A GRASPxELS approach for the Job Shop with generic time-lags and new statistical determination of the parameters

Dimension: px
Commencer à balayer dès la page:

Download "A GRASPxELS approach for the Job Shop with generic time-lags and new statistical determination of the parameters"

Transcription

1 A GRASPxELS approach for the Job Shop with generic time-lags and new statistical determination of the parameters Présenté par : Equipe de travail : Laboratoire : Maxime CHASSAING Philippe LACOMME, Nikolay TCHERNEV, Jonathan FONTANEL, Libo REN LIMOS (Laboratoire d Informatique, de Modélisation et d Optimisation des Systèmes) Contact :

2 ROADEF 213 à Troyes Plan Plan de la présentation Introduction et contexte 1. Présentation du problème Job-shop avec time-lags généraux 2. Démarche de résolution Principe et fonctionnement du GRASPxELS 3. L optimisation des paramètres Un premier échantillonnage Front de Pareto 4. Les résultats Conclusion 2

3 ROADEF 213 à Troyes Partie 1/4 : Présentation du problème 1. Présentation du problème A- Job Shop 1. Ensemble de N jobs 2. Ensemble de M machines 1. Une opération Oij : un job i, une machine j, une durée dij 2. Un Job = Une suite ordonnée d opérations 3. 3 règles à respecter : 1. À chaque instant t : au plus 1 opération par job 2. À chaque instant t : au plus 1 opération par machine 3. Une opération d un job peut commencer que si toutes les opérations qui la précèdent sur ce job ont été réalisées 4. Objectif : Ordonnancer les opérations pour finir les jobs en un minimum de temps 3

4 ROADEF 213 à Troyes Partie 1/4 : Présentation du problème B- Exemple de Job Shop Données du problème : 3 jobs et 3 machines Operation 1 Operation 2 Operation 3 Job 1 (m1,6) (m2,5) (m3,7) Job 2 (m3,5) (m2,7) (m1,6) Job 3 (m2,8) (m1,4) (m3,5) 4

5 ROADEF 213 à Troyes Partie 1/4 : Présentation du problème C- Les Time-lags O(3,x) O(x,2) O(x,x ) Job identique O(3,y) Machine identique O(y,2) Opérations quelconques O(y,y ) Publications concernant les time lags Dans divers problèmes d'ordonnancement On-line two-machine open shop scheduling with time lags Original Research Article European Journal of Operational Research, Volume 24, Issue 1, 1 July 21, Pages Xiandong Zhang, Steef van de Velde Hybrid flow shop scheduling with precedence constraints and time lags to minimize maximum lateness Original Research Article International Journal of Production Economics, Volume 64, Issues 1 3, 1 March 2, Pages Valérie Botta-Genoulaz Job Shop et time-lags entre opérations successives d un même job Generalized disjunctive constraint propagation for solving the job shop problem with time lags Original Research Article Engineering Applications of Artificial Intelligence, Volume 24, Issue 2, March 211, Pages Christian Artigues, Marie-José Huguet, Pierre Lopez A memetic algorithm for the job-shop with time-lags Original Research Article Computers & Operations Research, Volume 35, Issue 7, July 28, Pages Anthony Caumond, Philippe Lacomme, Nikolay Tchernev Job Shop et time-lags géneraux On-line two-machine job shop scheduling with time lags Information Processing Letters, Volume 11, Issues 12 13, 15 June 21, Pages Xiandong Zhang, Steef van de Velde 5

6 ROADEF 213 à Troyes Partie 1/4 : Présentation du problème E- Contraintes de time-lags 1. Contraintes de time-lags entre 2 opérations O i O, j et i', j' My... Opération Oi j Durée : 6 Mx Opération Oij Durée : 5 l oi o, j, i ', j ' Remarques : L oi o, j, i ', j ' 1. Si l o i o,, j i ', j ' O i et O, j i', j' et : L oi o, j, i ', j ' Problème du job shop 7

7 ROADEF 213 à Troyes Partie 1/4 : Présentation du problème F- État de l art Job Shop + times- lags généraux Job Shop + times- lags entre opérations successives Artigues et al, (211) Caumond et al, (26) Job Shop Job Shop No-Wait Gao et al, (211) Rego et al, (29) Kamul et al, (29) Huang et al, (25) Gonçalves et al, (22) Schuster and Framinan, (26) Mascis A and Pacciarelli, 22) 8

8 ROADEF 213 à Troyes Partie 1/4 : Présentation du problème G- Les instances du job shop avec TL 1. Basées sur deux ensembles d instances: 1. Instances de Lawrence (1984) Les plus utilisées : 1. Tailles variables : de 5x1 à 15x15 de 5 à 225 Opérations 2. 4 groupes : LA 1 > LA1 (<76 Opérations) LA 11 > LA 2 (<11 Opérations) 2. Instances de Carlier : 1. car1 -> car8 tailles environ 1 opérations LA 21 > LA 3 (<2 Opérations) LA 31 > LA 4 (>=2 Opérations) 2. Auxquelles sont ajoutées des times-lags Instances disponibles sur le site: 9

9 ROADEF 213 à Troyes Partie 2/4 : Démarche de résolution 2. Démarche de résolution A- Rappels sur le job shop 1-to-n mapping n-to-1 mapping 1-to-1 mapping Coding space Solution space Cheng R., Gen M. and Tsujimura Y., A tutorial survey of job-shop scheduling problems using genetic algorithms I representation, Computers and industrial engineering, 1996, 3, pp

10 ROADEF 213 à Troyes Partie 2/4 : Démarche de résolution B- Construction du graphe Disjonctif non Orienté Gamme du problème : Contraintes de Time-lags: 1 : (min) (max) lo 1,1 Lo, o 1,1 2,2, o 2,2 2 3 m1 m2 m3 2: (min) (max) lo Lo 2,1 2,1, o 3,1, o 3,1 5 2 (1,1) 1 (1,2) 35 (1,3) (2,1) (2,2) (2,3) 12 m1 m3 m (3,1) 11 (3,2) 12 (3,3) 21 * 1 : Contraintes de précédence 2 : Contraintes de Time-lags 3 : Contraintes Disjonctives 11 m3 m1 m2

11 ROADEF 213 à Troyes Partie 2/4 : Démarche de résolution C- Démarche globale 3 difficultés 12

12 ROADEF 213 à Troyes Partie 2/4 : Démarche de résolution D- Construction du graphe Disjonctif Orienté (première difficulté) Cycles dus aux arcs disjonctifs Vecteur de Bierwirth (1995) Pour le Job Shop : Ordre topologique Vecteur par répétition Graphe orienté Evaluer Numéro de job acyclique algorithme «Dijkstra Like» m1 m2 m3 (1,1) 1 (1,2) 35 (1,3) (2,1) (2,2) (2,3) 12 m1 m3 m * 13 (3,1) (3,2) (3,3) m3 m1 m2

13 ROADEF 213 à Troyes Partie 2/4 : Démarche de résolution E- Construction du graphe Disjonctif Orienté (deuxième difficulté) Cycles dus aux arcs time-lags min m1 m2 m3 (1,1) 1 (1,2) 35 (1,3) (2,1) (2,2) (2,3) 12 m1 m3 m2 * Intégrer cette contrainte au VB (3,1) 11 (3,2) 12 (3,3) m3 m1 m2 Solution space n-to-1 mapping 14 m1 m2 m3 (1,1) 1 (1,2) 35 (1,3) Coding space Bierwirth vector (2,1) (2,2) (2,3) 12 m1 m3 m (3,1) (3,2) (3,3) *

14 ROADEF 213 à Troyes Partie 2/4 : Démarche de résolution F- Construction du graphe Disjonctif Orienté (troisième difficulté) Cycles dus aux arcs time-lags max L oi o, j, i ', j ' m1 m2 m3 (1,1) 1 (1,2) 35 (1,3) Relaxer les contraintes de times lags max Puis les ajouter progressivement (si c est possible!!) (2,1) (2,2) (2,3) 12 m1 m3 m (3,1) (3,2) (3,3) * Hiérarchiser : Cost[S]= P1*N + P2*makespan N = le nombre de contraintes toujours relaxées P1 et P2 des constantes m3 m1 m Nombre de contraintes (time lags max) relaxées x 15

15 ROADEF 213 à Troyes Partie 2/4 : Démarche de résolution G- La recherche locale voisinage de Laarhoven (1985) 1. Remonte le chemin critique de la gauche vers la droite m1 m2 m3 (1,1) (2,1) (3,1) 1 (1,2) (2,2) (2,3) 12 m1 m3 m (3,2) (1,3) (3,3) m3 m1 m * 2. On permute dans le Vecteur de Bierwirth les opérations successives situées sur des jobs différents 17

16 ROADEF 213 à Troyes Partie 2/4 : Démarche de résolution H- Le GRASP x ELS ELS : a integer Nmax : a integer nbstart : a integer MaxIterLS : a integer For m in 1 to nbstart Find a solution S S : a solution bestvb : a Bierwirth vector For i in 1 to ELS S_bestVB < - VB < - bestvb For n in 1 to Nmax np iterations Best solution G' b, b Random Heuristic ELS Get neighbors : VB VB : a Bierwirth vector Mutation on 1 EVALUATE G 1 Mutation on k EVALUATE G k Evaluate : VB S : a solution i : a integer (i ) Local search : VB, S, MaxIterLS S : a solution i : a integer (i ) Local Search G ' ' 1, 1 Set of Local Search G ', ' k k if S <S_bestVB S_bestVB < - VB < - bestvb else 18 S : a solution i : a integer

17 ROADEF 213 à Troyes Partie 3/4 : Optimisation des paramètres 4. Optimisation des paramètres A- Principe Les paramètres influencent le résultat 1. Pour le GRASP x ELS : 4 paramètres Paramètrage : GRASP x ELS P { Start, ELS, N, IM_RL} Résultat: R { écart, time} Instances : LA1-LA4 Et Car1->Car8 Sélectionner une sous population (Représentative) 5 instances 48 instances 2

18 ROADEF 213 à Troyes Partie 3/4 : Optimisation des paramètres B- Front de Pareto Entrée : Start : [min,max], pas ELS : [min,max], pas N : [min,max], pas IM_RL : [min,max], pas Une procédure : Génère tous les paramétrages possibles Tester la méthode Sortie : Associée à chaque paramétrage généré : Un couple : { écart, time} 5 Instances Front de Pareto : - > 8 paramétrages incomparables 21

19 ROADEF 213 à Troyes Partie 4/4 : Les Résultats 1. Les résultats A- Exécutions Un jeu de paramètres sélectionné Moyenne sur 1 exécutions Pas de comparaison possible sur les instances du Job Shop avec time-lags généraux MAIS : Méthode à large spectre Comparaisons possible avec : Job Shop Job Shop no-wait Job Shop avec time-lags sur opérations successives de même job (méthode non dédiée à ces problèmes) 23

20 ROADEF 213 à Troyes Partie 4/4 : Les Résultats 1. Les résultats A- Résultats : job shop Gonçalves (22) Huang (25) Kamrul (29) Rego (29) Gao(211) Our proposal Small Medium Large Nightmare <x<76 76<x<11 11<x<2 x>2 Param Active Avg. Dev HGA Avg. Dev Non delay Active Avg. Dev Scale time T* SB Avg. Dev Av.T* N/A N/A N/A N/A MSB Avg. Dev Scale time TT GA Avg. Dev MA (PR) Avg. Dev MA (GR) Avg. Dev MA (GR.RS) Avg. Dev Scale time T* N/A N/A N/A N/A Scale time TT N/A N/A N/A N/A Avg. Dev F&F Scale time T* N/A N/A N/A N/A Scale time TT Avg. Dev MA Scale time T* N/A N/A N/A N/A Scale time TT N/A N/A N/A N/A Avg. Dev GRASPxELS Scale time T* Scale time TT

21 ROADEF 213 à Troyes Partie 4/4 : Les Résultats B- Résultats : Job Shop no-wait (Mascis A and Pacciarelli, 22) (Schuster and Framinan, 26) (Caumond et al, 28) Our proposal AMCC SMCP / SMBP SMSP VND GASA CLM-time CLM MA GRASP ELS Small Medium Large Nightmare <x<76 76<x<11 11<x<2 x>2 Avg. Dev. N/A N/A N/A N/A Scale time TT N/A N/A N/A N/A Avg. Dev N/A Scale time TT N/A N/A N/A N/A Avg. Dev. N/A N/A N/A N/A Scale time TT N/A N/A N/A N/A Avg. Dev Scale time T*.... Scale time TT N/A N/A N/A N/A Avg. Dev Scale time T* Scale time TT N/A N/A N/A N/A Avg. Dev Scale time T* Scale time TT N/A N/A N/A N/A Avg. Dev Scale time T* Scale time TT N/A N/A N/A N/A Avg. Dev Scale time T* N/A Scale time TT Avg. Dev Scale time T* Scale time TT

22 ROADEF 213 à Troyes Partie 4/4 : Les Résultats C- Résultats : job shop avec time-lags Our proposal GRASPxELS Small Medium Large Nightmare <x<76 76<x<11 11<x<2 x>2 Avg. Dev Scale time T* Scale time TT GRASP x ELS Instance BKS Scale time Scale time name BFS gap (%) T* (s) TT (s) La1_GTL La2_GTL La3_GTL La4_GTL La5_GTL La36_GTL La37_GTL La38_GTL La39_GTL La4_GTL average

23 ROADEF 213 à Troyes Conclusion Conclusions Job Shop avec time-lags Un problème d optimisation qui englobe des problèmes traités GRASPxELS Une méthode complexe adaptée à ce problème Des résultats intéressants Instances disponibles sur le site: 29

Séparation et Evaluation pour le problème d ordonnancement avec blocage.

Séparation et Evaluation pour le problème d ordonnancement avec blocage. Séparation et Evaluation pour le problème d ordonnancement avec blocage. Abdelhakim Ait Zai 1, Abdelkader Bentahar 1, Hamza Bennoui 1, Mourad Boudhar 2 et Yazid Mati 3 1 Faculté d Electronique et d Informatique,

Plus en détail

LES MÉTA-HEURISTIQUES : quelques conseils pour en faire bon usage

LES MÉTA-HEURISTIQUES : quelques conseils pour en faire bon usage LES MÉTA-HEURISTIQUES : quelques conseils pour en faire bon usage Alain HERTZ Ecole Polytechnique - GERAD Département de mathématiques et de génie industriel CP 679, succ. Centre-ville, Montréal (QC) H3C

Plus en détail

Résolution du RCPSP avec production et consommation de ressources : modèles PLNE basés sur les événements

Résolution du RCPSP avec production et consommation de ressources : modèles PLNE basés sur les événements «Évaluation et optimisation des systèmes innovants de production de biens et de services» Résolution du RCPSP avec production et consommation de ressources : modèles PLNE basés sur les événements Oumar

Plus en détail

Minimisation de la somme des retards dans un jobshop flexible

Minimisation de la somme des retards dans un jobshop flexible Minimisation de la somme des retards dans un jobshop flexible Nozha ZRIBI, Imed KACEM, Abdelkader EL KAMEL, Pierre BORNE LAGIS Ecole Centrale de Lille, BP 48, 5965 Villeneuve d Ascq Cedex, France ISTIT

Plus en détail

Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003

Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003 Problèmes d ordonnancement dans les systèmes de production Michel Gourgand Université Blaise Pascal Clermont Ferrand LIMOS CNRS UMR 6158 1 Le LIMOS Laboratoire d Informatique, de Modélisation et d Optimisation

Plus en détail

Annexe 6. Notions d ordonnancement.

Annexe 6. Notions d ordonnancement. Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. Sophie.Demassey@mines-nantes.fr Résumé Ce document

Plus en détail

Une application des algorithmes génétiques à l ordonnancement d atelier

Une application des algorithmes génétiques à l ordonnancement d atelier Une application des algorithmes génétiques à l ordonnancement d atelier VACHER Jean-Philippe - GALINHO Thierry - MAMMERI Zoubir Laboratoire d Informatique du Havre Université du Havre 25, Rue Philippe

Plus en détail

INSERTION TECHNIQUES FOR JOB SHOP SCHEDULING

INSERTION TECHNIQUES FOR JOB SHOP SCHEDULING INSERTION TECHNIQUES FOR JOB SHOP SCHEDULING ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES PAR Tamas KIS Informaticien mathématicien diplômé de l'université

Plus en détail

En vue de l'obtention du. Présentée et soutenue par Abir BEN HMIDA SAKLY Le 12/12/2009

En vue de l'obtention du. Présentée et soutenue par Abir BEN HMIDA SAKLY Le 12/12/2009 THÈSE En vue de l'obtention du DOCTORAT DE L UNIVERSITÉ DE TOULOUSE Délivré par l'institut National des Sciences Appliquées de Toulouse Discipline ou spécialité : Systèmes Informatiques Présentée et soutenue

Plus en détail

PLAN DE COURS. GPA750 Ordonnancement des systèmes de production aéronautique

PLAN DE COURS. GPA750 Ordonnancement des systèmes de production aéronautique Département de génie de la production automatisée Programme de baccalauréat Professeur Pontien Mbaraga, Ph.D. Session/année Automne 2004 Groupe(s) 01 PLAN DE COURS GPA750 Ordonnancement des systèmes de

Plus en détail

Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative

Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative Y. Houbad, M. Souier, A. Hassam, Z.Sari Laboratoire d automatique Tlemcen Faculté de technologie, Université Abou

Plus en détail

Un propagateur basé sur les positions pour le problème d Open-Shop.

Un propagateur basé sur les positions pour le problème d Open-Shop. Actes JFPC 2007 Un propagateur basé sur les positions pour le problème d Open-Shop. Jean-Noël Monette Yves Deville Pierre Dupont Département d Ingénierie Informatique Université catholique de Louvain {jmonette,yde,pdupont}@info.ucl.ac.be

Plus en détail

Un couplage métaheuristique / simulation appliqué au problème du job shop avec transport

Un couplage métaheuristique / simulation appliqué au problème du job shop avec transport Un couplage métaheuristique / simulation appliqué au problème du job shop avec transport LAURENT DEROUSSI 1, ICHEL GOURGAND 2 LIOS CNRS UR 6158 1 IUT de ontluçon, Avenue Aristide Briand B.P. 2235, 03101

Plus en détail

Approche d'évaluation pour les problèmes d'ordonnancement multicritères : Méthode d'agrégation avec direction de recherche dynamique

Approche d'évaluation pour les problèmes d'ordonnancement multicritères : Méthode d'agrégation avec direction de recherche dynamique Approche d'évaluation pour les problèmes d'ordonnancement multicritères : Méthode d'agrégation avec direction de recherche dynamiue D. BERKOUNE 2, K. MESGHOUNI, B. RABENASOLO 2 LAGIS UMR CNRS 846, Ecole

Plus en détail

PREMIER RETOUR D EXPERIENCE SUR LE FLOW-SHOP BIOBJECTIF ET HYBRIDE A DEUX ETAGES AVEC UNE CONTRAINTE DE BLOCAGE PARTICULIERE

PREMIER RETOUR D EXPERIENCE SUR LE FLOW-SHOP BIOBJECTIF ET HYBRIDE A DEUX ETAGES AVEC UNE CONTRAINTE DE BLOCAGE PARTICULIERE 6 e Conférence Francophone de MOdélisation et SIMulation - MOSIM 06 - du 3 au 5 avril 2006 - Rabat - Maroc Modélisation, Optimisation et Simulation des Systèmes : Défis et Opportunités PREMIER RETOUR D

Plus en détail

Liste complète des publications. Pierre LOPEZ

Liste complète des publications. Pierre LOPEZ CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE LABORATOIRE D ANALYSE ET D ARCHITECTURE DES SYSTÈMES Liste complète des publications de Pierre LOPEZ Directeur de Recherche au CNRS (DR 2) Numéro d agent 29794

Plus en détail

Réseaux de neurones formels

Réseaux de neurones formels Réseaux de neurones formels Christian Jutten Lab. des Images et des Signaux (LIS) UMR 5083 Centre National de la Recherche Scientifique, Institut National Polytechnique de Grenoble, Université Joseph Fourier

Plus en détail

Equilibrage de charge (Load

Equilibrage de charge (Load Equilibrage de charge (Load balancing) dans les MPSoCs Présenté Le : 02 Décembre 2013 Par : A. AROUI Encadreur : A.E. BENYAMINA 01/12/2013 1 Problématique Comportement dynamique des applications et la

Plus en détail

Aeon : Synthèse d Algorithmes d Ordonnancement à partir de Modèles de Haut Niveau

Aeon : Synthèse d Algorithmes d Ordonnancement à partir de Modèles de Haut Niveau Actes JFPC 2009 Aeon : Synthèse d Algorithmes d Ordonnancement à partir de Modèles de Haut Niveau Jean-Noël Monette 1, Yves Deville 1 et Pascal Van Hentenryck 2 1 INGI, UCLouvain, 1348 Louvain-la-Neuve,

Plus en détail

Algorithmes de recherche d itinéraires en transport multimodal

Algorithmes de recherche d itinéraires en transport multimodal de recherche d itinéraires en transport multimodal Fallou GUEYE 14 Décembre 2010 Direction : Christian Artigues LAAS-CNRS Co-direction : Marie José Huguet LAAS-CNRS Encadrant industriel : Frédéric Schettini

Plus en détail

Algorithme de recherche locale pour la résolution d un problème réel de tournées d inventaires

Algorithme de recherche locale pour la résolution d un problème réel de tournées d inventaires Algorithme de recherche locale pour la résolution d un problème réel de tournées d inventaires Thierry Benoist Frédéric Gardi Antoine Jeanjean Bouygues e-lab, Paris { tbenoist, fgardi, ajeanjean }@bouygues.com

Plus en détail

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.

Plus en détail

RLBS: Une stratégie de retour arrière adaptative basée sur l apprentissage par renforcement pour l optimisation combinatoire

RLBS: Une stratégie de retour arrière adaptative basée sur l apprentissage par renforcement pour l optimisation combinatoire Actes JFPC 2015 RLBS: Une stratégie de retour arrière adaptative basée sur l apprentissage par renforcement pour l optimisation combinatoire Ilyess Bachiri 1,2 Jonathan Gaudreault 1,2 Brahim Chaib-draa

Plus en détail

Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Julien Jorge, Xavier Gandibleux Laboratoire d Informatique de Nantes Atlantique

Plus en détail

Sujets de stage. Sciences de la Fabrication et Logistique. Génie Industriel. Optimisation. Recherche opérationnelle. Simulation

Sujets de stage. Sciences de la Fabrication et Logistique. Génie Industriel. Optimisation. Recherche opérationnelle. Simulation 2011 2012 Sujets de stage Génie Industriel Optimisation Recherche opérationnelle Simulation Sciences de la Fabrication et Logistique Table des matières Problème de planification de production avec des

Plus en détail

Modèle de coopération d un processus de ré-ordonnancement distribué

Modèle de coopération d un processus de ré-ordonnancement distribué Modèle de coopération d un processus de ré-ordonnancement distribué LE QUEREa, b Yann, SEVAUX a Marc TAHONa Christian, TRENTESAUXa Damien. aequipe Systèmes de Production LAMIH, Université de Valenciennes

Plus en détail

Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre.

Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre. Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre. Isabelle Bombard, Bruno da Silva, Pascal Dufour *, Pierre Laurent, Joseph Lieto. Laboratoire d Automatique

Plus en détail

Contribution à la compréhension de l avis de l expert dans un choix multiobjectifs. Cas industriel : fabrication de fromages

Contribution à la compréhension de l avis de l expert dans un choix multiobjectifs. Cas industriel : fabrication de fromages Contribution à la compréhension de l avis de l expert dans un choix multiobjectifs. Cas industriel : fabrication de fromages Irma RAMIREZ*, Jean RENAUD, Patrick TRUCHOT *Doctorante en ème année de thèse

Plus en détail

Optimisation des tournées de ramassage scolaire de la commune de Seneffe

Optimisation des tournées de ramassage scolaire de la commune de Seneffe Optimisation des tournées de ramassage scolaire de la commune de Seneffe Laurie Hollaert Séminaire GRT 7 novembre Laurie Hollaert Optimisation des tournées de ramassage scolaire de la commune de Seneffe

Plus en détail

Apprentissage statistique dans les graphes et les réseaux sociaux

Apprentissage statistique dans les graphes et les réseaux sociaux Apprentissage statistique dans les graphes et les réseaux sociaux Patrick Gallinari Collaboration : L. Denoyer, S. Peters Université Pierre et Marie Curie AAFD 2010 1 Plan Motivations et Problématique

Plus en détail

Echantillonnage Non uniforme

Echantillonnage Non uniforme Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas

Plus en détail

Utilisation du backtrack intelligent dans un branch-and-bound Application au problème d Open-Shop

Utilisation du backtrack intelligent dans un branch-and-bound Application au problème d Open-Shop Utilisation du backtrack intelligent dans un branch-and-bound Application au problème d Open-Shop Narendra Jussien et Christelle Guéret École des Mines de Nantes 4 rue Alfred Kastler BP 20722 F-44300 Nantes

Plus en détail

Classement multicritère de stratégies d'ordonnancement dans le cadre d'une industrie semi-continue

Classement multicritère de stratégies d'ordonnancement dans le cadre d'une industrie semi-continue Classement multicritère de stratégies d'ordonnancement dans le cadre d'une industrie semi-continue O. Roux 1, V. Dhaevers 1, D. Duvivier 1, N. Meskens 1 et A. Artiba 2 1. Facultés Universitaires Catholiques

Plus en détail

PLANIFICATION DES LIVRAISON JOINTES DE DIFFERENTS PRODUITS A DIFFERENTS SITES

PLANIFICATION DES LIVRAISON JOINTES DE DIFFERENTS PRODUITS A DIFFERENTS SITES 0ème Conférence Francophone de Modélisation, Optimisation et Simulation- MOSIM 5 au 7 novembre 0 - Nancy France «de l économie linéaire à l économie circulaire» PLANIFICATION DES LIVRAISON JOINTES DE DIFFERENTS

Plus en détail

Curriculum Vitae - Emmanuel Hebrard. Emmanuel Hebrard

Curriculum Vitae - Emmanuel Hebrard. Emmanuel Hebrard Emmanuel Hebrard Adresse 5 Tuckey Street Cork, Ireland emmanuel.hebrard@gmail.com http ://4c.ucc.ie/ ehebrard/home.html Adresse Professionnelle Cork Constraint Computation Centre Cork, Ireland Telephone

Plus en détail

4 Exemples de problèmes MapReduce incrémentaux

4 Exemples de problèmes MapReduce incrémentaux 4 Exemples de problèmes MapReduce incrémentaux 1 / 32 Calcul des plus courtes distances à un noeud d un graphe Calcul des plus courts chemins entre toutes les paires de noeuds d un graphe Algorithme PageRank

Plus en détail

INFO-F-425 Modèles mathématiques et algorithmes pour l ordonnancement. Bernard Fortz

INFO-F-425 Modèles mathématiques et algorithmes pour l ordonnancement. Bernard Fortz INFO-F-425 Modèles mathématiques et algorithmes pour l ordonnancement Bernard Fortz 2008-2009 Table des matières 1 Définition et classification des problèmes d ordonnancement 2 1.1 Introduction....................................

Plus en détail

Ordonnancement sous contraintes de Qualité de Service dans les Clouds

Ordonnancement sous contraintes de Qualité de Service dans les Clouds Ordonnancement sous contraintes de Qualité de Service dans les Clouds GUÉROUT Tom DA COSTA Georges (SEPIA) MONTEIL Thierry (SARA) 14/9/215 1 Profil Profil Parcours : Laboratoires LAAS et IRIT à Toulouse

Plus en détail

LABO 5 ET 6 TRAITEMENT DE SIGNAL SOUS SIMULINK

LABO 5 ET 6 TRAITEMENT DE SIGNAL SOUS SIMULINK LABO 5 ET 6 TRAITEMENT DE SIGNAL SOUS SIMULINK 5.1 Introduction Simulink est l'extension graphique de MATLAB permettant, d une part de représenter les fonctions mathématiques et les systèmes sous forme

Plus en détail

Ordonnancement robuste et décision dans l'incertain

Ordonnancement robuste et décision dans l'incertain Ordonnancement robuste et décision dans l'incertain 4 ème Conférence Annuelle d Ingénierie Système «Efficacité des entreprises et satisfaction des clients» Centre de Congrès Pierre Baudis,TOULOUSE, 2-4

Plus en détail

LE PROBLEME DU PLUS COURT CHEMIN

LE PROBLEME DU PLUS COURT CHEMIN LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs

Plus en détail

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments Recherche Opérationnelle Optimisation combinatoire : Applications et compléments Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 17 février 2014 Plan de

Plus en détail

Proposition d un modèle pour Ordonnancement d un Système Automatisé de Production Applications des algorithmes génétiques hybrides

Proposition d un modèle pour Ordonnancement d un Système Automatisé de Production Applications des algorithmes génétiques hybrides Proposition d un modèle pour Ordonnancement d un Système Automatisé de Production Applications des algorithmes génétiques hybrides Djamila Bouhalouan 1, Nassima Aissani 1, Bouziane Beldjilali 2 1 Département

Plus en détail

Autostabilisation. de l exclusion mutuelle sur un anneau à l élection d un chef sur un graphe quelconque

Autostabilisation. de l exclusion mutuelle sur un anneau à l élection d un chef sur un graphe quelconque : de l exclusion mutuelle sur un anneau à l élection d un chef sur un graphe quelconque Laboratoire d Informatique Fondamentale d Orléans, Université d Orléans, Orléans, FRANCE JIRC 30 juin 2005 Blois

Plus en détail

Problème d ordonnancement de véhicules en variables booléennes

Problème d ordonnancement de véhicules en variables booléennes Problème d ordonnancement de véhicules en variables booléennes Freddy Hetman 2 juillet 2013 Faculté des sciences Jean Perrin Freddy Hetman () 2 juillet 2013 1 / 22 Sommaire 1 Introduction 2 Le problème

Plus en détail

Allocation de ressources pour réseaux virtuels Projet de fin d études. Mikaël Capelle. Marie-José Huguet Slim Abdellatif Pascal Berthou

Allocation de ressources pour réseaux virtuels Projet de fin d études. Mikaël Capelle. Marie-José Huguet Slim Abdellatif Pascal Berthou Allocation de ressources pour réseaux virtuels Projet de fin d études Mikaël Capelle Marie-José Huguet Slim Abdellatif Pascal Berthou 27 Juin 2014 Plan 1 Introduction - La virtualisation de réseau 2 3

Plus en détail

physicien diplômé EPFZ originaire de France présentée acceptée sur proposition Thèse no. 7178

physicien diplômé EPFZ originaire de France présentée acceptée sur proposition Thèse no. 7178 Thèse no. 7178 PROBLEMES D'OPTIMISATION DANS LES SYSTEMES DE CHAUFFAGE A DISTANCE présentée à l'ecole POLYTECHNIQUE FEDERALE DE ZURICH pour l'obtention du titre de Docteur es sciences naturelles par Alain

Plus en détail

Etude de modèles de programmation par contraintes pour le problème du voyageur de. avec fenêtres de temps.

Etude de modèles de programmation par contraintes pour le problème du voyageur de. avec fenêtres de temps. Actes JFPC 2015 Etude de modèles de programmation par contraintes pour le problème du voyageur de commerce avec fenêtres de temps Sylvain Ducomman 1 2 Hadrien Cambazard 1 Bernard Penz 1 1 Univ. Grenoble

Plus en détail

Artificial Intelligence AI

Artificial Intelligence AI Pedagogical Introduction Artificial Intelligence AI Lecture 0 Karim Bouzoubaa This Lecture General Information Examples Importance At the end Intelligent Systems Course Content, Other AI courses, Learning

Plus en détail

AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS

AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle

Plus en détail

Modélisation du comportement habituel de la personne en smarthome

Modélisation du comportement habituel de la personne en smarthome Modélisation du comportement habituel de la personne en smarthome Arnaud Paris, Selma Arbaoui, Nathalie Cislo, Adnen El-Amraoui, Nacim Ramdani Université d Orléans, INSA-CVL, Laboratoire PRISME 26 mai

Plus en détail

Plus courts chemins, programmation dynamique

Plus courts chemins, programmation dynamique 1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique

Plus en détail

Proposition d un modèle UML de gestion des stocks et de transport dans un système de distribution multi-niveaux (a).

Proposition d un modèle UML de gestion des stocks et de transport dans un système de distribution multi-niveaux (a). Proposition d un modèle UML de gestion des stocks et de transport dans un système de distribution multi-niveaux (a). Khadija Eddoug (* ), Saâd Lissane Elhaq (* ), Hamid Ech-cheikh (* ) (*) : Laboratoire

Plus en détail

LE DIPLOME DE MAGISTER

LE DIPLOME DE MAGISTER Département d Informatique MEMOIRE Présenté par DEDDOUCHE Yamina Pour obtenir LE DIPLOME DE MAGISTER Spécialité : Informatique Option : Informatique et Automatique Intitulé : Contribution à l Ordonnancement

Plus en détail

Franck Fontanili Centre de Génie Industriel EMAC/IFIE_GIPSI_M2

Franck Fontanili Centre de Génie Industriel EMAC/IFIE_GIPSI_M2 Implantation d atelier 1 ère partie Franck Fontanili Centre de Génie Industriel EMAC/IFIE_GIPSI_M2 Plan de la présentation Processus général d implantation Estimation des surfaces nécessaires Pareto des

Plus en détail

UN ALGORITHME COOPÉRATIF POUR UN PROBLÈME D ATELIER JOB SHOP MULTI-AGENT

UN ALGORITHME COOPÉRATIF POUR UN PROBLÈME D ATELIER JOB SHOP MULTI-AGENT 8 e Conférence Internationale de MOdélisation et SIMulation - MOSIM 10-10 au 12 mai 2010 - Hammamet - Tunisie «Évaluation et optimisation des systèmes innovants de production de biens et de services» UN

Plus en détail

Laboratoire d Automatique et Productique Université de Batna, Algérie

Laboratoire d Automatique et Productique Université de Batna, Algérie Anale. Seria Informatică. Vol. IX fasc. 2 Annals. Computer Science Series. 9 th Tome st Fasc. 2 La sélection de paramètres d un système industriel par les colonies de fourmis Ouahab Kadri, L. Hayet Mouss,

Plus en détail

Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases)

Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases) Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases) Heuristique Constructive Itérativement, ajoute de nouvelles composantes à une solution partielle candidate Espace

Plus en détail

Post-processing of multimodel hydrological forecasts for the Baskatong catchment

Post-processing of multimodel hydrological forecasts for the Baskatong catchment + Post-processing of multimodel hydrological forecasts for the Baskatong catchment Fabian Tito Arandia Martinez Marie-Amélie Boucher Jocelyn Gaudet Maria-Helena Ramos + Context n Master degree subject:

Plus en détail

Lot streaming et pegging pour l intégration de la planification et de l ordonnancement de production

Lot streaming et pegging pour l intégration de la planification et de l ordonnancement de production Lot streaming et pegging pour l intégration de la planification et de l ordonnancement de production A. Robert 1,2, C. Le Pape 1, and F. Sourd 2 1 ILOG S.A., 9 rue de Verdun, 94253 Gentilly cedex {anrobert,clepape}@ilog.fr

Plus en détail

Contrainte de flot pour RCPSP avec temps de transfert

Contrainte de flot pour RCPSP avec temps de transfert Contrainte de flot et x-rcpsc T 1 Contrainte de flot pour RCPSP avec temps de transfert PS temp, s ij Cmax BENOIST Thierry BOUYGUES/e-Lab DIAMANTINI Maurice ENSTA/LMA Contrainte de flot et x-rcpsc T Présentation

Plus en détail

OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT)

OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT) OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT) LAGGOUNE Radouane 1 et HADDAD Cherifa 2 1,2: Dépt. de G. Mécanique, université de Bejaia, Targa-Ouzemour

Plus en détail

ILOG CPLEX Le cœur du système résout des problèmes de programmation mathématique.

ILOG CPLEX Le cœur du système résout des problèmes de programmation mathématique. Introduction à CPLEX 1. Présentation CPLEX est, à la base, un solveur de programmes linéaires. Il est commercialisé par la société ILOG depuis la version 6.0. La dernière version, à ce jour, est la version

Plus en détail

Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services

Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services 69 Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services M. Bakhouya, J. Gaber et A. Koukam Laboratoire Systèmes et Transports SeT Université de Technologie de Belfort-Montbéliard

Plus en détail

La tarification d options

La tarification d options La tarification d options Proposition pour une approche déterministe Pierre Bernhard 1 Stéphane Thiery 2 Marc Deschamps 3 Nous proposons ici une théorie de la tarification d options sur la base d un modèle

Plus en détail

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction

Plus en détail

Vérification Formelle des Aspects de Cohérence d un Workflow net

Vérification Formelle des Aspects de Cohérence d un Workflow net Vérification Formelle des Aspects de Cohérence d un Workflow net Abdallah Missaoui Ecole Nationale d Ingénieurs de Tunis BP. 37 Le Belvédère, 1002 Tunis, Tunisia abdallah.missaoui@enit.rnu.tn Zohra Sbaï

Plus en détail

Introduction. Utilisation d un ensemble de relations mathématiques pour refléter le plus adéquatement possible une situation réelle

Introduction. Utilisation d un ensemble de relations mathématiques pour refléter le plus adéquatement possible une situation réelle 1. Introduction Introduction Modélisation Utilisation d un ensemble de relations mathématiques pour refléter le plus adéquatement possible une situation réelle Compromis entre l adéquation avec la réalité

Plus en détail

TRS: Sélection des sous-graphes représentants par l intermédiaire des attributs topologiques et K-medoïdes

TRS: Sélection des sous-graphes représentants par l intermédiaire des attributs topologiques et K-medoïdes TRS: Sélection des sous-graphes représentants par l intermédiaire des attributs topologiques et K-medoïdes Mohamed Moussaoui,Wajdi Dhifli,Sami Zghal,Engelbert Mephu Nguifo FSJEG, Université de Jendouba,

Plus en détail

Industrial Phd Progam

Industrial Phd Progam Industrial Phd Progam Catalan Government: Legislation: DOGC ECO/2114/2012 Modification: DOGC ECO/2443/2012 Next: Summary and proposal examples. Main dates March 2013: Call for industrial Phd projects grants.

Plus en détail

Évaluation d une méthode d ordonnancement multicritère utilisant AHP

Évaluation d une méthode d ordonnancement multicritère utilisant AHP Évaluation d une méthode d ordonnancement multicritère utilisant AHP FOUZIA OUNNAR 1, SELMA KHADER 2, YVES DUBROMELLE 1, JEAN-PIERRE PRUNARET 1, PATRICK PUJO 1 1 LSIS UMR CNRS 7296 Aix-Marseille Université

Plus en détail

Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France

Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France 2013 SAP AG. All rights reserved. Customer 1 Rôles et Attentes Instantanéité BIG DATA Users IT Real Time SAP HANA

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

Structures de données non linéaires

Structures de données non linéaires Structures de données non linéaires I. Graphes Définition Un graphe (simple) orienté G est un couple (S, A), où : S est un ensemble dont les éléments sont appelés les sommets. A est un ensemble de couples

Plus en détail

Théorie des graphes pour l analyse de réseaux réels

Théorie des graphes pour l analyse de réseaux réels Théorie des graphes pour l analyse de réseaux réels Bertrand Jouve Laboratoire ERIC - IXXI - Université Lyon 2 Plan 1 Entre théorie des graphes et réseaux réels 2 Partitionnement métrique Exemple d étude

Plus en détail

THÈSE. En vue de l obtention du DOCTORAT DE L UNIVERSITÉ DE TOULOUSE. Touria CHAFQANE BEN RAHHOU

THÈSE. En vue de l obtention du DOCTORAT DE L UNIVERSITÉ DE TOULOUSE. Touria CHAFQANE BEN RAHHOU THÈSE En vue de l obtention du DOCTORAT DE L UNIVERSITÉ DE TOULOUSE Délivré par : l Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Présentée et soutenue le 24/06/2013 par : Touria CHAFQANE BEN

Plus en détail

Optimisation Combinatoire et Colonies de Fourmis Nicolas Monmarche April 21, 1999 Sommaire Inspiration biologiques Ant Colony Optimization Applications TSP QAP Flow Shop Problemes dynamiques 1 Historique

Plus en détail

Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux

Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux Colonies de fourmis Comment procèdent les colonies de fourmi pour déterminer un chemin presque géodésique de la fourmilière à un stock de nourriture? Les premières fourmis se déplacent au hasard. Les fourmis

Plus en détail

APPLICATION DE LA GESTION DES FILES D ATTENTE PAR RÈGLES DE PRIORITÉ DANS UN JOB SHOP EN TEMPS RÈEL

APPLICATION DE LA GESTION DES FILES D ATTENTE PAR RÈGLES DE PRIORITÉ DANS UN JOB SHOP EN TEMPS RÈEL APPLICATION DE LA GESTION DES FILES D ATTENTE PAR RÈGLES DE PRIORITÉ DANS UN JOB SHOP EN TEMPS RÈEL N. Keddari (1) - A. Hassam (1) 1 keddarinassima@yahoo.fr 1 a_hassam@mail.univ-tlemcen.dz RESUME L ordonnancement

Plus en détail

Don't put socks on the Hippopotamus. Bill BELT Emmanuel DE RYCKEL

Don't put socks on the Hippopotamus. Bill BELT Emmanuel DE RYCKEL Don't put socks on the Hippopotamus Bill BELT Emmanuel DE RYCKEL BEECHFIELD ASSOCIATES 2009 or you will screw up your Supply Chain. BEECHFIELD ASSOCIATES 2009 HIPPO ATTITUDE - inappropriate behavior -

Plus en détail

Théorie des graphes pour l analyse de réseaux d intéractions

Théorie des graphes pour l analyse de réseaux d intéractions Théorie des graphes pour l analyse de réseaux d intéractions Bertrand Jouve Laboratoire ERIC - IXXI - Université Lyon 2 SMAI 2013 Plan 1 Introduction 2 Décomposition en Clans Exemple d étude : modélisation

Plus en détail

We Generate. You Lead.

We Generate. You Lead. www.contact-2-lead.com We Generate. You Lead. PROMOTE CONTACT 2 LEAD 1, Place de la Libération, 73000 Chambéry, France. 17/F i3 Building Asiatown, IT Park, Apas, Cebu City 6000, Philippines. HOW WE CAN

Plus en détail

L apport des contraintes globales pour la modélisation et la résolution d applications industrielles

L apport des contraintes globales pour la modélisation et la résolution d applications industrielles L apport des contraintes globales pour la modélisation et la résolution d applications industrielles A. Aggoun, N. Beldiceanu, E. Bourreau, H. Simonis COSYTEC SA, Parc Club Orsay Université 4, rue Jean

Plus en détail

3. SPÉCIFICATIONS DU LOGICIEL. de l'expression des besoins à la conception. Spécifications fonctionnelles Analyse fonctionnelle et méthodes

3. SPÉCIFICATIONS DU LOGICIEL. de l'expression des besoins à la conception. Spécifications fonctionnelles Analyse fonctionnelle et méthodes PLAN CYCLE DE VIE D'UN LOGICIEL EXPRESSION DES BESOINS SPÉCIFICATIONS DU LOGICIEL CONCEPTION DU LOGICIEL LA PROGRAMMATION TESTS ET MISE AU POINT DOCUMENTATION CONCLUSION C.Crochepeyre Génie Logiciel Diapason

Plus en détail

DEPARTEMENT D'INFORMATIQUE MEMOIRE. Présenté par. S l i m a n e M o h a m e d. Pour obtenir LE DIPLOME DE MAGISTER. Spécialité Informatique

DEPARTEMENT D'INFORMATIQUE MEMOIRE. Présenté par. S l i m a n e M o h a m e d. Pour obtenir LE DIPLOME DE MAGISTER. Spécialité Informatique DEPARTEMENT D'INFORMATIQUE MEMOIRE Présenté par S l i m a n e M o h a m e d Pour obtenir LE DIPLOME DE MAGISTER Spécialité Informatique Option : Analyse, Commande et Surveillance des Systèmes Industriels

Plus en détail

DOCUMENT DE TRAVAIL 1998-021. Centre de recherche sur l aide à l évaluation et à la décision dans les organisations (CRAEDO)

DOCUMENT DE TRAVAIL 1998-021. Centre de recherche sur l aide à l évaluation et à la décision dans les organisations (CRAEDO) Publié par : Published by : Publicación de la : Édition électronique : Electronic publishing : Edición electrónica : Disponible sur Internet : Available on Internet Disponible por Internet : Faculté des

Plus en détail

Systèmes de Recommandation. David Loup

Systèmes de Recommandation. David Loup Systèmes de Recommandation David Loup Systèmes de recommandation Plan Définition Motivations Domaine : Films Techniques / Approches Exemples Problèmes Evolution future 2/33 Définition Une plateforme pour

Plus en détail

# let rec concat l1 l2 = match l1 with [] -> l2 x::l 1 -> x::(concat l 1 l2);; val concat : a list -> a list -> a list =

# let rec concat l1 l2 = match l1 with [] -> l2 x::l 1 -> x::(concat l 1 l2);; val concat : a list -> a list -> a list = <fun> 94 Programmation en OCaml 5.4.8. Concaténation de deux listes Définissons maintenant la fonction concat qui met bout à bout deux listes. Ainsi, si l1 et l2 sont deux listes quelconques, concat l1 l2 constitue

Plus en détail

Object Removal by Exemplar-Based Inpainting

Object Removal by Exemplar-Based Inpainting Object Removal by Exemplar-Based Inpainting Kévin Polisano A partir d un article de A. Criminisi, P. Pérez & H. K. Toyama 14/02/2013 Kévin Polisano Object Removal by Exemplar-Based Inpainting 14/02/2013

Plus en détail

Expression des contraintes. OCL : Object C o n t r a i n t L a n g u a g e

Expression des contraintes. OCL : Object C o n t r a i n t L a n g u a g e P r o b l é m a t i q u e OCL : O b j e c t C o n s t r a i n t L a n g u a g e Le langage de contraintes d UML Les différents diagrammes d UML permettent d exprimer certaines contraintes graphiquement

Plus en détail

Mathieu LACROIX. Formation et diplômes. Né le 28 avril 1982 Nationalité française

Mathieu LACROIX. Formation et diplômes. Né le 28 avril 1982 Nationalité française Mathieu LACROIX Maître de conférences I.U.T. de Villetaneuse Laboratoire LIPN 99, Avenue J-B. Clément, 93430 Villetaneuse E-mail : mathieu.lacroix@lipn.univ-paris13.fr Né le 28 avril 1982 Nationalité française

Plus en détail

Surveillance et maintenance prédictive : évaluation de la latence de fautes. Zineb SIMEU-ABAZI Univ. Joseph Fourier, LAG)

Surveillance et maintenance prédictive : évaluation de la latence de fautes. Zineb SIMEU-ABAZI Univ. Joseph Fourier, LAG) Surveillance et maintenance prédictive : évaluation de la latence de fautes Zineb SIMEU-ABAZI Univ. Joseph Fourier, LAG) SURVEILLANCE Analyser une situation et fournir des indicateurs! Détection de symptômes!

Plus en détail

Les colonies de fourmis : apprentissage coopératif pour le problème du voyageur de commerce

Les colonies de fourmis : apprentissage coopératif pour le problème du voyageur de commerce : apprentissage coopératif pour le problème du voyageur de commerce Alexandre Bargeton Benjamin Devèze Université Pierre et Marie Curie Présentation du projet ANIMAT 1 Comportements collectifs des insectes

Plus en détail

Un modèle réactif pour l optimisation par colonies de fourmis : application à la satisfaction de contraintes

Un modèle réactif pour l optimisation par colonies de fourmis : application à la satisfaction de contraintes Actes JFPC 2009 Un modèle réactif pour l optimisation par colonies de fourmis : application à la satisfaction de contraintes Madjid Khichane 1,2, Patrick Albert 1 et Christine Solnon 2 1 ILOG An IBM Company

Plus en détail

Change the game with smart innovation

Change the game with smart innovation Change the game with smart innovation Master Thesis 2013 2014 Faculty of Science engineering 12/08/2012 Master Thesis proposal for the academic year 2013. TABLE OF CONTENTS Section Un Introduction... 3

Plus en détail

MCMC et approximations en champ moyen pour les modèles de Markov

MCMC et approximations en champ moyen pour les modèles de Markov MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:

Plus en détail

Stratégie de recherche adaptative en programmation par contrainte

Stratégie de recherche adaptative en programmation par contrainte Université Paul Sabatier École Nationale de l Aviation Civile Master 2 Recherche Informatique et Télécommunication parcours Intelligence Artificielle Simon Marchal Stratégie de recherche adaptative en

Plus en détail

Une méthode d apprentissage pour la composition de services web

Une méthode d apprentissage pour la composition de services web Une méthode d apprentissage pour la composition de services web Soufiene Lajmi * Chirine Ghedira ** Khaled Ghedira * * Laboratoire SOIE (ENSI) University of Manouba, Manouba 2010, Tunisia Soufiene.lajmi@ensi.rnu.tn,

Plus en détail

Adaptation sémantique de documents SMIL

Adaptation sémantique de documents SMIL Adaptation sémantique de documents SMIL Sébastien Laborie Jérôme Euzenat Nabil Layaïda INRIA Rhône-Alpes - 655 Avenue de l Europe - 38334 St Ismier Cedex {Sebastien.Laborie;Jerome.Euzenat;Nabil.Layaida}@inrialpes.fr

Plus en détail

BILAN du projet PEPS 1 EOLIN (Eolien LMI INSA)

BILAN du projet PEPS 1 EOLIN (Eolien LMI INSA) BILAN du projet PEPS 1 EOLIN (Eolien LMI INSA) Lab. de Math de l INSA de ROUEN FR CNRS 3335 et EA 3226 PLAN 1. Introduction 2. Bilan scientifique 3. Bilan financier 4. Conclusion 1 Introduction Le projet

Plus en détail