RESOLUTION DES FLOW SHOP STOCHASTIQUES PAR LES ORDRES STOCHASTIQUES. DERBALA Ali *)

Dimension: px
Commencer à balayer dès la page:

Download "RESOLUTION DES FLOW SHOP STOCHASTIQUES PAR LES ORDRES STOCHASTIQUES. DERBALA Ali *)"

Transcription

1 RESOLUTION DES FLOW SHOP STOCHASTIQUES PAR LES ORDRES STOCHASTIQUES. DERBALA Ali *) *) Uiversité de Blida Faculté des scieces Départemet de Mathématiques. BP 270, Route de Soumaa. Blida, Algérie. Tel & Fax : Résumé : Nous présetos les pricipaux résultats établis das la résolutio des problèmes d ordoacemet stochastique de type flow-shop à deux machies ou plus de deux machies. Johso (954) a résolu le problème à deux machies avec des temps d'exécutio détermiistes. Le problème deviet NP-difficile s'il y a trois ou plus de trois machies. Talwar (967) coectura que si les temps d'exécutio sot des v.a idépedates et expoetiellemet distribuées alors la règle est : Das ue séquece d'exécutio, le ob i doit précéder le ob si et seulemet si /E(A i ) - / E(B i ) /E(A ) - / E(B ). Cette règle doe u ordoacemet avec ue espérace du makespa miimale. Ue preuve icomplète est doée par Bagga (970). La preuve complète de cette coecture est faite par Cuigham et Dutta (973). Les règles de Johso et Talwar établisset que le ob i précède le ob si et seulemet si E( mi( A i, B ) ) E (mi ( A, B ) ). Ku et Niu (986) doet ue preuve de l'optimalité pour les deux cas détermiistes et expoetiel. Kamburowski (999) doe ue ouvelle coditio suffisate plus faible que celle de Ku et Niu qui e se restreit pas au cas de deux obs adacets. Il acclame que les règles d'ordoacemet optimale pour miimiser le makespa peuvet être dérivées de cette coditio. Mots-clés : Ordoacemet détermiiste et stochastique, makespa, ordre stochastique.

2 ) INTRODUCTION La résolutio des problèmes de flow shop stochastiques se fait par l utilisatio de trois classes de méthodes: les méthodes de type recuit simulé, les algorithmes géétiques et les processus badits. Das cette partie ous proposos quelques résultats établis das la littérature e utilisat ue approche différete, à savoir la comparaiso stochastique. U esemble de tâches sot à exécuter sur m machies ( m 2 ) disposées e série ou flow shop. Les tâches sot supposés être das l atelier à l istat zéro. U esemble de machies est dit costituat u «flow-shop» si elles sot disposées e série ou umérotées de tel faço que, pour chaque ob cosidéré, ue opératio k est exécutée sur ue machie de rag supérieur que l opératio si > k. U exemple de tel atelier est la dispositio e lige où les travailleurs ou les statios de travail représetet les machies. Il est pas requis que chaque ob doit s exécuter sur chaque machie. Das ce cas, le temps d exécutio du ob sur la dite machie est ul. Deux modèles sot examiés das la suite. Le premier est celui où etre les machies, il y a ue surface de stockage de capacité ifiie. Si la machie k+ est occupée, quad u ob a termié so exécutio sur la machie k, ce ob sera stocké etre les machies k et k +. La préemptio est pas autorisée ( il est appelé flow shop with ifiite storage et oté FSIS). Pour le secod modèle, il y a pas d espace de stockage etre les machies. Le phéomèe de Blocage peut se produire. Quad u ob termie so exécutio sur la machie k mais la machie k+ est occupée, ce ob reste sur la machie k et elle e peut pas exécuter u ouveau ob. C est le flow shop avec blocage (Flow Shop with No Itermediaire Storage, FSNIS ). Il se ote Fm/ block /C max [Pi95]. Avec des temps d'exécutio des tâches détermiistes, Johso[Joh54] a résolu le problème à deux machies. So algorithme est efficace et est ue coditio suffisate. Il écessite au plus u temps proportioel à log. Ue tâche précède la tâche + si Mi (A,B + ) < Mi (A +,B ). L'ordoacemet optimal peut e pas être uique. La règle 'est pas optimale pour le critère de la miimisatio du flow-time moye. Tout ordoacemet SPT()-LPT(2) est optimal pour F2//C max. Ue machie «i» domie la machie «i +» si O représete cette forme par p i > d p i+. Mi { },..., p i Max p i+,. { },..., 2

3 Si p i > d p i+ > d... > d p i+ l alors la séquece optimale e chage pas si les machies i +,.., i + k sot remplacées par ue seule machie sur laquelle le temps d'exécutio est la somme des temps d'exécutio des k machies. Pour Fm/ Prmu, p i = p /C max, le Makespa C max = p = + ( m-) max( p,.., p ) et il est idépedat de tout ordoacemet. Si la vitesse d'ue machie i est v i alors le temps d'exécutio du ob sur la machie i est p i = p / v i = α i p. La machie avec la plus petite vitesse est appelée "machie goulot" ou "Bottleeck machie". U ordoacemet est proportioé si p = p 2 =...= p m = p. Si la première ( respectivemet La derière ) machie est de goulot das u flow shop proportioé avec des vitesses différetes alors LPT ( resp. SPT ) miimise le makespa. 2) LES ORDONNANCEMENTS STOCHASTIQUES. Das l ordoacemet stochastique certaies covetios sot à faire et qu elles e sot pas idispesables e ordoacemet détermiiste. Durat l évolutio d u processus stochastique, de ouvelles iformatios devieet dispoibles. Les dates de fi d exécutio de obs et l'occurrece des dates de libératio de obs représetet ue iformatio additioelle que le décideur espère les predre e cosidératio pour l exécutio de la partie restate du processus. Le champ de liberté que le décideur a e utilisat cette iformatio additioelle est la base de multitude de classes de politiques de décisio. Das le cas du flow shop de permutatios, les obs sot mis das ue liste e face de la première machie à l istat 0; chaque fois que la machie est libre, le ob suivat de la liste est exécuté. La secode classe de politiques est la versio préemptive de la première classe utilisée das le cas où les obs sot libérés e différets istats. Le décideur peut faire des décisios durat l évolutio du processus. Chaque décisio peut predre e cosidératio toutes l iformatio dispoible à cet istat. Sous ue politique dyamique o préemptive, e chaque istat où la machie est libérée, le décideur est autorisé à détermier lequel des obs est à exécuter après. La décisio e de tels istats peut dépedre de toute l iformatio dispoible, par exemple, le temps courat, les obs e attete pour l exécutio, les obs e exécutio sur les autres machies, les temps d exécutio que les obs ot reçus sur ces machies. Le décideur est pas autorisé d iterrompre l exécutio d u ob. La quatrième classe est la politique dyamique préemptive. La décisio peut écessiter l iterruptio des obs. 3

4 Quelques résultats : Garey et al [ Gar76] ot étudié la complexité des problèmes de type flow shop. La détermiatio d u ordoacemet de logueur miimale das u flow shop à m-machies (m 3 ) est NP-complet. Il le reste aussi bie si la logueur des etrées est mesurée par la somme des logueurs de tâches. Il se formule comme u problème de 3-partitio. Le cas stochastique l est aussi. La détermiatio d u flow time podéré miimale das u flow shop à m-machies est NP-complet pour m 2. Si les temps d'exécutio sot des variables aléatoires idépedates et expoetiellemet distribuées, Talwar[Tal67] coectura que la règle est : Das ue suite d'exécutio, le ob i doit précéder le ob si et seulemet si /E(A i ) - / E(B i ) /E(A ) - / E(B ). Elle doe u ordoacemet avec ue espérace du makespa miimale. Ue preuve icomplète est doée par Bagga[Bag70a]. La preuve complète de cette coecture est faite par Cuigham et Dutta[Cu73]. Les règles de Johso et Talwar établisset que le ob i précède le ob si et seulemet si E( mi( A i, B ) ) E (mi ( A, B ) ). Ku et Niu [Ku86] doet ue preuve de l'optimalité pour les deux cas détermiistes et expoetiel. Kamburowski[Kam99] doe ue ouvelle coditio suffisate plus faible que celle de Ku et Niu qui e se restreit pas au cas de deux obs adacets. Des auteurs ot été très actifs par leurs publicatios. Pour des référeces voir, Baeree[Ba65], Makio [Mak65], Talwar [Tal67], Lever[Lev69], Bagga [ Bag70a], Reddi et Ramamoorthy [Red72], Cuigham et Dutta [ Cu73 ], Weber [Web79], Muth [Mut79], Piedo [Pi82], Weiss [Wei82], Fristig et Adiri [Fro85]. Remarque : Pour passer d u flow shop à u tadem queue, le flot des arrivées des cliets peut être obteu e imagiat ue statio fictive e plus e face des statios existates avec le temps d exécutio du premier cliet à la première statio soit t, du secod à t 2 - t etc. Pour passer d u tadem queue au flow shop, o imagie u ob de temps d exécutio t sur M, t 2 - t sur M 2 etc. 4

5 3. RESOLUTION DU FLOW SHOP STOCHASTIQUE PAR LES ORDRES STOCHASTIQUES Ku et Niu [Ku86] doet ue coditio suffisate sur les distributios du temps d exécutio qui implique que le makespa deviet stochastiquemet plus petit quad deux obs adacets das ue suite doée soiet permutés. Soit S : J J 2...J k J k+... J et S 2 : J J 2...J k+ J k... J T : le temps requis pour que J J 2...J k- complètet leur exécutio sur la machie T = k A i i=. L : le temps qu il faut après T pour la machie 2 pour compléter J J 2...J k-. A = A k + A k+ ( Le temps total pour exécuter les obs k et K + sur la machie ). R ( R 2 ) : Temps additioel écessaire pour vider le système après T + A sous S ( S 2 ) et δ ( δ 2 ) : Temps additioel après t + A écessaire pour la machie 2 pour compléter l exécutio des obs J J 2...J k J k+ sous le séquece S ( S 2 ). Les makespas M et M 2 sous S et S 2 sot respectivemet M i = T + A + R i, i =, 2. () Ue variable aléatoire X est dite stochastiquemet plus grade que la variable aléatoire X 2 si t R, P(X > t ) P(X 2 > t ) t R, F (t ) F 2 ( t ). Il est appelé ordre stochastique et se ote X st X 2. Des résultats sot établis et sot doés sous forme de théorèmes et de lemmes. Théorème : Ue coditio suffisate pour que M st M 2 est ( mi [ A k, B k+ ] / A k + A k+ = a et B k + B k+ = b ) st ( mi [ A k+, B k ] / A k + A k+ = a et B k + B k+ = b ) (2) a, b 0 et pour lesquels les distributios des v.a coditioelles soiet bie défiis. Propositio : La coditio (2) est impliquée par l ue des deux coditios suivates : (i) ( A k / A k + A k+ = a ) st ( A k+ / A k + A k+ = a ) et ( B k / B k + B k+ = b ) st ( B k+ / B k + B k+ = b ), ( a, b ) 0. (ii) Mi [ A k, B k+ ] st Mi [ A k+, B k ] avec ue probabilité ( ou presque sûremet). Propositio 2 : Supposos que les temps d exécutios sot expoetiellemet distribués de moyee E(A i ) = / a i et E(B i ) = / b i pour i =,2,.., Alors la coditio (2) est vérifiée si a k - b k a k + - b k+. 5

6 Ue v.a X de desité f X est dite plus petite das le ses du rapport de vraisemblace qu ue v.a Y de desité f Y et otée X L Y si *) Si X L Y alors X st Y. f f Y X ( x) ( x) f f X Y ( y) ( y) pour 0 x y Propositio 3 : Soiet X et Y deux v.a positives de desités f X et f Y si X L Y alors ( X / X + Y = s ) L ( Y / X + Y = s ), s 0. Corollaire : Si A k L A k+ et B k L B k+ alors la coditio (2) est établie. Remarque 2 : Les distributios Gamma, de Poisso, Béta et autres sot ordoées par l ordre du rapport de vraisemblace. L ordre du rapport de vraisemblace est trasitif. Le corollaire implique que le makespa sous la séquece (J,.., J ) est stochastiquemet miimal. Propositio : L'algorithme de Johso peut s étedre au cas de trois machies où { } mi p max { p 2 } ou mi { p 3 } max { p 2} Les temps d'exécutio des obs sur la secode machie sot d'aucues applicabilité ( Pour l'optimalité de l'ordoacemet, et ue politique optimale peut être détermiée e appliquat l'algorithme aux temps d'exécutio ( p + p 2 ; p 2 + p 3 ). Chag et Yao [Cha93] Deux variables aléatoires X et X 2 sot dites ordoées par ordre croissat du facteur d'utilisatio ( Are Icreasig failure rate ordered ) si ( s,t ) R 2, s < t, F () t F 2 () t F () s F () s 2 où F t i () = P( X i > t ) = - F i (t). Le facteur d utilisatio ou taux d'hasard est ρ i (t) = f i (t) / F t i () = f i (t) / ( - F i (t) ). La variable aléatoire cotiue X est plus grade au ses du rapport de vraisemblace que la variable aléatoire cotiue X 2 ( likelihood ratio i sese ) si f (t) / f 2 (t) est croissate e t, t 0 ( o decreasig ). Cette forme de domiace stochastique est otée X l.s X 2. Das le cas d u flow shop à deux machies, ils établisset les résultats suivats. Théorème : Les ob i précède le ob das l ordre de miimiser le makespa das le ses : 6

7 (i) Ordre stochastique si A i lr A et B i lr B (ii) Ordre stochastique si A i hr A et B i hr B et (iii) E espérace, si A i st A et B i st B. Théorème 2 : Supposos que A k B k ( resp. A k B k ), k =,.., ; et A a A 2 a... a A ( resp. B a B - a... a B ) Alors la séquece 2.. miimise le makespa das le ses de : (i) Ordre stochastique, si a = lr (ii) Ordre covexe croissat si a = hr (iii) E espérace si a = st. Piedo[ Pi 95 ] éoce des résultats. Théorème : Ordoacer les obs das l'ordre décroissat des λ - µ miimise l'espérace du Makespa das la classe des politiques de listes statiques o préemptives, das la classe des politiques dyamiques o-préemptives et les politiques dyamiques préemptives. L'ordoacemet optimal avec des temps d'exécutio expoetiels est similaire à celui des temps d'exécutio détermiistes. E(Mi ( X, X 2k )) E(Mi ( X k, X 2 )) λ - µ λ k - µ k si le ob k précède le ob das l'ordoacemet optimal. Cosidéros u flow shop de permutatio de " m machies " où les temps d'exécutio des obs sot i.i.d de distributio F de moyee / λ, ue bore iférieure de C max existe. Lemme 2 : Sous 'importe quelle suite de obs E(C max ) + ( m - ) max (,..., ) λ λ λ = Ue suite de obs,..., est appelée séquece SEPT-LEPT s'il y a u ob k das la séquece tel que λ λ 2... λ k et λ k λ k+... λ Les politiques SEPT et LEPT sot aussi SEPT-LEPT. 7

8 Théorème 3 : Si F a.s F 2 a.s... a.s F alors i) N'importe quelle séquece SEPT-LEPT miimise l'espérace du makespa das la classe des politiques de listes statique o préemptive et E(C max ) = + ( m - ) max. λ λ = ii) La séquece SEPT miimise l'espérace de la somme des temps de fi d exécutio das la classe des politiques listes statiques o préemptives et E( C = ) = m + λ = - λ =. Cosidéros le cas où les temps d'exécutio du ob sur chacue des m machies sot égaux à la V.A X de distributio F et F cx F 2 cx.. cx F. L'espérace des temps d'exécutio sot les mêmes mais les variaces peuvet être différete si l'obective est E( C = ). O applique la règle de la petite variace otée SV rule ( Short Variace first ). C'est la règle qui e tout istat la machie libre sélectioe le ob restat avec la plus petite variace. Théorème 4 : La règle SV miimise l'espérace de la somme du temps de fi d exécutio das la classe des politiques listes statiques opréemptives. Cosidéros la cotrepartie stochastique F2/block/C max avec le temps d'exécutio du ob sur la machie ( 2 ) X ( X 2 ) de distributio F ( F 2 ). La capacité de stockage est ulle etre les deux machies. Il est équivalet au problème du voyageur de commerce TSP. U algorithme efficace le résout, mais il e le fait pas pour le cas stochastique. O suppose que F = F 2 = F. Théorème 5 : Si F st F 2 st.. st F alors les séqueces et miimise l'espérace du makespa das la classe des politiques listes statiques opréemptive. Théorème 6 : Si F s v F 2 s v... s v F alors les suites fiies et miimise l'espérace du makespa das la classe des politiques listes statiques o préemptive. Exemple: Les distributios uiforme et Normal(0,2µ ) le sot. 8

9 Soit le problème F m / block / C max avec F = F 2 =...= F m = F de moyee / λ et que X, X 2,..., X m sot idépedats. Théorème 7 : Si F as F 2 as.. as F alors ue séquece miimise l'espérace du makespa si et seulemet si c'est ue séquece SEPT-LEPT. Righter [Rig95] a doée des résultats stochastiques. Kamburowski[Kam99] présete ue coditio suffisate sur les distributios des temps d'exécutio. Le makespa deviet stochastiquemet petit quad deux obs das ue suite sot permutés ( Les obs e sot pas forcémet adacets ). Le makespa d'ue suite de obs peut être représeté par le temps de fi d exécutio d'u réseau PERT. Réseau pour la suite de obs (, 2,..., k-2, r, i,, s, k+3,..., ) Les oeuds o et 2+ représetet le début de l'exécutio et la fi de l'exécutio du proet. Supposos que le ob i est à la kième positio das la séquece d'ordoacemet ( k, ). Les arcs ( 2k-3,2k-) et (2k,2k+2) décrivet l'exécutio du ob i sur la machie A et B respectivemet. Les arcs verticaux représetet des activités de durée ulle. Le makespa M, est la logueur du plus log chemi de 0 à 2 +. La temps le plus tôt, T l que l évéemet (oeud) l surviee est la logueur du plus log chemi du oeud 0 à l. O a besoi de T l, la logueur du plus log chemi de l à 2+. Utilisat la termiologie du PERT, M - T l est le temps le plus tard que l évéemet l surviee. Si o iverse tous les arcs du réseau et o suppose que les obs sot exécutés e premier sur la machie B et après sur la machie A, le makespa de la séquece iversée est le même. Cosidéros deux obs itermédiaires et adacets dire i et. Soiet π = ( ρ, r, i,, s, ϖ ) et π 2 = ( ρ, r,, i, s, ϖ ) avec ρ et ϖ des sous suites de obs ayat pas d élémets r, i, et s. Supposos que le ob i est à la kième positio das π. Les makespas correspodats peuvet être représetés comme suit : M = max ( X, Y, Z ) et M 2 = max ( X, Y, Z 2 ) où X = T 2k-2 + B r + B i + B + T 2k+ 4 Y = T 2k-3 + A i + A + A s + T 2k + 3 9

10 Z = T 2k-3 + A i + B + max ( A, B i ) + T 2k+ 4 () Z 2 = T 2k-3 + A + B i + max ( A i, B ) + T 2k+ 4 La variable aléatoire représete la logueur du plus log chemi ( de 0 à 2+ ) qui coduit B r, soit, passe par l arc ( 2k-2, 2k) de logueur B r. Idetiquemet, Y représete la logueur du plus log chemi qui cotiet A s. Autat que Z ( Z 2 ) représete la logueur du plus log chemi qui cotiet A i et A (A et B i ) sous la suite π ( π 2 ). Défiissos les v.a Q r et Q s comme: Q r = T 2k-2 + B r - T 2k-3 et Q s = T 2k+3 + A s - T 2k + 4 (2) Q r est le temps qui sépare la fi d exécutio du ob r sur la machie A et B Q s a ue iterprétatio aalogue pour la séquece iversée. E substituat (2) das (), o obtiet la représetatio coveable suivate. M = T 2k-3 + T 2k max ( U, V, W ) et M 2 = T 2k-3 + T 2k max ( U, V, W 2 ) (3) où U = Q r + B i et V = Q s + A i (4) W = A i + B + max ( A, B i ) et W 2 = A + B i + max ( A i, B ) et A i = A i + A et B i = B i + B E dérivat de l équatio (3), o suppose que i et sot deux obs itermédiaires. S ils sot les deux premiers ( ou deux deriers ) obs de la suite, la v.a U ( V ) doit être exclue de toute cosidératio. Il suffit de poser Q r = - ( Q s = - ) das (4). Ultérieuremet o suppose aisi que i et sot adacets. Supposos qu il y a ue sous-suite de obs, ν, etre i et ; π = ( ρ, r, i, ν,, s, ω ) et π 2 = ( ρ, r,, ν, i, s, ω ). La représetatio (3) reste valable quad l =, 2. W l = la logueur du plus log chemi commeçat de l arc avec A i ( A ) et se termiat à l arc avec B (B i ) sous π l. A i ( B i ) = La logueur de l uique chemi qui commece de l arc A i (B i ) et se termie avec l arc A ( B ) sous π (π 2 ) et T 2k-3 le temps de fi d exécutio du ob r sur la machie A et T 2k+4 le temps de fi d exécutio du ob s sur la machie B sur la séquece iversée. 0

11 Théorème : Si q r et q s das le support Q r et Q s R (q r,q s ) = Max ( q r + B i, q s + A i, W ) st Max ( q 2 + B i, q s + A i, W 2 ) = R 2 (q r,q s ) (5) Alors M st M 2. La v.a coditioelle (X / Y = y ) est otée ( X / y ) La coditio (5) est plus faible que celle de Ku et Niu[Ku85]. Remarque: X + Z st Y + Z implique pas que X st Z aussi bie si X, Y et Z sot idépedats. Supposos que les temps d exécutio sot des v.a idépedates et expoetiellemet distribuées. Propositio : Pour deux obs adacets i et, l équatio (5) est satisfaite par chacue des deux coditios suivates : i) P[ Mi ( A i, B ) Mi ( A, B i ) ] = ii) / E(A i ) - /E(B i ) / E(A ) - /E(B ) Propositio 2 : Supposos que les temps d exécutio d u ob sur les machies soiet mi ( A k, Z ) et mi (B k, Z) avec A k, B k et Z des v.a idépedates et expoetiellemet distribuées. Si pour deux obs adacets i et, / E(A i ) - /E(B i ) / E(A ) - /E(B ) alors M st M 2. Z peut être vue comme ue date de fi «deadlie» aléatoire comme pour les temps d exécutio o restreit A k et B k. Propositio 3 : Soiet A i st A et B i st B pour deux obs adacets i et alors : E( R (q r,q s ) ) E(R 2 (q r,q s )) et e coséquece E( M ) E( M 2 ). CONCLUSION :

12 La résolutio des problèmes de flow shop stochastiques se fait e gééral par l utilisatio de trois classes de méthodes stochastiques : les méthodes de type recuit simulé, les algorithmes géétiques et les processus badits. Das cette article ous avos préseté quelques résultats établis das la littérature e utilisat ue approche différete, à savoir la comparaiso stochastique. Das l aveir, ous comptos implèmeter ces méthodes et de faire leur comparaiso et de coclure sur leur efficacité. REFERENCES [Bag70a] Bagga, P.C (970a). Sequecig with radom service times. Techometrics 2, pp [Bag70b] Bagga, P.C (970b). -Job, 2-Machie Sequecig Problems with stochastic service times. Operatios Research 7, pp [Ba65] Baeree, B.P (965).Sigle Facility Sequecig With Radom Executio Times. Operatios research 3, pp [co67] Coway, R.C; Maxwell, W.L ad Miller, L.W (967). Theory of schedulig. Addiso Wesley. [Cu73] Cuigham, A.A ad Dutta, S.K (973). Schedulig obs with expoetially distributed processig times o two machies of a flowshop. Naval Research Logistics Quarterly, vol20,. pp [Fro85] Frostig, E ad Adiri, I (985). Three-machie flowshop stochastic schedulig to miimize distributio of schedule leght. Naval Research Quarterly 32. pp [Gar76] Garey, M.R ; Johso, D.S ad Sethi, R (976). The complexity of flowshop ad obshop schedulig. Mathematics of operatios research. vol., 2. pp [Gil64] Gilmore, P.C ad Gomory, R.E (964). Sequecig a oe state variable machie : A solvable case of the travelig salesma problem. Operatios research 2, pp [Joh54] Johso, S.W (954). Optimal Two ad Three-stage Productio Schedules With Setup Times Icluded. Naval research Logistic Quarterly, pp [Kam99] Kamburowski, J (999). Stochastically miimizig the makespa i two-machie flow shops without blockig, EJOR(2) 2, pp [Ku86] Ku,P-S ad Niu, S-C (986). O Johso s two-machie flow shop with radom processig times. Operatios Research, vol. 34, No., pp [Lev69] Lever, E (969). Optimal plaig of Parts Machiig o a umber of Machies. Automatic Remote Cotrol 2, pp

13 [Mak65] Makio, T (965). O a schedulig Problem. Joural of operatio research society of Japa 8. pp [Mut79] Muth, E.J (979). The reversibility property of productio lies. Maagemet sciece, vol25, 2. pp [Pi82a] Piedo, M (982). Miimizig the expected Makespa i stochastic flow shops. Operatios Research 30, pp [Pi82b] Piedo, M.L ad Ross, S.M ( 982). Miimizig Expected Makespa i Stochastic Ope Shops. Advaces Applied Probability 4. pp [Pi95] Piedo, M.L (995). Schedulig : Theory, Algorithms ad systems. Pretice Hall, Eglewood cliffs, New Jersey. [Rig94] Righter, R (994). Stochastic schedulig. I stochastic orders, M.Shaked ad G. Shathikumar ( eds.), Academic Press, Sa Diego. [Tal67] Talwar, P.P (967). A ote o Sequecig Problems With Ucertai Job Times. Joural of operatios research society of Japa 9. pp [Web79] Weber, R.R (979). The Iterchageability of tadem./m/ queues i series. Joural of Applied Probability 6. pp

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

B) CHAÎNES DE SOLIDES

B) CHAÎNES DE SOLIDES Chaîes de solides B) CHAÎNES DE SOLIDES Objectifs Cette théorie a pour but d'aalyser les comportemets statique et ciématique d'u mécaisme à partir d'u modèle défii par le schéma ciématique du mécaisme.

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

La classification de données quantitatives avec SPAD

La classification de données quantitatives avec SPAD La classificatio de doées quatitatives avec SPAD SPAD effectue toujours ue ACP de la matrice des doées quatitatives X " p avat de faire la classificatio des idividus. Les méthodes de classificatio s appliquet

Plus en détail

Travaux dirigés G33 Dimensionnement 2 séances Enseignant : Anthony Busson.

Travaux dirigés G33 Dimensionnement 2 séances Enseignant : Anthony Busson. Travaux dirigés G33 Dimesioemet 2 séaces Eseigat : Athoy Busso. Exercice 1 : O cosidère u web switch et 3 serveurs web. Le web switch reçoit les requêtes http proveat des cliets et les répartit de maière

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

Apprentissage: cours 3a Méthodes par moyennage local

Apprentissage: cours 3a Méthodes par moyennage local Appretissage: cours 3a Méthodes par moyeage local Guillaume Oboziski 1 er mars 2012 Réferece : chap. 6 of [Hastie et al., 2009] ad chap. 6 of [Devroye et al., 1996]. Algorithmes par moyeage local O cosidère

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 MÉTHODES NUMÉRIQUES POUR LE PRICING D OPTIONS DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 Table des matières 1 Notatios et équatio de Black-Scholes 2 11 Notatios 2 12 Équatio de Black-Scholes

Plus en détail

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6 Corrigés TD Chapitre : Variables aléatoires sur u uivers fii Exercice : Soit X la VAR défiie par le tableau suivat : x i - - 0 p 6 4 6 4 6 i O ote Y = X ) Détermier la loi cooite de X et Y ) Détermier

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Féelo aite-marie Préparatio ciece-po/prépa HEC Foctios Versio du juillet 05 Eercice d degré : racies et coefficiets O rappelle que si l équatio a + b + c = 0 ( a 0 ) adet deu racies α et β (évetuelleet

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Exercices - Lois discrètes usuelles : corrigé

Exercices - Lois discrètes usuelles : corrigé www.almohadiss.com Exercice - Avio - L2/Prépa Hec - O ote X la variable aléatoire du ombre de moteurs de A qui tombet e pae, et Y la variable aléatoire du ombre de moteurs de B qui tombet e pae. X suit

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

Mathématiques. Cours. BTS Informatique de gestion 2 e année. Denis Jaudon. Directrice de publication : Valérie Brard-Trigo

Mathématiques. Cours. BTS Informatique de gestion 2 e année. Denis Jaudon. Directrice de publication : Valérie Brard-Trigo BTS Iformatique de gestio e aée Deis Jaudo Mathématiques Cours Directrice de publicatio : Valérie Brard-Trigo Les cours du Ced sot strictemet réservés à l usage privé de leurs destiataires et e sot pas

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

Test de validité et d'hypothèse

Test de validité et d'hypothèse Test de validité et d'hypothèse 1 Vocabulaire Problème: Il s'agit à partir de l'étude d'u ou plusieurs échatillos de predre des décisios cocerat l'esemble de la populatio. O est alors ameé à émettre des

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités.

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités. PROBABILITÉS I. PROBABILITÉS ( RAPPELS) a. Expérieces aléatoires et modèles Le lacer d ue pièce de moaie, le lacer d u dé sot des expérieces aléatoires, car avat de les effectuer, o e peut pas prévoir

Plus en détail

Cours de méthodes de simulation

Cours de méthodes de simulation ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION ( ESSAIT) Cours de méthodes de simulatio Préparé par Hasse MATHLOUTHI Aée uiversitaire 2014-2015 AVANT PROPOS Ce documet propose u cours sur

Plus en détail

TP R : méthodes statistiques élémentaires

TP R : méthodes statistiques élémentaires M2 IFMA et MPE TP R : méthodes statistiques élémetaires À la fi de la séace vous déposerez vos scripts R das la boîte de dépôt de votre espace Sakai : http://australe.upmc.fr/portal. 1 Importatio des doées

Plus en détail

Promenades aléatoires : vers les chaînes de Markov

Promenades aléatoires : vers les chaînes de Markov AME Dossier : Matrices et suites 545 romeades aléatoires : vers les chaîes de Markov ierre Griho (*) Cet article propose ue mise e perspective de la otio de promeade ou de marche aléatoire itroduite das

Plus en détail

TS Intervalle de fluctuation et estimation Cours

TS Intervalle de fluctuation et estimation Cours Aée 2013/2014 TS Itervalle de fluctuatio et estimatio Cours est u etier aturel o ul et p est u réel de l itervalle 0 ; 1. I Itervalle de fluctuatio Cotexte : Das ue populatio, la proportio d idividus présetat

Plus en détail

Mathématiques. Terminale S Corrigés des exercices. Rédaction : Laurent Beroul Isabelle Tenaud Sébastien Cario. Coordination : Sébastien Cario

Mathématiques. Terminale S Corrigés des exercices. Rédaction : Laurent Beroul Isabelle Tenaud Sébastien Cario. Coordination : Sébastien Cario Mathématiques Termiale S Corrigés des eercices Rédactio : Lauret Beroul Isabelle Teaud Sébastie Cario Coordiatio : Sébastie Cario Ce cours est la propriété du Ced Les images et tetes itégrés à ce cours

Plus en détail

Devoir de statistiques: CORRIGE

Devoir de statistiques: CORRIGE CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

REQUÊTES. Il est possible de créer des formulaires ou des états à partir de requête.

REQUÊTES. Il est possible de créer des formulaires ou des états à partir de requête. Cliclasolutio Aée 2006/2007 REQUÊTES Utilité des requêtes QUESTIONNER LA BASE DE DONNÉES La foctio classique d'ue requête est de répodre à ue questio sur la base de doées. "Quels sot les cliets habitat

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

La Méthode de Monte Carlo

La Méthode de Monte Carlo La Méthode de Mote Carlo Etiee Pardoux UMR 6632 Laboratoire d Aalyse, Topologie, Probabilités et EA 3781 Evolutio Biologique Uiversité de Provece Etiee Pardoux (LATP) Marseille, 13/09/2006 1 / 33 Cotets

Plus en détail

Organisme de recherche et d information sur la logistique et le transport LES PREVISIONS DES CONSOMMATIONS

Organisme de recherche et d information sur la logistique et le transport LES PREVISIONS DES CONSOMMATIONS LES PREVISIONS DES CONSOMMATIONS Les logiciels utilisés pour la gestio des stocks itègret de ombreuses foctios de calcul. L ue des plus importates est l exécutio des prévisios des cosommatios futures d

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles BTS Mécaique et Automatismes Idustriels Statistiques iféretielles, Aée scolaire 2005 2006 Statistiques iféretielles 1. Itroductio vocabulaire Pour étudier ue populatio statistique, o a recours à deux méthodes

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

STATISTIQUE : ESTIMATION

STATISTIQUE : ESTIMATION STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples

Plus en détail

Processus géométrique généralisé et applications en fiabilité

Processus géométrique généralisé et applications en fiabilité Processus géométrique gééralisé et applicatios e fiabilité Lauret Bordes 1 & Sophie Mercier 2 1,2 Uiversité de Pau et des Pays de l Adour Laboratoire de Mathématiques et de leurs Applicatios - Pau UMR

Plus en détail

STATISTIQUE AVANCÉE : MÉTHODES

STATISTIQUE AVANCÉE : MÉTHODES STATISTIQUE AVANCÉE : MÉTHODES NON-PAAMÉTIQUES Ecole Cetrale de Paris Arak S. DALALYAN Table des matières 1 Itroductio 5 2 Modèle de desité 7 2.1 Estimatio par istogrammes............................

Plus en détail

Maîtrise de Mathématiques TER Le bandit manchot à deux bras

Maîtrise de Mathématiques TER Le bandit manchot à deux bras Maîtrise de Mathématiques TER Le badit machot à deux bras Deis Cousieau Sous la directio de Jea-Michel Loubes Septembre 2003 Table des matières 1 Présetatio du problème 2 1.1 Exemple de la machie à sous,

Plus en détail

Application «Calculs» Application «Graphiques» Application «Tableur et listes» FR

Application «Calculs» Application «Graphiques» Application «Tableur et listes» FR TI Nspire Documet de Formatio T3 Walloie TI-Nspire Le tout e u des mathématiques Suites umériques La loi de Verhulst Applicatio «Calculs» Applicatio «Graphiques» Applicatio «Tableur et listes» FR Formatios

Plus en détail

CHAPITRE 22. Machines à sous

CHAPITRE 22. Machines à sous CHAPITRE 22 Machies à sous 22. Corrigé possible du texte 22.. Eocé du problème et défiitio du modèle statistique associé O étudie ici u modèle statistique avec observatios icomplètes : o dispose d observatios

Plus en détail

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009 M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

Correction HEC III 2007

Correction HEC III 2007 HEC III 7 Voie Écoomique Correctio Page Correctio HEC III 7 Voie écoomique La correctio comporte 9 pages. Eercice. Par dé itio est ue valeur propre de t si et seulemet si est ue valeur propre de T: Et

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie B Optio Écoomie MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

GRAPHES. 0 1 1 0 0 1 1 0 0 0 Les graphes ci-dessous peuvent-ils être associés à A? Exercice n 6. Ecrivez la matrice associé à chaque graphe :

GRAPHES. 0 1 1 0 0 1 1 0 0 0 Les graphes ci-dessous peuvent-ils être associés à A? Exercice n 6. Ecrivez la matrice associé à chaque graphe : Exercice. Détermier le degré de chacu des sommets du graphe suivat : GRAPHES Exercice 6. Ecrivez la matrice associé à chaque graphe : Exercice. Trois pays evoiet chacu à ue coférece deux espios ; chaque

Plus en détail

Chaînes de Markov. Arthur Charpentier

Chaînes de Markov. Arthur Charpentier Chaîes de Markov Arthur Charpetier École Natioale de la Statistique et d Aalyse de l Iformatio - otes de cours à usage exclusif des étudiats de l ENSAI - - e pas diffuser, e pas citer - Quelques motivatios.

Plus en détail

P : Dénombrements / Probabilités en univers fini

P : Dénombrements / Probabilités en univers fini P : Déombremets / Probabilités e uivers fii Déombremet & Combiatoire P.1 O tire les cartes! O tire 5 cartes das u jeu de 32 cartes usuel. Combie y a-t-il de tirages possibles vérifiat les coditios suivates

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

55 - EXEMPLES D UTILISATION DU TABLEUR.

55 - EXEMPLES D UTILISATION DU TABLEUR. 55 - EXEMPLES D UTILISATION DU TABLEUR. CHANTAL MENINI 1. U pla possible Les exemples qui vot suivre sot des pistes possibles et e aucu cas ue présetatio exhaustive. De même je ai pas fait ue étude systématique

Plus en détail

PRINCIPALES DISTRIBUTIONS DE PROBABILITÉS

PRINCIPALES DISTRIBUTIONS DE PROBABILITÉS PRINCIPALES DISTRIBUTIONS DE PROBABILITÉS INTRODUCTION De ombreuses situatios pratiques peuvet être modélisées à l aide de variables aléatoires qui sot régies par des lois spécifiques. Il importe doc d

Plus en détail

Probabilités & Statistiques L1: Cours. December 20, 2008

Probabilités & Statistiques L1: Cours. December 20, 2008 Probabilités & Statistiques L1: Cours December 20, 2008 Chapter 1 Déombremets I 1.1 Pricipes gééraux Règle du produit O fait deux expérieces, successives ou simultaées. Si la première doe 1 résultats possibles

Plus en détail

Bulletin officiel spécial n 8 du 13 octobre 2011

Bulletin officiel spécial n 8 du 13 octobre 2011 Aexe Programme de l eseigemet spécifique et de spécialité de mathématiques de la série écoomique et sociale et de l eseigemet de spécialité de mathématiques de la série littéraire L eseigemet des mathématiques

Plus en détail

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse Séquece 9 Itervalles de fluctuatio, estimatio Objectifs de la séquece Das le chapitre 2, o étudie des itervalles de fluctuatio des variables aléatoires X F =, fréqueces des variables aléatoires biomiales

Plus en détail

Seconde année - Semestre 3 PROBABILITÉS

Seconde année - Semestre 3 PROBABILITÉS 1 UNIVERSITÉ DE CERGY Aée 2012-2013 LICENCE d ÉCONOMIE et GESTION Secode aée - Semestre 3 PROBABILITÉS Feuille d exercices N 3 : Variables aléatoires - Lois discrètes 1. Calculez 3 2 + 2 5 Exercice I (

Plus en détail

PROJET DE MONTE CARLO SUJET 1: LE PRICING

PROJET DE MONTE CARLO SUJET 1: LE PRICING LE Age KHOURI Nadie M MMD PROJE DE MONE ARLO SUJE : LE PRIING Selim ZOUGHLAMI QUESION : Supposos d abord que X est u mouvemet browie W t G([ 0, ]) Alors W0 G( 0 ) suit ue loi N(0,0) et doc W 0ps 0 Esuite,

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Correction des exercices sur la nature ondulatoire de la lumière

Correction des exercices sur la nature ondulatoire de la lumière CORRECTION EXERCICES TS /5 CHAPITRE 3 Correctio des exercices sur la ature odulatoire de la lumière Correctio exercice : idice d u verre et réfractio. La radiatio = 530 m est verte et la radiatio = 680

Plus en détail

Statistique descriptive bidimensionnelle

Statistique descriptive bidimensionnelle 1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets

Plus en détail

Comment utiliser ce que vous POSSÉDEZ pour réduire ce que vous DEVEZ

Comment utiliser ce que vous POSSÉDEZ pour réduire ce que vous DEVEZ Commet utiliser ce que vous POSSÉDEZ pour réduire ce que vous DEVEZ Survol du compte Mauvie U La majorité des Caadies gèret leurs fiaces comme suit : 1. Ils déposet leur reveu et autres actifs à court

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

Chapitre 13. Statistiques et probabilités. Sommaire

Chapitre 13. Statistiques et probabilités. Sommaire 13 Chapitre Chapitre 13 Statistiques et probabilités Les statistiques et les probabilités occupet ue place importate das l eseigemet de certaies classes préparatoires Les pricipales foctios écessaires

Plus en détail

UNIVERSITÉ DE SFAX École Supérieure de Commerce

UNIVERSITÉ DE SFAX École Supérieure de Commerce UNIVERSITÉ DE SFAX École Supérieure de Commerce Aée Uiversitaire 2003 / 2004 Auditoire : Troisième Aée Études Supérieures Commerciales & Scieces Comptables DÉCISIONS FINANCIÈRES Note de cours N 3 Première

Plus en détail

Chapitre 1: Calcul des intérêts

Chapitre 1: Calcul des intérêts Chapitre 1: Calcul des itérêts Ce chapitre vise à familiariser le lecteur avec les otios suivates : Itérêt Taux d itérêt omial Taux d itérêt périodique Valeur acquise Valeur actuelle Capitalisatio Le lecteur

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

Correction EDHEC 2007 Voie scienti que

Correction EDHEC 2007 Voie scienti que EDHE 7 ES Exercice Page orrectio EDHE 7 Voie scieti que La correctio comporte 4 pages. Exercice. Pour tout etier o ul, la foctio x 7! e x x est cotiue sur R e tat que quotiet (dot le déomiateur e s aule

Plus en détail

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f.

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f. Chapitre 14 Itervalle de fluctuatio des fréqueces. Estimatio Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Itervalle de fluctuatio Estimatio Itervalle de cofiace (*). Niveau

Plus en détail

XV. Probabilités. Pour le second exemple, le dénombrement de toutes les issues possibles (un schéma en arbre peut nous y aider),

XV. Probabilités. Pour le second exemple, le dénombrement de toutes les issues possibles (un schéma en arbre peut nous y aider), . Itroductio XV. robabilités. L'étude des probabilités couvre toutes les situatios de phéomèes ayat plusieurs issues possibles, la réalisatio de chaque résultat état due au hasard. Des exemples de calcul

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

HEC. Gilles Mauffrey. METHODES QUANTITATIVES AVEC EXCEL Programmation linéaire, programmation dynamique, simulation, statistique élémentaire

HEC. Gilles Mauffrey. METHODES QUANTITATIVES AVEC EXCEL Programmation linéaire, programmation dynamique, simulation, statistique élémentaire HEC Gilles Mauffrey METHODES QUANTITATIVES AVEC EXCEL Programmatio liéaire, programmatio dyamique, simulatio, statistique élémetaire La Modélisatio LA MODELISATION Modèle et typologie des modèles. La otio

Plus en détail

Probabilité 1 - L1 MMIA

Probabilité 1 - L1 MMIA Probabilité 1 - L1 MMIA Tra Viet Chi, vtra@u-paris10fr, Bureau E12(G) Exercice 1 (Pour démarrer) 1 Soiet A et B deux esembles Rappelez les défiitios de l itersectio A B, de l uio A B, de la différece A

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

II. Permutations sans répétitions et notation factorielle

II. Permutations sans répétitions et notation factorielle février 2012 ORRIGE II. Permutatios sas répétitios et otatio factorielle Aalyse combiatoire 4 ème - 1 I. Itroductio Les différets modèles mathématiques costruits pour étudier les phéomèes où iterviet le

Plus en détail

trouve jamais dans les concepts généraux que ce qu on y met

trouve jamais dans les concepts généraux que ce qu on y met ,QIRUPDWLTXHQRUPHHWWHPSV,VDEHOOH%R\GHQV Présetatio par Marie-Ae Chabi Réuio PIN 15 javier 2004 /HVEDVHVGHGRQQpHVHPSLULTXHV Collectio fiie et structurée de doées codifiées, textuelles ou multimédia, destiées

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

Cours 5 : ESTIMATION PONCTUELLE

Cours 5 : ESTIMATION PONCTUELLE Cours 5 : ESTIMATION PONCTUELLE A- Gééralités B- Précisio d u estimateur C- Exhaustivité D- iformatio E-estimateur sas biais de variace miimale, estimateur efficace F- Quelques méthode s d estimatio A-

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

Éléments de cours de Probabilités

Éléments de cours de Probabilités Élémets de cours de Probabilités Licece de mathématiques Uiversité de Versailles Sait-Queti Jea-Fraçois Marckert Table des matières I. Itroductio 1 1. U peu d histoire......................................

Plus en détail