes netstat -r, route ou route PRINT. Dans certains cas, vous pouvez indiquer des routes plus spécifiques à partir d un hôte. Vous pouvez utiliser les options suivantes pour la commande route afin de modifier le contenu de la table de routage : route ADD route DELETE route CHANGE 5/ Réseau de destination Entrées de table de routage

38 Chapitre 5 Exploration La couche Réseau IP - Page 38 sur 48 Le réseau de destination indiqué dans une entrée de table de routage, appelée route, représente une plage d adresses d hôte et parfois une plage d adresses de réseau et d hôte. La nature hiérarchique de l adressage de couche 3 signifie qu une entrée de route peut faire référence à un grand réseau global et une autre à un sous-réseau de ce réseau. Lors du transfert d un paquet, le routeur sélectionne alors la route la plus spécifique. En reprenant l exemple précédent d adressage postal, imaginons l envoi de la même lettre du Japon à destination du 170 West Tasman Drive San Jose, California USA. Quelle adresse utiliseriez-vous : «USA», «San Jose California USA», «West Tasman Drive San Jose, California USA» ou «170 West Tasman Drive San Jose, California USA»? La quatrième adresse, plus spécifique, serait utilisée. Cependant, pour une autre lettre avec un numéro de rue inconnu, la troisième option offrirait la meilleure correspondance d adresse. De même, un paquet destiné au sous-réseau d un réseau plus grand serait acheminé en utilisant la route vers le sous-réseau. Toutefois, un paquet adressé à un sous-réseau différent du même réseau plus grand serait acheminé à l aide de l entrée plus générale. Comme l illustre la figure, si un paquet arrive à un routeur avec l adresse de destination , le routeur transfère le paquet à un routeur de tronçon suivant associé à une route vers le réseau Si aucune route vers ne figure dans le routage, mais qu une route vers est disponible, le paquet est transféré au routeur de tronçon suivant pour ce réseau. Par conséquent, la préséance de sélection de route pour le paquet allant à serait : (route par défaut si elle est configurée) Abandon

39 Chapitre 5 Exploration La couche Réseau IP - Page 39 sur 48 Route par défaut Un routeur peut être configuré pour posséder une route par défaut. Il s agit d une route qui correspond à tous les réseaux de destination. Dans les réseaux IPv4, l adresse est utilisée à cet effet. La route par défaut est utilisée pour transférer les paquets pour lesquels aucune entrée ne figure dans la table de routage pour le réseau de destination. Les paquets avec une adresse de réseau de destination ne correspondant pas à une route plus spécifique dans la table de routage sont transférés vers le routeur de tronçon suivant associé à la route par défaut.

40 Chapitre 5 Exploration La couche Réseau IP - Page 40 sur 48 6/ Tronçon suivant : où va le paquet? Le tronçon suivant est l adresse du périphérique qui va ensuite traiter le paquet. Pour un hôte sur un réseau, l adresse de la passerelle par défaut (interface de routeur) est le tronçon suivant pour tous les paquets destinés à un autre réseau. Dans la table de routage d un routeur, chaque route répertorie un tronçon suivant pour chaque adresse de destination englobée par la route. À l arrivée de chaque paquet sur un routeur, l adresse de réseau de destination est examinée et comparée aux routes de la table de routage. Si une route correspondante est déterminée, l adresse de tronçon suivant pour cette route est utilisée pour transférer le paquet vers sa destination. Le routeur transfère ensuite le paquet hors de l interface à laquelle le routeur de tronçon suivant est connecté. Le routeur de tronçon suivant est la passerelle vers des réseaux au-delà de cette destination intermédiaire. Les réseaux directement connectés à un routeur n ont pas d adresse de tronçon suivant car il n y a aucun périphérique de couche 3 intermédiaire entre le routeur et ce réseau. Le routeur peut transférer des paquets directement hors de l interface sur ce réseau vers l hôte de destination. Certaines routes peuvent avoir plusieurs tronçons suivants. Ceci indique la présence de plusieurs chemins vers le même réseau de destination. Il s agit de routes parallèles que le routeur peut utiliser pour transférer des paquets.

41 Chapitre 5 Exploration La couche Réseau IP - Page 41 sur 48 7/ Avancement du paquet vers sa destination Le routage s effectue paquet par paquet et saut par saut. Chaque paquet est traité de manière indépendante dans chaque routeur le long du chemin. À chaque saut, le routeur examine l adresse IP de destination pour chaque paquet, puis vérifie les informations de transfert dans la table de routage. Le routeur peut effectuer trois opérations avec le paquet : le transférer au routeur de tronçon suivant, le transférer à l hôte de destination, l abandonner. Examen du paquet En tant que périphérique intermédiaire, un routeur traite le paquet au niveau de la couche réseau. Cependant, les paquets qui arrivent sur les interfaces d un routeur sont encapsulés comme unité de données de protocole de couche liaison de données (couche 2). Comme l illustre la figure, le routeur élimine d abord l encapsulation de couche 2 pour pouvoir examiner le paquet. Sélection du tronçon suivant Dans le routeur, l adresse de destination d un en-tête de paquet est examinée. Si une route correspondante dans la table de routage montre que le réseau de destination est directement connecté au routeur, le paquet est transféré à l interface à laquelle est connecté ce réseau. Dans ce cas, il n y a pas de tronçon suivant. Pour être placé sur le réseau connecté, le paquet doit être d abord ré-encapsulé par le protocole de couche 2, puis transféré hors de l interface.

Les réseaux : Principes de fonctionnement d Internet

Les réseaux : Principes de fonctionnement d Internet Les réseaux : Principes de fonctionnement d Internet Table des matières 1. Le modèle TCP/IP... 2 2. Couche 1 ou couche physique... 3 3. Couche 2 ou couche liaison ou couche lien... 4 4. Couche 3 ou couche

Plus en détail

Communications sur un réseau : Notions de base et vocabulaire

Communications sur un réseau : Notions de base et vocabulaire 2 1 Les éléments de communication 1.1 Les éléments principaux d une communication Une communication démarre avec un message (ou des informations) qui doit être envoyé d un individu ou d un périphérique

Plus en détail

Réseaux Informatiques 2

Réseaux Informatiques 2 Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université Mohamed Khider - Biskra Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie Département d informatique

Plus en détail

Les protocoles UDP et TCP

Les protocoles UDP et TCP 3 Les protocoles UDP et TCP TCP comme UDP s exécute au-dessus d IP et se fonde sur les services fournis par ce dernier. TCP (Transport Control Protocol) assure un service de transmission de données fiable

Plus en détail

Cisco Certified Network Associate

Cisco Certified Network Associate Cisco Certified Network Associate Version 4 Notions de base sur les réseaux Chapitre 5 01 Dans un environnement IPv4, quelles informations un routeur utilise-t-il pour transmettre des paquets de données

Plus en détail

Adressage physique et logique

Adressage physique et logique Adressage physique et logique Table des matières 1. Couches et protocoles utilisés...2 2. Adresses physiques (mac)...2 3. Adresses logiques (IP) et paquets...3 4. Internet protocol...4 4.1. Adresses IPv4...4

Plus en détail

Les autoroutes de l information

Les autoroutes de l information Les autoroutes de l information 2 ème partie Protocoles réseaux : TCP/IP. Reproduction interdite. Sommaire Sommaire Sommaire... 2 Introduction... 4 Problématique de la communication réseau... 4 Origine

Plus en détail

Option 1 and Option 5 are correct. 1 point for each correct option. 0 points if more options are selected than required.

Option 1 and Option 5 are correct. 1 point for each correct option. 0 points if more options are selected than required. Quels sont les deux éléments généralement trouvés sur un diagramme de réseau logique? (Choisissez deux réponses.) Les identifiants d interfaces Les types de connecteurs Les versions du système d exploitation

Plus en détail

Couche réseau. Chapitre 6. Exercices

Couche réseau. Chapitre 6. Exercices Chapitre 6 Couche réseau Exercices No Exercice Points Difficulté Couche réseau, bases IP 1. Comment un destinataire sait-il qu il a reçu le dernier fragment 1 d un datagramme fragmenté? 2. Lorsqu un fragment

Plus en détail

Cisco Certified Network Associate

Cisco Certified Network Associate Cisco Certified Network Associate Version 4 Notions de base sur les réseaux Chapitre 6 01 Regardez le schéma d adressage IP illustré. Quel préfixe réseau y est adapté? /24 /16 /20 /27 /25 /28 02 Parmi

Plus en détail

Chapitre 4 : Le routage. Support des services et serveurs

Chapitre 4 : Le routage. Support des services et serveurs SI 5 BTS Services Informatiques aux Organisations 1 ère année Chapitre 4 : Support des services et serveurs Objectifs : Le routage Comprendre les mécanismes complexes de routage statique et dynamique.

Plus en détail

La couche réseaux dans Internet

La couche réseaux dans Internet La couche réseaux dans Internet 1. Introduction au protocole IP V4 Internet est vu comme un ensemble de sous-réseaux autonomes interconnectés pour constituer une infrastructure large au niveau mondial.

Plus en détail

AR-DRONE RESSOURCES. Modèle OSI

AR-DRONE RESSOURCES. Modèle OSI AR-DRONE RESSOURCES Modèle OSI Lycée J. Desfontaines, section Sciences de l Ingénieur ar-drone-communication-ressources.docx Page 1 Infos issues du we, des documents STI2D académie de Poitiers et de la

Plus en détail

Chapitre 2 : Communication sur un réseau

Chapitre 2 : Communication sur un réseau CISCO Exploration 1: Chapitre 2 - Communication sur un réseau - Page 1 sur 40 Chapitre 2 : Communication sur un réseau De plus en plus, ce sont les réseaux qui nous relient. Les personnes communiquent

Plus en détail

TD séance n 13 Réseau Windows

TD séance n 13 Réseau Windows 1 Paramètre IP sous Windows Nous avons vu lors de la dernière séance qu un ordinateur connecté à Internet devait avoir une adresse IP. Ce que nous avons vu sous Linux est identique à ce que nous allons

Plus en détail

Services réseau. 6.1 Clients, serveurs et leur interaction. 6.1.1 Relation client-serveur

Services réseau. 6.1 Clients, serveurs et leur interaction. 6.1.1 Relation client-serveur Page 1 sur 35 Services réseau 6.1 Clients, serveurs et leur interaction 6.1.1 Relation client-serveur Tous les jours, nous utilisons les services disponibles sur les réseaux et sur Internet pour communiquer

Plus en détail

Chapitre 3 : Les échanges dans le monde TCP-IP. Support des Services et Serveurs

Chapitre 3 : Les échanges dans le monde TCP-IP. Support des Services et Serveurs SI 5 BTS Services Informatiques aux Organisations 1 ère année Chapitre 3 : Support des Services et Serveurs Objectifs : Les échanges dans le monde TCP-IP Maîtriser le modèle TCP/IP, l'ensemble de ses protocoles,

Plus en détail

NOTIONS FONDAMENTALES SUR LES RÉSEAUX CHAP. 2 MODÈLES OSI ET TCP/IP

NOTIONS FONDAMENTALES SUR LES RÉSEAUX CHAP. 2 MODÈLES OSI ET TCP/IP BTS I.R.I.S NOTIONS FONDAMENTALES SUR LES RÉSEAUX CHAP. 2 MODÈLES OSI ET TCP/IP G.VALET Nov 2010 Version 2.0 Courriel : genael.valet@diderot.org, URL : http://www.diderot.org 1 LE BESOIN D UN MODÈLE Devant

Plus en détail

WAN (Wide Area Network) : réseau à l échelle d un pays, généralement celui des opérateurs. Le plus connu des WAN est Internet.

WAN (Wide Area Network) : réseau à l échelle d un pays, généralement celui des opérateurs. Le plus connu des WAN est Internet. 1 Définition Réseau (informatique) : ensemble d ordinateurs et de terminaux interconnectés pour échanger des informations numériques. Un réseau est un ensemble d'objets interconnectés les uns avec les

Plus en détail

Agent relais DHCP II FONCTIONNEMENT D UN AGENT RELAIS

Agent relais DHCP II FONCTIONNEMENT D UN AGENT RELAIS Agent relais DHCP Un agent relais est un petit programme qui relaie les messages DHCP/BOOTP entre les clients et les serveurs de différents sous-réseaux. Les agents relais DHCP/BOOTP font partie des normes

Plus en détail

CCNA DISCOVERY: Réseaux Domestiques des PME-PMI

CCNA DISCOVERY: Réseaux Domestiques des PME-PMI CCNA DISCOVERY: Réseaux Domestiques des PME-PMI Module 3 : Connexion au réseau 1 Objectifs :Connexion au réseau 2 Objectifs :Connexion au réseau À l issue de ce chapitre, vous serez en mesure d effectuer

Plus en détail

Semaine 4 : le protocole IP

Semaine 4 : le protocole IP Semaine 4 : le protocole IP Séance 1 : l adressage... 1 Séance 2 : le protocole IP... 8 Séance 3 : l adresse IP... 16 Séance 1 : l adressage Introduction Au cours de cette séance, nous allons parler de

Plus en détail

NFA083 Réseau et Administration Web TCP/IP

NFA083 Réseau et Administration Web TCP/IP NFA083 Réseau et Administration Web TCP/IP Sami Taktak sami.taktak@cnam.fr Centre d Étude et De Recherche en Informatique et Communications Conservatoire National des Arts et Métiers Rôle de la Couche

Plus en détail

Étude de cas. Le routage. Programme Cisco Networking Academy Program CCNA 2: Notions de base sur les routeurs et le routage (version 3.

Étude de cas. Le routage. Programme Cisco Networking Academy Program CCNA 2: Notions de base sur les routeurs et le routage (version 3. Étude de cas Le routage Programme Cisco Networking Academy Program CCNA 2: Notions de base sur les routeurs et le routage (version 3.1) Vue d ensemble et objectifs Cette étude cas permet aux étudiants

Plus en détail

Réseaux - partie 4 Transport

Réseaux - partie 4 Transport Réseaux - partie 4 Transport Michel RIVEILL, INP Grenoble Laboratoire SIRAC INRIA Rhône-Alpes 655, av. de l Europe - 38330 Montbonnot St Martin Michel.Riveill@inpg.fr Plan Introduction Physique Liaison

Plus en détail

Cisco Certified Network Associate

Cisco Certified Network Associate Cisco Certified Network Associate Version 4 Notions de base sur les réseaux Chapitre 4 1 D après l en-tête de la couche transport illustré, quelles affirmations parmi les suivantes définissent la session

Plus en détail

Internet. PC / Réseau

Internet. PC / Réseau Internet PC / Réseau Objectif Cette présentation reprend les notions de base : Objectif, environnement de l Internet Connexion, fournisseurs d accès Services Web, consultation, protocoles Modèle en couches,

Plus en détail

GENERALITES SUR LES RESEAUX

GENERALITES SUR LES RESEAUX GENERALITES SUR LES RESEAUX 1. INTERETS DES RESEAUX Les réseaux informatiques permettent essentiellement à des utilisateurs : De trouver une information quelque soit le lieu géographique elle se situe,

Plus en détail

Chapitre 5 : Protocole TCP/IP

Chapitre 5 : Protocole TCP/IP Chapitre 5 : Protocole TCP/IP 1- IP (Internet Protocol) : Il permet de à des réseaux hétérogène de coopérer. Il gère l adressage logique, le routage, la fragmentation et le réassemblage des paquets. Il

Plus en détail

Sous-adressage et CIDR

Sous-adressage et CIDR Sous-adressage et CIDR C. Pain-Barre INFO - IUT Aix-en-Provence version du 19/2/2013 Table des matières 1 Introduction 1 2 Principes du sous-adressage 2 2.1 Le sous-adressage vu d Internet...................................

Plus en détail

ESIREM - 3ème année ITC7-2 (1 séance) Étude d une communication entre deux hôtes du réseau

ESIREM - 3ème année ITC7-2 (1 séance) Étude d une communication entre deux hôtes du réseau ESIREM - 3ème année ITC7-2 (1 séance) Étude d une communication entre deux hôtes du réseau Michael Choisnard, Arnaud Da Costa, Benoît Darties Mars 2010 L objectif de ce TP est de développer et mettre en

Plus en détail

Cours d adressage IPv4

Cours d adressage IPv4 Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université Mohamed Khider - Biskra Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie Département d informatique

Plus en détail

Cisco Certified Network Associate

Cisco Certified Network Associate Cisco Certified Network Associate Version 4 Notions de base sur les réseaux Chapitre 7 01 Quels sont les facteurs à prendre en compte au moment de l implémentation d un protocole de couche 2 dans un réseau?

Plus en détail

Le routage sous Gnu/Linux www.ofppt.info

Le routage sous Gnu/Linux www.ofppt.info ROYAUME DU MAROC Office de la Formation Professionnelle et de la Promotion du Travail Le routage sous Gnu/Linux DIRECTION RECHERCHE ET INGENIERIE DE FORMATION SECTEUR NTIC Sommaire 1.1. Principe... 3 1.2.

Plus en détail

TD2 : CORRECTION. Exercice 1 : 1. Quel est l avantage de la séparation de l adressage en deux parties dans l adressage Internet?

TD2 : CORRECTION. Exercice 1 : 1. Quel est l avantage de la séparation de l adressage en deux parties dans l adressage Internet? TD2 : CORRECTION I. connaître son environnement réseau a. Quelle est l adresse IPv4 de votre PC? l adresse IPv6? ipconfig : Adresse IPv4..............: 192.168.1.13 Masque de sous-réseau.... : 255.255.255.0

Plus en détail

L3 informatique Réseaux : Configuration d une interface réseau

L3 informatique Réseaux : Configuration d une interface réseau L3 informatique Réseaux : Configuration d une interface réseau Sovanna Tan Septembre 2009 Révision septembre 2012 1/23 Sovanna Tan Configuration d une interface réseau Plan 1 Introduction aux réseaux 2

Plus en détail

Réseaux 1. TP 1 - Configuration et tests TCP/IP CORRIGE

Réseaux 1. TP 1 - Configuration et tests TCP/IP CORRIGE I.U.T. de Nice Côte d Azur 2004-2005 Département Informatique Réseaux 1 TP 1 - Configuration et tests TCP/IP CORRIGE Objectif : examiner la configuration des réseaux TCP/IP de notre département, effectuer

Plus en détail

TP 1 - Wireshark et Ethernet

TP 1 - Wireshark et Ethernet TP 1 - Wireshark et Ethernet Nommage des cartes réseaux Sous Linux, tous les périphériques (disques durs, cartes réseau, imprimantes,... ) sont nommés et ce nommage respecte certaines règles. Par exemple,

Plus en détail

Dépannage du réseau (S4/C8) Documenter le réseau

Dépannage du réseau (S4/C8) Documenter le réseau Dépannage du réseau (S4/C8) b Documenter le réseau Pour corriger et diagnostiquer des problèmes réseau efficacement, un ingénieur réseau doit savoir comment le réseau a été conçu et connaitre les performances

Plus en détail

Chapitre I. Notions de base. Septembre 2008 I. Notions de base 1. But du chapitre. Connaître types de réseaux PAN, LAN, MAN, et WAN.

Chapitre I. Notions de base. Septembre 2008 I. Notions de base 1. But du chapitre. Connaître types de réseaux PAN, LAN, MAN, et WAN. Chapitre I Notions de base Septembre 2008 I. Notions de base 1 But du chapitre Connaître types de réseaux PAN, LAN, MAN, et WAN. Connaître les différentes topologies (bus, anneau, étoile, maillée) et leurs

Plus en détail

CCNA. Module 1 Notions de base sur les réseaux

CCNA. Module 1 Notions de base sur les réseaux CCNA Module 1 Notions de base sur les réseaux 1 Chapitre 1 Vivre dans un monde en réseau 2 Ce chapitre présente la plateforme de réseau de données dont nos relations sociales et commerciales sont de plus

Plus en détail

-Partie7- La Couche Réseau

-Partie7- La Couche Réseau -Partie7- La Couche Réseau Plan La couche Réseau Définition et Objectifs Fonctions Adressage Routage Contrôle de flux / erreurs / congestion multiplexage segmentation / groupage des messages gestion des

Plus en détail

Cisco Certified Network Associate

Cisco Certified Network Associate Cisco Certified Network Associate Version 4 Notions de base sur les réseaux Chapitre 9 01 Convertissez le nombre binaire 10111010 en son équivalent hexadécimal. Sélectionnez la réponse correcte dans la

Plus en détail

Adressage IP. 2 Adresses de réseau et de station (classes A, B et C) id. réseau. sens de transmission

Adressage IP. 2 Adresses de réseau et de station (classes A, B et C) id. réseau. sens de transmission Adressage IP C. Pain-Barre IUT INFO Année 8-9 Introduction Les adresses IP font partie intégrante de IP. Elles ont pour but de se substituer aux adresses physiques (MAC) des réseaux, qui sont différentes

Plus en détail

Couche transport TCP

Couche transport TCP Couche transport TCP Sébastien Jean IUT de Valence Département Informatique v3.1, 30 avril 2012 TCP, en bref Généralités TCP? TCP (Transmission Control Protocol, RFC 793) fournit un service de transfert

Plus en détail

INFO 3020 Introduction aux réseaux d ordinateurs

INFO 3020 Introduction aux réseaux d ordinateurs INFO 3020 Introduction aux réseaux d ordinateurs Philippe Fournier-Viger Département d informatique, U.de M. Bureau D216, philippe.fournier-viger@umoncton.ca Automne 2014 1 Introduction Au dernier cours

Plus en détail

Module 5 : Mise en œuvre du routage IP

Module 5 : Mise en œuvre du routage IP Module 5 : Mise en œuvre du routage IP 0RGXOH#8#=#0LVH#HQ#±XYUH#GX#URXWDJH#,3# # 44: #3UpVHQWDWLRQ#JpQpUDOH 'RQQHU#XQ#DSHUoX#GHV VXMHWV#HW#GHV#REMHFWLIV#GH#FH PRGXOH1 'DQV#FH#PRGXOH/#QRXV DOORQV#H[DPLQHU#OHV

Plus en détail

Devoir surveillé : NET 9 février 2007

Devoir surveillé : NET 9 février 2007 Devoir surveillé : NET 9 février 2007 Nom : Prénom : Répondez aux questions dans l espace prévu à cet effet. Elaborez votre réflexion au brouillon et reportez ensuite votre réponse sur ce document d une

Plus en détail

TP Le Routage sous Windows 2003 Server

TP Le Routage sous Windows 2003 Server TP Le Routage sous Windows 2003 Server 1) Mise en place de l architecture réseau Pour ce TP, vous utiliserez les machines fonctionnant sous Windows serveur 2003 qui sont équipées de trois cartes réseau.

Plus en détail

Réseaux informatiques

Réseaux informatiques Réseaux informatiques Définition d un réseau Objectifs des réseaux Classification des réseaux Normalisation des réseaux Topologies des réseaux Mise en œuvre des réseaux Le matériel Les normes logiciels

Plus en détail

Cisco Certified Network Associate

Cisco Certified Network Associate Cisco Certified Network Associate Version 4 Notions de base sur les réseaux Chapitre 2 1 Quelles affirmations parmi les suivantes définissent correctement le rôle des périphériques intermédiaires sur le

Plus en détail

CCNA Discovery Travailler dans une PME ou chez un fournisseur de services Internet

CCNA Discovery Travailler dans une PME ou chez un fournisseur de services Internet Curriculum Name Guide du participant CCENT 3 Section 9.3 Dépannage de l adressage IP de la couche 3 Cette section consacrée au dépannage vous permettra d étudier les conditions nécessaires à l obtention

Plus en détail

DIFF AVANCÉE. Samy. samy@via.ecp.fr

DIFF AVANCÉE. Samy. samy@via.ecp.fr DIFF AVANCÉE Samy samy@via.ecp.fr I. RETOUR SUR QUELQUES PROTOCOLES COUCHE FONCTIONS Protocoles 7 Application 6 Présentation 5 Session 4 Transport 3 Réseau 2 Liaison 1 Physique Interface entre l utilisateur

Plus en détail

Principe de la récupération d erreur dans TCP. Exercices sur La couche Transport. Récupération d erreur

Principe de la récupération d erreur dans TCP. Exercices sur La couche Transport. Récupération d erreur Exercices sur La couche Transport Principe de la récupération d erreur dans TCP» Fenêtre d anticipation avec re-émission sélective et acquittements cumulatifs (voir chapitre Contrôle d erreur) 4 3 2 Transport

Plus en détail

L architecture des réseaux

L architecture des réseaux L architecture des réseaux les principes le modèle OSI l'architecture TCP/IP Architecture de réseaux : problèmes Comment concevoir un système complexe comme les réseaux? Établissement/Fermeture des connexions

Plus en détail

Cours réseaux Modèle OSI

Cours réseaux Modèle OSI Cours réseaux Modèle OSI IUT 1 Université de Lyon Introduction: le modèle OSI Un modèle théorique : le modèle OSI (Open System Interconnection) A quoi ça sert: Nécessité de découper/classifier l ensemble

Plus en détail

Principes de la transmission des données sur un réseau.

Principes de la transmission des données sur un réseau. Principes de la transmission des données sur un réseau. Quand un ordinateur communique avec un autre, les données sont transmises par une application au système d exploitation d une machine qui les segmente,

Plus en détail

Protocoles ARP & RARP

Protocoles ARP & RARP Protocoles ARP & RARP Enseignant: Omar Cheikhrouhou Omar Cheikhrouhou Références RFC 826 RFC 814 Cours Maher Ben jemaa (ENIS) Cours Bernard Cousin Introduction La transmission des datagrammes IP sur le

Plus en détail

Dynamic Host Configuration Protocol. F. Nolot

Dynamic Host Configuration Protocol. F. Nolot Dynamic Host Configuration Protocol F. Nolot 1 2 problèmes de gestion avec IP La Gestion des adresses IP Les adresses IP doivent être unique Nécessité d une liste d ordinateurs avec leurs adresses IP respectives

Plus en détail

Subnetting, NAT, ICMP, ARP, DHCP, DNS Corrigé

Subnetting, NAT, ICMP, ARP, DHCP, DNS Corrigé Subnetting, NAT, ICMP, ARP, DHCP, DNS Corrigé http://perso.ens-lyon.fr/annececile.orgerie/teaching.html 1 Subnetting 1.1 Création de sous-réseaux Question 1.1. On vient d attribuer à votre entreprise l

Plus en détail

Dynamic Host Configuration Protocol

Dynamic Host Configuration Protocol Dynamic Host Configuration Protocol 1 2 problèmes de gestion avec IP La Gestion des adresses IP Les adresses IP doivent être unique Nécessité d une liste d ordinateurs avec leurs adresses IP respectives

Plus en détail

UFR de Mathématiques et Informatique Année 2009/2010. Réseaux Locaux TP 04 : ICMP, ARP, IP

UFR de Mathématiques et Informatique Année 2009/2010. Réseaux Locaux TP 04 : ICMP, ARP, IP Université de Strasbourg Licence Pro ARS UFR de Mathématiques et Informatique Année 2009/2010 1 Adressage IP 1.1 Limites du nombre d adresses IP 1.1.1 Adresses de réseaux valides Réseaux Locaux TP 04 :

Plus en détail

Réseaux. Protocole IP. Master Miage 1 Université de Nice - Sophia Antipolis. (Second semestre 2009-2010)

Réseaux. Protocole IP. Master Miage 1 Université de Nice - Sophia Antipolis. (Second semestre 2009-2010) Réseaux Protocole IP Master Miage 1 Université de Nice - Sophia Antipolis (Second semestre 2009-2010) Jean-Pierre Lips (jean-pierre.lips@unice.fr) (à partir du cours de Jean-Marie-Munier) Sources bibliographiques

Plus en détail

Protocoles réseaux. Abréviation de Binary Digit. C'est la plus petite unité d'information (0, 1).

Protocoles réseaux. Abréviation de Binary Digit. C'est la plus petite unité d'information (0, 1). Chapitre 5 Protocoles réseaux Durée : 4 Heures Type : Théorique I. Rappel 1. Le bit Abréviation de Binary Digit. C'est la plus petite unité d'information (0, 1). 2. L'octet C'est un ensemble de 8 bits.

Plus en détail

UFR Mathématique et Informatique S5 Printemps 2010. TD Révisions R&P

UFR Mathématique et Informatique S5 Printemps 2010. TD Révisions R&P Université de Strasbourg L3 Informatique UFR Mathématique et Informatique S5 Printemps 2010 TD Révisions R&P Partie I On considère une connexion TCP entre 2 machines MA et MB. Le RTT, supposé constant,

Plus en détail

switchport access vlan 20

switchport access vlan 20 Chapitre 3 examen Quelles affirmations décrivent les avantages des VLAN? (Choisissez deux réponses.) Les VLAN améliorent les performances du réseau en régulant le contrôle du flux et la taille de la fenêtre.

Plus en détail

Présentation. Pascal PETIT tel.: Non mèl: pascal.petit@info.univ-evry.fr WeB: http://www.ibisc.univ-evry.fr/~petit

Présentation. Pascal PETIT tel.: Non mèl: pascal.petit@info.univ-evry.fr WeB: http://www.ibisc.univ-evry.fr/~petit Présentation Pascal PETIT tel.: Non mèl: pascal.petit@info.univ-evry.fr WeB: http://www.ibisc.univ-evry.fr/~petit Tour d'horizon Dans un premier temps, nous allons aborder la problèmatique des réseaux

Plus en détail

Cours CCNA 1. Exercices

Cours CCNA 1. Exercices Cours CCNA 1 TD2 Exercices Exercice 1 : Dressez la liste des 5 périphériques finaux, 6 périphériques intermédiaires et 3 formes de support réseau. Périphériques finaux (hôtes): ordinateur de bureau, ordinateur

Plus en détail

Niveau Couche 4 Application 3 Transport 2 Internet 1 Hôte-réseau

Niveau Couche 4 Application 3 Transport 2 Internet 1 Hôte-réseau Chapitre 3 Modèle TCP/IP Le modèle TCP/IP est nommé d après ses deux protocoles principaux TCP et IP, mais il comporte en réalité plusieurs dizaine de protocoles. Il définit un modèle de quatre couches.

Plus en détail

Techniques de diffusion vidéo sur l Internet

Techniques de diffusion vidéo sur l Internet ENS de Lyon Cours réseaux 2004 Techniques de diffusion vidéo sur l Internet Streaming avec RTP/RTSP Timothy BURK (uni@tburk.com) Table des matières 1. Introduction... 3 2. Streaming Diffusion en temps

Plus en détail

INTERNET CONTROL MESSAGE PROTOCOL

INTERNET CONTROL MESSAGE PROTOCOL Issu de la RFC 792 INTERNET CONTROL MESSAGE PROTOCOL SPECIFICATIONS Crédits : Jon Postel / ISI Traduction : V.G. FREMAUX Simplification et ajouts pour utilisation élève : B. JEZEQUEL / Lycée La Providence

Plus en détail

Couche Accès réseau : Ethernet

Couche Accès réseau : Ethernet Couche Accès réseau : Ethernet Technologie Ethernet Principe de fonctionnement du Half Duplex Trame Ethernet Composition - Adresse matérielle Encapsulation des trames Ethernet Domaine de collision d un

Plus en détail

Concepts de base de l Internet Protocol IPv4. Module 2

Concepts de base de l Internet Protocol IPv4. Module 2 Concepts de base de l Internet Protocol IPv4 Module 2 Objectifs Comprendre les bases du protocole IPv4 IPv4 Internet Protocol version 4 (IPv4) est la 4ème version du protocole d internet et la première

Plus en détail

Planification et création de communautés

Planification et création de communautés CHAPITRE 4 Planification et création de communautés Ce chapitre présente les concepts et procédures pour la planification et la création de communautés à l'aide de Network Assistant. Pour de plus amples

Plus en détail

Corrigé du TP 2 Réseaux

Corrigé du TP 2 Réseaux Corrigé du TP 2 Réseaux Adresses IP, routage et sous-réseaux C. Pain-Barre INFO - IUT Aix-en-Provence version du 24/12/2010 1 Adressage IP 1.1 Limites du nombre d adresses IP 1.1.1 Adresses de réseaux

Plus en détail

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web Introduction. A. Belaïd

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web Introduction. A. Belaïd UE 503 L3 MIAGE Initiation Réseau et Programmation Web Introduction A. Belaïd abelaid@loria.fr http://www.loria.fr/~abelaid/ Année Universitaire 2011/2012 Plan Cours Introduction aux Réseaux Définition

Plus en détail

TP 10.3.5a Notions de base sur le découpage en sous-réseaux

TP 10.3.5a Notions de base sur le découpage en sous-réseaux TP 10.3.5a Notions de base sur le découpage en sous-réseaux Objectif Identifier les raisons pour lesquelles utiliser un masque de sous-réseau. Faire la distinction entre un masque de sous-réseau par défaut

Plus en détail

5.1.3 Qu est-ce qu une liste de contrôle d accès? Constat Description Valeur maximum. 2 points for Option 3 0 points for any other option

5.1.3 Qu est-ce qu une liste de contrôle d accès? Constat Description Valeur maximum. 2 points for Option 3 0 points for any other option 5..3 Qu est-ce qu une liste de contrôle d accès? Par défaut, comment le trafic IP est-il filtré dans un routeur Cisco? Il est bloqué en entrée et en sortie sur toutes les interfaces. Il est bloqué sur

Plus en détail

Splash RPX-ii Color Server. Guide de dépannage

Splash RPX-ii Color Server. Guide de dépannage Splash RPX-ii Color Server Guide de dépannage 2007 Electronics for Imaging, Inc. Les Informations juridiques rédigées pour ce produit s appliquent au contenu du présent document. 45060096 17 avril 2007

Plus en détail

Livres disponibles à la bibliothèque (RDC)

Livres disponibles à la bibliothèque (RDC) Livres disponibles à la bibliothèque (RDC) Réseaux, 3 ème édition, A.TANENBAUM, 1997. TCP/IP : Architecture, protocoles et applications, 3 ème édition, D.COMER, 1998 TCP/IP : Administration de réseaux,

Plus en détail

La Table de Routage: Examen détaillé

La Table de Routage: Examen détaillé La Table de Routage: Examen détaillé Protocoles de Routage et Concepts Chapitre 8 Version 4.0 1 Objectifs Décrire les différents types de routes présents dans la structure d'un table de routage. Décrire

Plus en détail

Description du datagramme IP :

Description du datagramme IP : Université KASDI MERBAH OUARGLA Faculté des Nouvelles Technologies de l information et de la Communication Département Informatique et Technologies de les Information 1 er Année Master académique informatique

Plus en détail

Modèle OSI et routage (Révision)

Modèle OSI et routage (Révision) Modèle OSI et routage (Révision) Guy Roman, mars 2002 Table des matières. Le modèle de référence OSI 3 La couche physique du modèle OSI 5. La couche liaison de données du modèle OSI 6 La couche réseau

Plus en détail

R&T1 R1 TD3. Protocole (cf [1] 1.1.3) : format et ordre des messages échangés entre deux entités et actions générées (cf cours Ch2 6)

R&T1 R1 TD3. Protocole (cf [1] 1.1.3) : format et ordre des messages échangés entre deux entités et actions générées (cf cours Ch2 6) R&T1 R1 TD3 Rappels et compléments : Protocole (cf [1] 1.1.3) : format et ordre des messages échangés entre deux entités et actions générées (cf cours Ch2 6) commutation de circuits, par paquets, de messages

Plus en détail

Présentation et dépannage du pontage SR/TLB

Présentation et dépannage du pontage SR/TLB Présentation et dépannage du pontage SR/TLB Contenu Introduction Conditions préalables Conditions requises Composants utilisés Conventions Pontage SR/TLB Commandes show Dépannage Bitswapping Support DHCP/BOOTP

Plus en détail

SIMULATEUR RESEAU Version 2.0 Manuel utilisateur

SIMULATEUR RESEAU Version 2.0 Manuel utilisateur SIMULATEUR RESEAU Version 2.0 Manuel utilisateur Présentation de l application Le programme «Simulateur Réseau» est destiné à faciliter l apprentissage des concepts liés aux réseaux d ordinateurs. Dans

Plus en détail

Profil des participants Le cours CCNA Exploration s adresse aux participants du programme Cisco

Profil des participants Le cours CCNA Exploration s adresse aux participants du programme Cisco Présentation et portée du cours : CNA Exploration v4.0 Networking Academy Profil des participants Le cours CCNA Exploration s adresse aux participants du programme Cisco diplômés en ingénierie, mathématiques

Plus en détail

Adressage IP. 1. Réseau d'un lycée. Classe de première STI2D

Adressage IP. 1. Réseau d'un lycée. Classe de première STI2D 1. Réseau d'un lycée Adressage IP Dans un lycée, dans le local technique (salle serveurs), les différentes liaisons avec les 3 salles informatiques, ainsi que les serveurs à usage des utilisateurs sont

Plus en détail

LIVRE BLANC : Architectures OXYGENE++ version 6.50. MEMSOFT Page 1 sur 18 Livre Blanc Architectures Oxygène++

LIVRE BLANC : Architectures OXYGENE++ version 6.50. MEMSOFT Page 1 sur 18 Livre Blanc Architectures Oxygène++ LIVRE BLANC : Architectures OXYGENE++ version 6.50 MEMSOFT Page 1 sur 18 Livre Blanc Architectures Oxygène++ Date du document : 17 novembre 2005 Ce livre blanc est destiné à l'information des professionnels

Plus en détail

Examinez la figure. Quel est le débit maximum qu'on peut obtenir de bout en bout sur ce réseau lorsque l'utilisateur de Lab A communique ave

Examinez la figure. Quel est le débit maximum qu'on peut obtenir de bout en bout sur ce réseau lorsque l'utilisateur de Lab A communique ave 1 Quelle est la couche OSI et TCP/IP qui apparaît dans les deux modèles, mais qui a des fonctions différentes? La couche session La couche physique 2 Parmi les unités suivantes, indiquez celles qui sont

Plus en détail

Master Informatique 1ère année. Master Informatique 1ère année Collez votre autocollant ici : 1. Partiel 2006 U.E. ARES

Master Informatique 1ère année. Master Informatique 1ère année Collez votre autocollant ici : 1. Partiel 2006 U.E. ARES Collez votre autocollant ici : 1 1 que vous en colliez un sur la copie double et 5 autres sur les sujets (un sur chaque feuille dans la case en haut à gauche). 1 3. Complétez le tableau suivant avec les

Plus en détail

Architecture client - serveur

Architecture client - serveur Le modèle client-serveur De nombreuses applications fonctionnent selon un environnement client-serveur, cela signifie que des machines clientes contactent un serveur, une machine généralement très puissante

Plus en détail

Travaux pratiques 3.6.4 Connexion et configuration d hôtes

Travaux pratiques 3.6.4 Connexion et configuration d hôtes Travaux pratiques 3.6.4 Connexion et configuration d hôtes Objectifs Connecter un ordinateur à un routeur à l aide d un câble droit Configurer une adresse IP appropriée pour l ordinateur Configurer l ordinateur

Plus en détail

Travaux pratiques - Concevoir et mettre en œuvre un schéma d adressage avec des VLSM

Travaux pratiques - Concevoir et mettre en œuvre un schéma d adressage avec des VLSM Travaux pratiques - Concevoir et mettre en œuvre un schéma d adressage avec des VLSM Topologie Objectifs 1re partie : Étudier les besoins du réseau 2e partie : Concevoir le schéma d adressage VLSM 3e partie

Plus en détail

Dossier I: Architecture et fonctionnement d un réseau informatique (14pts)

Dossier I: Architecture et fonctionnement d un réseau informatique (14pts) OFPPT Office de la Formation Professionnelle et de la Promotion du Travail Direction de Recherche et Ingénierie de la Formation Examen de Fin de Formation Session Juin 2011 Filière : Techniques de Support

Plus en détail

IPv6. Lab 2: Configuration routeurs. Objectif: Configuration de routeurs sous Windows

IPv6. Lab 2: Configuration routeurs. Objectif: Configuration de routeurs sous Windows IPv6 Lab 2: Configuration routeurs Objectif: Configuration de routeurs sous Windows v.1a E. Berera 1 Communications entre nœuds de sous-réseaux différents Cette configuration requiert trois ordinateurs

Plus en détail

Collecte des examens du module Introduction aux Réseaux et Bases de Routage

Collecte des examens du module Introduction aux Réseaux et Bases de Routage INSTITUT SUPERIEUR DE GESTION DE TUNIS Collecte des examens du module Introduction aux Réseaux et Bases de Routage Examens corrigés Kaouther Nouira 2011-2012 Ministère de l Enseignement Supérieur, de le

Plus en détail

Exemple : Le module ETZ 510 de Schneider permet la communication entre un réseau UNI TELWAY et un réseau Ethernet TCP/IP.

Exemple : Le module ETZ 510 de Schneider permet la communication entre un réseau UNI TELWAY et un réseau Ethernet TCP/IP. Savoir S4.7 : Réseau communiquant pour l habitat et le tertiaire DATE : 1 INTRODUCTION Le réseau Ethernet TCP/IP est un réseau informatique interne à une entreprise, à un particulier. Il permet la communication

Plus en détail

Le protocole TCP /IP

Le protocole TCP /IP Le protocole TCP /IP Définition d'une URL : URL : ( Uniform Ressource Locator ) Http:// www. wanadoo.fr / public / index.htm Protocole Nom d ordinateur Sous domaine Domaine racine répertoire Fichier Prococole

Plus en détail

Adressage de réseaux

Adressage de réseaux Page 1 sur 28 Adressage de réseaux 5.1 Adresses IP et masques de sous-réseau 5.1.1 Rôle de l adresse IP Un hôte a besoin d une adresse IP pour participer aux activités sur Internet. L adresse IP est une

Plus en détail