M2 GL UE DOC «In memory analytics»

Dimension: px
Commencer à balayer dès la page:

Download "M2 GL UE DOC «In memory analytics»"

Transcription

1 M2 GL UE DOC «In memory analytics» Alexandre Termier 2014/2015

2 Sources Travaux Amplab, U.C. Berkeley Slides Ion Stoica Présentations Databricks Slides Pat McDonough Articles de M. Zaharia et al. sur les RDD et Spark

3 Introduction «Data is the new oil» Monétiser les données : Google, Facebook, Twitter Grande distribution Opérateurs de télécommunications Nouveaux services Bitly (2008) Moniteurs Fitbit (2011). Améliorer la QoS Analyse de logs (ex: attaques réseaux) Analyses de traces d exécution

4 Méthodes pour analyser de grosses données BD relationnelles -> taille (très) limitée Entrepôts de données -> prix élevé, taille limitée Cluster Hadoop -> prix abordable, taille importante Données = fichiers HDFS / tables Hbase Requêtes = Code Map/Reduce PIG -> compilé en Map/Reduce Hive -> compilé en Map/Reduce

5 Limitations de Map/Reduce Difficulté d écriture du code Modèle contraint Une phase de Map puis une phase de Reduce Parfois, besoin de faire plusieurs phases Map/Reduce Algorithmes complexes Algorithmes itératifs (PageRank, K-Means) Transfert de données entre ces phases : stockage sur disque (HDFS)

6 Problème Analyse de données : Successions de traitements (filtrages, transformations) Algos de machine learning / data mining : itératifs Ex: k-means Buts Réponses interactives sur données historiques Analyse de flux en temps réel Analyses complexes de données massives

7 Premières solutions Cascading Workflows complexes en MapReduce Limites : Facilite le codage, mais n accélère pas les traitements! Le runtime est toujours basé sur Map/Reduce Haloop Modif de MapReduce pour gérer les calculs itératifs Utilise des mécanismes de cache pour accélérer les calculs Limites Il faut changer Hadoop!

8 Nouveau moteur d exécution distribué Logistic regression Exécution des calculs en mémoire ou sur disque Suites de transformations complexes Itérations Applications interactives Peut exploiter les infrastructures Hadoop avec YARN Données dans HDFS, Hbase,

9 Spark : une popularité grandissante

10 Au cœur de Spark : les RDDs RDD = Resilient Distributed Dataset Collections distribuées d objets en lecture seule Stockés en mémoire ou sur le disque Collections construites par des transformations parallèles Reconstruction en cas de panne

11 Premier exemple Rouge : opération sur les RDD Noir : code Scala classique Vert : résultat scala> val lesmiserables = sc.textfile("data/*.txt") lesmiserables: org.apache.spark.rdd.rdd[string] = data/*.txt MappedRDD[5] at textfile at <console>:12 scala> lesmiserables.take(5).foreach(println) The Project Gutenberg EBook of Les misérables Tome I, by Victor Hugo This ebook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included scala> lesmiserables.count() res1: Long = 52711

12 scala> val linesvaljean = lesmiserables.filter(x => x.contains("valjean")) linesvaljean: org.apache.spark.rdd.rdd[string] = FilteredRDD[6] at filter at <console>:14 scala> linesvaljean.cache() res2: linesvaljean.type = FilteredRDD[2] at filter at <console>:14 scala> linesvaljean.count() res3: Long = 911 scala> linesvaljean.take(10).foreach(println) Chapitre VI Jean Valjean nom? Vous vous appelez Jean Valjean. Maintenant voulez-vous que je vous --Voici. Je m'appelle Jean Valjean. Je suis un galérien. J'ai passé qu'on a mis sur le passeport: «Jean Valjean, forçat libéré, natif «--Monsieur Jean Valjean, c'est à Pontarlier que vous allez? Pontarlier, où vous allez, monsieur Valjean, une industrie toute homme, qui s'appelle Jean Valjean, n'avait que trop sa misère présente à que tous les soirs, et il a soupé avec ce Jean Valjean du même air et de Jean Valjean Vers le milieu de la nuit, Jean Valjean se réveilla. Rouge : opération sur les RDD Noir : code Scala classique Vert : résultat

13 Spark UI

14 Opérations sur les RDD Transformations RDD -> RDD transformé Suite des transformations loggée «lignée» (lineage en anglais) Exécution paresseuse et parallèle Quelques transformations map reduce filter groupby join sort Actions Exécution d un calcul Stockage extene Quelques actions count take first save fold sample

15 RDD lineage (lignée en français) Un RDD enregistre toutes les transformations nécessaires pour le construire Reconstruction efficace en cas de panne val lesmiserables = sc.textfile("data/*.txt") val linesvaljean = lesmiserables.filter(x => x.contains("valjean")).textfile( ).filter( ) Fichier MappedRDD FilteredRDD

16 Partitions et dépendances partitions RDD RDD divisé en partitions Contrôle sur le partitionnement Dépendances différentes en fonction des transformations Narrow Wide Impact sur les performances en cas de panne Figure : Matei Zaharia, PhD dissertation

17 Persistance Contrôle sur la persistance : Mémoire seulement, objets désérialisés (défaut) Stocke RDD en mémoire, partitions qui ne tiennent pas sont recalculées à la volée Mémoire seulement, objets sérialisés Stocke RDD en mémoire en sérialisant : prend moins de place, coûte plus de CPU Mémoire et disque, objets désérialisés Stocke RDD en mémoire, partitions qui ne tiennent pas sauvées sur disque Mémoire et disque, objets sérialisés Disque seulement

18 scala> val wc = lesmiserables.flatmap(_.split(" ")).map((_,1)).reducebykey(_+_) wc: org.apache.spark.rdd.rdd[(string, Int)] = ShuffledRDD[5] at reducebykey at <console>:14 scala> wc.take(5).foreach(println) (créanciers;,1) (abondent.,1) (plaisir,,5) (déplaçaient,1) (sociale,,7) scala> val cw = wc.map(p => (p._2, p._1)) Wordcount en Spark cw: org.apache.spark.rdd.rdd[(int, String)] = MappedRDD[5] at map at <console>:16 scala> val sortedcw = cw.sortbykey(false) sortedcw: org.apache.spark.rdd.rdd[(int, String)] = ShuffledRDD[11] at sortbykey at <console>:18 scala> sortedcw.take(5).foreach(println) (16757,de) (14683,) (11025,la) (9794,et) (8471,le) scala> sortedcw.filter(x => "Cosette".equals(x._2)).collect.foreach(println) (353,Cosette)

19 Performances, code itératif Figure : Matei Zaharia, PhD dissertation

20 Performance en cas de panne (k-means) Figure : Matei Zaharia, PhD dissertation

21 Performance w.r.t. utilisation mémoire Régression logistique, 100 GB données, 25 machines Figure : Matei Zaharia, PhD dissertation

22 Performances, requêtes interactives Utilisation de 100 machines Figure : Matei Zaharia, PhD dissertation

23 Berkley Data Analytics Stack (BDAS) https://amplab.cs.berkeley.edu/software/

24 Ecosystème BDAS Au dessus de Spark Shark -> Spark SQL https://spark.apache.org/sql/ Spark Streaming https://spark.apache.org/streaming/ GraphX https://spark.apache.org/graphx/ MLib https://spark.apache.org/mllib/

25 Autre approche : SAP Hana Spark : nécessite un cluster Pas accessible à tout le monde TCO (Total Cost of Ownership) assez important SAP Hana : base de donnée + analytics en mémoire sur une (grosse) machine Idée : dans 10 ans, n importe quelle machine aura > 1 TO de RAM

26

27 Promesses des «in-memory analytics» Accès beaucoup plus rapides aux données Intégration et traitement très rapide des données produites en temps réel Résultats à des requêtes complexes en quelques secondes => Améliorer la rapidité de réaction, décisions rapides

28 Exemples (source : Intel + SAP) Yodobashi Calcul de points de fidélités pour 5 millions de clients Avant : 1 fois par mois, 3 jours de calcul Maintenant : 2 secondes de calcul -> offres dynamiques basées sur points + inventaires T-Mobile Rapports sur 2 milliards d enregistrements de clients (21 millions de clients) 5 secondes de calcul Ont pu passer de 3 à 4 mois d historique pour les analyses Maintenance prédictive Normalement : maintenance de tous équipements tous les 3 mois Analyse des données de capteur pour prédire les pannes -> Maintenance préemptive pour équipements suspects, tous les 7 mois pour les autres

29

30 Conclusion Evolution rapide paysage BD / analytics Direction : la RAM! Besoin de traitements rapides Analyses de plus en plus poussées des données Conséquences pour vous? (M2 GL) Suivre ces technos de près Bien comprendre l utilisation des collections Accès facilité au parallélisme Se documenter sur les requêtes / algorithmes complexes permis par ces nouveaux systèmes Machine learning Data mining

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Introduction Ãă Spark Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

Hadoop, Spark & Big Data 2.0. Exploiter une grappe de calcul pour des problème des données massives

Hadoop, Spark & Big Data 2.0. Exploiter une grappe de calcul pour des problème des données massives Hadoop, Spark & Big Data 2.0 Exploiter une grappe de calcul pour des problème des données massives Qui suis-je? Félix-Antoine Fortin Génie info. (B. Ing, M. Sc, ~PhD) Passionné de Python, Data Analytics,

Plus en détail

HADOOP ET SON ÉCOSYSTÈME

HADOOP ET SON ÉCOSYSTÈME HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos

Plus en détail

4 Exemples de problèmes MapReduce incrémentaux

4 Exemples de problèmes MapReduce incrémentaux 4 Exemples de problèmes MapReduce incrémentaux 1 / 32 Calcul des plus courtes distances à un noeud d un graphe Calcul des plus courts chemins entre toutes les paires de noeuds d un graphe Algorithme PageRank

Plus en détail

Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1

Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1 Big Data Cyril Amsellem Consultant avant-vente 16 juin 2011 Talend 2010 1 Big Data Architecture globale Hadoop Les projets Hadoop (partie 1) Hadoop-Core : projet principal. HDFS : système de fichiers distribués

Plus en détail

L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com. Tuesday, July 2, 13

L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com. Tuesday, July 2, 13 L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com HUG France 250 membres sur la mailing liste 30 présentations 9 meetups organisés, de 20 à 100 invités Présence de Cloudera, MapR, Hortonworks,

Plus en détail

Big Data Concepts et mise en oeuvre de Hadoop

Big Data Concepts et mise en oeuvre de Hadoop Introduction 1. Objectif du chapitre 9 2. Le Big Data 10 2.1 Introduction 10 2.2 Informatique connectée, objets "intelligents" et données collectées 11 2.3 Les unités de mesure dans le monde Big Data 12

Plus en détail

Panorama des solutions analytiques existantes

Panorama des solutions analytiques existantes Arnaud LAROCHE Julien DAMON Panorama des solutions analytiques existantes SFdS Méthodes et Logiciels - 16 janvier 2014 - Données Massives Ne sont ici considérés que les solutions autour de l environnement

Plus en détail

For Fun and Profit Datasio 2012

For Fun and Profit Datasio 2012 For Fun and Profit Datasio 2012 130 Nouveaux acteurs Big Data depuis 2009 1 2 3 Agenda Hadoop, poids lourd du Big Data Stats Web avec Hive chez Scoop.it Profession: Data Scientist Agenda 1 Hadoop, poids

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2015) Marc Parizeau, Département de génie électrique et de génie informatique Plan Données massives («big data») Architecture Hadoop distribution

Plus en détail

Les technologies du Big Data

Les technologies du Big Data Les technologies du Big Data PRÉSENTÉ AU 40 E CONGRÈS DE L ASSOCIATION DES ÉCONOMISTES QUÉBÉCOIS PAR TOM LANDRY, CONSEILLER SENIOR LE 20 MAI 2015 WWW.CRIM.CA TECHNOLOGIES: DES DONNÉES JUSQU'À L UTILISATEUR

Plus en détail

Plan. Pourquoi Hadoop? Présentation et Architecture. Démo. Usages

Plan. Pourquoi Hadoop? Présentation et Architecture. Démo. Usages 1 Mehdi LOUIZI Plan Pourquoi Hadoop? Présentation et Architecture Démo Usages 2 Pourquoi Hadoop? Limites du Big Data Les entreprises n analysent que 12% des données qu elles possèdent (Enquête Forrester

Plus en détail

Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2

Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2 Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html 1 Plan de présentation 1. L écosystème Hadoop 2. Principe de programmation MapReduce 3. Programmation des fonctions

Plus en détail

Formation Cloudera Data Analyst Utiliser Pig, Hive et Impala avec Hadoop

Formation Cloudera Data Analyst Utiliser Pig, Hive et Impala avec Hadoop Passez au niveau supérieur en termes de connaissance grâce à la formation Data Analyst de Cloudera. Public Durée Objectifs Analystes de données, business analysts, développeurs et administrateurs qui ont

Plus en détail

Anticiper et prédire les sinistres avec une approche Big Data

Anticiper et prédire les sinistres avec une approche Big Data Anticiper et prédire les sinistres avec une approche Big Data Julien Cabot Directeur Big Data Analytics OCTO jcabot@octo.com @julien_cabot OCTO 2013 50, avenue des Champs-Elysées 75008 Paris - FRANCE Tél

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2014) Marc Parizeau, Département de génie électrique et de génie informatique Plan Mégadonnées («big data») Architecture Hadoop distribution

Plus en détail

FORMATION HADOOP Développeur pour Hadoop (Apache)

FORMATION HADOOP Développeur pour Hadoop (Apache) FORMATION HADOOP Développeur pour Hadoop (Apache) Ce document reste la propriété du Groupe Cyrès. Toute copie, diffusion, exploitation même partielle doit faire l objet d une demande écrite auprès de Cyrès.

Plus en détail

Introduction à MapReduce/Hadoop et Spark

Introduction à MapReduce/Hadoop et Spark 1 / 36 Introduction à MapReduce/Hadoop et Spark Certificat Big Data Ludovic Denoyer et Sylvain Lamprier UPMC Plan 2 / 36 Contexte 3 / 36 Contexte 4 / 36 Data driven science: le 4e paradigme (Jim Gray -

Plus en détail

Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013

Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013 Les enjeux du Big Data Innovation et opportunités de l'internet industriel François Royer froyer@datasio.com Accompagnement des entreprises dans leurs stratégies quantitatives Valorisation de patrimoine

Plus en détail

Déploiement d une architecture Hadoop pour analyse de flux. françois-xavier.andreu@renater.fr

Déploiement d une architecture Hadoop pour analyse de flux. françois-xavier.andreu@renater.fr Déploiement d une architecture Hadoop pour analyse de flux françois-xavier.andreu@renater.fr 1 plan Introduction Hadoop Présentation Architecture d un cluster HDFS & MapReduce L architecture déployée Les

Plus en détail

Fouillez facilement dans votre système Big Data. Olivier TAVARD

Fouillez facilement dans votre système Big Data. Olivier TAVARD Fouillez facilement dans votre système Big Data Olivier TAVARD A propos de moi : Cofondateur de la société France Labs Développeur (principalement Java) Formateur en technologies de moteurs de recherche

Plus en détail

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant Organiser vos données - Big Data Patrick Millart Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be

Plus en détail

Les données massives à Calcul Québec

Les données massives à Calcul Québec Les données massives à Calcul Québec Marc Parizeau, professeur et directeur scientifique de Calcul Québec Plan Calcul Québec / Calcul Canada Les outils et les services disponibles Un outil en particulier

Plus en détail

Introduction aux algorithmes MapReduce. Mathieu Dumoulin (GRAAL), 14 Février 2014

Introduction aux algorithmes MapReduce. Mathieu Dumoulin (GRAAL), 14 Février 2014 Introduction aux algorithmes MapReduce Mathieu Dumoulin (GRAAL), 14 Février 2014 Plan Introduction de la problématique Tutoriel MapReduce Design d algorithmes MapReduce Tri, somme et calcul de moyenne

Plus en détail

MapReduce pour les graphes

MapReduce pour les graphes MapReduce pour les graphes Nicolas Dugué nicolas.dugue@univ-orleans.fr M2 MIAGE Systèmes d information répartis Plan 1 Introduction Spark 2 Spark avec des graphes 3 Composante Connexe 4 PageRank 2/34 Introduction

Plus en détail

API04 Contribution. Apache Hadoop: Présentation et application dans le domaine des Data Warehouses. Introduction. Architecture

API04 Contribution. Apache Hadoop: Présentation et application dans le domaine des Data Warehouses. Introduction. Architecture API04 Contribution Apache Hadoop: Présentation et application dans le domaine des Data Warehouses Introduction Cette publication a pour but de présenter le framework Java libre Apache Hadoop, permettant

Plus en détail

Labs Hadoop Février 2013

Labs Hadoop Février 2013 SOA - BRMS - ESB - BPM CEP BAM - High Performance Compute & Data Grid - Cloud Computing - Big Data NoSQL - Analytics Labs Hadoop Février 2013 Mathias Kluba Managing Consultant Responsable offres NoSQL

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

BIG Data et R: opportunités et perspectives

BIG Data et R: opportunités et perspectives BIG Data et R: opportunités et perspectives Guati Rizlane 1 & Hicham Hajji 2 1 Ecole Nationale de Commerce et de Gestion de Casablanca, Maroc, rguati@gmail.com 2 Ecole des Sciences Géomatiques, IAV Rabat,

Plus en détail

DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD

DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD BIGDATA PARIS LE 1/4/2014 VINCENT HEUSCHLING @VHE74! 1 NOUS 100% Bigdata Infrastructure IT + Data Trouver vos opportunités Implémenter les

Plus en détail

Hadoop, les clés du succès

Hadoop, les clés du succès Hadoop, les clés du succès Didier Kirszenberg, Responsable des architectures Massive Data, HP France Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject

Plus en détail

Big Graph Data Forum Teratec 2013

Big Graph Data Forum Teratec 2013 Big Graph Data Forum Teratec 2013 MFG Labs 35 rue de Châteaudun 75009 Paris, France www.mfglabs.com twitter: @mfg_labs Julien Laugel MFG Labs julien.laugel@mfglabs.com @roolio SOMMAIRE MFG Labs Contexte

Plus en détail

Une brève introduction aux Données Massives - Challenges et perspectives. Romain Picot-Clémente Cécile Bothorel Philippe Lenca

Une brève introduction aux Données Massives - Challenges et perspectives. Romain Picot-Clémente Cécile Bothorel Philippe Lenca Une brève introduction aux Données Massives - Challenges et perspectives Romain Picot-Clémente Cécile Bothorel Philippe Lenca Plan 1 Big Data 2 4Vs 3 Hadoop et son écosystème 4 Nouveaux challenges, nouvelles

Plus en détail

DATA ANALYST UTILISER PIG, HIVE ET IMPALA AVEC HADOOP DE CLOUDERA

DATA ANALYST UTILISER PIG, HIVE ET IMPALA AVEC HADOOP DE CLOUDERA SI 2.0 DATA ANALYST UTILISER PIG, HIVE ET IMPALA AVEC HADOOP DE CLOUDERA REF : SICL001 DUREE : 4 JOURS TARIF : 2 695 HT Public Analystes de données, business analysts, développeurs et administrateurs.

Plus en détail

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -Big Data par l'exemple -Julien DULOUT 20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà

Plus en détail

DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com

DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com #solconnect13 SOLUTIONS ADAPTEES AUX BESOINS CLIENTS Mobile/Cloud Data Serving and Transaction Processing Mobile Storefront JSON Database

Plus en détail

Big Data par l exemple

Big Data par l exemple #PARTAGE Big Data par l exemple Alexandre Chauvin Hameau Directeur de la production Malakoff Médéric @achauvin CT BIG DATA 10/12/2015 Soyons pragmatiques BIG DATA beaucoup de bruit pour des choses finalement

Plus en détail

Cartographie des solutions BigData

Cartographie des solutions BigData Cartographie des solutions BigData Panorama du marché et prospective 1 1 Solutions BigData Défi(s) pour les fournisseurs Quel marché Architectures Acteurs commerciaux Solutions alternatives 2 2 Quels Défis?

Plus en détail

KARMA Le système de Revenue Management d'air France KLM avec Hadoop

KARMA Le système de Revenue Management d'air France KLM avec Hadoop KARMA Le système de Revenue Management d'air France KLM avec Hadoop Conférence BIG DATA - Master MBDS Université de Nice Sophia Antipolis 16 Décembre 2014 Martial AYAS maayas@airfrance.fr 2 Agenda 1. Présentation

Plus en détail

Organisation de la seconde partie du cours BDLE

Organisation de la seconde partie du cours BDLE Master d Informatique spécialité DAC BDLE (Bases de Données Large Echelle) -Seconde Partie- Cours 1 : Introduction de Map Reduce et Présentation du système Spark Mohamed- Amine Baazizi email: prénom.nom@lip6.fr

Plus en détail

aprevotleygonie.wordpress.com >

aprevotleygonie.wordpress.com > Comment marche le big data??? A part être un sujet marketing faisant couler des flots d encre digitale, le big data, ce sont des concepts, des techniques. Le jour est venu pour appréhender en profondeur

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Map Reduce Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

BIG DATA en Sciences et Industries de l Environnement

BIG DATA en Sciences et Industries de l Environnement BIG DATA en Sciences et Industries de l Environnement François Royer www.datasio.com 21 mars 2012 FR Big Data Congress, Paris 2012 1/23 Transport terrestre Traçabilité Océanographie Transport aérien Télémétrie

Plus en détail

Certificat Big Data - Master MAthématiques

Certificat Big Data - Master MAthématiques 1 / 1 Certificat Big Data - Master MAthématiques Master 2 Auteur : Sylvain Lamprier UPMC Fouille de données et Medias Sociaux 2 / 1 Rich and big data: Millions d utilisateurs Millions de contenus Multimedia

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Le langage Pig latin Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

Offre formation Big Data Analytics

Offre formation Big Data Analytics Offre formation Big Data Analytics OCTO 2014 50, avenue des Champs-Elysées 75008 Paris - FRANCE Tél : +33 (0)1 58 56 10 00 Fax : +33 (0)1 58 56 10 01 www.octo.com 1 Présentation d OCTO Technology 2 Une

Plus en détail

New Features. Developed by. BPM Conseil - SARL au capital de 70 000 euros - RCS LYON 479 400 129 9, rue Pierre Blanc - 69001 Lyon - France 1/20

New Features. Developed by. BPM Conseil - SARL au capital de 70 000 euros - RCS LYON 479 400 129 9, rue Pierre Blanc - 69001 Lyon - France 1/20 5 New Features Developed by 1/20 Sommaire 1 Introduction... 3 2 Evolutions des studios de développement et améliorations fonctionnelles... 5 3 Portail Vanilla... 6 3.1 Open Street Maps... 6 3.2 Gestion

Plus en détail

NoSQL Faut-il franchir le pas?

NoSQL Faut-il franchir le pas? NoSQL Faut-il franchir le pas? Guillaume HARRY Journées rbdd Octobre 2015 Sommaire 1. Evolution des bases de données 2. Le mouvement NoSQL 3. Les grandes familles du NoSQL 4. Aller ou non vers le NoSQL?

Plus en détail

MapReduce. Malo Jaffré, Pablo Rauzy. 16 avril 2010 ENS. Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15

MapReduce. Malo Jaffré, Pablo Rauzy. 16 avril 2010 ENS. Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15 MapReduce Malo Jaffré, Pablo Rauzy ENS 16 avril 2010 Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15 Qu est ce que c est? Conceptuellement Données MapReduce est un framework de calcul distribué

Plus en détail

PERSISTANCE DES DONNEES

PERSISTANCE DES DONNEES PERSISTANCE DES DONNEES Matthieu VALET Valentin CARRIE Janvier 2014 C est quoi des «données»??? L informatique consiste à traiter des éléments d information par un algorithme Tous les éléments d informations

Plus en détail

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant Acquisition des données - Big Data Dario VEGA Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated

Plus en détail

avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data

avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data Historique de Big data Jusqu à l avènement d Internet et surtout du Web 2.0 il n y avait pas tant de données

Plus en détail

MapReduce. Nicolas Dugué nicolas.dugue@univ-orleans.fr. M2 MIAGE Systèmes d information répartis

MapReduce. Nicolas Dugué nicolas.dugue@univ-orleans.fr. M2 MIAGE Systèmes d information répartis MapReduce Nicolas Dugué nicolas.dugue@univ-orleans.fr M2 MIAGE Systèmes d information répartis Plan 1 Introduction Big Data 2 MapReduce et ses implémentations 3 MapReduce pour fouiller des tweets 4 MapReduce

Plus en détail

L analytique en temps réel en un clic. Jean-Michel Franco Directeur Marketing Produit @jmichel_franco

L analytique en temps réel en un clic. Jean-Michel Franco Directeur Marketing Produit @jmichel_franco L analytique en temps réel en un clic Jean-Michel Franco Directeur Marketing Produit @jmichel_franco 2015 Talend Inc. 1 1 Dynamiser l entreprise par ses données Les entreprises orientées données 23X plus

Plus en détail

NoSQL. Introduction 1/23. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur)

NoSQL. Introduction 1/23. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur) 1/23 2/23 Anne-Cécile Caron Master MIAGE - BDA 1er trimestre 2013-2014 I : Not Only SQL, ce n est pas du relationnel, et le contexte d utilisation n est donc pas celui des SGBDR. I Origine : recherche

Plus en détail

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be Groupe de Discussion Big Data Aperçu des technologies et applications Stéphane MOUTON stephane.mouton@cetic.be Recherche appliquée et transfert technologique q Agréé «Centre Collectif de Recherche» par

Plus en détail

Surmonter les 5 défis opérationnels du Big Data

Surmonter les 5 défis opérationnels du Big Data Surmonter les 5 défis opérationnels du Big Data Jean-Michel Franco Talend Connect 9 octobre 2014 Talend 2014 1 Agenda Agenda Le Big Data depuis la découverte jusqu au temps réel en passant par les applications

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Introduction data science

Introduction data science Introduction data science Data science Master 2 ISIDIS Sébastien Verel verel@lisic.univ-littoral.fr http://www-lisic.univ-littoral.fr/~verel Université du Littoral Côte d Opale Laboratoire LISIC Equipe

Plus en détail

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Big data et données géospatiales : Enjeux et défis pour la géomatique Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Événement 25e anniversaire du CRG Université Laval, Qc, Canada 08 mai

Plus en détail

NoSQL. Introduction 1/30. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur)

NoSQL. Introduction 1/30. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur) 1/30 2/30 Anne-Cécile Caron Master MIAGE - SGBD 1er trimestre 2014-2015 I : Not Only SQL, ce n est pas du relationnel, et le contexte d utilisation n est donc pas celui des SGBDR. I Origine : recherche

Plus en détail

Une Plateforme ETL parallèle et distribuée pour l intégration de données massives

Une Plateforme ETL parallèle et distribuée pour l intégration de données massives Une Plateforme ETL parallèle et distribuée pour l intégration de données massives Mahfoud Bala, Oussama Mokeddem, Omar Boussaid, Zaia Alimazighi LRDSI, Université Saad Dahleb, Blida 1, Algérie {mahfoud.bala,

Plus en détail

Retour d expérience BigData 16/10/2013 Cyril Morcrette CTO

Retour d expérience BigData 16/10/2013 Cyril Morcrette CTO Retour d expérience BigData 16/10/2013 Cyril Morcrette CTO Mappy en Chiffre Filiale du groupe Solocal 10M de visiteurs uniques 300M visites annuelles 100 collaborateurs dont 60% technique 3,7 Md de dalles

Plus en détail

Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop

Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop Soutenance de projet ASR 27/01/2011 Julien Gerlier Siman Chen Encadrés par Bruno

Plus en détail

Programmation parallèle et distribuée (Master 1 Info 2015-2016)

Programmation parallèle et distribuée (Master 1 Info 2015-2016) Programmation parallèle et distribuée (Master 1 Info 2015-2016) Hadoop MapReduce et HDFS Note bibliographique : ce cours est largement inspiré par le cours de Benjamin Renaut (Tokidev SAS) Introduction

Plus en détail

Vos experts Big Data. contact@hurence.com. Le Big Data dans la pratique

Vos experts Big Data. contact@hurence.com. Le Big Data dans la pratique Vos experts Big Data contact@hurence.com Le Big Data dans la pratique Expert Expert Infrastructure Data Science Spark MLLib Big Data depuis 2011 Expert Expert Hadoop / Spark NoSQL HBase Couchbase MongoDB

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Cloud et scalabilité Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr

VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr Avril 2014 Virtualscale 1 Sommaire Les enjeux du Big Data et d Hadoop Quels enjeux

Plus en détail

BIG DATA et DONNéES SEO

BIG DATA et DONNéES SEO BIG DATA et DONNéES SEO Vincent Heuschling vhe@affini-tech.com @vhe74 2012 Affini-Tech - Diffusion restreinte 1 Agenda Affini-Tech SEO? Application Généralisation 2013 Affini-Tech - Diffusion restreinte

Plus en détail

Jean-François Boulicaut & Mohand-Saïd Hacid

Jean-François Boulicaut & Mohand-Saïd Hacid e siècle! Jean-François Boulicaut & Mohand-Saïd Hacid http://liris.cnrs.fr/~jboulica http://liris.cnrs.fr/mohand-said.hacid Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205

Plus en détail

Projet Xdata. Cinequant, Data Publica, EDF, ESRI, Hurence, INRIA, Institut Mines Telecom, La Poste, Orange, Veolia

Projet Xdata. Cinequant, Data Publica, EDF, ESRI, Hurence, INRIA, Institut Mines Telecom, La Poste, Orange, Veolia Projet Xdata Cinequant, Data Publica, EDF, ESRI, Hurence, INRIA, Institut Mines Telecom, La Poste, Orange, Veolia Mutualisation des données XData = Cross Data En croisant des données d origine diverses,

Plus en détail

SQL-ON-HADOOP. Veille Technologique et Stratégique 2015 Guo Kai Élève de RICM 5 Kai.Guo@e.ujf-Grenoble.fr

SQL-ON-HADOOP. Veille Technologique et Stratégique 2015 Guo Kai Élève de RICM 5 Kai.Guo@e.ujf-Grenoble.fr SQL-ON-HADOOP Veille Technologique et Stratégique 2015 Guo Kai Élève de RICM 5 Kai.Guo@e.ujf-Grenoble.fr Données structurées (RDBMS) Exiger de strictement être organisé Annexer à RDBMS sans couture Consultable

Plus en détail

Optimisation des bases de données

Optimisation des bases de données Optimisation des bases de données Mise en œuvre sous Oracle Laurent Navarro Avec la contribution technique d Emmanuel Lecoester Pearson Education France a apporté le plus grand soin à la réalisation de

Plus en détail

Implémentation et Benchmark. d une régression linéaire en RMR2

Implémentation et Benchmark. d une régression linéaire en RMR2 Add intelligence to data Anne Gayet Directrice Datamining Implémentation et Benchmark d une régression linéaire en RMR2 16 janvier 2014 Rendez-vous SFdS: : Méthodes et logiciels Données massives (big data)

Plus en détail

Comment Créer une Base de Données Ab Initio

Comment Créer une Base de Données Ab Initio Comment Créer une Base de Données Ab Initio Diffusé par Le Projet Documentation OpenOffice.org Table des Matières 1. Création de la Source de Données...3 2. Ajout de Tables dans une Source de Données...3

Plus en détail

La rencontre du Big Data et du Cloud

La rencontre du Big Data et du Cloud La rencontre du Big Data et du Cloud Libérez le potentiel de toutes vos données Visualisez et exploitez plus rapidement les données de tous types, quelle que soit leur taille et indépendamment de leur

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Cassandra et Spark pour gérer la musique On-line

Cassandra et Spark pour gérer la musique On-line Cassandra et Spark pour gérer la musique On-line 16 Juin 2015 @ Paris Hammed RAMDANI Architecte SI 3.0 et BigData mramdani@palo-it.com +33 6 80 22 20 70 Appelez-moi Hammed ;-) (Sidi Mo)Hammed Ramdani @smramdani

Plus en détail

SAP HANA: note de synthèse

SAP HANA: note de synthèse Préface: Au cœur des nombreux défis que doivent relever les entreprises, l informatique se doit de soutenir les évolutions, d aider au développement de nouveaux avantages concurrentiels tout en traitant

Plus en détail

Préface Dunod Toute reproduction non autorisée est un délit. Les raisons de l émergence du Big Data sont bien connues. Elles sont d abord économiques et technologiques. La chute exponentielle des coûts

Plus en détail

Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment?

Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment? Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment? Jean-Marc Spaggiari Cloudera jms@cloudera.com @jmspaggi Mai 2014 1 2 Avant qu on commence Agenda -Qu est-ce que Hadoop et pourquoi

Plus en détail

Sujet du stage Mise en place et paramétrage d un moteur spécialisé pour la recherche de CV à travers le web

Sujet du stage Mise en place et paramétrage d un moteur spécialisé pour la recherche de CV à travers le web Sujet du stage Mise en place et paramétrage d un moteur spécialisé pour la recherche de CV à travers le web Responsable du stage : Nabil Belcaid Le Guyader Chef de projet : Ali Belcaid Déroulement du stage

Plus en détail

Comment booster vos applications SAP Hana avec SQLSCRIPT

Comment booster vos applications SAP Hana avec SQLSCRIPT DE LA TECHNOLOGIE A LA PLUS VALUE METIER Comment booster vos applications SAP Hana avec SQLSCRIPT 1 Un usage optimum de SAP Hana Votre contexte SAP Hana Si vous envisagez de migrer vers les plateformes

Plus en détail

MapReduce et Hadoop. Alexandre Denis Alexandre.Denis@inria.fr. Inria Bordeaux Sud-Ouest France ENSEIRB PG306

MapReduce et Hadoop. Alexandre Denis Alexandre.Denis@inria.fr. Inria Bordeaux Sud-Ouest France ENSEIRB PG306 MapReduce et Hadoop Alexandre Denis Alexandre.Denis@inria.fr Inria Bordeaux Sud-Ouest France ENSEIRB PG306 Fouille de données Recherche & indexation de gros volumes Appliquer une opération simple à beaucoup

Plus en détail

De 2 à 22 millions d'images; Création, Indexation et Recherche par le contenu avec PiRiA

De 2 à 22 millions d'images; Création, Indexation et Recherche par le contenu avec PiRiA De 2 à 22 millions d'images; Création, Indexation et Recherche par le contenu avec PiRiA contact : patrick.hède@cea.fr Commissariat à l'energie Atomique GdR isis : Passage à l'échelle dans la recherche

Plus en détail

Réinventer l entreprise avec SAP HANA Cloud Platform for the Internet of Things

Réinventer l entreprise avec SAP HANA Cloud Platform for the Internet of Things Présentation de la solution SAP SAP HANA SAP HANA Cloud Platform for the Internet of Things Objectifs Réinventer l entreprise avec SAP HANA Cloud Platform for the Internet of Things Connecter, transformer,

Plus en détail

Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop

Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop Julien Gerlier Siman Chen Rapport de projet de fin d étude ASR 2010/2011 Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop Encadrants

Plus en détail

Big Data : utilisation d un cluster Hadoop HDFS Map/Reduce HBase

Big Data : utilisation d un cluster Hadoop HDFS Map/Reduce HBase Big Data : utilisation d un cluster cluster Cécile Cavet cecile.cavet at apc.univ-paris7.fr Centre François Arago (FACe), Laboratoire APC, Université Paris Diderot LabEx UnivEarthS 14 Janvier 2014 C. Cavet

Plus en détail

Fouille de données massives avec Hadoop

Fouille de données massives avec Hadoop Fouille de données massives avec Hadoop Sebastiao Correia scorreia@talend.com Talend 2013 AAFD'14 29-30 avril 2014 1 Agenda Présentation de Talend Définition du Big Data Le framework Hadoop 3 thématiques

Plus en détail

Monitoring du système de stockage de données du CERN

Monitoring du système de stockage de données du CERN Monitoring du système de stockage de données du CERN Stage réalisé de Mars à Août 2013 Université Lille 1 Spécialisation IAGL Ingénierie et Architecture des Grands Logiciels Manuel SERVAIS Superviseurs

Plus en détail

Pentaho Business Analytics Intégrer > Explorer > Prévoir

Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho lie étroitement intégration de données et analytique. En effet, les services informatiques et les utilisateurs métiers peuvent accéder aux

Plus en détail

L Art d être Numérique. Thierry Pierre Directeur Business Development SAP France

L Art d être Numérique. Thierry Pierre Directeur Business Development SAP France L Art d être Numérique Thierry Pierre Directeur Business Development SAP France La Transformation Numérique «Plus largement, l impact potentiel des technologies numériques disruptives (cloud, impression

Plus en détail

Les journées SQL Server 2013

Les journées SQL Server 2013 Les journées SQL Server 2013 Un événement organisé par GUSS Les journées SQL Server 2013 Romain Casteres MVP SQL Server Consultant BI @PulsWeb Yazid Moussaoui Consultant Senior BI MCSA 2008/2012 Etienne

Plus en détail

Introduction Big Data

Introduction Big Data Introduction Big Data SOMMAIRE Rédacteurs : Réf.: SH. Lazare / F. Barthélemy AXIO_BD_V1 QU'EST-CE QUE LE BIG DATA? ENJEUX TECHNOLOGIQUES ENJEUX STRATÉGIQUES BIG DATA ET RH ANNEXE Ce document constitue

Plus en détail

Recherche d information textuelle

Recherche d information textuelle Recherche d information textuelle Pré-traitements & indexation B. Piwowarski CNRS / LIP6 Université Paris 6 benjamin@bpiwowar.net http://www.bpiwowar.net Master IP - 2014-15 Cours et travaux pratiques

Plus en détail

LE BIG DATA. TRANSFORME LE BUSINESS Solution EMC Big Data

LE BIG DATA. TRANSFORME LE BUSINESS Solution EMC Big Data LE BIG DATA Solution EMC Big Data TRANSITION VERS LE BIG DATA En tirant profit du Big Data pour améliorer leur stratégie et son exécution, les entreprises se démarquent de la concurrence. La solution EMC

Plus en détail

Encryptions, compression et partitionnement des données

Encryptions, compression et partitionnement des données Encryptions, compression et partitionnement des données Version 1.0 Grégory CASANOVA 2 Compression, encryption et partitionnement des données Sommaire 1 Introduction... 3 2 Encryption transparente des

Plus en détail