Minimisation de la somme des retards dans un jobshop flexible

Dimension: px
Commencer à balayer dès la page:

Download "Minimisation de la somme des retards dans un jobshop flexible"

Transcription

1 Minimisation de la somme des retards dans un jobshop flexible Nozha ZRIBI, Imed KACEM, Abdelkader EL KAMEL, Pierre BORNE LAGIS Ecole Centrale de Lille, BP 48, 5965 Villeneuve d Ascq Cedex, France ISTIT Université de Technologie de Troyes, BP 6, Troyes Cedex, France {nozha.zribi, abdelkader.elkamel, Résumé Dans cet article nous considérons le problème d ordonnancement d un job-shop flexible avec dates de disponibilité et dates dues. Nous proposons une méthode heuristique en deux phases pour la minimisation de la somme des retards. La première consiste à affecter les tâches selon une heuristique de la littérature et à améliorer le résultat avec une recherche Tabou. La deuxième étape permet d optimiser les solutions données par les heuristiques classiques (EDD, MOD, LRPT...) par le biais d un algorithme évolutionniste. Mots-clés Job-shop flexible, affectation, ordonnancement, somme des retards, recherche Tabou, algorithme génétique, règles de priorité. I. Introduction Le problème des job-shops flexibles est une extension du problème classique connu sous le nom de job shop. Il s agit de planifier et d organiser des tâches à réaliser sur un ensemble de machines selon des durées d exécution variables [7], [8], [], [7], []. Dans la littérature, la plupart des approches cherchent à optimiser le critère du makespan (la date de fin d exécution de la dernière tâche). Elles considèrent deux étapes dans la résolution d un tel problème [], [], [8]. La première consiste à construire une affectation pour les différentes tâches sur les machines adéquates. La deuxième est l ordonnancement des tâches et la détermination des dates de début d exécution en tenant compte de différentes contraintes conjonctives (précédence) et disjonctives (capacités des machines). Néanmoins, Dauzère-Pérès et ses co-auteurs ont construit une approche intégrée qui traite conjointement l affectation et le séquencement [7]. Mastrolilli a également repris cette approche intégrée pour améliorer ces résultats [7]. Récemment, Kacem a proposé une étude de plusieurs modèles de résolution et des bornes inférieures pour quelques critères pour l évaluation des solutions [4]. Dans nos travaux précédents, nous avons mis en place une approche hiérarchique pour résoudre le problème du job-shop flexible afin de minimiser le makespan []. Dans cet article, nous proposons d adapter cette méthode pour la minimisation de la somme des retards dans un jobshop flexible. Cet article est organisé comme suit. Après la formulation du problème traité, nous présentons dans Fig.. Exemple d un P F JSP la section III l algorithme proposé pour la résolution du sous-problème d affectation. La quatrième section décrit l approche évolutionniste proposée pour résoudre le sousproblème de séquencement. Des résultats numériques sont ensuite présentés, et nous terminons cet article par quelques conclusions sur ce travail de recherche. II. Formulation du problème du job-shop flexible avec dates de disponibilité et dates dues imposées Le problème est d organiser la réalisation de N jobs sur M machines. Chaque job J j représente un nombre n j d opérations ordonnées (contraintes de précédence). Chaque opération i d un job J j (notée O i,j ) peut être réalisée sur n importe quelle machine disponible. La durée d exécution p i,j,k de l opération O i,j dépend de la machine M k affectée à cette opération. Pour chaque problème de job-shop flexible, on peut associer un tableau des durées opératoires tel que : P F JSP = {p i,j,k IN j N; i n j ; k M,Un exemple est représenté dans Fig.. Dans ce problème, nous faisons les hypothèses suivantes : Toutes les machines sont disponibles à la date t = ; Chaque job J j peut commencer à la date t = r j ; Pour chaque job, l ordre des opérations est fixé dès le départ et ne peut être modifié (contraintes de précédences dans la gamme) ;

2 Chaque job possède une date échue d i ; Une machine ne peut exécuter qu une seule opération à la fois ; La préemption n est pas autorisée. Le problème considéré présente deux sous-problèmes. Le premier est l affectation de chaque opération O i,j sur une machine M k. Le deuxième est la détermination d un ordonnancement qui minimise la somme totale des retards. Par la suite nous proposons un algorithme en deux phases pour la résolution du problème d ordonnancement d un job-shop flexible avec minimisation de la somme des retards. Fig.. Exemple d un P JSP III. Le problème d affectation Il existe différents critères associés à l affectation des opérations sur les machines. Par exemple, on doit équilibrer la charge des différentes machines, minimiser la charge totale de toutes les machines, minimiser la charge de la machine critique (la machine la plus chargée)... Dans [4], l auteur a proposé une heuristique appelée approche par localisation permettant d affecter les opérations sur les machines tout en équilibrant la charge des différentes machines. En effet, cette heuristique affecte les opérations d une manière itérative tout en tenant compte des durées opératoires et des charges des machines sur lesquelles nous avons deja affecté des opérations. On se propose d améliorer la solution donnée par l approche par localisation par une recherche Tabou qui minimise le critère suivant : Crit = α Cr + ( α) Cr () tel que : Cr est la charge de la machine critique : Cr = max k {W k, W k est la charge de la machine k, Cr est la charge totale de toutes les machines Cr = k {W k, α est une variable appartenant à l intervalle [, ]. Les deux critères choisis ont beaucoup d influence sur la valeur de la somme des retards et aussi sur la difficulté du problème. Considérons le coefficient A j = d j r j P j (P j est la durée totale du job j). Ce coefficient mesure la sévérité de la contrainte de la date d échéance imposée (d j est indépendant de l affectation) du job j et par conséquent la difficulté du problème. La charge totale des machines peut être interprétée aussi comme la durée totale de tous les jobs. Il est clair que ce critère affecte la valeur des A j (A j et P j sont inversement proportionnelles) et ainsi de la valeur du retard de chaque job. Il est évident aussi que la répartition des charges sur les différentes machines ainsi que la charge de la machine critique affectent la difficulté du problème et la somme des retards. La recherche Tabou est une méthode itérative générale d optimisation combinatoire, elle est très performante sur un nombre considérable de problèmes d ordonnancement. Elle consiste à se déplacer de solution en solution en s interdisant de revenir en une configuration déjà rencontrée []. A. Paramètres de la recherche Tabou A. La solution initiale La solution initiale est calculée en utilisant l approche par localisation A. Mouvement Le mouvement consiste à réaffecter une opération à différentes machines. Toutes les possibilités sont testées et le meilleur mouvement minimisant le critère Crit est sélectionné. A. Restriction Tabou La liste Tabou est constituée des paires {op, m o, où op désigne l opération initialement affectée à la machine m o et ayant été réaffectée à une autre. A.4 Critère d aspiration Dans cette application, nous avons utilisé le critère d aspiration le plus connu et le plus utilisé dans la littérature qui est le critère d aspiration globale. Ce critère permet à un mouvement Tabou d être candidat pour la sélection, s il conduit à une nouvelle meilleure solution. A.5 Critère d arrêt L algorithme s arrête si un nombre donné d itérations est atteint. Le nombre d itérations est fixé à. Après avoir résolu le sous problème d affectation, le problème du job-shop flexible se réduit à un problème de job shop classique. A chaque opération O i,j, on définit M k comme la machine sur laquelle O i,j va être exécutée (M k est la machine affectée à O i,j pendant la première phase du programme), et une durée opératoire p i,j égale à p i,jk. Pour chaque problème de job-shop, on peut associer un tableau D des durées opératoires tel que : P JSP = {p i,j IN, j N; i n j ;. Un exemple est representé dans Fig.. Dans la section suivante nous proposons un algorithme génétique permettant d optimiser le séquencement des opérations. Le critère choisi est la minimisation de la somme totale des retards exprimé par la formule suivante :

3 T T... T z T NT (,, ) (,, ) (i, j, k) (,, 4) Fig.. Codage proposé = { = { { ( ) = = + = + = + Fig. 4. Procédure d ordonnancement T = N j= max(c j d j, ) () j avec C j la date de fin d exécution du job j. IV. Algorithme génétique pour la minimisation de la somme des retards dans un job-shop De nombreux travaux dans la littérature ont été dédiés au problème d ordonnancement avec minimisation de la somme des retards notamment pour les problèmes à une machine [],[6] et les problèmes à machines parallèles []. Certains travaux ont concerné la minimisation de ce critère dans un atelier de type job-shop [9], [], []. Les règles de priorité ont été fréquemment utilisées pour résoudre ce problème [5]. D autres approches heuristiques basées sur la recherche Tabou ont été récemment développées []. Le problème d ordonnancement dans un job-shop est NP-difficile [4], []. Les problèmes de minimisation de la somme des retards sur une machine est aussi NP-difficile [9]. Nous proposons alors dans ce qui suit une metaheuristique basée sur les algorithmes génétiques [8], [], [5] pour la minimisation de la somme des retards dans un job-shop. A. Codage : Liste des opérations Nous choisissons d utiliser un codage linéaire simple. Il consiste à représenter le séquencement par une liste de NT opérations (NT = j=n j= n j). Chaque chromosome représente une liste de N T cellules. Chaque cellule représente une tâche T z ( z NT ) codée de la manière suivante : (i, j, k). Le calcul de la date de début et de la date de fin (t i,j, tf i,j ) se fait en appliquant la procédure décrite dans Fig.4 selon l ordre z de chaque tâche dans la liste (Fig.). Cette procédure permet de calculer les dates de début d exécution de la tâche (i, j) en prenant en compte la date de disponibilité DM[k] de la machine M k et la date de disponibilité DJ[j] du job J j. B. Solutions initiales Différentes règles de priorité adaptées au problème de minimisation de la somme des retards ont été utilisées pour créer la population initiale :. EDD (earliest due date), la tâche la plus prioritaire est celle qui appartient au job dont la date due est la plus petite.. EOD (earliest operation due date), on trie les tâches selon les d ij croissants. La date due de chaque opération est calculée grâce à la formule (). Le calcul de la date de début et de la date de fin (t i,j, tf i,j ) se fait en appliquant la procédure décrite dans Fig.4 selon l ordre de chaque tâche.. On trie les tâches selon les (d j n j i=k p ij) croissants, avec k l indice de l opération considérée. Le calcul de la date de début et de la date de fin (t i,j, tf i,j ) se fait en appliquant la procédure décrite dans Fig.4 selon l ordre de chaque tâche. 4. MDD (modified due date) : cette règle combine la règle EDD et LRPT (the least remaining processing time). La date due modifiée d un job est définie de la manière suivante : d j = max{d j, t + n j i=k p ij, avec k l indice de l opération du job j en attente pour exécution. 5. MOD (modified operation due date) : la date due de chaque opération est modifiée de la manière suivante : d kj = max{d j, t + p kj, avec k l indice de l opération à ordonnancer. A cette série de solutions créées à partir des règles de priorité nous ajoutons d autres solutions réalisables construites de manière aléatoire pour compléter la population initiale. Définition : On associe à chaque opération une date due d ij qui dépend de la durée de l opération et de la marge totale d un job : { p dij = d i,j + (d j r j ) ij n j, d j = r j k= p kj () i n j, j N. C. Opérateurs Dans notre cas, nous avons à respecter les contraintes de précédence entre les opérations d un job. Nous avons donc proposé d utiliser quelques opérateurs développés par Lee et Kawa permettant de respecter les contraintes de précédence : l opérateur POX (Precedence Preserving order based crossover) pour le croisement et l opérateur PPS (Precedence Preserving Shift mutation) pour la mutation [6]. D. Paramètres Les probabilités de mutation et de croisement sont fixées d une manière classique (P crossover =.95, P mutation =.5). En effet, ce choix a été motivé par les résultats donnés par quelques simulations préliminaires qui ont montré que ces grandeurs doivent être judicieusement choisies. Les figures 5, 6 et 7 montrent des tests de réglage de ces probabilités sur un exemple de taille 5x45x7 et une population de individus. De telles simulations prouvent qu un taux élevé de mutation conduit à une difficulté de convergence traduite par l obtention d un extrémum local. Par contre, un choix de taux de mutation faible permet de réaliser un bon compromis entre exploration et optimisation. Le mécanisme de sélection donne la priorité aux meilleurs individus selon leur évaluation définie par l équation () pour la phase de reproduction.

4 critère,5,5 Fig. 5. Courbe de convergence avec P c =.95 et P m =.5 critère,5,5 Fig. 6. Courbe de convergence avec P c =.6 et P m =.4 Critères d arrêt le nombre maximal d itérations est atteint, aucun job n est en retard. V. Résultats expérimentaux Les instances utilisées pour tester la méthode sont créées d une manière aléatoire. Les paramètres sont générés de la manière suivante : Le nombre de jobs N varie dans {5,, 5,,, 5, le nombre d opérations par job varie dans {,,, 4, le nombre de machines varie dans [4, ]. Les dureés opératoires sont dans [, ]. Les dates de disponibilité des jobs sont choisies entre et i,j p ij, p ij étant la moyenne des durées opératoires d une opération sur les différentes machines. Le paramètre α de la recherche Tabou est fixé à.5 pour donner plus d importance au critère Cr (charge totale de toutes les machines), en effet les simulations montrent que ce dernier critère a plus d influence sur la somme des retards que Cr (charge de la machine critique). La date due de chaque job dépend du facteur de retard β et de la moyenne des durées opératoires d une opération sur les différentes machines p ij, elle se calcule selon la formule (4). critère,5,5 Fig. 7. Courbe de convergence avec P c =.8 et P m =. Fig. 8. Performances des heuristiques Le facteur de retard β est généré selon la formule (5) permettant de générer des dates dues étroites[]. d j n j = r j + β p ij ) (4) β = N M i= +.5 (5) Les simulations montrent que la règle de priorité MDD donne dans la plupart des cas le meilleur résultat. En effet, le tableau 8 montre une comparaison entre cinq stratégies S, S, S, S 4 et S 5 : S : EDD, S : EOD, S : MDD, S 4 : MOD, S 5 : trie selon (d j n j i=k p ij). On se propose alors de comparer le résultat donné par l algorithme génétique avec celui donné par la MDD (Tableau 9). On calcule le taux d amélioration A GA MDD de la manière suivante : A GA MDD = T MDD T GA T MDD, avec T MDD, T GA représentant respectivement la somme des retards calculée à partir de la règle de priorité MDD et la somme des retards donnée par l algorithme génétique. Le tableau 9 montre que le taux d amélioration varie de % à % mais aussi que l amélioration est d autant plus importante que la valeur de la somme des retards est petite. VI. Conclusion Dans cet article nous avons traité le problème d ordonnancement dans un job-shop flexible. Il s agit d une extension du problème classique du job-shop. Dans une telle extension, nous avons considéré la propriété flexible des ressources. Nous nous sommes intéressés au critère de la somme des retards. Notre approche a été basée sur une approche hériarchique : une étape d affectation suivie d une étape de séquencement. Pour assurer l efficacité du résultat, nous avons fait coopérer plusieurs techniques

5 Fig. 9. Performance de l algorithme génétique d optimisation (heuristiques, recherche Tabou, algorithmes génétiques, etc...). Les résultats préliminaires sont encourageants et prometteurs. Les principales directions futures vont être la comparaison de notre méthode avec d autres approches et aussi le développement d une borne inférieure pour la somme des retards pour mieux évaluer les solutions. [4] I. Kacem. Ordonnancement multicritère des job-shops flexibles : formulation, bornes inférieures et approche évolutionniste coopérative, Thèse de doctorat, Ecole Centrale de Lille, 6 janvier. [5] J.J. Kanet and J.C Hayya. Priority dispatching with operation dues datas in job-shop. Journal of operations Management, :67-65,98. [6] KM. Lee and T. Yama Kawa A Genetic algorithm for general machine scheduling problems. Journal of knowlege-based Electronics Systems, :6-66, 996 Australia. [7] M. Mastrolilli and L.M. Gambardella. Effective neighborhood functions for the flexible job-shop problem. Journal of Scheduling, () :-,. [8] K. Mesghouni. Application des algorithmes évolutionnistes dans les problèmes d optimisation en ordonnancement de production. hèse de doctorat, Ecole Centrale de Lille, 5 janvier 999. [9] M. Pinedo and M. Singer. A Shifting Bottleneck heuristic for minimizing the total wheighted tardiness in job-shop. Naval Research Logistics, 46() :-7, 999. [] A. Vinicius and R. Cintia. Tabu search for minimizing total tardiness in a job-shop. International journal of Production Economics,6 :-4,. [] F. Yalaoui and C. Chu. Parallel machine scheduling to minimize total tardiness. International journal of Production Economics,76 :65-79,. [] N. Zribi, I. Kacem and A. EL Kamel. Hierarchical Optimization for the Flexible Job-shops Scheduling Problem. INCOM 4, Brazil 5-7 April 4. Références [] P. Baptiste, J. Carlier and A. Jouglet. Minimiser la somme des retards sur une machine avec dates de disponibilité. MOSIM, 5-7 avril, Troyes (France). [] W. Banzhaf, P. Nordin, R.E. Keller and F.D. Francone. Genetic programming An introduction on the Automatic evolution of computer programs and its application. Morgan Kaufmann publishers, Inc. San Francisco, California, USA. [] P. Brandimarte. Routing and scheduling in flexible job-shop by tabu search. Annals of Operations Research, 4 :57-8, 99. [4] J. Carlier and P. Chretienne. Problèmes d Ordonnancement : Modélisation / Complexité / Algorithmes. Editions Masson, FRANCE. [5] C. Caux, H. Pierreval and MC. Portmann. Les algorithmes génétiques et leur application aux problèmes d ordonnancement, Kevie A.P.I.I (Automatique Productique et Informatique Industrielle), 9(4-5) :49-44, 995. [6] C. Chu. A Branch and Bound algorithm to minimize total tardiness with different release dates. Naval Research Logistics, 9 :65-8, 99. [7] S. Dauzère-Pérès and J. Paulli. An integrated approach for modelling and solving the general multiprocessor job-shop scheduling problem using tabu search. Annals of Operational Research, 7 :8-6, 997. [8] L. Davis. Handbook of Genetic Algorithms, Van Nostrand Reinhold, New-York, 99, USA. [9] J. Du and J.Y. -T. Leung. Minimizing Total Tardiness on one Machine is NP-Hard. Mathematics of Operations Research, 5 : , 99. [] M.R. Garey and D.S. Johnson. Computers and intractability : A guide to theory of NP-Completeness. W.H. Freeman and Co., New York. [] F. Glover, E. Taillard. E and D. De werre, A users guide to Tabou search. Vol 4, P -8, 99 [] Z. He., T. Yang and D.E. Deal. A multiple-pass heuristic rule for job-shop scheduling with due dates. International journal of Production Research, :87-99, 99. [] I. Hurink, B. Jurisch and M. Thole. Tabu search for the job-shop scheduling problem with multi-purpose machines. OR-Spektrum, 5 :5-5, 994.

Annexe 6. Notions d ordonnancement.

Annexe 6. Notions d ordonnancement. Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. Sophie.Demassey@mines-nantes.fr Résumé Ce document

Plus en détail

Approche d'évaluation pour les problèmes d'ordonnancement multicritères : Méthode d'agrégation avec direction de recherche dynamique

Approche d'évaluation pour les problèmes d'ordonnancement multicritères : Méthode d'agrégation avec direction de recherche dynamique Approche d'évaluation pour les problèmes d'ordonnancement multicritères : Méthode d'agrégation avec direction de recherche dynamiue D. BERKOUNE 2, K. MESGHOUNI, B. RABENASOLO 2 LAGIS UMR CNRS 846, Ecole

Plus en détail

LES MÉTA-HEURISTIQUES : quelques conseils pour en faire bon usage

LES MÉTA-HEURISTIQUES : quelques conseils pour en faire bon usage LES MÉTA-HEURISTIQUES : quelques conseils pour en faire bon usage Alain HERTZ Ecole Polytechnique - GERAD Département de mathématiques et de génie industriel CP 679, succ. Centre-ville, Montréal (QC) H3C

Plus en détail

Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative

Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative Y. Houbad, M. Souier, A. Hassam, Z.Sari Laboratoire d automatique Tlemcen Faculté de technologie, Université Abou

Plus en détail

A GRASPxELS approach for the Job Shop with generic time-lags and new statistical determination of the parameters

A GRASPxELS approach for the Job Shop with generic time-lags and new statistical determination of the parameters A GRASPxELS approach for the Job Shop with generic time-lags and new statistical determination of the parameters Présenté par : Equipe de travail : Laboratoire : Maxime CHASSAING Philippe LACOMME, Nikolay

Plus en détail

Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003

Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003 Problèmes d ordonnancement dans les systèmes de production Michel Gourgand Université Blaise Pascal Clermont Ferrand LIMOS CNRS UMR 6158 1 Le LIMOS Laboratoire d Informatique, de Modélisation et d Optimisation

Plus en détail

Chapitre 1. L algorithme génétique

Chapitre 1. L algorithme génétique Chapitre 1 L algorithme génétique L algorithme génétique (AG) est un algorithme de recherche basé sur les mécanismes de la sélection naturelle et de la génétique. Il combine une stratégie de survie des

Plus en détail

INSERTION TECHNIQUES FOR JOB SHOP SCHEDULING

INSERTION TECHNIQUES FOR JOB SHOP SCHEDULING INSERTION TECHNIQUES FOR JOB SHOP SCHEDULING ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES PAR Tamas KIS Informaticien mathématicien diplômé de l'université

Plus en détail

Une application des algorithmes génétiques à l ordonnancement d atelier

Une application des algorithmes génétiques à l ordonnancement d atelier Une application des algorithmes génétiques à l ordonnancement d atelier VACHER Jean-Philippe - GALINHO Thierry - MAMMERI Zoubir Laboratoire d Informatique du Havre Université du Havre 25, Rue Philippe

Plus en détail

Séparation et Evaluation pour le problème d ordonnancement avec blocage.

Séparation et Evaluation pour le problème d ordonnancement avec blocage. Séparation et Evaluation pour le problème d ordonnancement avec blocage. Abdelhakim Ait Zai 1, Abdelkader Bentahar 1, Hamza Bennoui 1, Mourad Boudhar 2 et Yazid Mati 3 1 Faculté d Electronique et d Informatique,

Plus en détail

AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS

AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle

Plus en détail

Hela Boukef. To cite this version: HAL Id: tel-00577101 https://tel.archives-ouvertes.fr/tel-00577101

Hela Boukef. To cite this version: HAL Id: tel-00577101 https://tel.archives-ouvertes.fr/tel-00577101 Sur l ordonnancement d ateliers job-shop flexibles et flow-shop en industries pharmaceutiques : optimisation par algorithmes génétiques et essaims particulaires Hela Boukef To cite this version: Hela Boukef.

Plus en détail

Un propagateur basé sur les positions pour le problème d Open-Shop.

Un propagateur basé sur les positions pour le problème d Open-Shop. Actes JFPC 2007 Un propagateur basé sur les positions pour le problème d Open-Shop. Jean-Noël Monette Yves Deville Pierre Dupont Département d Ingénierie Informatique Université catholique de Louvain {jmonette,yde,pdupont}@info.ucl.ac.be

Plus en détail

En vue de l'obtention du. Présentée et soutenue par Abir BEN HMIDA SAKLY Le 12/12/2009

En vue de l'obtention du. Présentée et soutenue par Abir BEN HMIDA SAKLY Le 12/12/2009 THÈSE En vue de l'obtention du DOCTORAT DE L UNIVERSITÉ DE TOULOUSE Délivré par l'institut National des Sciences Appliquées de Toulouse Discipline ou spécialité : Systèmes Informatiques Présentée et soutenue

Plus en détail

ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE

ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE P. Baudet, C. Azzaro-Pantel, S. Domenech et L. Pibouleau Laboratoire de Génie Chimique - URA 192 du

Plus en détail

Optimisation des tournées de ramassage scolaire de la commune de Seneffe

Optimisation des tournées de ramassage scolaire de la commune de Seneffe Optimisation des tournées de ramassage scolaire de la commune de Seneffe Laurie Hollaert Séminaire GRT 7 novembre Laurie Hollaert Optimisation des tournées de ramassage scolaire de la commune de Seneffe

Plus en détail

PLAN DE COURS. GPA750 Ordonnancement des systèmes de production aéronautique

PLAN DE COURS. GPA750 Ordonnancement des systèmes de production aéronautique Département de génie de la production automatisée Programme de baccalauréat Professeur Pontien Mbaraga, Ph.D. Session/année Automne 2004 Groupe(s) 01 PLAN DE COURS GPA750 Ordonnancement des systèmes de

Plus en détail

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production Revue des Sciences et de la Technologie RST- Volume 4 N 1 /janvier 2013 Etude d un cas industriel : Optimisation de la modélisation de paramètre de production A.F. Bernate Lara 1, F. Entzmann 2, F. Yalaoui

Plus en détail

INFO-F-425 Modèles mathématiques et algorithmes pour l ordonnancement. Bernard Fortz

INFO-F-425 Modèles mathématiques et algorithmes pour l ordonnancement. Bernard Fortz INFO-F-425 Modèles mathématiques et algorithmes pour l ordonnancement Bernard Fortz 2008-2009 Table des matières 1 Définition et classification des problèmes d ordonnancement 2 1.1 Introduction....................................

Plus en détail

APPLICATION DE LA GESTION DES FILES D ATTENTE PAR RÈGLES DE PRIORITÉ DANS UN JOB SHOP EN TEMPS RÈEL

APPLICATION DE LA GESTION DES FILES D ATTENTE PAR RÈGLES DE PRIORITÉ DANS UN JOB SHOP EN TEMPS RÈEL APPLICATION DE LA GESTION DES FILES D ATTENTE PAR RÈGLES DE PRIORITÉ DANS UN JOB SHOP EN TEMPS RÈEL N. Keddari (1) - A. Hassam (1) 1 keddarinassima@yahoo.fr 1 a_hassam@mail.univ-tlemcen.dz RESUME L ordonnancement

Plus en détail

Un couplage métaheuristique / simulation appliqué au problème du job shop avec transport

Un couplage métaheuristique / simulation appliqué au problème du job shop avec transport Un couplage métaheuristique / simulation appliqué au problème du job shop avec transport LAURENT DEROUSSI 1, ICHEL GOURGAND 2 LIOS CNRS UR 6158 1 IUT de ontluçon, Avenue Aristide Briand B.P. 2235, 03101

Plus en détail

Ordonnancement sous contraintes de Qualité de Service dans les Clouds

Ordonnancement sous contraintes de Qualité de Service dans les Clouds Ordonnancement sous contraintes de Qualité de Service dans les Clouds GUÉROUT Tom DA COSTA Georges (SEPIA) MONTEIL Thierry (SARA) 14/9/215 1 Profil Profil Parcours : Laboratoires LAAS et IRIT à Toulouse

Plus en détail

FONCTION ORDONNANCEMENT AU SEIN

FONCTION ORDONNANCEMENT AU SEIN Lebanese Science Journal, Vol. 10, No. 1, 2009 107 FONCTION ORDONNANCEMENT AU SEIN D UN SYSTEME DE GESTION DE PRODUCTION «ETUDE D UN CAS» Mohsen Akrout et Faouzi Masmoudi Ecole Nationale d Ingénieurs de

Plus en détail

Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux

Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux Colonies de fourmis Comment procèdent les colonies de fourmi pour déterminer un chemin presque géodésique de la fourmilière à un stock de nourriture? Les premières fourmis se déplacent au hasard. Les fourmis

Plus en détail

Utilisation du backtrack intelligent dans un branch-and-bound Application au problème d Open-Shop

Utilisation du backtrack intelligent dans un branch-and-bound Application au problème d Open-Shop Utilisation du backtrack intelligent dans un branch-and-bound Application au problème d Open-Shop Narendra Jussien et Christelle Guéret École des Mines de Nantes 4 rue Alfred Kastler BP 20722 F-44300 Nantes

Plus en détail

Classement multicritère de stratégies d'ordonnancement dans le cadre d'une industrie semi-continue

Classement multicritère de stratégies d'ordonnancement dans le cadre d'une industrie semi-continue Classement multicritère de stratégies d'ordonnancement dans le cadre d'une industrie semi-continue O. Roux 1, V. Dhaevers 1, D. Duvivier 1, N. Meskens 1 et A. Artiba 2 1. Facultés Universitaires Catholiques

Plus en détail

Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques

Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques Université Mohammed V, Faculté des Sciences de Rabat Laboratoire de Recherche Mathématiques, Informatique et Applications Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques MASTER

Plus en détail

Mlle Yasmin A. RÍOS SOLÍS

Mlle Yasmin A. RÍOS SOLÍS Thèse de DOCTORAT de l UNIVERSITÉ PARIS VI - PIERRE ET MARIE CURIE Spécialité : INFORMATIQUE présentée par : Mlle Yasmin A. RÍOS SOLÍS pour obtenir le grade de DOCTEUR de l UNIVERSITÉ PARIS VI Sujet de

Plus en détail

Proposition d un modèle pour Ordonnancement d un Système Automatisé de Production Applications des algorithmes génétiques hybrides

Proposition d un modèle pour Ordonnancement d un Système Automatisé de Production Applications des algorithmes génétiques hybrides Proposition d un modèle pour Ordonnancement d un Système Automatisé de Production Applications des algorithmes génétiques hybrides Djamila Bouhalouan 1, Nassima Aissani 1, Bouziane Beldjilali 2 1 Département

Plus en détail

PREMIER RETOUR D EXPERIENCE SUR LE FLOW-SHOP BIOBJECTIF ET HYBRIDE A DEUX ETAGES AVEC UNE CONTRAINTE DE BLOCAGE PARTICULIERE

PREMIER RETOUR D EXPERIENCE SUR LE FLOW-SHOP BIOBJECTIF ET HYBRIDE A DEUX ETAGES AVEC UNE CONTRAINTE DE BLOCAGE PARTICULIERE 6 e Conférence Francophone de MOdélisation et SIMulation - MOSIM 06 - du 3 au 5 avril 2006 - Rabat - Maroc Modélisation, Optimisation et Simulation des Systèmes : Défis et Opportunités PREMIER RETOUR D

Plus en détail

Ordonnancement robuste et décision dans l'incertain

Ordonnancement robuste et décision dans l'incertain Ordonnancement robuste et décision dans l'incertain 4 ème Conférence Annuelle d Ingénierie Système «Efficacité des entreprises et satisfaction des clients» Centre de Congrès Pierre Baudis,TOULOUSE, 2-4

Plus en détail

Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Julien Jorge, Xavier Gandibleux Laboratoire d Informatique de Nantes Atlantique

Plus en détail

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments Recherche Opérationnelle Optimisation combinatoire : Applications et compléments Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 17 février 2014 Plan de

Plus en détail

Ordonnancement sous contraintes de Qualité de Service dans les Clouds

Ordonnancement sous contraintes de Qualité de Service dans les Clouds Ordonnancement sous contraintes de Qualité de Service dans les Clouds GUÉROUT Tom DA COSTA Georges (SEPIA) MONTEIL Thierry (SARA) 05/12/2014 1 Contexte CLOUD COMPUTING Contexte : Environnement de Cloud

Plus en détail

RenPar'14 Hammamet, Tunisie 10-13 avril 2002

RenPar'14 Hammamet, Tunisie 10-13 avril 2002 PARALLELISATION CO-EVOLUTIVE DE L OPTIMISATION PAR COLONIE DE FOURMIS POUR LA RESOLUTION D UN PROBLEME D ORDONNANCEMENT INDUSTRIEL Pierre Delisle (1), Marc Gravel (1), Caroline Gagné (1), Michaël Krajecki

Plus en détail

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.

Plus en détail

Résolution du RCPSP avec production et consommation de ressources : modèles PLNE basés sur les événements

Résolution du RCPSP avec production et consommation de ressources : modèles PLNE basés sur les événements «Évaluation et optimisation des systèmes innovants de production de biens et de services» Résolution du RCPSP avec production et consommation de ressources : modèles PLNE basés sur les événements Oumar

Plus en détail

Plan du cours. Vocabulaire. Définitions d un projet. Les cinq phases de la Gestion de Projets. 1- Conception

Plan du cours. Vocabulaire. Définitions d un projet. Les cinq phases de la Gestion de Projets. 1- Conception Plan du cours Vocabulaire Définitions d un projet Les cinq phases de la Gestion de Projets 1- Conception Planification du Projet Ingénierie du projet Ordonnancement des activités Estimation des durées

Plus en détail

OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT)

OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT) OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT) LAGGOUNE Radouane 1 et HADDAD Cherifa 2 1,2: Dépt. de G. Mécanique, université de Bejaia, Targa-Ouzemour

Plus en détail

Sujets de stage. Sciences de la Fabrication et Logistique. Génie Industriel. Optimisation. Recherche opérationnelle. Simulation

Sujets de stage. Sciences de la Fabrication et Logistique. Génie Industriel. Optimisation. Recherche opérationnelle. Simulation 2011 2012 Sujets de stage Génie Industriel Optimisation Recherche opérationnelle Simulation Sciences de la Fabrication et Logistique Table des matières Problème de planification de production avec des

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

DOCUMENT DE TRAVAIL 1998-021. Centre de recherche sur l aide à l évaluation et à la décision dans les organisations (CRAEDO)

DOCUMENT DE TRAVAIL 1998-021. Centre de recherche sur l aide à l évaluation et à la décision dans les organisations (CRAEDO) Publié par : Published by : Publicación de la : Édition électronique : Electronic publishing : Edición electrónica : Disponible sur Internet : Available on Internet Disponible por Internet : Faculté des

Plus en détail

PLANIFICATION DES LIVRAISON JOINTES DE DIFFERENTS PRODUITS A DIFFERENTS SITES

PLANIFICATION DES LIVRAISON JOINTES DE DIFFERENTS PRODUITS A DIFFERENTS SITES 0ème Conférence Francophone de Modélisation, Optimisation et Simulation- MOSIM 5 au 7 novembre 0 - Nancy France «de l économie linéaire à l économie circulaire» PLANIFICATION DES LIVRAISON JOINTES DE DIFFERENTS

Plus en détail

physicien diplômé EPFZ originaire de France présentée acceptée sur proposition Thèse no. 7178

physicien diplômé EPFZ originaire de France présentée acceptée sur proposition Thèse no. 7178 Thèse no. 7178 PROBLEMES D'OPTIMISATION DANS LES SYSTEMES DE CHAUFFAGE A DISTANCE présentée à l'ecole POLYTECHNIQUE FEDERALE DE ZURICH pour l'obtention du titre de Docteur es sciences naturelles par Alain

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

Laboratoire d Automatique et Productique Université de Batna, Algérie

Laboratoire d Automatique et Productique Université de Batna, Algérie Anale. Seria Informatică. Vol. IX fasc. 2 Annals. Computer Science Series. 9 th Tome st Fasc. 2 La sélection de paramètres d un système industriel par les colonies de fourmis Ouahab Kadri, L. Hayet Mouss,

Plus en détail

Optimisation Combinatoire et Colonies de Fourmis Nicolas Monmarche April 21, 1999 Sommaire Inspiration biologiques Ant Colony Optimization Applications TSP QAP Flow Shop Problemes dynamiques 1 Historique

Plus en détail

Évaluation d une méthode d ordonnancement multicritère utilisant AHP

Évaluation d une méthode d ordonnancement multicritère utilisant AHP Évaluation d une méthode d ordonnancement multicritère utilisant AHP FOUZIA OUNNAR 1, SELMA KHADER 2, YVES DUBROMELLE 1, JEAN-PIERRE PRUNARET 1, PATRICK PUJO 1 1 LSIS UMR CNRS 7296 Aix-Marseille Université

Plus en détail

Ordonnancement temps réel préemptif multiprocesseur avec prise en compte du coût du système d exploitation

Ordonnancement temps réel préemptif multiprocesseur avec prise en compte du coût du système d exploitation UNIVERSITÉ PARIS-SUD ÉCOLE DOCTORALE Sciences et Technologie de l Information, des Télécommunications et des Systèmes INRIA Paris-Rocquencourt DISCIPLINE : Génie Informatique THÈSE DE DOCTORAT présentée

Plus en détail

Sommaire. Introduction.2. 1. Définition..2. 2. Historique.2. 3. Domaine d application.2. 4.Les Travaux réalisés sur les domaines d application.

Sommaire. Introduction.2. 1. Définition..2. 2. Historique.2. 3. Domaine d application.2. 4.Les Travaux réalisés sur les domaines d application. Sommaire Introduction.2 1. Définition..2 2. Historique.2 3. Domaine d application.2 4.Les Travaux réalisés sur les domaines d application.3 5.Algorithme 4 6.Exemple d application 5 7. Avantage et inconvénient..6

Plus en détail

UNE APPROCHE D OPTIMISATION-BASEE SUR LA SIMULATION POUR LA CONCEPTION D UN RESEAU DE DISTRIBUTION STOCHASTIQUE MULTI FOURNISSEURS

UNE APPROCHE D OPTIMISATION-BASEE SUR LA SIMULATION POUR LA CONCEPTION D UN RESEAU DE DISTRIBUTION STOCHASTIQUE MULTI FOURNISSEURS 8 e Conférence Internationale de MOdélisation et SIMulation - MOSIM 10-10 au 12 mai 2010 - Hammamet - Tunisie Évaluation et optimisation des systèmes innovants de production de biens et de services UNE

Plus en détail

Recherche locale pour un problème d optimisation de tournées de véhicules avec gestion des stocks

Recherche locale pour un problème d optimisation de tournées de véhicules avec gestion des stocks 8 e Conférence Internationale de MOdélisation et SIMulation - MOSIM 10-10 au 12 mai 2010 - Hammamet - Tunisie «Évaluation et optimisation des systèmes innovants de production de biens et de services» Recherche

Plus en détail

L ordonnancement des opérations d une machine multitâche : Un problème central dans l industrie de la chaussure

L ordonnancement des opérations d une machine multitâche : Un problème central dans l industrie de la chaussure L ordonnancement des opérations d une machine multitâche : Un problème central dans l industrie de la chaussure Fayez F. Boctor et Jacques Renaud Août 2005 Document de travail DT-2005-JR-3 Centre de recherche

Plus en détail

Approche hybride de reconstruction de facettes planes 3D

Approche hybride de reconstruction de facettes planes 3D Cari 2004 7/10/04 14:50 Page 67 Approche hybride de reconstruction de facettes planes 3D Ezzeddine ZAGROUBA F. S.T, Dept. Informatique. Lab. d Informatique, Parallélisme et Productique. Campus Universitaire.

Plus en détail

Approche bayésienne des modèles à équations structurelles

Approche bayésienne des modèles à équations structurelles Manuscrit auteur, publié dans "42èmes Journées de Statistique (2010)" Approche bayésienne des modèles à équations structurelles Séverine Demeyer 1,2 & Nicolas Fischer 1 & Gilbert Saporta 2 1 LNE, Laboratoire

Plus en détail

Programmation Linéaire - Cours 1

Programmation Linéaire - Cours 1 Programmation Linéaire - Cours 1 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.

Plus en détail

La Recherche du Point Optimum de Fonctionnement d un Générateur Photovoltaïque en Utilisant les Réseaux NEURO-FLOUS

La Recherche du Point Optimum de Fonctionnement d un Générateur Photovoltaïque en Utilisant les Réseaux NEURO-FLOUS Rev. Energ. Ren. : Chemss 2000 39-44 La Recherche du Point Optimum de Fonctionnement d un Générateur Photovoltaïque en Utilisant les Réseaux NEURO-FLOUS D.K. Mohamed, A. Midoun et F. Safia Département

Plus en détail

Algorithme de recherche locale pour la résolution d un problème réel de tournées d inventaires

Algorithme de recherche locale pour la résolution d un problème réel de tournées d inventaires Algorithme de recherche locale pour la résolution d un problème réel de tournées d inventaires Thierry Benoist Frédéric Gardi Antoine Jeanjean Bouygues e-lab, Paris { tbenoist, fgardi, ajeanjean }@bouygues.com

Plus en détail

Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h

Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h Télécom Physique Strasbourg Master IRIV Optimisation et programmation mathématique Professeur Michel de Mathelin Cours intégré : 20 h Programme du cours d optimisation Introduction Chapitre I: Rappels

Plus en détail

Gestion réactive des opérations de maintien et d actualisation réglementaire et technologique des systèmes complexes.

Gestion réactive des opérations de maintien et d actualisation réglementaire et technologique des systèmes complexes. Gestion réactive des opérations de maintien et d actualisation réglementaire et technologique des systèmes complexes. LE QUERE Yann, SEVAUX Marc, TRENTESAUX Damien, TAHON Christian Equipe Systèmes de Production

Plus en détail

Stratégie de recherche adaptative en programmation par contrainte

Stratégie de recherche adaptative en programmation par contrainte Université Paul Sabatier École Nationale de l Aviation Civile Master 2 Recherche Informatique et Télécommunication parcours Intelligence Artificielle Simon Marchal Stratégie de recherche adaptative en

Plus en détail

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie 1 Présenté par: Yacine KESSACI Encadrement : N. MELAB E-G. TALBI 31/05/2011 Plan 2 Motivation

Plus en détail

Introduction. Utilisation d un ensemble de relations mathématiques pour refléter le plus adéquatement possible une situation réelle

Introduction. Utilisation d un ensemble de relations mathématiques pour refléter le plus adéquatement possible une situation réelle 1. Introduction Introduction Modélisation Utilisation d un ensemble de relations mathématiques pour refléter le plus adéquatement possible une situation réelle Compromis entre l adéquation avec la réalité

Plus en détail

Les colonies de fourmis : apprentissage coopératif pour le problème du voyageur de commerce

Les colonies de fourmis : apprentissage coopératif pour le problème du voyageur de commerce : apprentissage coopératif pour le problème du voyageur de commerce Alexandre Bargeton Benjamin Devèze Université Pierre et Marie Curie Présentation du projet ANIMAT 1 Comportements collectifs des insectes

Plus en détail

Définition et diffusion de signatures sémantiques dans les systèmes pair-à-pair

Définition et diffusion de signatures sémantiques dans les systèmes pair-à-pair Définition et diffusion de signatures sémantiques dans les systèmes pair-à-pair Raja Chiky, Bruno Defude, Georges Hébrail GET-ENST Paris Laboratoire LTCI - UMR 5141 CNRS Département Informatique et Réseaux

Plus en détail

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France. La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of

Plus en détail

Système Immunitaire Artificiel Parallèle appliqué aux Flow Shop Hybride (FSH)

Système Immunitaire Artificiel Parallèle appliqué aux Flow Shop Hybride (FSH) République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université des Sciences et de la Technologie d Oran -Mohamed Boudiaf USTO-MB Faculté

Plus en détail

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

NOTE SUR LA MODELISATION DU RISQUE D INFLATION NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction

Plus en détail

Principes d implémentation des métaheuristiques

Principes d implémentation des métaheuristiques Chapitre 2 Principes d implémentation des métaheuristiques Éric D. Taillard 1 2.1 Introduction Les métaheuristiques ont changé radicalement l élaboration d heuristiques : alors que l on commençait par

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Aeon : Synthèse d Algorithmes d Ordonnancement à partir de Modèles de Haut Niveau

Aeon : Synthèse d Algorithmes d Ordonnancement à partir de Modèles de Haut Niveau Actes JFPC 2009 Aeon : Synthèse d Algorithmes d Ordonnancement à partir de Modèles de Haut Niveau Jean-Noël Monette 1, Yves Deville 1 et Pascal Van Hentenryck 2 1 INGI, UCLouvain, 1348 Louvain-la-Neuve,

Plus en détail

Lot streaming et pegging pour l intégration de la planification et de l ordonnancement de production

Lot streaming et pegging pour l intégration de la planification et de l ordonnancement de production Lot streaming et pegging pour l intégration de la planification et de l ordonnancement de production A. Robert 1,2, C. Le Pape 1, and F. Sourd 2 1 ILOG S.A., 9 rue de Verdun, 94253 Gentilly cedex {anrobert,clepape}@ilog.fr

Plus en détail

Ministère de l Enseignement Supérieur et de la Recherche Scientifique. Mémoire de fin d études. Thème

Ministère de l Enseignement Supérieur et de la Recherche Scientifique. Mémoire de fin d études. Thème Ministère de l Enseignement Supérieur et de la Recherche Scientifique Institut National de formation en Informatique (I.N.I.) Oued-Smar Alger Mémoire de fin d études Pour l obtention du diplôme d ingénieur

Plus en détail

FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc)

FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc) 87 FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc) Dans le cadre de la réforme pédagogique et de l intérêt que porte le Ministère de l Éducation

Plus en détail

Ordonnancement temps réel

Ordonnancement temps réel Ordonnancement temps réel Laurent.Pautet@enst.fr Version 1.5 Problématique de l ordonnancement temps réel En fonctionnement normal, respecter les contraintes temporelles spécifiées par toutes les tâches

Plus en détail

UN ALGORITHME COOPÉRATIF POUR UN PROBLÈME D ATELIER JOB SHOP MULTI-AGENT

UN ALGORITHME COOPÉRATIF POUR UN PROBLÈME D ATELIER JOB SHOP MULTI-AGENT 8 e Conférence Internationale de MOdélisation et SIMulation - MOSIM 10-10 au 12 mai 2010 - Hammamet - Tunisie «Évaluation et optimisation des systèmes innovants de production de biens et de services» UN

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services

Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services 69 Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services M. Bakhouya, J. Gaber et A. Koukam Laboratoire Systèmes et Transports SeT Université de Technologie de Belfort-Montbéliard

Plus en détail

DEPARTEMENT D'INFORMATIQUE MEMOIRE. Présenté par. S l i m a n e M o h a m e d. Pour obtenir LE DIPLOME DE MAGISTER. Spécialité Informatique

DEPARTEMENT D'INFORMATIQUE MEMOIRE. Présenté par. S l i m a n e M o h a m e d. Pour obtenir LE DIPLOME DE MAGISTER. Spécialité Informatique DEPARTEMENT D'INFORMATIQUE MEMOIRE Présenté par S l i m a n e M o h a m e d Pour obtenir LE DIPLOME DE MAGISTER Spécialité Informatique Option : Analyse, Commande et Surveillance des Systèmes Industriels

Plus en détail

Etude de modèles de programmation par contraintes pour le problème du voyageur de. avec fenêtres de temps.

Etude de modèles de programmation par contraintes pour le problème du voyageur de. avec fenêtres de temps. Actes JFPC 2015 Etude de modèles de programmation par contraintes pour le problème du voyageur de commerce avec fenêtres de temps Sylvain Ducomman 1 2 Hadrien Cambazard 1 Bernard Penz 1 1 Univ. Grenoble

Plus en détail

REPUBLIQUE TUNISIENNE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE DE SFAX

REPUBLIQUE TUNISIENNE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE DE SFAX REPUBLIQUE TUNISIENNE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE DE SFAX INSTITUT DES HAUTES ETUDES COMMERCIALES Laboratoire MODELIS Curriculum Vitae De Bassem Jarboui

Plus en détail

Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) IFT702 Planification en intelligence artificielle

Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) IFT702 Planification en intelligence artificielle Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) PLANIFICATION DE TÂCHES DANS MS PROJECT IFT702 Planification en intelligence artificielle Présenté à M. Froduald KABANZA

Plus en détail

Introduction à l Algorithmique

Introduction à l Algorithmique Introduction à l Algorithmique N. Jacon 1 Définition et exemples Un algorithme est une procédure de calcul qui prend en entier une valeur ou un ensemble de valeurs et qui donne en sortie une valeur ou

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

Conception assistée par ordinateur de molécules thérapeutiques

Conception assistée par ordinateur de molécules thérapeutiques Conception assistée par ordinateur de molécules thérapeutiques D. Gilis Bioinformatique génomique et structurale Faculté des sciences appliquées Université Libre de Bruxelles Objectif: illustrer en quoi

Plus en détail

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Ordonnancement. N: nains de jardin. X: peinture extérieure. E: électricité T: toit. M: murs. F: fondations CHAPTER 1

Ordonnancement. N: nains de jardin. X: peinture extérieure. E: électricité T: toit. M: murs. F: fondations CHAPTER 1 CHAPTER 1 Ordonnancement 1.1. Étude de cas Ordonnancement de tâches avec contraintes de précédences 1.1.1. Exemple : construction d'une maison. Exercice. On veut construire une maison, ce qui consiste

Plus en détail

Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre.

Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre. Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre. Isabelle Bombard, Bruno da Silva, Pascal Dufour *, Pierre Laurent, Joseph Lieto. Laboratoire d Automatique

Plus en détail

Fig.1. Structure d un AGQ

Fig.1. Structure d un AGQ Evolution d Automate Cellulaire par Algorithme Génétique Quantique Zakaria Laboudi 1 - Salim Chikhi 2 Equipe SCAL, Laboratoire MISC Université Mentouri de Constantine. E - Mail : 1 laboudizak@yahoo.fr;

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

LE DIPLOME DE MAGISTER

LE DIPLOME DE MAGISTER Département d Informatique MEMOIRE Présenté par DEDDOUCHE Yamina Pour obtenir LE DIPLOME DE MAGISTER Spécialité : Informatique Option : Informatique et Automatique Intitulé : Contribution à l Ordonnancement

Plus en détail

Echantillonnage Non uniforme

Echantillonnage Non uniforme Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas

Plus en détail

UNIVERSITÉ DU QUÉBEC THESE PRESENTEE A L'UNIVERSITÉ DU QUÉBEC À CHICOUTIMI COMME EXIGENCE PARTIELLE DU DOCTORAT EN INGÉNIERIE

UNIVERSITÉ DU QUÉBEC THESE PRESENTEE A L'UNIVERSITÉ DU QUÉBEC À CHICOUTIMI COMME EXIGENCE PARTIELLE DU DOCTORAT EN INGÉNIERIE UNIVERSITÉ DU QUÉBEC THESE PRESENTEE A L'UNIVERSITÉ DU QUÉBEC À CHICOUTIMI COMME EXIGENCE PARTIELLE DU DOCTORAT EN INGÉNIERIE PAR Aymen Sioud APPROCHES HYBRIDES POUR LA RESOLUTION D'UN PROBLÈME D'ORDONNANCEMENT

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

Différentes opérateurs évolutionnaires de permutation: sélections, croisements et mutations

Différentes opérateurs évolutionnaires de permutation: sélections, croisements et mutations LABORATOIRE D INFORMATIQUE DE L UNIVERSITE DE FRANCHE-COMTE EA 4269 Différentes opérateurs évolutionnaires de permutation: sélections, croisements et mutations Mais HAJ-RACHID, Christelle BLOCH, Wahiba

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Optimisation d une fonction de transmission d ordres

Optimisation d une fonction de transmission d ordres Optimisation d une fonction de transmission d ordres pour driver à très haute isolation galvanique. Application aux modules IGBT pour onduleurs multi-niveaux MMC (Multilevel Modular Converters). Sokchea

Plus en détail